1
|
Rao Y, Li F, Wan C, Tong S, Fu Y, Li Y. OTUD7B controls oxLDL uptake by stabilizing Lox-1 in THP-1 and U937 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159618. [PMID: 40294697 DOI: 10.1016/j.bbalip.2025.159618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/09/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND The scavenger receptor Lox-1 plays a crucial role in mediating the uptake of oxidized low-density lipoprotein (oxLDL) by macrophages, thereby promoting foam cell formation and the development of atherosclerosis. Recent studies have suggested that ubiquitination plays a role in accelerating the degradation of Lox-1. However, the specific mechanisms underlying how the ubiquitin-proteasome system regulates the stability and function of Lox-1 remain poorly understood. RESULTS In our study, we identified OTUD7B, a deubiquitinase, as a potent stabilizer of Lox-1 in THP-1 and U937 cells. Knockdown of OTUD7B significantly reduced the level of Lox-1 and impaired the uptake of oxLDL by these cells. Furthermore, we found that OTUD7B interacts with Lox-1 and deubiquitinates it, thereby promoting its degradation. Importantly, overexpression of Lox-1 effectively rescued oxLDL uptake by OTUD7B-deficient THP-1 and U937 cells. CONCLUSIONS Our findings indicate that OTUD7B plays a crucial role in controlling oxLDL uptake by enhancing the stability of Lox-1. This highlights the potential significance of targeting the OTUD7B-Lox-1 axis as a therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Yanbiao Rao
- The Fifth Hospital of Xiamen, No. 101 Min'an Road, Xiang'an District, Xiamen, Fujian, 361101, China
| | - Feng Li
- The Fifth Hospital of Xiamen, No. 101 Min'an Road, Xiang'an District, Xiamen, Fujian, 361101, China
| | - Chao Wan
- The Fifth Hospital of Xiamen, No. 101 Min'an Road, Xiang'an District, Xiamen, Fujian, 361101, China
| | - Shanshan Tong
- The Fifth Hospital of Xiamen, No. 101 Min'an Road, Xiang'an District, Xiamen, Fujian, 361101, China
| | - Yandong Fu
- The Fifth Hospital of Xiamen, No. 101 Min'an Road, Xiang'an District, Xiamen, Fujian, 361101, China.
| | - Yongsheng Li
- The Fifth Hospital of Xiamen, No. 101 Min'an Road, Xiang'an District, Xiamen, Fujian, 361101, China.
| |
Collapse
|
2
|
Ma J, Wang Y, Xu W, Wang H, Wan Z, Guo J. Macrophage pyroptosis in atherosclerosis: therapeutic potential. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39953798 DOI: 10.3724/abbs.2025004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the accumulation of lipid-rich plaques in arterial walls, leading to cardiovascular events such as myocardial infarction and stroke. Macrophage pyroptosis, a form of programmed cell death driven by the NLRP3 inflammasome and caspase-1 activation, plays a critical role in the progression and destabilization of atherosclerotic plaques. This review explores the molecular mechanisms underlying macrophage pyroptosis and their significant contributions to AS pathogenesis. Recent advancements have highlighted the therapeutic potential of targeting key components of the pyroptotic pathway, including the use of nanotechnology to increase drug delivery specificity. These strategies are promising for reducing inflammation, stabilizing plaques, and mitigating the clinical impact of AS. Future studies should focus on translating these findings into clinical applications to develop effective treatments that can halt or reverse AS progression by modulating macrophage pyroptosis.
Collapse
Affiliation(s)
- Jianying Ma
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou 434020, China
| | - Yixian Wang
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Wenna Xu
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Hanjing Wang
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Zhengdong Wan
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
3
|
Saki N, Haybar H, Maniati M, Davari N, Javan M, Moghimian-Boroujeni B. Modification macrophage to foam cells in atherosclerosis disease: some factors stimulate or inhibit this process. J Diabetes Metab Disord 2024; 23:1687-1697. [PMID: 39610485 PMCID: PMC11599683 DOI: 10.1007/s40200-024-01482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 11/30/2024]
Abstract
Background Atherosclerosis is an arterial blood vessel disease that begins and progresses by turning macrophages into foam cells. Uptake of oxidized low-density lipoprotein (ox-LDL), cholesterol esterification and cholesterol efflux are the most important factors in the formation of foam cells and play an important role in atherosclerosis. Methods The present study is based on the data obtained from the PubMed database (1961-2024) using the MeSH search terms "Atherosclerosis", "Macrophages" and "Foam cells". Reviews for writing the main text and non-English-language articles were excluded. Result The interaction between ox-LDL and macrophages plays an important role in plaque initiation and promotion processes. Macrophages abnormally digest ox-LDL, resulting in the accumulation of lipids and formation of foam cells. This is an important step in the development of atherosclerosis. Also, several other factors such as inflammatory factors, growth factors, hormones, etc. can play an important role in the development of atherosclerotic lesions or counteract it by affecting the formation of foam cells. Conclusion Several factors can affect the progression of atherosclerosis by affecting macrophage activity or its conversion to foam cells. Also, some of these factors play a protective role against the development and atherosclerosis progression. In this paper, we reviewed some of these factors and their effect on atherosclerosis.
Collapse
Affiliation(s)
- Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Habib Haybar
- Cardiology Department, Medical College, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmood Maniati
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Javan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Bahareh Moghimian-Boroujeni
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Lin P, Wang Q, Wang Q, Chen J, He L, Qin Z, Li S, Han J, Yao X, Yu Y, Yao Z. Evaluation of the anti-atherosclerotic effect for Allium macrostemon Bge. Polysaccharides and structural characterization of its a newly active fructan. Carbohydr Polym 2024; 340:122289. [PMID: 38858004 DOI: 10.1016/j.carbpol.2024.122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
Allium Macrostemon Bge. (AMB) is a well-known homology of herbal medicine and food that has been extensively used for thousands of years to alleviate cardiovascular diseases. It contains a significant amount of polysaccharides, yet limited research exists on whether these polysaccharides are responsible for its cardiovascular protective effects. In this study, the anti-atherosclerosis effect of the crude polysaccharides of AMB (AMBP) was evaluated using ApoE-/- mice fed a high-fat diet, along with ox-LDL-induced Thp-1 foam cells. Subsequently, guided by the inhibitory activity of foam cells formation, a major homogeneous polysaccharide named AMBP80-1a was isolated and purified, yielding 11.1 % from AMB. The molecular weight of AMBP80-1a was determined to be 10.01 kDa. AMBP80-1a was firstly characterized as an agavin-type fructan with main chains consisting of →1)-β-d-Fruf-(2→ and →1,6)-β-d-Fruf-(2→ linked to an internal glucose moiety, with →6)-β-d-Fruf-(2→ and β-d-Fruf-(2→ serving as side chains. Furthermore, the bio-activity results indicated that AMBP80-1a reduced lipid accumulation and cholesterol contents in ox-LDL-induced Thp-1 foam cell. These findings supported the role of AMBP in alleviating atherosclerosis in vivo/vitro. AMBP80-1a, as the predominant homogeneous polysaccharide in AMB, was expected to be developed as a functional agent to prevent atherosclerosis.
