1
|
Gupta MK, Gouda G, Moazzam-Jazi M, Vadde R, Nagaraju GP, El-Rayes BF. CRISPR/Cas9-directed epigenetic editing in colorectal cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189338. [PMID: 40315964 DOI: 10.1016/j.bbcan.2025.189338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/21/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related illness and death worldwide, arising from a complex interplay of genetic predisposition, environmental influences, and epigenetic dysregulation. Among these factors, epigenetic modifications-reversible and heritable changes in gene expression-serve as crucial regulators of CRC progression. Understanding these modifications is essential for identifying potential biomarkers for early diagnosis and developing targeted therapeutic strategies. Epigenetic drugs (epidrugs) such as DNA methyltransferase inhibitors (e.g., decitabine) and bromodomain inhibitors (e.g., JQ1) have shown promise in modulating aberrant epigenetic changes in CRC. However, challenges such as drug specificity, delivery, and safety concerns limit their clinical application. Advances in CRISPR-Cas9-based epigenetic editing offer a more precise approach to modifying specific epigenetic markers, presenting a potential breakthrough in CRC treatment. Despite its promise, CRISPR-based epigenome editing may result in unintended genetic modifications, necessitating stringent regulations and safety assessments. Beyond pharmacological interventions, lifestyle factors-including diet and gut microbiome composition-play a significant role in shaping the epigenetic landscape of CRC. Nutritional and microbiome-based interventions have shown potential in preventing CRC development by maintaining intestinal homeostasis and reducing tumor-promoting epigenetic changes. This review provides a comprehensive overview of epigenetic alterations in CRC, exploring their implications for diagnosis, prevention, and treatment. By integrating multi-omics approaches, single-cell technologies, and model organism studies, future research can enhance the specificity and efficacy of epigenetic-based therapies. Shortly, a combination of advanced gene-editing technologies, targeted epidrugs, and lifestyle interventions may pave the way for more effective and personalized CRC treatment strategies.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Gayatri Gouda
- ICAR-National Rice Research Institute, Cuttack 753 006, Odisha, India
| | - Maryam Moazzam-Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Division of Hematology & Oncology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Bassel F El-Rayes
- Division of Hematology & Oncology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
2
|
Mehrabadi S, Izadi FS, Pasha S, Pourali R, Khazaei M, Hassanian SM, Ferns GA, Avan A. The Potential Therapeutic Applications of CRISPR/Cas9 in the Treatment of Gastrointestinal Cancers. Curr Mol Med 2025; 25:278-288. [PMID: 38243923 DOI: 10.2174/0115665240243076231116080113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 01/22/2024]
Abstract
Gastrointestinal (GI) cancer is one the most prevalent types of cancer. Despite current chemotherapy's success, patients with GI cancer continue to have a dismal outcome. The onset and progression of cancer are caused by alterations and the abnormal expression of several families of genes, like tumor-suppressor genes, oncogenes, and chemotherapy-resistant genes. The final purpose of tumor therapy is to inhibit cellular development by modifying mutations and editing the irregular expression of genes It has been reported that CDH1, TP53, KRAS, ARID1A, PTEN, and HLA-B are the commonly mutated genes in GI cancer. Gene editing has become one potential approach for cases with advanced or recurrent CRC, who are nonresponsive to conventional treatments and a variety of driver mutations along with progression cause GI progression. CRISPR/Cas9 technique is a reliable tool to edit the genome and understand the functions of mutations driving GI cancer development. CRISPR/Cas9 can be applied to genome therapy for GI cancers, particularly with reference to molecular-targeted medicines and suppressors. Moreover, it can be used as a therapeutic approach by knocking in/out multiple genes. The use of CRISPR/ Cas9 gene editing method for GI cancer therapy has therefore resulted in some improvements. There are several research works on the role of CRISPR/Cas9 in cancer treatment that are summarized in the following separate sections. Here, the use of CRISPR/Cas9-based genome editing in GI and the use of CRISPR/Cas9 is discussed in terms of Targeting Chemotherapy Resistance-related Genes like; KRAS, TP53, PTEN, and ARID1A.
Collapse
Affiliation(s)
- Shima Mehrabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Salmani Izadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Pasha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roozbeh Pourali
- Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| |
Collapse
|
3
|
Roy AD, Gonzalez CS, Shahid F, Yadav E, Inoue T. Optogenetically Induced Microtubule Acetylation Unveils the Molecular Dynamics of Actin-Microtubule Crosstalk in Directed Cell Migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626286. [PMID: 39677776 PMCID: PMC11642777 DOI: 10.1101/2024.12.01.626286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Microtubule acetylation is implicated in regulating cell motility, yet its physiological role in directional migration and the underlying molecular mechanisms have remained unclear. This knowledge gap has persisted primarily due to a lack of tools capable of rapidly manipulating microtubule acetylation in actively migrating cells. To overcome this limitation and elucidate the causal relationship between microtubule acetylation and cell migration, we developed a novel optogenetic actuator, optoTAT, which enables precise and rapid induction of microtubule acetylation within minutes in live cells. Using optoTAT, we observed striking and rapid responses at both molecular and cellular level. First, microtubule acetylation triggers release of the RhoA activator GEF-H1 from sequestration on microtubules. This release subsequently enhances actomyosin contractility and drives focal adhesion maturation. These subcellular processes collectively promote sustained directional cell migration. Our findings position GEF-H1 as a critical molecular responder to microtubule acetylation in the regulation of directed cell migration, revealing a dynamic crosstalk between the actin and microtubule cytoskeletal networks.
Collapse
Affiliation(s)
- Abhijit Deb Roy
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT 06030, USA
- Department of Cell Biology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Cristian Saez Gonzalez
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Farid Shahid
- The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eesha Yadav
- The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
5
|
Khorshid Sokhangouy S, Alizadeh F, Lotfi M, Sharif S, Ashouri A, Yoosefi Y, Bozorg Qomi S, Abbaszadegan MR. Recent advances in CRISPR-Cas systems for colorectal cancer research and therapeutics. Expert Rev Mol Diagn 2024; 24:677-702. [PMID: 39132997 DOI: 10.1080/14737159.2024.2388777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Colon cancer, ranked as the fourth leading global cause of cancer death, exhibits a complex progression marked by genetic variations. Over the past decade, the utilization of diverse CRISPR systems has propelled accelerated research into colorectal cancer (CRC) treatment. AREAS COVERED CRISPR/Cas9, a key player in this research, identifies new oncogenes, tumor suppressor genes (TSGs), and drug-resistance genes. Additionally, it facilitates the construction of experimental models, conducts genome-wide library screening, and develops new therapeutic targets, especially for targeted knockout in vivo or molecular targeted drug delivery, contributing to personalized treatments and significantly enhancing the care of colon cancer patients. In this review, we provide insights into the mechanism of the CRISPR/Cas9 system, offering a comprehensive exploration of its applications in CRC, spanning screening, modeling, gene functions, diagnosis, and gene therapy. While acknowledging its transformative potential, the article highlights the challenges and limitations of CRISPR systems. EXPERT OPINION The application of CRISPR/Cas9 in CRC research provides a promising avenue for personalized treatments. Its potential for identifying key genes and enabling experimental models and genome-wide screening enhances patient care. This review underscores the significance of CRISPR-Cas9 gene editing technology across basic research, diagnosis, and the treatment landscape of colon cancer.
Collapse
Affiliation(s)
| | - Farzaneh Alizadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sharif
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ashouri
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Yoosefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Bozorg Qomi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Ortiz HR, Cruz Flores P, Podgorski J, Ramonett A, Ahmed T, Hempel N, Charest PG, Ellis NA, Langlais PR, Montfort WR, Mythreye K, Kumar S, Lee NY. Extracellular signals induce dynamic ER remodeling through αTAT1-dependent microtubule acetylation. Neoplasia 2024; 53:101003. [PMID: 38759377 PMCID: PMC11127537 DOI: 10.1016/j.neo.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to various growth factors and cytokines including TGF-β and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT1-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT1 pathway may be a key target in ER stress and dysfunction.
Collapse
Affiliation(s)
- Hannah R Ortiz
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Paola Cruz Flores
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724, USA
| | - Julia Podgorski
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Aaron Ramonett
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Tasmia Ahmed
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724, USA
| | - Nadine Hempel
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pascale G Charest
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan A Ellis
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Paul R Langlais
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - William R Montfort
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724, USA
| | | | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education & Research Tirupati, Mangalam Tirupati 517507, India.
| | - Nam Y Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724, USA; Comprehensive Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
7
|
Choi JH, Jeong J, Kim J, You E, Keum S, Song S, Hwang YE, Ji M, Park KS, Rhee S. Genetic disruption of ATAT1 causes RhoA downregulation through abnormal truncation of C/EBPβ. BMB Rep 2024; 57:293-298. [PMID: 38835115 PMCID: PMC11214891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/03/2024] [Accepted: 02/01/2024] [Indexed: 06/06/2024] Open
Abstract
Microtubule acetylation has been shown to regulate actin filament dynamics by modulating signaling pathways that control actin organization, although the precise mechanisms remain unknown. In this study, we found that the downregulation of microtubule acetylation via the disruption ATAT1 (which encodes α-tubulin N-acetyltransferase 1) inhibited the expression of RhoA, a small GTPase involved in regulating the organization of actin filaments and the formation of stress fibers. Analysis of RHOA promoter and chromatin immunoprecipitation assays revealed that C/EBPβ is a major regulator of RHOA expression. Interestingly, the majority of C/EBPβ in ATAT1 knockout (KO) cells was found in the nucleus as a 27-kDa fragment (referred to as C/EBPβp27) lacking the N-terminus of C/EBPβ. Overexpression of a gene encoding a C/EBPβp27-mimicking protein via an N-terminal deletion in C/EBPβ led to competitive binding with wild-type C/EBPβ at the C/EBPβ binding site in the RHOA promoter, resulting in a significant decrease of RHOA expression. We also found that cathepsin L (CTSL), which is overexpressed in ATAT1 KO cells, is responsible for C/EBPβp27 formation in the nucleus. Treatment with a CTSL inhibitor led to the restoration of RHOA expression by downregulation of C/EBPβp27 and the invasive ability of ATAT1 KO MDA-MB-231 breast cancer cells. Collectively, our findings suggest that the downregulation of microtubule acetylation associated with ATAT1 deficiency suppresses RHOA expression by forming C/EBPβp27 in the nucleus through CTSL. We propose that CTSL and C/EBPβp27 may represent a novel therapeutic target for breast cancer treatment. [BMB Reports 2024; 57(6): 293-298].
Collapse
Affiliation(s)
- Jee-Hye Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Jaegu Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Eunae You
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Seongeun Song
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Ye Eun Hwang
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Minjoo Ji
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| |
Collapse
|
8
|
Iuzzolino A, Pellegrini FR, Rotili D, Degrassi F, Trisciuoglio D. The α-tubulin acetyltransferase ATAT1: structure, cellular functions, and its emerging role in human diseases. Cell Mol Life Sci 2024; 81:193. [PMID: 38652325 PMCID: PMC11039541 DOI: 10.1007/s00018-024-05227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The acetylation of α-tubulin on lysine 40 is a well-studied post-translational modification which has been associated with the presence of long-lived stable microtubules that are more resistant to mechanical breakdown. The discovery of α-tubulin acetyltransferase 1 (ATAT1), the enzyme responsible for lysine 40 acetylation on α-tubulin in a wide range of species, including protists, nematodes, and mammals, dates to about a decade ago. However, the role of ATAT1 in different cellular activities and molecular pathways has been only recently disclosed. This review comprehensively summarizes the most recent knowledge on ATAT1 structure and substrate binding and analyses the involvement of ATAT1 in a variety of cellular processes such as cell motility, mitosis, cytoskeletal organization, and intracellular trafficking. Finally, the review highlights ATAT1 emerging roles in human diseases and discusses ATAT1 potential enzymatic and non-enzymatic roles and the current efforts in developing ATAT1 inhibitors.
Collapse
Affiliation(s)
- Angela Iuzzolino
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy
| | - Francesca Romana Pellegrini
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Francesca Degrassi
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.
| | - Daniela Trisciuoglio
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.
| |
Collapse
|
9
|
Kar S, Mukherjee R, Guha S, Talukdar D, Das G, Murmu N. Modulating the acetylation of α-tubulin by LncRNAs and microRNAs helps in the progression of cancer. Cell Biochem Funct 2024; 42:e3953. [PMID: 38414166 DOI: 10.1002/cbf.3953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Malignant tumor cells go through morphological and gene expression alterations, including rearrangement of cytoskeleton proteins that promote invasion and metastasis. Microtubules form a major cytoskeleton component that plays a significant role in regulating multiple cellular activities and function depending on the presence of posttranslational modification (PTM). Acetylation is a type of PTM that generally occurs in the lysine 40 region of α-tubulin and is known to be critically associated with cancer metastasis. Current evidence demonstrates that noncoding RNAs, such as long noncoding RNA (lncRNA) and microRNA (or miRNA), which are correlated with gene regulation modulate the expression of acetylated tubulin in the development and metastasis of cancer. This review provides an overview about the role of lncRNA and miRNA in regulation of tubulin acetylation in various types of cancer.
Collapse
Affiliation(s)
- Sneha Kar
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Rimi Mukherjee
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Subhabrata Guha
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Debojit Talukdar
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Gaurav Das
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
10
|
Sahranavard T, Mehrabadi S, Pourali G, Maftooh M, Akbarzade H, Hassanian SM, Mobarhan MG, Ferns GA, Khazaei M, Avan A. The Potential Therapeutic Applications of CRISPR/Cas9 in Colorectal Cancer. Curr Med Chem 2024; 31:5768-5778. [PMID: 37724673 DOI: 10.2174/0929867331666230915103707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023]
Abstract
The application of the CRISPR-associated nuclease 9 (Cas9) system in tumor studies has led to the discovery of several new treatment strategies for colorectal cancer (CRC), including the recognition of novel target genes, the construction of animal mass models, and the identification of genes related to chemotherapy resistance. CRISPR/Cas9 can be applied to genome therapy for CRC, particularly regarding molecular-targeted medicines and suppressors. This review summarizes some aspects of using CRISPR/- Cas9 in treating CRC. Further in-depth and systematic research is required to fully realize the potential of CRISPR/Cas9 in CRC treatment and integrate it into clinical practice.
Collapse
Affiliation(s)
- Toktam Sahranavard
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Mehrabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City QLD 4000, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
11
|
Ahn S, Kwon A, Oh Y, Rhee S, Song WK. Microtubule Acetylation-Specific Inhibitors Induce Cell Death and Mitotic Arrest via JNK/AP-1 Activation in Triple-Negative Breast Cancer Cells. Mol Cells 2023; 46:387-398. [PMID: 36794420 PMCID: PMC10258459 DOI: 10.14348/molcells.2023.2192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Microtubule acetylation has been proposed as a marker of highly heterogeneous and aggressive triple-negative breast cancer (TNBC). The novel microtubule acetylation inhibitors GM-90257 and GM-90631 (GM compounds) cause TNBC cancer cell death but the underlying mechanisms are currently unknown. In this study, we demonstrated that GM compounds function as anti-TNBC agents through activation of the JNK/AP-1 pathway. RNA-seq and biochemical analyses of GM compound-treated cells revealed that c-Jun N-terminal kinase (JNK) and members of its downstream signaling pathway are potential targets for GM compounds. Mechanistically, JNK activation by GM compounds induced an increase in c-Jun phosphorylation and c-Fos protein levels, thereby activating the activator protein-1 (AP-1) transcription factor. Notably, direct suppression of JNK with a pharmacological inhibitor alleviated Bcl2 reduction and cell death caused by GM compounds. TNBC cell death and mitotic arrest were induced by GM compounds through AP-1 activation in vitro. These results were reproduced in vivo, validating the significance of microtubule acetylation/JNK/AP-1 axis activation in the anti-cancer activity of GM compounds. Moreover, GM compounds significantly attenuated tumor growth, metastasis, and cancer-related death in mice, demonstrating strong potential as therapeutic agents for TNBC.