Collapse
Affiliation(s)
- Pei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qiqi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiayun Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zifei Qin
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shaoping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jingyan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xinsheng Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Yang Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Zhu Y, Ren S, Huang H, Wu J, You X, Gao J, Ren Y, Wang R, Zhao W, Tan S. Restoration of miR-299-3p promotes efferocytosis and ameliorates atherosclerosis via repressing CD47 in mice. FASEB J 2024; 38:e23857. [PMID: 39114953 DOI: 10.1096/fj.202400639r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/11/2024]
Abstract
Atherosclerotic plaque formation is largely attributed to the impaired efferocytosis, which is known to be associated with the pathologic upregulation of cluster of differentiation 47 (CD47), a key antiphagocytic molecule. By gene expression omnibus (GEO) datasets analysis, we identified that four miRNAs are aberrantly downregulated in atherosclerosis, coronary artery disease, and obesity. Of them, hsa-miR-299-3p (miR-299-3p) was predicted to target the 3'UTR of human CD47 mRNA by bioinformatics analysis. Further, we demonstrated that miR-299-3p negatively regulates CD47 expression by binding to the target sequence "CCCACAU" in the 3'UTR of CD47 mRNA through luciferase reporter assay and site-directed mutagenesis. Additionally, we found that miR-299-3p was downregulated by ~32% in foam cells in response to oxidized low-density lipoprotein (ox-LDL) stimulation, thus upregulating CD47 and contributing to the impaired efferocytosis. Whereas, restoration of miR-299-3p reversed the ox-LDL-induced upregulation of CD47, thereby facilitating efferocytosis. In high-fat diet (HFD) fed ApoE-/- mice, we discovered that miR-299-3p was downregulated thus leading to upregulation of CD47 in abdominal aorta. Conversely, miR-299-3p restoration potently suppressed HFD-induced upregulation of CD47 and promoted phagocytosis of foam cells by macrophages in atherosclerotic plaques, thereby reducing necrotic core, increasing plaque stability, and mitigating atherosclerosis. Conclusively, we identify miR-299-3p as a negative regulator of CD47, and reveal a molecular mechanism whereby the ox-LDL-induced downregulation of miR-299-3p leads to the upregulation of CD47 in foam cells thus contributing to the impaired efferocytosis in atherosclerosis, and propose miR-299-3p can potentially serve as an inhibitor of CD47 to promote efferocytosis and ameliorate atherosclerosis.
Collapse
Affiliation(s)
- Yingli Zhu
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuang Ren
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Haijuan Huang
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Jiale Wu
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Xiangyan You
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Jie Gao
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuzhi Ren
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Ruize Wang
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Wenfeng Zhao
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuhua Tan
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
6
|
Huang Z, Zhou Z, Ma Y, Hu YM. Mito-Tempo alleviates ox-LDL-provoked foam cell formation by regulating Nrf2/NLRP3 signaling. Biosci Biotechnol Biochem 2024; 88:759-767. [PMID: 38719485 DOI: 10.1093/bbb/zbae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/25/2024] [Indexed: 06/22/2024]
Abstract
Our previous studies have demonstrated that Mito-Tempol (also known as 4-hydroxy-Tempo), a mitochondrial reactive oxygen species scavenger, alleviates oxidized low-density lipoprotein (ox-LDL)-triggered foam cell formation. Given the effect of oxidative stress on activating the NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome, which promotes foam cell formation, we aimed to explore whether Mito-Tempo inhibits ox-LDL-triggered foam cell formation by regulating NLRP3 inflammasome. The results revealed that Mito-Tempo re-activated Nrf2 and alleviated macrophage foam cell formation induced by ox-LDL, whereas the effects were reversed by ML385 (a specific Nrf2 inhibitor). Mito-Tempo restored the expression and nuclear translocation of Nrf2 by decreasing ox-LDL-induced ubiquitination. Furthermore, Mito-Tempo suppressed ox-LDL-triggered NLRP3 inflammasome activation and subsequent pyroptosis, whereas the changes were blocked by ML385. Mito-Tempo decreased lipoprotein uptake by inhibiting CD36 expression and suppressed foam cell formation by regulating the NLRP3 inflammasome. Taken together, Mito-Tempo exhibits potent anti-atherosclerotic effects by regulating Nrf2/NLRP3 signaling.
Collapse
Affiliation(s)
- Zhenyu Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhaoli Zhou
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Scientific Research Center, Shanghai University of Medicine & Health Science, Shanghai, China
- Department of Pharmacology, School of Pharmacy, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Ying Ma
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao-Min Hu
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Chen J, Sun X, Liu Y, Zhang Y, Zhao M, Shao L. SENP3 attenuates foam cell formation by deSUMOylating NLRP3 in macrophages stimulated with ox-LDL. Cell Signal 2024; 117:111092. [PMID: 38331013 DOI: 10.1016/j.cellsig.2024.111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
SUMO-specific protease 3 (SENP3) participates in the removal of SUMOylation and maintains the balance of the SUMO system, which ensures normal functioning of substrates and cellular activities. In the present study, we found that SENP3 expression was significantly reduced in ox-LDL-stimulated macrophages. SENP3 overexpression suppressed and SENP3 knockdown promoted macrophage foam cell formation. Moreover, SENP3 inhibited cholesterol uptake, CD36 expression, and NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome activation in ox-LDL-stimulated macrophages. Ox-LDL-stimulated NLRP3 SUMOylation was reduced by SENP3. Blocking NLRP3 SUMOylation inhibited foam cell formation and NLRP3 inflammasome activation. Thus, this study revealed that SENP3 inhibits macrophage foam cell formation by deSUMOylating NLRP3 and regulating NLRP3 inflammasome activation, which may provide a potentially innovative approach to treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuan Sun
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuze Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Min Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China.