Collapse
Affiliation(s)
- Suyeon Ahn
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Ahreum Kwon
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Youngsoo Oh
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Woo Keun Song
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
12
|
Naren P, Samim KS, Tryphena KP, Vora LK, Srivastava S, Singh SB, Khatri DK. Microtubule acetylation dyshomeostasis in Parkinson's disease. Transl Neurodegener 2023; 12:20. [PMID: 37150812 PMCID: PMC10165769 DOI: 10.1186/s40035-023-00354-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
The inter-neuronal communication occurring in extensively branched neuronal cells is achieved primarily through the microtubule (MT)-mediated axonal transport system. This mechanistically regulated system delivers cargos (proteins, mRNAs and organelles such as mitochondria) back and forth from the soma to the synapse. Motor proteins like kinesins and dynein mechanistically regulate polarized anterograde (from the soma to the synapse) and retrograde (from the synapse to the soma) commute of the cargos, respectively. Proficient axonal transport of such cargos is achieved by altering the microtubule stability via post-translational modifications (PTMs) of α- and β-tubulin heterodimers, core components constructing the MTs. Occurring within the lumen of MTs, K40 acetylation of α-tubulin via α-tubulin acetyl transferase and its subsequent deacetylation by HDAC6 and SIRT2 are widely scrutinized PTMs that make the MTs highly flexible, which in turn promotes their lifespan. The movement of various motor proteins, including kinesin-1 (responsible for axonal mitochondrial commute), is enhanced by this PTM, and dyshomeostasis of neuronal MT acetylation has been observed in a variety of neurodegenerative conditions, including Alzheimer's disease and Parkinson's disease (PD). PD is the second most common neurodegenerative condition and is closely associated with impaired MT dynamics and deregulated tubulin acetylation levels. Although the relationship between status of MT acetylation and progression of PD pathogenesis has become a chicken-and-egg question, our review aims to provide insights into the MT-mediated axonal commute of mitochondria and dyshomeostasis of MT acetylation in PD. The enzymatic regulators of MT acetylation along with their synthetic modulators have also been briefly explored. Moving towards a tubulin-based therapy that enhances MT acetylation could serve as a disease-modifying treatment in neurological conditions that lack it.
Collapse
Affiliation(s)
- Padmashri Naren
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Khan Sabiya Samim
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
13
|
Ortiz HR, Flores PC, Ramonett A, Ahmed T, Ellis NA, Langlais PR, Mythreye K, Lee NY. Structural remodeling of the endoplasmic reticulum in response to extracellular signals requires αTAT1-induced microtubule acetylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537623. [PMID: 37131821 PMCID: PMC10153279 DOI: 10.1101/2023.04.20.537623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to numerous growth factors and cytokines including TGF-β and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT pathway may be a key target in ER stress and dysfunction.
Collapse
|
14
|
Lee D, Gimple RC, Wu X, Prager BC, Qiu Z, Wu Q, Daggubati V, Mariappan A, Gopalakrishnan J, Sarkisian MR, Raleigh DR, Rich JN. Superenhancer activation of KLHDC8A drives glioma ciliation and hedgehog signaling. J Clin Invest 2023; 133:e163592. [PMID: 36394953 PMCID: PMC9843063 DOI: 10.1172/jci163592] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma ranks among the most aggressive and lethal of all human cancers. Self-renewing, highly tumorigenic glioblastoma stem cells (GSCs) contribute to therapeutic resistance and maintain cellular heterogeneity. Here, we interrogated superenhancer landscapes of primary glioblastoma specimens and patient-derived GSCs, revealing a kelch domain-containing gene, specifically Kelch domain containing 8A (KLHDC8A) with a previously unknown function as an epigenetically driven oncogene. Targeting KLHDC8A decreased GSC proliferation and self-renewal, induced apoptosis, and impaired in vivo tumor growth. Transcription factor control circuitry analyses revealed that the master transcriptional regulator SOX2 stimulated KLHDC8A expression. Mechanistically, KLHDC8A bound chaperonin-containing TCP1 (CCT) to promote the assembly of primary cilia to activate hedgehog signaling. KLHDC8A expression correlated with Aurora B/C Kinase inhibitor activity, which induced primary cilia and hedgehog signaling. Combinatorial targeting of Aurora B/C kinase and hedgehog displayed augmented benefit against GSC proliferation. Collectively, superenhancer-based discovery revealed KLHDC8A as what we believe to be a novel molecular target of cancer stem cells that promotes ciliogenesis to activate the hedgehog pathway, offering insights into therapeutic vulnerabilities for glioblastoma treatment.
Collapse
Affiliation(s)
- Derrick Lee
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Ryan C. Gimple
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xujia Wu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Briana C. Prager
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - Zhixin Qiu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Qiulian Wu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Vikas Daggubati
- Department of Radiation Oncology and
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Matthew R. Sarkisian
- Department of Neuroscience, McKnight Brain Institute and
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida, USA
| | - David R. Raleigh
- Department of Radiation Oncology and
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| | - Jeremy N. Rich
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Meng H, Nan M, Li Y, Ding Y, Yin Y, Zhang M. Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Front Endocrinol (Lausanne) 2023; 14:1148412. [PMID: 37020597 PMCID: PMC10067930 DOI: 10.3389/fendo.2023.1148412] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Colon cancer is the fourth leading cause of cancer death worldwide, and its progression is accompanied by a complex array of genetic variations. CRISPR/Cas9 can identify new drug-resistant or sensitive mutations in colon cancer, and can use gene editing technology to develop new therapeutic targets and provide personalized treatments, thereby significantly improving the treatment of colon cancer patients. CRISPR/Cas9 systems are driving advances in biotechnology. RNA-directed Cas enzymes have accelerated the pace of basic research and led to clinical breakthroughs. This article reviews the rapid development of CRISPR/Cas in colon cancer, from gene editing to transcription regulation, gene knockout, genome-wide CRISPR tools, therapeutic targets, stem cell genomics, immunotherapy, metabolism-related genes and inflammatory bowel disease. In addition, the limitations and future development of CRISPR/Cas9 in colon cancer studies are reviewed. In conclusion, this article reviews the application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Hui Meng
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| | - Manman Nan
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yizhen Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Ding
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhui Yin
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| |
Collapse
|
16
|
Deb Roy A, Gross EG, Pillai GS, Seetharaman S, Etienne-Manneville S, Inoue T. Non-catalytic allostery in α-TAT1 by a phospho-switch drives dynamic microtubule acetylation. J Cell Biol 2022; 221:213540. [PMID: 36222836 PMCID: PMC9565784 DOI: 10.1083/jcb.202202100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Spatiotemporally dynamic microtubule acetylation underlies diverse physiological and pathological events. Despite its ubiquity, the molecular mechanisms that regulate the sole microtubule acetylating agent, α-tubulin-N-acetyltransferase-1 (α-TAT1), remain obscure. Here, we report that dynamic intracellular localization of α-TAT1 along with its catalytic activity determines efficiency of microtubule acetylation. Specifically, we newly identified a conserved signal motif in the intrinsically disordered C-terminus of α-TAT1, consisting of three competing regulatory elements-nuclear export, nuclear import, and cytosolic retention. Their balance is tuned via phosphorylation by CDK1, PKA, and CK2, and dephosphorylation by PP2A. While the unphosphorylated form binds to importins and resides both in cytosol and nucleus, the phosphorylated form binds to specific 14-3-3 adapters and accumulates in the cytosol for maximal substrate access. Unlike other molecules with a similar phospho-regulated signal motif, α-TAT1 uniquely uses the nucleus as a hideout. This allosteric spatial regulation of α-TAT1 function may help uncover a spatiotemporal code of microtubule acetylation in normal and aberrant cell behavior.