| | - Luyao Shao
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
8
|
Wang Y, Guo M, Tang CK. History and Development of ABCA1. Curr Probl Cardiol 2024; 49:102036. [PMID: 37595859 DOI: 10.1016/j.cpcardiol.2023.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
ATP-binding cassette protein A1 (ABCA1) is a key protein in the transport of intracellular cholesterol to the extracellular and plays an important role in reducing cholesterol accumulation in surrounding tissues. Bibliometric analysis refers to the cross-science of quantitative analysis of a variety of documents by mathematical and statistical methods. It combines an analysis of structural and temporal patterns in scholarly publications with a description of topic concentration and types of uncertainty. This paper analyzes the history, hotspot, and development trend of ABCA1 through bibliometrics. It will provide readers with the research status and development trend of ABCA1 and help the hot research in this field explore new research directions. After screening, the research on ABCA1 is still in a hot phase in the past 20 years. ABCA1 is emerging in previously unrelated disciplines such as cancer. There were 551 keywords and 6888 breakout citations counted by CiteSpace. The relationship between cancer and cardiovascular disease has been linked by ABCA1. This review will guide readers who are not familiar with ABCA1 research to quickly understand the development process of ABCA1 and provide researchers with a possible future research focus on ABCA1.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Guo
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
9
|
Hao T, Fang W, Xu D, Chen Q, Liu Q, Cui K, Cao X, Li Y, Mai K, Ai Q. Phosphatidylethanolamine alleviates OX-LDL-induced macrophage inflammation by upregulating autophagy and inhibiting NLRP1 inflammasome activation. Free Radic Biol Med 2023; 208:402-417. [PMID: 37660837 DOI: 10.1016/j.freeradbiomed.2023.08.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Oxidized low-density lipoprotein (OX-LDL)-induced inflammation and autophagy dysregulation are important events in the progression of atherosclerosis. Phosphatidylethanolamine (PE), a multifunctional phospholipid that is enriched in cells, has been proven to be directly involved in autophagy which is closely associated with inflammation. However, whether PE can influence OX-LDL-induced autophagy dysregulation and inflammation has not been reported. In the present study, we revealed that OX-LDL significantly induced macrophage inflammation through the CD36-NLRP1-caspase-1 signaling pathway in fish. Meanwhile, cellular PE levels were significantly decreased in response to OX-LDL induction. Based on the relationship between PE and autophagy, we then examined the effect of PE supplementation on OX-LDL-mediated autophagy impairment and inflammation induction in macrophages. As expected, exogenous PE restored impaired autophagy and alleviated inflammation in OX-LDL-stimulated cells. Notably, autophagy inhibitors reversed the inhibitory effect of PE on OX-LDL-induced maturation of IL-1β, indicating that the regulation of PE on OX-LDL-induced inflammation is dependent on autophagy. Furthermore, the positive effect of PE on OX-LDL-induced inflammation was relatively conserved in mouse and fish macrophages. In conclusion, we elucidated the role of the CD36-NLRP1-caspase-1 signaling pathway in OX-LDL-induced inflammation in fish and revealed for the first time that altering PE abundance in OX-LDL-treated cells could alleviate inflammasome-mediated inflammation by inducing autophagy. Given the relationship between OX-LDL-induced inflammation and atherosclerosis, this study prompts that the use of PE-rich foods promises to be a new strategy for atherosclerosis treatment in vertebrates.
Collapse
Affiliation(s)
- Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Xiufei Cao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
10
|
Zhu C, Chen W, Cui H, Huang Z, Ding R, Li N, Wang Q, Wu F, Zhao Y, Cong X. TRIM64 promotes ox-LDL-induced foam cell formation, pyroptosis, and inflammation in THP-1-derived macrophages by activating a feedback loop with NF-κB via IκBα ubiquitination. Cell Biol Toxicol 2023; 39:607-620. [PMID: 36229750 PMCID: PMC10406714 DOI: 10.1007/s10565-022-09768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease and the main pathology behind most cardiovascular diseases and the overactivation of macrophages initiates the development of atherosclerosis. However, the specific functions of oxidized low-density lipoprotein (ox-LDL) in macrophages remain elusive. Macrophages derived from monocyte (THP-1) were treated with ox-LDL and were used to generate atherosclerosis in an in vitro model. NLRP3 inflammasome markers were examined using quantitative RT-PCR and Western blotting. Cytokines were measured using ELISA. Chromatin immunoprecipitation (ChIP) was utilized to detect nuclear factor kappa B (NF-κB) and TRIM64 interactions. A fat-rich diet was applied to ApoE-/- mice for in vivo studies. ox-LDL promoted TRIM64 expression in a time-dependent manner. According to loss- and gain-of-function analyses, TRIM64 enhanced the activation of NLRP3 inflammasomes and the expression of downstream molecules. TRIM64 directly interacted with IκBα and promoted IκBα ubiquitination at K67 to activate NF-κB signaling. We detected direct binding between NF-κB and the TRIM64 promoter, as well as enhanced TRIM64 expression. Our study revealed an interaction between TRIM64 and NF-κB in the development of atherosclerosis. TRIM64 and NF-κB formed a positive feedback to activate NF-κB pathway. ox-LDL induces foam cell formation and TRIM64 expression TRIM64 regulates ox-LDL-induced foam cell formation, pyroptosis and inflammation via the NF-κB signaling TRIM64 activates NF-κB signaling by ubiquitination of IκBα NF-κB inhibition attenuates atherosclerosis in HFD-induced ApoE (-/-) mice.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Nephrology, Changhai Hospital, Shanghai, 200433, China
| | - Wei Chen
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Haiming Cui
- Department of Cardiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Zhigang Huang
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Ru Ding
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Na Li
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Qinqin Wang
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Feng Wu
- Department of Cardiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.
| | - Yanmin Zhao
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China.
| | - Xiaoliang Cong
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China.
| |
Collapse
|
11
|
Wang L, Zhao X, Ding J, Liu Y, Liu H, Zheng L, Zhao H, Sun Z, Li K, Cai J, Qiao T. Oridonin attenuates the progression of atherosclerosis by inhibiting NLRP3 and activating Nrf2 in apolipoprotein E-deficient mice. Inflammopharmacology 2023:10.1007/s10787-023-01161-9. [PMID: 37155118 DOI: 10.1007/s10787-023-01161-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/08/2023] [Indexed: 05/10/2023]
Abstract
Oridonin, a well-known traditional Chinese herbal medicinal product isolated from Isodon rubescens (Hemsl.) H.Hara, has many potential properties, including anti-inflammatory and antioxidant activities. However, there is no evidence whether oridonin have a protective effect on atherosclerosis. This study focused on the effects of oridonin on oxidative stress and inflammation generated from atherosclerosis. The therapeutic effect on atherosclerosis was evaluated by intraperitoneal injection of oridonin in a high-fat fed ApoE-/- mouse model. We isolated mouse peritoneal macrophages and detected the effect of oridonin on oxidized low-density lipoprotein-induced lipid deposition. Oil red O staining, Masson's staining, dihydroethidium fluorescence staining, immunohistochemical staining, western blotting analysis, immunofluorescence, enzyme-linked immunosorbent assay and quantitative real-time PCR were used to evaluate the effect on atherosclerosis and explore the mechanisms. Oridonin treatment significantly alleviated the progression of atherosclerosis, reduced macrophage infiltration and stabilized plaques. Oridonin could significantly inhibit inflammation associated with NLRP3 activation. Oridonin significantly reduced oxidative stress by blocking Nrf2 ubiquitination and degradation. We also found that oridonin could prevent the formation of foam cells by increasing lipid efflux protein and reducing lipid uptake protein in macrophages. Oridonin has a protective effect on atherosclerosis in ApoE-/- mice, which may be related to the inhibition of NLRP3 and the stabilization of Nrf2. Therefore, oridonin may be a potential therapeutic agent for atherosclerosis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Xiaoqi Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Jiawen Ding
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Yutong Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Han Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Lei Zheng
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Hongting Zhao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Zichen Sun
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Jing Cai
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China.
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Alkazmi L, Al‐kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Saad HM, Batiha GE. The potential role of scavenger receptor B type I (SR-BI) in SARS-CoV-2 infection. Immun Inflamm Dis 2023; 11:e786. [PMID: 37102664 PMCID: PMC10103078 DOI: 10.1002/iid3.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 04/28/2023] Open
Abstract
Scavenger receptor type B I (SR-BI), the major receptor for high-density lipoprotein (HDL) mediates the delivery of cholesterol ester and cholesterol from HDL to the cell membrane. SR-BI is implicated as a receptor for entry of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). SR-BI is colocalized with the angiotensin-converting enzyme 2 (ACE2) increasing the binding and affinity of SARS-CoV-2 to ACE2 with subsequent viral internalization. SR-BI regulates lymphocyte proliferation and the release of pro-inflammatory cytokines from activated macrophages and lymphocytes. SR-BI is reduced during COVID-19 due to consumption by SARS-CoV-2 infection. COVID-19-associated inflammatory changes and high angiotensin II (AngII) might be possible causes of repression of SR-BI in SARS-CoV-2 infection. In conclusion, the downregulation of SR-BI in COVID-19 could be due to direct invasion by SARS-CoV-2 or through upregulation of pro-inflammatory cytokines, inflammatory signaling pathways, and high circulating AngII. Reduction of SR-BI in COVID-19 look like ACE2 may provoke COVID-19 severity through exaggeration of the immune response. Further studies are invoked to clarify the potential role of SR-BI in the pathogenesis of COVID-19 that could be protective rather than detrimental.
Collapse
Affiliation(s)
- Luay Alkazmi
- Biology Department, Faculty of Applied SciencesUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and MedicineCollege of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and MedicineCollege of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of PathologyFaculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and TherapeuticsFaculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
13
|
Isorhynchophylline inhibits inflammatory responses in endothelial cells and macrophages through the NF-κB/NLRP3 signaling pathway. BMC Complement Med Ther 2023; 23:80. [PMID: 36906555 PMCID: PMC10007741 DOI: 10.1186/s12906-023-03902-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease of arterial wall, which is closely related to inflammatory reaction. In this study, the anti-inflammatory effect of isorhynchophylline was studied by NF- κB / NLRP3 pathway. METHODS (1) ApoE-/- mice were fed with high-fat diet to establish atherosclerotic model, while C57 with the same genetic background was fed with common diet as control group. Body weight was recorded and blood lipids were detected. The expression of NLRP3, NF-κB, IL-18 and Caspase-1 in aorta was detected by Western-Blot and PCR, and plaque formation was detected by HE and oil red O staining. (2) Lipopolysaccharide interfered with Human Umbilical Vein Endothelial Cells (HUVECs) and RAW264.7 to form inflammatory model, and was treated with isorhynchophylline. The expression of NLRP3, NF-κB, IL-18 and Caspase-1 in aorta was detected by Western-Blot and PCR, and the ability of cell migration was detected by Transwell and scratch test. RESULTS (1) the expression of NLRP3, NF- κB, IL-18 and Caspase-1 in aorta of model group was higher than that of control group, and plaque formation was obvious. (2) the expressions of NLRP3, NF- κB, IL-18 and Caspase-1 in HUVECs and RAW264.7 model groups were higher than those in control group, while isorhynchophylline decreased their expression and enhanced cell migration ability. CONCLUSION Isorhynchophylline can reduce the inflammatory reaction induced by lipopolysaccharide and promote the ability of cell migration.
Collapse
|
14
|
Kattan D, Barsa C, Mekhijian S, Shakkour Z, Jammoul M, Doumit M, Zabala MCP, Darwiche N, Eid AH, Mechref Y, Wang KK, de Rivero Vaccari JP, Munoz Pareja JC, Kobeissy F. Inflammasomes as biomarkers and therapeutic targets in traumatic brain injury and related-neurodegenerative diseases: A comprehensive overview. Neurosci Biobehav Rev 2023; 144:104969. [PMID: 36423707 PMCID: PMC9805531 DOI: 10.1016/j.neubiorev.2022.104969] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Given the ambiguity surrounding traumatic brain injury (TBI) pathophysiology and the lack of any Food and Drug Administration (FDA)-approved neurotherapeutic drugs, there is an increasing need to better understand the mechanisms of TBI. Recently, the roles of inflammasomes have been highlighted as both potential therapeutic targets and diagnostic markers in different neurodegenerative disorders. Indeed, inflammasome activation plays a pivotal function in the central nervous system (CNS) response to many neurological conditions, as well as to several neurodegenerative disorders, specifically, TBI. This comprehensive review summarizes and critically discusses the mechanisms that govern the activation and assembly of inflammasome complexes and the major methods used to study inflammasome activation in TBI and its implication for other neurodegenerative disorders. Also, we will review how inflammasome activation is critical in CNS homeostasis and pathogenesis, and how it can impact chronic TBI sequalae and increase the risk of developing neurodegenerative diseases. Additionally, we discuss the recent updates on inflammasome-related biomarkers and the potential to utilize inflammasomes as putative therapeutic targets that hold the potential to better diagnose and treat subjects with TBI.