Collapse
Affiliation(s)
- Abhijit Deb Roy
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - Shailaja Seetharaman
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691, Université Paris Cité, Centre national de la recherche scientifique, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691, Université Paris Cité, Centre national de la recherche scientifique, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
17
|
Constantinescu T, Mihis AG. Two Important Anticancer Mechanisms of Natural and Synthetic Chalcones. Int J Mol Sci 2022; 23:11595. [PMID: 36232899 PMCID: PMC9570335 DOI: 10.3390/ijms231911595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
ATP-binding cassette subfamily G and tubulin pharmacological mechanisms decrease the effectiveness of anticancer drugs by modulating drug absorption and by creating tubulin assembly through polymerization. A series of natural and synthetic chalcones have been reported to have very good anticancer activity, with a half-maximal inhibitory concentration lower than 1 µM. By modulation, it is observed in case of the first mechanism that methoxy substituents on the aromatic cycle of acetophenone residue and substitution of phenyl nucleus by a heterocycle and by methoxy or hydroxyl groups have a positive impact. To inhibit tubulin, compounds bind to colchicine binding site. Presence of methoxy groups, amino groups or heterocyclic substituents increase activity.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania
| | - Alin Grig Mihis
- Advanced Materials and Applied Technologies Laboratory, Institute of Research-Development-Innovation in Applied Natural Sciences, “Babes-Bolyai” University, Fantanele Str. 30, 400294 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes associated with cancer using the CRISPR/Cas9 system: A systematic review of genes and methodological approaches. Gene 2022; 833:146595. [PMID: 35598687 DOI: 10.1016/j.gene.2022.146595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022]
Abstract
The CRISPR/Cas9 system enables a versatile set of genomes editing and genetic-based disease modeling tools due to its high specificity, efficiency, and accessible design and implementation. In cancer, the CRISPR/Cas9 system has been used to characterize genes and explore different mechanisms implicated in tumorigenesis. Different experimental strategies have been proposed in recent years, showing dependency on various intrinsic factors such as cancer type, gene function, mutation type, and technical approaches such as cell line, Cas9 expression, and transfection options. However, the successful methodological approaches, genes, and other experimental factors have not been analyzed. We, therefore, initially considered more than 1,300 research articles related to CRISPR/Cas9 in cancer to finally examine more than 400 full-text research publications. We summarize findings regarding target genes, RNA guide designs, cloning, Cas9 delivery systems, cell enrichment, and experimental validations. This analysis provides valuable information and guidance for future cancer gene validation experiments.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Claudia Martinez-Amador
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada avenue 2501, Monterrey, Nuevo Leon 64849, México.
| |
Collapse
|
19
|
Mitra S, Sarker J, Mojumder A, Shibbir TB, Das R, Emran TB, Tallei TE, Nainu F, Alshahrani AM, Chidambaram K, Simal-Gandara J. Genome editing and cancer: How far has research moved forward on CRISPR/Cas9? Biomed Pharmacother 2022; 150:113011. [PMID: 35483191 DOI: 10.1016/j.biopha.2022.113011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer accounted for almost ten million deaths worldwide in 2020. Metastasis, characterized by cancer cell invasion to other parts of the body, is the main cause of cancer morbidity and mortality. Therefore, understanding the molecular mechanisms of tumor formation and discovery of potential drug targets are of great importance. Gene editing techniques can be used to find novel drug targets and study molecular mechanisms. In this review, we describe how popular gene-editing methods such as CRISPR/Cas9, TALEN and ZFNs work, and, by comparing them, we demonstrate that CRISPR/Cas9 has superior efficiency and precision. We further provide an overview of the recent applications of CRISPR/Cas9 to cancer research, focusing on the most common cancers such as breast cancer, lung cancer, colorectal cancer, and prostate cancer. We describe how these applications will shape future research and treatment of cancer, and propose new ways to overcome current challenges.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Joyatry Sarker
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Mojumder
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tasmim Bintae Shibbir
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
20
|
Kores K, Kolenc Z, Furlan V, Bren U. Inverse Molecular Docking Elucidating the Anticarcinogenic Potential of the Hop Natural Product Xanthohumol and Its Metabolites. Foods 2022; 11:foods11091253. [PMID: 35563976 PMCID: PMC9104229 DOI: 10.3390/foods11091253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Natural products from plants exert a promising potential to act as antioxidants, antimicrobials, anti-inflammatory, and anticarcinogenic agents. Xanthohumol, a natural compound from hops, is indeed known for its anticarcinogenic properties. Xanthohumol is converted into three metabolites: isoxanthohumol (non-enzymatically) as well as 8- and 6-prenylnaringenin (enzymatically). An inverse molecular docking approach was applied to xanthohumol and its three metabolites to discern their potential protein targets. The aim of our study was to disclose the potential protein targets of xanthohumol and its metabolites in order to expound on the potential anticarcinogenic mechanisms of xanthohumol based on the found target proteins. The investigated compounds were docked into the predicted binding sites of all human protein structures from the Protein Data Bank, and the best docking poses were examined. Top scoring human protein targets with successfully docked compounds were identified, and their experimental connection with the anticarcinogenic function or cancer was investigated. The obtained results were carefully checked against the existing experimental findings from the scientific literature as well as further validated using retrospective metrics. More than half of the human protein targets of xanthohumol with the highest docking scores have already been connected with the anticarcinogenic function, and four of them (including two important representatives of the matrix metalloproteinase family, MMP-2 and MMP-9) also have a known experimental correlation with xanthohumol. Another important protein target is acyl-protein thioesterase 2, to which xanthohumol, isoxanthohumol, and 6-prenylnaringenin were successfully docked with the lowest docking scores. Moreover, the results for the metabolites show that their most promising protein targets are connected with the anticarcinogenic function as well. We firmly believe that our study can help to elucidate the anticarcinogenic mechanisms of xanthohumol and its metabolites as after consumption, all four compounds can be simultaneously present in the organism.
Collapse
Affiliation(s)
- Katarina Kores
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
| | - Zala Kolenc
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
| | - Veronika Furlan
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
- Department of Applied Natural Sciences, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
- Correspondence: ; Tel.: +386-2-229-4421
| |
Collapse
|
21
|
Yoshimoto S, Morita H, Okamura K, Hiraki A, Hashimoto S. αTAT1-induced tubulin acetylation promotes ameloblastoma migration and invasion. J Transl Med 2022; 102:80-89. [PMID: 34508164 PMCID: PMC8695380 DOI: 10.1038/s41374-021-00671-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 01/18/2023] Open
Abstract
Ameloblastoma (AB) is the most common benign epithelial odontogenic tumor occurring in the jawbone. AB is a slowly growing tumor but sometimes shows a locally invasive and an aggressive growth pattern with a marked bone resorption. In addition, the local recurrence and distant metastasis of AB also sometimes occurs, which resembles one of the typical malignant potentials. From these points of view, to understand better the mechanisms of AB cell migration or invasion is necessary for the better clinical therapy and improvements of the patients' quality of life. Microtubules in eukaryotic cells reveal the shape of hollow cylinders made up of polymerized alpha (α)- and beta (β)-tubulin dimers and form the cytoskeleton together with microfilaments and intermediate filaments. Microtubules play important roles in cell migration by undergoing assembly and disassembly with post-translational modifications. Stability of microtubules caused by their acetylation is involved in cell migration. In this study, we investigated the expression and distribution of acetylated α-tubulin and alpha-tubulin N-acetyltransferase 1 (αTAT1), an enzyme which acetylates Lys-40 in α-tubulin, in AB specimens, and analyzed how tubulin was acetylated by αTAT1 activation in a human AB cell line, AM-1. Finally, we clarified that TGF-β-activated kinase1 (TAK1) was phosphorylated by TGF-β stimulation, then, induced tubulin acetylation via αTAT1 activation, which subsequently activated the migration and invasion of AB cells.