Collapse
Affiliation(s)
- Dania Kattan
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chloe Barsa
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Sarin Mekhijian
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Program for Interdisciplinary Neuroscience, Department of Child Health, School of Medicine, University of Missouri, USA
| | - Maya Jammoul
- Department of Anatomy, Cell Biology, and Physiology, American University of Beirut, Beirut, Lebanon
| | - Mark Doumit
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Maria Camila Pareja Zabala
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kevin K Wang
- Morehouse School of Medicine, Department of Neurobiology, Atlanta, GA, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Jennifer C Munoz Pareja
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Morehouse School of Medicine, Department of Neurobiology, Atlanta, GA, USA.
| |
Collapse
|
15
|
Ye J, Li L, Wang M, Ma Q, Tian Y, Zhang Q, Liu J, Li B, Zhang B, Liu H, Sun G. Diabetes Mellitus Promotes the Development of Atherosclerosis: The Role of NLRP3. Front Immunol 2022; 13:900254. [PMID: 35844498 PMCID: PMC9277049 DOI: 10.3389/fimmu.2022.900254] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Atherosclerosis is one of the main complications of diabetes mellitus, involving a variety of pathogenic factors. Endothelial dysfunction, inflammation, and oxidative stress are hallmarks of diabetes mellitus and atherosclerosis. Although the ability of diabetes to promote atherosclerosis has been demonstrated, a deeper understanding of the underlying biological mechanisms is critical to identifying new targets. NLRP3 plays an important role in both diabetes and atherosclerosis. While the diversity of its activation modes is one of the underlying causes of complex effects in the progression of diabetes and atherosclerosis, it also provides many new insights for targeted interventions in metabolic diseases.
Collapse
Affiliation(s)
- Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lanfang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuxiao Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiushi Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bengang Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Haitao Liu,
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Haitao Liu,
| |
Collapse
|
16
|
Hafiane A, Daskalopoulou SS. Targeting the Residual Cardiovascular Risk by Specific Anti-inflammatory Interventions as a Therapeutic Strategy in Atherosclerosis. Pharmacol Res 2022; 178:106157. [DOI: 10.1016/j.phrs.2022.106157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
|
17
|
Mitochondrial Transplantation Enhances Phagocytic Function and Decreases Lipid Accumulation in Foam Cell Macrophages. Biomedicines 2022; 10:biomedicines10020329. [PMID: 35203538 PMCID: PMC8869430 DOI: 10.3390/biomedicines10020329] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages have mechanisms for eliminating cholesterol from cells. If excess cholesterol is not eliminated from the macrophages, then transformation into a foam cell may occur. Foam cells are a hallmark of the atherosclerotic lesions that contribute to the development and rupture of atherosclerotic plaques. Several in vitro and in vivo studies have shown changes in the macrophage phenotype and improved phagocytosis after the acquisition of functional mitochondria. However, the effect of mitochondrial transplantation on promoting phagocytosis and phenotypic changes in lipid-loaded macrophages leading to foam cells has not been studied. We aimed to prove that the transplantation of healthy mitochondria to highly cholesterol-loaded macrophages induces macrophage phagocytosis and reduces the macrophage shift towards foam cells. For this purpose, using a murine macrophage cell line, RAW264.7, we determined if mitochondria transplantation to 7-ketocholesterol (7-KC)-loaded macrophages reduced lipid accumulation and modified their phagocytic function. We evidenced that mitochondrial transplantation to 7-KC-loaded macrophages reestablished phagocytosis and reduced lipid content. In addition, CPT1a expression and anti-inflammatory cytokines were restored after mitochondrial transplantation. We have developed a potential therapeutic approach to restore foam cell functionality.
Collapse
|
18
|
Liu C, Jiang Z, Pan Z, Yang L. The Function, Regulation and Mechanism of Programmed Cell Death of Macrophages in Atherosclerosis. Front Cell Dev Biol 2022; 9:809516. [PMID: 35087837 PMCID: PMC8789260 DOI: 10.3389/fcell.2021.809516] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory vascular disease, which is an important pathological basis for inducing a variety of cardio-cerebrovascular diseases. As a kind of inflammatory cells, macrophages are the most abundant immune cells in atherosclerotic plaques and participate in the whole process of atherosclerosis and are the most abundant immune cells in atherosclerotic plaques. Recent studies have shown that programmed cell death plays a critical role in the progression of many diseases. At present, it is generally believed that the programmed death of macrophages can affect the development and stability of atherosclerotic vulnerable plaques, and the intervention of macrophage death may become the target of atherosclerotic therapy. This article reviews the role of macrophage programmed cell death in the progression of atherosclerosis and the latest therapeutic strategies targeting macrophage death within plaques.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Zecheng Jiang
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | | | - Liang Yang
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
19
|
Li C, Qu L, Matz AJ, Murphy PA, Liu Y, Manichaikul AW, Aguiar D, Rich SS, Herrington DM, Vu D, Johnson WC, Rotter JI, Post WS, Vella AT, Rodriguez-Oquendo A, Zhou B. AtheroSpectrum Reveals Novel Macrophage Foam Cell Gene Signatures Associated With Atherosclerotic Cardiovascular Disease Risk. Circulation 2022; 145:206-218. [PMID: 34913723 PMCID: PMC8766929 DOI: 10.1161/circulationaha.121.054285] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Whereas several interventions can effectively lower lipid levels in people at risk for atherosclerotic cardiovascular disease (ASCVD), cardiovascular event risks remain, suggesting an unmet medical need to identify factors contributing to cardiovascular event risk. Monocytes and macrophages play central roles in atherosclerosis, but studies have yet to provide a detailed view of macrophage populations involved in increased ASCVD risk. METHODS A novel macrophage foaming analytics tool, AtheroSpectrum, was developed using 2 quantitative indices depicting lipid metabolism and the inflammatory status of macrophages. A machine learning algorithm was developed to analyze gene expression patterns in the peripheral monocyte transcriptome of MESA participants (Multi-Ethnic Study of Atherosclerosis; set 1; n=911). A list of 30 genes was generated and integrated with traditional risk factors to create an ASCVD risk prediction model (30-gene cardiovascular disease risk score [CR-30]), which was subsequently validated in the remaining MESA participants (set 2; n=228); performance of CR-30 was also tested in 2 independent human atherosclerotic tissue transcriptome data sets (GTEx [Genotype-Tissue Expression] and GSE43292). RESULTS Using single-cell transcriptomic profiles (GSE97310, GSE116240, GSE97941, and FR-FCM-Z23S), AtheroSpectrum detected 2 distinct programs in plaque macrophages-homeostatic foaming and inflammatory pathogenic foaming-the latter of which was positively associated with severity of atherosclerosis in multiple studies. A pool of 2209 pathogenic foaming genes was extracted and screened to select a subset of 30 genes correlated with cardiovascular event in MESA set 1. A cardiovascular disease risk score model (CR-30) was then developed by incorporating this gene set with traditional variables sensitive to cardiovascular event in MESA set 1 after cross-validation generalizability analysis. The performance of CR-30 was then tested in MESA set 2 (P=2.60×10-4; area under the receiver operating characteristic curve, 0.742) and 2 independent data sets (GTEx: P=7.32×10-17; area under the receiver operating characteristic curve, 0.664; GSE43292: P=7.04×10-2; area under the receiver operating characteristic curve, 0.633). Model sensitivity tests confirmed the contribution of the 30-gene panel to the prediction model (likelihood ratio test; df=31, P=0.03). CONCLUSIONS Our novel computational program (AtheroSpectrum) identified a specific gene expression profile associated with inflammatory macrophage foam cells. A subset of 30 genes expressed in circulating monocytes jointly contributed to prediction of symptomatic atherosclerotic vascular disease. Incorporating a pathogenic foaming gene set with known risk factors can significantly strengthen the power to predict ASCVD risk. Our programs may facilitate both mechanistic investigations and development of therapeutic and prognostic strategies for ASCVD risk.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
| | - Lili Qu
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
| | - Alyssa J. Matz
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
| | - Patrick A. Murphy
- Center for Vascular Biology, School of Medicine, University of Connecticut, Farmington, CT
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Yongmei Liu
- Department of Medicine, Divisions of Cardiology and Neurology, Duke University Medical Center, Durham, NC
| | - Ani W. Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Derek Aguiar
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - David M Herrington
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - David Vu
- Department of Biostatistics, University of Washington, Seattle, WA
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Wendy S. Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
- Institute for Systems Genomics, University of Connecticut, Farmington, CT
| | | | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
- Institute for Systems Genomics, University of Connecticut, Farmington, CT
| |
Collapse
|
20
|
Choi HY, Ruel I, Choi S, Genest J. New Strategies to Promote Macrophage Cholesterol Efflux. Front Cardiovasc Med 2022; 8:795868. [PMID: 35004908 PMCID: PMC8733154 DOI: 10.3389/fcvm.2021.795868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
The capacity of macrophages to dispose of cholesterol deposited in the atherosclerotic plaque depends on their ability to activate cholesterol efflux pathways. To develop athero-protective therapies aimed at promoting macrophage cholesterol efflux, cholesterol metabolism in THP-1 monocyte-derived macrophages has been extensively studied, but the intrinsic sensitivity of monocytes and the lack of a standardized procedure to differentiate THP-1 monocytes into macrophages have made it difficult to utilize THP-1 macrophages in the same or similar degree of differentiation across studies. The variability has resulted in lack of understanding of how the differentiation affects cholesterol metabolism, and here we review and investigate the effects of THP-1 differentiation on cholesterol efflux. The degree of THP-1 differentiation was inversely associated with ATP binding cassette A1 (ABCA1) transporter-mediated cholesterol efflux. The differentiation-associated decrease in ABCA1-mediated cholesterol efflux occurred despite an increase in ABCA1 expression. In contrast, DSC1 expression decreased during the differentiation. DSC1 is a negative regulator of the ABCA1-mediated efflux pathway and a DSC1-targeting agent, docetaxel showed high potency and efficacy in promoting ABCA1-mediated cholesterol efflux in THP-1 macrophages. These data suggest that pharmacological targeting of DSC1 may be more effective than increasing ABCA1 expression in promoting macrophage cholesterol efflux. In summary, the comparison of THP-1 macrophage subtypes in varying degrees of differentiation provided new insights into cholesterol metabolism in macrophages and allowed us to identify a viable target DSC1 for the promotion of cholesterol efflux in differentiated macrophages. Docetaxel and other pharmacological strategies targeting DSC1 may hold significant potential for reducing atherogenic cholesterol deposition.
Collapse
Affiliation(s)
- Hong Y Choi
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Isabelle Ruel
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Shiwon Choi
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Jacques Genest
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
21
|
Zhao H, Zhao J. Study on the role of naringin in attenuating Trimethylamine-N-Oxide-Induced human umbilical vein endothelial cell inflammation, oxidative stress, and endothelial dysfunction. CHINESE J PHYSIOL 2022; 65:217-225. [DOI: 10.4103/0304-4920.359796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
22
|
Corcoran SE, Halai R, Cooper MA. Pharmacological Inhibition of the Nod-Like Receptor Family Pyrin Domain Containing 3 Inflammasome with MCC950. Pharmacol Rev 2021; 73:968-1000. [PMID: 34117094 DOI: 10.1124/pharmrev.120.000171] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome drives release of the proinflammatory cytokines interleukin (IL)-1β and IL-18 and induces pyroptosis (lytic cell death). These events drive chronic inflammation, and as such, NLRP3 has been implicated in a large number of human diseases. These range from autoimmune conditions, the simplest of which is NLRP3 gain-of-function mutations leading to an orphan disease, cryopyrin-associated period syndrome, to large disease burden indications, such as atherosclerosis, heart failure, stroke, neurodegeneration, asthma, ulcerative colitis, and arthritis. The potential clinical utility of NLRP3 inhibitors is substantiated by an expanding list of indications in which NLRP3 activation has been shown to play a detrimental role. Studies of pharmacological inhibition of NLRP3 in nonclinical models of disease using MCC950 in combination with human genetics, epigenetics, and analyses of the efficacy of biologic inhibitors of IL-1β, such as anakinra and canakinumab, can help to prioritize clinical trials of NLRP3-directed therapeutics. Although MCC950 shows excellent (nanomolar) potency and high target selectivity, its pharmacokinetic and toxicokinetic properties limited its therapeutic development in the clinic. Several improved, next-generation inhibitors are now in clinical trials. Hence the body of research in a plethora of conditions reviewed herein may inform analysis of the potential translational value of NLRP3 inhibition in diseases with significant unmet medical need. SIGNIFICANCE STATEMENT: The nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is one of the most widely studied and best validated biological targets in innate immunity. Activation of NLRP3 can be inhibited with MCC950, resulting in efficacy in more than 100 nonclinical models of inflammatory diseases. As several next-generation NLRP3 inhibitors are entering proof-of-concept clinical trials in 2020, a review of the pharmacology of MCC950 is timely and significant.