Collapse
Affiliation(s)
- Shohei Yoshimoto
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka, 814-0193, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Hiromitsu Morita
- The Center for Visiting Dental Service, Department of General Dentistry, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Kazuhiko Okamura
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Akimitsu Hiraki
- Section of Oral Oncology, Department of Oral and Maxillofacial Surgery, Division of Oral and Medical Management, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Shuichi Hashimoto
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka, 814-0193, Japan.
| |
Collapse
|
22
|
Akram F, Haq IU, Sahreen S, Nasir N, Naseem W, Imitaz M, Aqeel A. CRISPR/Cas9: A revolutionary genome editing tool for human cancers treatment. Technol Cancer Res Treat 2022; 21:15330338221132078. [PMID: 36254536 PMCID: PMC9580090 DOI: 10.1177/15330338221132078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer is a genetic disease stemming from genetic and epigenetic mutations and is the second most common cause of death across the globe. Clustered regularly interspaced short palindromic repeats (CRISPR) is an emerging gene-editing tool, acting as a defense system in bacteria and archaea. CRISPR/Cas9 technology holds immense potential in cancer diagnosis and treatment and has been utilized to develop cancer disease models such as medulloblastoma and glioblastoma mice models. In diagnostics, CRISPR can be used to quickly and efficiently detect genes involved in various cancer development, proliferation, metastasis, and drug resistance. CRISPR/Cas9 mediated cancer immunotherapy is a well-known treatment option after surgery, chemotherapy, and radiation therapy. It has marked a turning point in cancer treatment. However, despite its advantages and tremendous potential, there are many challenges such as off-target effects, editing efficiency of CRISPR/Cas9, efficient delivery of CRISPR/Cas9 components into the target cells and tissues, and low efficiency of HDR, which are some of the main issues and need further research and development for completely clinical application of this novel gene editing tool. Here, we present a CRISPR/Cas9 mediated cancer treatment method, its role and applications in various cancer treatments, its challenges, and possible solution to counter these challenges.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Narmeen Nasir
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Waqas Naseem
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Memoona Imitaz
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| |
Collapse
|
23
|
Trisciuoglio D, Degrassi F. The Tubulin Code and Tubulin-Modifying Enzymes in Autophagy and Cancer. Cancers (Basel) 2021; 14:cancers14010006. [PMID: 35008169 PMCID: PMC8750717 DOI: 10.3390/cancers14010006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Microtubules are tubulin polymers that constitute the structure of eukaryotic cells. They control different cell functions that are often deregulated in cancer, such as cell shape, cell motility and the intracellular movement of organelles. Here, we focus on the crucial role of tubulin modifications in determining different cancer characteristics, including metastatic cell migration and therapy resistance. We also discuss the influence of microtubule modifications on the autophagic process—the cellular degradation pathway that influences cancer growth. We discuss findings showing that inducing microtubule modifications can be used as a means to kill cancer cells by inhibiting autophagy. Abstract Microtubules are key components of the cytoskeleton of eukaryotic cells. Microtubule dynamic instability together with the “tubulin code” generated by the choice of different α- and β- tubulin isoforms and tubulin post-translational modifications have essential roles in the control of a variety of cellular processes, such as cell shape, cell motility, and intracellular trafficking, that are deregulated in cancer. In this review, we will discuss available evidence that highlights the crucial role of the tubulin code in determining different cancer phenotypes, including metastatic cell migration, drug resistance, and tumor vascularization, and the influence of modulating tubulin-modifying enzymes on cancer cell survival and aggressiveness. We will also discuss the role of post-translationally modified microtubules in autophagy—the lysosomal-mediated cellular degradation pathway—that exerts a dual role in many cancer types, either promoting or suppressing cancer growth. We will give particular emphasis to the role of tubulin post-translational modifications and their regulating enzymes in controlling the different stages of the autophagic process in cancer cells, and consider how the experimental modulation of tubulin-modifying enzymes influences the autophagic process in cancer cells and impacts on cancer cell survival and thereby represents a new and fruitful avenue in cancer therapy.
Collapse
|
24
|
Li W, Li F, Zhang X, Lin HK, Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Target Ther 2021; 6:422. [PMID: 34924561 PMCID: PMC8685280 DOI: 10.1038/s41392-021-00825-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
More and more in-depth studies have revealed that the occurrence and development of tumors depend on gene mutation and tumor heterogeneity. The most important manifestation of tumor heterogeneity is the dynamic change of tumor microenvironment (TME) heterogeneity. This depends not only on the tumor cells themselves in the microenvironment where the infiltrating immune cells and matrix together forming an antitumor and/or pro-tumor network. TME has resulted in novel therapeutic interventions as a place beyond tumor beds. The malignant cancer cells, tumor infiltrate immune cells, angiogenic vascular cells, lymphatic endothelial cells, cancer-associated fibroblastic cells, and the released factors including intracellular metabolites, hormonal signals and inflammatory mediators all contribute actively to cancer progression. Protein post-translational modification (PTM) is often regarded as a degradative mechanism in protein destruction or turnover to maintain physiological homeostasis. Advances in quantitative transcriptomics, proteomics, and nuclease-based gene editing are now paving the global ways for exploring PTMs. In this review, we focus on recent developments in the PTM area and speculate on their importance as a critical functional readout for the regulation of TME. A wealth of information has been emerging to prove useful in the search for conventional therapies and the development of global therapeutic strategies.
Collapse
Affiliation(s)
- Wen Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
| | - Feifei Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China.
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| |
Collapse
|
25
|
Post-translational modifications of tubulin: their role in cancers and the regulation of signaling molecules. Cancer Gene Ther 2021; 30:521-528. [PMID: 34671113 DOI: 10.1038/s41417-021-00396-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022]
Abstract
Microtubules play an important role in regulating several vital cellular activities, including cell division and tissue organization, through their dynamic protofilament network. In addition to forming the cytoskeleton, microtubules regulate the intracellular trafficking of cytoplasmic components and various signaling molecules, depending on the presence of post-transitional modifications (PTMs) and binding proteins. Accumulating evidence indicates the significant role of microtubule PTMs on cancer behavior. The PTMs that frequently occur on microtubules include acetylation, detyrosination, tyrosination, polyglutamylation, and polyglycylation. Alterations in these PTMs cause global effects on intracellular signal transduction, strongly linked to cancer pathogenesis. This review provides an update on the role of microtubule PTMs in cancer aggressiveness, particularly regarding cell death, sensitivity to chemotherapy, cell migration, and invasion. Additionally, it provides a mechanistic explanation of the molecular signaling pathways involved. This information might prove useful for predictive or therapeutic purposes.
Collapse
|
26
|
The Aneugenicity of Ketone Bodies in Colon Epithelial Cells Is Mediated by Microtubule Hyperacetylation and Is Blocked by Resveratrol. Int J Mol Sci 2021; 22:ijms22179397. [PMID: 34502304 PMCID: PMC8430621 DOI: 10.3390/ijms22179397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
Diabetes mellitus (DM) is considered to be associated with an increased risk of colorectal cancer. Recent studies have also revealed that tubulin hyperacetylation is caused by a diabetic status and we have reported previously that, under microtubule hyperacetylation, a microtubule severing protein, katanin-like (KL) 1, is upregulated and contributes to tumorigenesis. To further explore this phenomenon, we tested the effects of the ketone bodies, acetoacetate and β-hydroxybutyrate, in colon and fibroblast cells. Both induced microtubule hyperacetylation that responded differently to a histone deacetylase 3 knockdown. These two ketone bodies also generated intracellular reactive oxygen species (ROS) and hyperacetylation was commonly inhibited by ROS inhibitors. In a human fibroblast-based microtubule sensitivity test, only the KL1 human katanin family member showed activation by both ketone bodies. In primary cultured colon epithelial cells, these ketone bodies reduced the tau protein level and induced KL1- and α-tubulin acetyltransferase 1 (ATAT1)-dependent micronucleation. Resveratrol, known for its tumor preventive and tubulin deacetylation effects, inhibited this micronucleation. Our current data thus suggest that the microtubule hyperacetylation induced by ketone bodies may be a causal factor linking DM to colorectal carcinogenesis and may also represent an adverse effect of them that needs to be controlled if they are used as therapeutics.