Collapse
Affiliation(s)
- Sarah E Corcoran
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| | - Reena Halai
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| | - Matthew A Cooper
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| |
Collapse
|
23
|
He B, Nie Q, Wang F, Han Y, Yang B, Sun M, Fan X, Ye Z, Liu P, Wen J. Role of pyroptosis in atherosclerosis and its therapeutic implications. J Cell Physiol 2021; 236:7159-7175. [PMID: 33755211 DOI: 10.1002/jcp.30366] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/20/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a significant cardiovascular burden and a leading cause of death worldwide, recognized as a chronic sterile inflammatory disease. Pyroptosis is a novel proinflammatory regulated cell death, characterized by cell swelling, plasma membrane bubbling, and robust release of proinflammatory cytokines (such as interleukin IL-1β and IL-18). Mounting studies have addressed the crucial contribution of pyroptosis to atherosclerosis and clarified the candidate therapeutic agents targeting pyroptosis for atherosclerosis. Herein, we review the initial characterization of pyroptosis, the detailed mechanisms of pyroptosis, current evidence about pyroptosis and atherosclerosis, and potential therapeutic strategies that target pyroptosis in the development of atherosclerosis.
Collapse
Affiliation(s)
- Bin He
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Qiangqiang Nie
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Feng Wang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yongxin Han
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Bo Yang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Mingsheng Sun
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xueqiang Fan
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianyan Wen
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
24
|
Abstract
BACKGROUND 25-hydroxylase (CH25H) is an interferon-stimulated gene (ISG), which catalyzes the synthesis of 25-hydroxycholesterol (25HC). 25HC intervenes in metabolic and infectious processes and controls cholesterol homeostasis and influences viral entry into host cells. We verified whether natural resistance to HIV-1 infection in HIV-1-exposed seronegative (HESN) individuals is at least partially mediated by particularities in sterol biosynthesis. METHODS Peripheral blood mononuclear cells (PBMCs) and monocyte-derived macrophages (MDMs) isolated from 15 sexually exposed HESN and 15 healthy controls were in vitro HIV-1-infected and analyzed for: percentage of IFNα-producing plasmacytoid dendritic cells (pDCs); cholesterol signaling and inflammatory response RNA expression; resistance to HIV-1 infection. MDMs from five healthy controls were in vitro HIV-1-infected in the absence/presence of exogenously added 25HC. RESULTS IFNα-producing pDCs were augmented in HESN compared with healthy controls both in unstimulated and in in vitro HIV-1-infected PBMCs (P < 0.001). An increased expression of CH25H and of a number of genes involved in cholesterol metabolism (ABCA1, ABCG1, CYP7B1, LXRα, OSBP, PPARγ, SCARB1) was observed as well; this, was associated with a reduced susceptibility to in-vitro HIV-1-infection of PBMCs and MDMs (P < 0.01). Notably, addition of 25HC to MDMs resulted in increased cholesterol efflux and augmented resistance to in-vitro HIV-1-infection. CONCLUSION Results herein show that in HESN sterol metabolism might be particularly efficient. This could be related to the activation of the IFNα pathway and results into a reduced susceptibility to in-vitro HIV-1 infection. These results suggest a possible basis for therapeutic interventions to modulate HIV-1 infection.
Collapse
|
25
|
Meyers AK, Zhu X. The NLRP3 Inflammasome: Metabolic Regulation and Contribution to Inflammaging. Cells 2020; 9:cells9081808. [PMID: 32751530 PMCID: PMC7463618 DOI: 10.3390/cells9081808] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
In response to inflammatory stimuli, immune cells reconfigure their metabolism and bioenergetics to generate energy and substrates for cell survival and to launch immune effector functions. As a critical component of the innate immune system, the nucleotide-binding and oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome can be activated by various endogenous and exogenous danger signals. Activation of this cytosolic multiprotein complex triggers the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and initiates pyroptosis, an inflammatory form of programmed cell death. The NLRP3 inflammasome fuels both chronic and acute inflammatory conditions and is critical in the emergence of inflammaging. Recent advances have highlighted that various metabolic pathways converge as potent regulators of the NLRP3 inflammasome. This review focuses on our current understanding of the metabolic regulation of the NLRP3 inflammasome activation, and the contribution of the NLRP3 inflammasome to inflammaging.
Collapse
Affiliation(s)
- Allison K. Meyers
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Xuewei Zhu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Correspondence: ; Tel.: +1-336-713-1445
| |
Collapse
|
26
|
Ding W, Li J, Wang L, Zhang M, Zheng F. ClC-2 inhibition prevents macrophage foam cell formation by suppressing Nlrp3 inflammasome activation. Biosci Biotechnol Biochem 2020; 84:2096-2103. [PMID: 32657644 DOI: 10.1080/09168451.2020.1793294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Macrophage foam cell formation and inflammation are a pathological hallmark of atherosclerosis. ClC-2 has been implicated in various pathological processes, including inflammation and lipid metabolic disorder. However, the functional role of ClC-2 in macrophage foam cell formation and inflammation is unclear. Here, we found that ClC-2 was dominantly expressed in macrophages of atherosclerotic plaque and increased in atherogenesis. Knockdown of ClC-2 inhibited ox-LDL -induced lipid uptake and deposition in macrophages. The increase in CD36 expression and the decrease in ABCA1 expression induced by ox-LDL were alleviated by ClC-2 downregulation. Further, ClC-2 lacking limited the ox-LDL-induced secretion of inflammatory cytokines and chemokine, and suppressed Nlrp3 inflammasome activation. Restoration of Nlrp3 expression reversed the effect of ClC-2 downregulation on macrophage lipid accumulation and inflammation. Collectively, our study demonstrates that ClC-2 knockdown ameliorates ox-LDL-induced macrophage foam cell formation and inflammation by inhibiting Nlrp3 inflammasome activation.
Collapse
Affiliation(s)
- Wenyuan Ding
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University , Jinan, China
| | - Jiamin Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University , Jinan, China
| | - Lili Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University , Jinan, China
| | - Mingming Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University , Jinan, China
| | - Fei Zheng
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University , Jinan, China
| |
Collapse
|
27
|
Lee H, Fessler MB, Qu P, Heymann J, Kopp JB. Macrophage polarization in innate immune responses contributing to pathogenesis of chronic kidney disease. BMC Nephrol 2020; 21:270. [PMID: 32660446 PMCID: PMC7358194 DOI: 10.1186/s12882-020-01921-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by inflammation, injury and fibrosis. Dysregulated innate immune responses mediated by macrophages play critical roles in progressive renal injury. The differentiation and polarization of macrophages into pro-inflammatory 'M1' and anti-inflammatory 'M2' states represent the two extreme maturation programs of macrophages during tissue injury. However, the effects of macrophage polarization on the pathogenesis of CKD are not fully understood. In this review, we discuss the innate immune mechanisms underlying macrophage polarization and the role of macrophage polarization in the initiation, progression, resolution and recurrence of CKD. Macrophage activation and polarization are initiated through recognition of conserved endogenous and exogenous molecular motifs by pattern recognition receptors, chiefly, Toll-like receptors (TLRs), which are located on the cell surface and in endosomes, and NLR inflammasomes, which are positioned in the cytosol. Recent data suggest that genetic variants of the innate immune molecule apolipoprotein L1 (APOL1) that are associated with increased CKD prevalence in people of African descent, mediate an atypical M1 macrophage polarization. Manipulation of macrophage polarization may offer novel strategies to address dysregulated immunometabolism and may provide a complementary approach along with current podocentric treatment for glomerular diseases.