Collapse
|
27
|
Rasamizafy SF, Delsert C, Rabeharivelo G, Cau J, Morin N, van Dijk J. Mitotic Acetylation of Microtubules Promotes Centrosomal PLK1 Recruitment and Is Required to Maintain Bipolar Spindle Homeostasis. Cells 2021; 10:1859. [PMID: 34440628 PMCID: PMC8394630 DOI: 10.3390/cells10081859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Tubulin post-translational modifications regulate microtubule properties and functions. Mitotic spindle microtubules are highly modified. While tubulin detyrosination promotes proper mitotic progression by recruiting specific microtubule-associated proteins motors, tubulin acetylation that occurs on specific microtubule subsets during mitosis is less well understood. Here, we show that siRNA-mediated depletion of the tubulin acetyltransferase ATAT1 in epithelial cells leads to a prolonged prometaphase arrest and the formation of monopolar spindles. This results from collapse of bipolar spindles, as previously described in cells deficient for the mitotic kinase PLK1. ATAT1-depleted mitotic cells have defective recruitment of PLK1 to centrosomes, defects in centrosome maturation and thus microtubule nucleation, as well as labile microtubule-kinetochore attachments. Spindle bipolarity could be restored, in the absence of ATAT1, by stabilizing microtubule plus-ends or by increasing PLK1 activity at centrosomes, demonstrating that the phenotype is not just a consequence of lack of K-fiber stability. We propose that microtubule acetylation of K-fibers is required for a recently evidenced cross talk between centrosomes and kinetochores.
Collapse
Affiliation(s)
- Sylvia Fenosoa Rasamizafy
- Université de Montpellier, 34293 Montpellier, France; (S.F.R.); (C.D.); (G.R.); (J.C.)
- Centre National de la Recherche Scientifique (CNRS) UMR5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Claude Delsert
- Université de Montpellier, 34293 Montpellier, France; (S.F.R.); (C.D.); (G.R.); (J.C.)
- Centre National de la Recherche Scientifique (CNRS) UMR5237, 1919 Route de Mende, 34293 Montpellier, France
- Institut Français de Recherche pour l’Exploitation de la mer, L3AS, 34250 Palavas-les-Flots, France
| | - Gabriel Rabeharivelo
- Université de Montpellier, 34293 Montpellier, France; (S.F.R.); (C.D.); (G.R.); (J.C.)
- Centre National de la Recherche Scientifique (CNRS) UMR5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Julien Cau
- Université de Montpellier, 34293 Montpellier, France; (S.F.R.); (C.D.); (G.R.); (J.C.)
- IGH, CNRS UMR 9002, 141, rue de la Cardonille, 34396 Montpellier, France
- Montpellier Rio Imaging, 34293 Montpellier, France
| | - Nathalie Morin
- Université de Montpellier, 34293 Montpellier, France; (S.F.R.); (C.D.); (G.R.); (J.C.)
- Centre National de la Recherche Scientifique (CNRS) UMR5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Juliette van Dijk
- Université de Montpellier, 34293 Montpellier, France; (S.F.R.); (C.D.); (G.R.); (J.C.)
- Centre National de la Recherche Scientifique (CNRS) UMR5237, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
28
|
Ko P, Choi JH, Song S, Keum S, Jeong J, Hwang YE, Kim JW, Rhee S. Microtubule Acetylation Controls MDA-MB-231 Breast Cancer Cell Invasion through the Modulation of Endoplasmic Reticulum Stress. Int J Mol Sci 2021; 22:ijms22116018. [PMID: 34199510 PMCID: PMC8199658 DOI: 10.3390/ijms22116018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/27/2022] Open
Abstract
During aggressive cancer progression, cancer cells adapt to unique microenvironments by withstanding various cellular stresses, including endoplasmic reticulum (ER) stress. However, the mechanism whereby cancer cells overcome the ER stress to survive remains to be elucidated. Herein, we demonstrated that microtubule acetylation in cancer cells grown on a stiff matrix promotes cancer progression by preventing excessive ER stress. Downregulation of microtubule acetylation using shRNA or CRSIPR/Cas9 techniques targeting ATAT1, which encodes α-tubulin N-acetyltransferase (αTAT1), resulted in the upregulation of ER stress markers, changes in ER morphology, and enhanced tunicamycin-induced UPR signaling in cancer cells. A set of genes involved in cancer progression, especially focal adhesion genes, were downregulated in both ATAT1-knockout and tunicamycin-treated cells, whereas ATAT1 overexpression restored the gene expression inhibited by tunicamycin. Finally, the expression of ATAT1 and ER stress marker genes were negatively correlated in various breast cancer types. Taken together, our results suggest that disruption of microtubule acetylation is a potent therapeutic tool for preventing breast cancer progression through the upregulation of ER stress. Moreover, ATAT1 and ER stress marker genes may be useful diagnostic markers in various breast cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sangmyung Rhee
- Correspondence: ; Tel.: +82-2-820-5818; Fax: +82-2-825-5206
| |
Collapse
|
29
|
Hsu NY, Pathak N, Chen YT, Hsu YC, Yang JM. Pharmacophore anchor models of ATAT1 to discover potential inhibitors and lead optimization. Comput Biol Chem 2021; 93:107513. [PMID: 34052673 DOI: 10.1016/j.compbiolchem.2021.107513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Post-translation modification of microtubules is associated with many diseases like cancer. Alpha Tubulin Acetyltransferase 1 (ATAT1) is a major enzyme that acetylates 'Lys-40' in alpha-tubulin on the luminal side of microtubules and is a drug target that lacks inhibitors. Here, we developed pharmacophore anchor models of ATAT1 which were constructed statistically using thousands of docked compounds, for drug design and investigating binding mechanisms. Our models infer the compound moiety preferences with the physico-chemical properties for the ATAT1 binding site. The results from the pharmacophore anchor models show the three main sub-pockets, including S1 acetyl site, S2 adenine site, and S3 diphosphate site with anchors, where conserved moieties interact with respective sub-pocket residues in each site and help in guiding inhibitor discovery. We validated these key anchors by analyzing 162 homologous protein sequences (>99 species) and over 10 structures with various bound ligands and mutations. Our results were consistent with previous works also providing new interesting insights. Our models applied in virtual screening predicted several ATAT1 potential inhibitors. We believe that our model is useful for future inhibitor discovery and for guiding lead optimization.
Collapse
Affiliation(s)
- Nung-Yu Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Nikhil Pathak
- TIGP-Bioinformatics, Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Ti Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Yen-Chao Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30050, Taiwan.
| |
Collapse
|
30
|
Díaz-Martín RD, Valencia-Hernández JD, Betancourt-Lozano M, Yáñez-Rivera B. Changes in microtubule stability in zebrafish ( Danio rerio) embryos after glyphosate exposure. Heliyon 2021; 7:e06027. [PMID: 33532646 PMCID: PMC7829154 DOI: 10.1016/j.heliyon.2021.e06027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/09/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Glyphosate, the most commonly used pesticide worldwide, blocks aromatic amino acid biosynthetic pathways and inhibits growth in plants. Although the specific mode of action of glyphosate in animals remains unclear, adverse effects during embryonic development have been reported, including epiboly delays, morphological alterations, and changes in central nervous system development and cardiogenesis. In this study, we suggest a possible toxicity mechanism for this herbicide related to changes in microtubule stability, which could alter the distribution and dynamics of cytoskeleton components. Using zebrafish embryos to evaluate in vivo effects of glyphosate exposure (5, 10, and 50 μg/ml), we found significant reductions in the levels of acetylated α-tubulin (50 μg/ml) and in the polymeric tubulin percentage in zebrafish embryos that had been exposed to 10 and 50 μg/ml glyphosate, without any changes in either the expression patterns of α-tubulin or the stability of actin filaments. These results indicate that high concentrations of glyphosate were associated with reduced levels of acetylated α-tubulin and altered microtubule stability, which may explain some of the neurotoxic and cardiotoxic effects that have been attributed to this herbicide.
Collapse
Affiliation(s)
- Rubén D Díaz-Martín
- Centro de Investigación en Alimentación y Desarrollo, A. C., Av. Sábalo-Cerritos s/n, Mazatlán, Sinaloa, 82100, Mexico
| | - Jesús D Valencia-Hernández
- Centro de Investigación en Alimentación y Desarrollo, A. C., Av. Sábalo-Cerritos s/n, Mazatlán, Sinaloa, 82100, Mexico
| | - Miguel Betancourt-Lozano
- Centro de Investigación en Alimentación y Desarrollo, A. C., Av. Sábalo-Cerritos s/n, Mazatlán, Sinaloa, 82100, Mexico
| | - Beatriz Yáñez-Rivera
- Centro de Investigación en Alimentación y Desarrollo, A. C., Av. Sábalo-Cerritos s/n, Mazatlán, Sinaloa, 82100, Mexico.,Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Ciudad de México, 03940, Mexico
| |
Collapse
|
31
|
Azbazdar Y, Karabicici M, Erdal E, Ozhan G. Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Front Cell Dev Biol 2021; 9:631623. [PMID: 33585487 PMCID: PMC7873896 DOI: 10.3389/fcell.2021.631623] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
32
|
Kwon A, Lee GB, Park T, Lee JH, Ko P, You E, Ahn JH, Eom SH, Rhee S, Song WK. Potent Small-Molecule Inhibitors Targeting Acetylated Microtubules as Anticancer Agents Against Triple-Negative Breast Cancer. Biomedicines 2020; 8:E338. [PMID: 32917017 PMCID: PMC7555225 DOI: 10.3390/biomedicines8090338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Microtubules are one of the major targets for anticancer drugs because of their role in cell proliferation and migration. However, as anticancer drugs targeting microtubules have side effects, including the death of normal cells, it is necessary to develop anticancer agents that can target microtubules by specifically acting on cancer cells only. In this study, we identified chemicals that can act as anticancer agents by specifically binding to acetylated microtubules, which are predominant in triple-negative breast cancer (TNBC). The chemical compounds disrupted acetylated microtubule lattices by interfering with microtubule access to alpha-tubulin acetyltransferase 1 (αTAT1), a major acetyltransferase of microtubules, resulting in the increased apoptotic cell death of MDA-MB-231 cells (a TNBC cell line) compared with other cells, such as MCF-10A and MCF-7, which lack microtubule acetylation. Moreover, mouse xenograft experiments showed that treatment with the chemical compounds markedly reduced tumor growth progression. Taken together, the newly identified chemical compounds can be selective for acetylated microtubules and act as potential therapeutic agents against microtubule acetylation enrichment in TNBC.
Collapse
Affiliation(s)
- Ahreum Kwon
- Cell Logistics and Silver Health Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Gwi Bin Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (G.B.L.); (T.P.); (J.H.A.); (S.H.E.)
| | - Taein Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (G.B.L.); (T.P.); (J.H.A.); (S.H.E.)
| | - Jung Hoon Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| | - Panseon Ko
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (P.K.); (E.Y.)
| | - Eunae You
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (P.K.); (E.Y.)
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (G.B.L.); (T.P.); (J.H.A.); (S.H.E.)
| | - Soo Hyun Eom
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (G.B.L.); (T.P.); (J.H.A.); (S.H.E.)
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (P.K.); (E.Y.)
| | - Woo Keun Song
- Cell Logistics and Silver Health Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| |
Collapse
|
33
|
Di Martile M, Gabellini C, Desideri M, Matraxia M, Farini V, Valentini E, Carradori S, Ercolani C, Buglioni S, Secci D, Andreazzoli M, Del Bufalo D, Trisciuoglio D. Inhibition of lysine acetyltransferases impairs tumor angiogenesis acting on both endothelial and tumor cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:103. [PMID: 32498717 PMCID: PMC7273677 DOI: 10.1186/s13046-020-01604-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Abstract
Background Understanding the signalling pathways involved in angiogenesis, and developing anti-angiogenic drugs are one of the major focuses on cancer research. Herein, we assessed the effect of CPTH6, a lysine acetyltransferase inhibitor and anti-tumoral compound, on angiogenesis-related properties of both endothelial and cancer cells. Methods The in vitro effect of CPTH6 on protein acetylation and anti-angiogenic properties on endothelial and lung cancer cells was evaluated via wound healing, trans-well invasion and migration, tube formation, immunoblotting and immunofluorescence. Matrigel plug assay, zebrafish embryo and mouse xenograft models were used to evaluate in vivo anti-angiogenic effect of CPTH6. Results CPTH6 impaired in vitro endothelial angiogenesis-related functions, and decreased the in vivo vascularization both in mice xenografts and zebrafish embryos. Mechanistically, CPTH6 reduced α-tubulin acetylation and induced accumulation of acetylated microtubules in the perinuclear region of endothelial cells. Interestingly, CPTH6 also affected the angiogenesis-related properties of lung cancer cells, and conditioned media derived from CPTH6-treated lung cancer cells impaired endothelial cells morphogenesis. CPTH6 also modulated the VEGF/VEGFR2 pathway, and reshaped cytoskeletal organization of lung cancer cells. Finally, anti-migratory effect of CPTH6, dependent on α-tubulin acetylation, was also demonstrated by genetic approaches in lung cancer cells. Conclusion Overall, this study indicates that α-tubulin acetylation could play a role in the anti-angiogenic effect of CPTH6 and, more in general, it adds information to the role of histone acetyltransferases in tumor angiogenesis, and proposes the inhibition of these enzymes as an antiangiogenic therapy of cancer.
Collapse
Affiliation(s)
- Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Gabellini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Marianna Desideri
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Matraxia
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Valentina Farini
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Cristiana Ercolani
- Pathology Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simonetta Buglioni
- Pathology Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Secci
- Department of Chemistry and Technologies of Drugs, "Sapienza" University, Rome, Italy
| | | | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy. .,Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy.
| |
Collapse
|
34
|
Penyige A, Márton É, Soltész B, Szilágyi-Bónizs M, Póka R, Lukács J, Széles L, Nagy B. Circulating miRNA Profiling in Plasma Samples of Ovarian Cancer Patients. Int J Mol Sci 2019; 20:ijms20184533. [PMID: 31540229 PMCID: PMC6769773 DOI: 10.3390/ijms20184533] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is one of the most common cancer types in women characterized by a high mortality rate due to lack of early diagnosis. Circulating miRNAs besides being important regulators of cancer development could be potential biomarkers to aid diagnosis. We performed the circulating miRNA expression analysis in plasma samples obtained from ovarian cancer patients stratified into FIGO I, FIGO III, and FIGO IV stages and from healthy females using the NanoString quantitative assay. Forty-five miRNAs were differentially expressed, out of these 17 miRNAs showed significantly different expression between controls and patients, 28 were expressed only in patients, among them 19 were expressed only in FIGO I patients. Differentially expressed miRNAs were ranked by the network-based analysis to assess their importance. Target genes of the differentially expressed miRNAs were identified then functional annotation of the target genes by the GO and KEGG-based enrichment analysis was carried out. A general and an ovary-specific protein–protein interaction network was constructed from target genes. Results of our network and the functional enrichment analysis suggest that besides HSP90AA1, MYC, SP1, BRCA1, RB1, CFTR, STAT3, E2F1, ERBB2, EZH2, and MET genes, additional genes which are enriched in cell cycle regulation, FOXO, TP53, PI-3AKT, AMPK, TGFβ, ERBB signaling pathways and in the regulation of gene expression, proliferation, cellular response to hypoxia, and negative regulation of the apoptotic process, the GO terms have central importance in ovarian cancer development. The aberrantly expressed miRNAs might be considered as potential biomarkers for the diagnosis of ovarian cancer after validation of these results in a larger cohort of ovarian cancer patients.
Collapse
Affiliation(s)
- András Penyige
- Department of Human Genetics, Faculty of Medicine, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary
- Correspondence: ; Tel.: +36-52-416-531
| | - Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary; (É.M.); (B.S.); (M.S.-B.); (B.N.)
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary; (É.M.); (B.S.); (M.S.-B.); (B.N.)
| | - Melinda Szilágyi-Bónizs
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary; (É.M.); (B.S.); (M.S.-B.); (B.N.)
| | - Róbert Póka
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary; (R.P.)
| | - János Lukács
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary; (R.P.)
| | - Lajos Széles
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary;
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary; (É.M.); (B.S.); (M.S.-B.); (B.N.)
| |
Collapse
|
35
|
Li L, Jayabal S, Ghorbani M, Legault LM, McGraw S, Watt AJ, Yang XJ. ATAT1 regulates forebrain development and stress-induced tubulin hyperacetylation. Cell Mol Life Sci 2019; 76:3621-3640. [PMID: 30953095 PMCID: PMC11105686 DOI: 10.1007/s00018-019-03088-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 02/02/2023]
Abstract
α-Tubulin acetyltransferase 1 (ATAT1) catalyzes acetylation of α-tubulin at lysine 40 in various organisms ranging from Tetrahymena to humans. Despite the importance in mammals suggested by studies of cultured cells, the mouse Atat1 gene is non-essential for survival, raising an intriguing question about its real functions in vivo. To address this question, we systematically analyzed a mouse strain lacking the gene. The analyses revealed that starting at postnatal day 5, the mutant mice display enlarged lateral ventricles in the forebrain, resembling ventricular dilation in human patients with ventriculomegaly. In the mice, ventricular dilation is due to hypoplasia in the septum and striatum. Behavioral tests of the mice uncovered deficits in motor coordination. Birth-dating experiments revealed that neuronal migration to the mutant septum and striatum is impaired during brain development. In the mutant embryonic fibroblasts, we found mild defects in cell proliferation and primary cilium formation. Notably, in these cells, ATAT1 is indispensable for tubulin hyperacetylation in response to high salt, high glucose, and hydrogen peroxide-induced oxidative stress. We investigated the role of ATAT1 in the hematopoietic system using multicolor flow cytometry and found that this system remains normal in the mutant mice. Although tubulin acetylation was undetectable in a majority of mutant tissues, residual levels were detected in the heart, skeletal muscle, trachea, oviduct, thymus and spleen. This study thus not only establishes the importance of ATAT1 in regulating mouse forebrain development and governing tubulin hyperacetylation during stress responses, but also suggests the existence of an additional α-tubulin acetyltransferase.
Collapse
Affiliation(s)
- Lin Li
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Department of Medicine, McGill University, Montreal, Canada
| | - Sriram Jayabal
- Department of Biology, McGill University, Montreal, Canada
| | - Mohammad Ghorbani
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Department of Medicine, McGill University, Montreal, Canada
| | - Lisa-Marie Legault
- Department of Obstetrics and Gynecology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Serge McGraw
- Department of Obstetrics and Gynecology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, Canada
| | - Xiang-Jiao Yang
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada.
- Department of Medicine, McGill University, Montreal, Canada.
- Department of Biochemistry, McGill University, Montreal, Canada.
- McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
36
|
Jiang C, Meng L, Yang B, Luo X. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment. Clin Genet 2019; 97:73-88. [PMID: 31231788 DOI: 10.1111/cge.13589] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
In recent years, gene editing, especially that using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9, has made great progress in the field of gene function. Rapid development of gene editing techniques has contributed to their significance in the field of medicine. Because the CRISPR/Cas9 gene editing tool is not only powerful but also has features such as strong specificity and high efficiency, it can accurately and rapidly screen the whole genome, facilitating the administration of gene therapy for specific diseases. In the field of tumor research, CRISPR/Cas9 can be used to edit genomes to explore the mechanisms of tumor occurrence, development, and metastasis. In these years, this system has been increasingly applied in tumor treatment research. CRISPR/Cas9 can be used to treat tumors by repairing mutations or knocking out specific genes. To date, numerous preliminary studies have been conducted on tumor treatment in related fields. CRISPR/Cas9 holds great promise for gene-level tumor treatment. Personalized and targeted therapy based on CRISPR/Cas9 will possibly shape the development of tumor therapy in the future. In this study, we review the findings of CRISPR/Cas9 for tumor treatment research to provide references for related future studies on the pathogenesis and clinical treatment of tumors.
Collapse
Affiliation(s)
- Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Lingxiang Meng
- Department of Anorectal Surgery, Anorectal Surgery Center, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Bingjun Yang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Xin Luo
- Department of Radiotherapy, The Second Hospital of PingLiang City, Second Affiliated Hospital of Gansu Medical College, PingLiang, People's Republic of China
| |
Collapse
|
37
|
Shifeng L, Hong X, Xue Y, Siyu N, Qiaodan Z, Dingjie X, Lijuan Z, Zhongqiu W, Xuemin G, Wenchen C, Guizhen Z, Dan L, Ruimin W, Fang Y. Ac-SDKP increases α-TAT 1 and promotes the apoptosis in lung fibroblasts and epithelial cells double-stimulated with TGF-β1 and silica. Toxicol Appl Pharmacol 2019; 369:17-29. [PMID: 30826375 DOI: 10.1016/j.taap.2019.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/24/2019] [Accepted: 02/27/2019] [Indexed: 12/25/2022]
Abstract
Crystalline silica (SiO2) particles have very strong toxicity to the lungs, and silicosis is an excessive pulmonary interstitial remodeling disease that follows persistent SiO2 injury. We showed here that DNA double strand breaks (DSBs) and apoptosis were aggravated during rat silicosis induced by SiO2 exposure. Ac-SDKP attenuates lung parenchymal distortion and collagen deposition, and decreases the expression of γH2AX, p21, and cleaved caspase-3, as well as improves the reduction of pulmonary function caused by silicosis. In vitro, we found an evolution of smooth muscle actin α (α-SMA), collagen type I (Col I) in both A549 and MRC-5 cells in response to transforming growth factor-beta 1 (TGF-β1) + SiO2. Only A549 cells showed any reduction in the rate of apoptosis induced by the double stimulation, because of the anti-apoptotic effects of TGF-β1. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is an anti-fibrotic tetrapeptide. It also has the ability to promote the apoptosis of leukemia cells. However its role in promoting cell apoptosis in silicosis is still unknown. We here found that Ac-SDKP could induce cell apoptosis and inhibit fibrotic response in A549 and MRC-5 cells treated with TGF-β1 + SiO2, and these effects depended on regulation of α-tubulin acetyltransferase 1 (α-TAT1). These findings suggest that Ac-SDKP may have therapeutic value in the treatment of silicotic fibrosis.
Collapse
Affiliation(s)
- Li Shifeng
- Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Xu Hong
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Yi Xue
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Department of Basic Medicine, Xiamen Medical College, Xiamen, China
| | - Niu Siyu
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Zhang Qiaodan
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Xu Dingjie
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Zhang Lijuan
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Wei Zhongqiu
- Basic Medicine College, North China University of Science and Technology, Tangshan, China
| | - Gao Xuemin
- Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Cai Wenchen
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zhang Guizhen
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Li Dan
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Wang Ruimin
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Yang Fang
- Basic Medical College, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
38
|
Sadoul K, Joubert C, Michallet S, Nolte E, Peronne L, Ramirez-Rios S, Ribba AS, Lafanechère L. [On the road to deciphering the tubulin code: focus on acetylation and detyrosination]. Med Sci (Paris) 2019; 34:1047-1055. [PMID: 30623774 DOI: 10.1051/medsci/2018295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Microtubules are cytoskeletal fibers formed by the assembly of α- and β-tubulin heterodimers. They contribute to cell morphology, mobility and polarity, as well as to cellular transport processes and cell division. The microtubular network constantly adapts to cellular needs and may be composed of very dynamic or more stable microtubules. To regulate their diverse functions in a spatio-temporal manner, microtubules are subjected to numerous reversible post-translational modifications, which generate the "tubulin code". This review focuses on two modifications characteristic of stable microtubules - acetylation and detyrosination of α-tubulin - and their deregulation in certain pathologies.
Collapse
Affiliation(s)
- Karin Sadoul
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| | - Clotilde Joubert
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| | - Sophie Michallet
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| | - Elsie Nolte
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| | - Lauralie Peronne
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| | - Sacnicté Ramirez-Rios
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| | - Anne-Sophie Ribba
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| | - Laurence Lafanechère
- Régulation et pharmacologie du cytosquelette, Institut pour l'avancée des biosciences, Université Grenoble Alpes ; Inserm U 1209 ; CNRS 5309, Allée des Alpes, 38700 La Tronche, France
| |
Collapse
|