Collapse
Affiliation(s)
- Hewang Lee
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Peng Qu
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jurgen Heymann
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Liaqat A, Asad M, Shoukat F, Khan AU. A Spotlight on the Underlying Activation Mechanisms of the NLRP3 Inflammasome and its Role in Atherosclerosis: A Review. Inflammation 2020; 43:2011-2020. [PMID: 32656610 DOI: 10.1007/s10753-020-01290-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The world's number one cause of death is cardiovascular diseases. The pathogenesis of different disease entities in the cardiovascular disease spectrum is complicated and multifactorial. Inflammation in these complicated etiologies serves as a key position and is a significant cause of atherosclerosis, which contributes to the underlying pathology. Therefore, therapeutic targeting of inflammatory pathways in patients with cardiovascular diseases such as atherosclerosis enhances cardiovascular results. Inflammasomes are intracellular protein complexes engaged in atherosclerosis pathogenesis and activated by multiple danger signals. Emerging proof has revealed that Nod-like receptor protein 3 (NLRP3) inflammasome, which regulates caspase-1 activation and later pro-interleukin processing, triggers inflammatory reactions in the vascular wall and leads to atherosclerotic plaque formation. Inflammasome-mediated signaling interference could decrease inflammation and mitigate illness severity. In this section, we provide an overview of the present literature on the underlying mechanisms leading to the activation of NLRP3 inflammasome and the role of NLRP3 inflammasome in the progression of atherogenesis and highlight the possibility of therapeutic interventions due to mechanisms involved in the of inhibition of NLRP3 activation.
Collapse
Affiliation(s)
- Anam Liaqat
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan.
| | - Muhammad Asad
- Armed Forces Institute of Cardiology, National Institute of Heart Diseases, Rawalpindi, Pakistan
| | - Fatima Shoukat
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Arif-Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| |
Collapse
|
29
|
Fan Y, Yang J, Li H, Li H, Zhang S, Li X, Song Y, Dang W, Liu L, Cao X, Wang X, Nandakumar KS, Shen X, You Y. WITHDRAWN: SNX10 deficiency restricts foam cell formation and protects against atherosclerosis by suppressing CD36-Lyn axis. Can J Cardiol 2020:S0828-282X(20)30456-6. [PMID: 32428616 DOI: 10.1016/j.cjca.2020.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
This article has been withdrawn at the request of the author. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Yujuan Fan
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jialin Yang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hui Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - HaiDong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Sulin Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuesong Li
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuping Song
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wenzhen Dang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Lixin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinyue Cao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | | | - Xiaoyan Shen
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yan You
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; National Institute of Allergy and Infectious, National Institute of Health, Rockville, USA.
| |
Collapse
|
30
|
NLRP3 Inflammasome: A Potential Alternative Therapy Target for Atherosclerosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1561342. [PMID: 32328119 PMCID: PMC7150718 DOI: 10.1155/2020/1561342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Atherosclerosis (AS) is a complex and chronic inflammatory disease that occurs in multiple systems of the human body. It is an important pathological basis for a variety of diseases and a serious threat to human health. So far, many theories have been formed to explain the pathogenesis of atherosclerosis, among which “inflammation theory” has gradually become a research focus. This theory presents that inflammatory response runs through the whole progress of AS, inflammatory cells play as the main executors of AS, and inflammatory mediators are the key molecules of AS. In the inflammatory process of atherosclerosis, the role of NLRP3 in the atherosclerosis has gradually got the attention of researchers. NLRP3 is a kind of signal-transductional pattern recognition receptors (PRRs). After recognizing and binding to the damage factors, NLRP3 inflammasome will be assembled to activate IL-1β and caspase-1 pathways, resulting in promoting the inflammation process of AS, reducing the stability of the plaques, and finally increasing the incidence of adverse cardiovascular events. Taken above, the article will review the potential benefits of drugs targeting the NLRP3 inflammasome in the therapy of AS.
Collapse
|
31
|
Hang L, Peng Y, Xiang R, Li X, Li Z. Ox-LDL Causes Endothelial Cell Injury Through ASK1/NLRP3-Mediated Inflammasome Activation via Endoplasmic Reticulum Stress. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:731-744. [PMID: 32158192 PMCID: PMC7047838 DOI: 10.2147/dddt.s231916] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Objective This study was to investigate the mechanism of inflammatory pathology modification induced by ox-LDL in endothelial cells. Methodology In this study, we firstly investigated the efflux of cholesterol of endothelial cells under the treatment of ox-LDL, and cell proliferation, ROS production, cell apoptosis was measured. Further, proteins of ASK1, NLRP3 inflammasomes and endoplasmic reticulum stress response were detected. Afterwards, ASK1 inhibitor (GS-4997) or endoplasmic reticulum stress (ERS) inhibitor (4-PBA) was used to measure the performance of endothelial cells. Results In this study, endothelial cells were treated with ox-LDLs alone or in combination with a GS-4997 or 4-PBA. Results showed that ox-LDLs attenuated the efflux of cholesterol from endothelial cells in a dose-dependent manner. Ox-LDLs inhibited the proliferation of endothelial cells, and induced their apoptosis and production of reactive oxygen species (ROS). Additionally, ox-LDLs upregulated the levels of phosphorylated ASK1, ERS-related proteins (chop, p-PERK, GRP78, and p-IRE-1), and inflammation-associated proteins (NLRP3, IL-1β, and caspase 1) in endothelial cells. Moreover, we proved that GS-4997 could partly reverse ox-LDL-mediated cell proliferation, apoptosis, ROS production, and inflammation in endothelial cells, and increase cholesterol efflux. We also found that 4-PBA could attenuate the effects of ox-LDLs on endothelial cell cholesterol efflux, proliferation, apoptosis, ROS production, and inflammation. Conclusion Our results suggest that cholesterol efflux from endothelial cells is reduced by ox-LDLs, and these reductions in cholesterol efflux are accompanied by increased NLRP3 inflammasome signaling, ASK1 and higher levels of endoplasmic reticulum stress. Our results suggest this axis as potential targets for treating atherosclerosis.
Collapse
Affiliation(s)
- Liwei Hang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China.,Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangdong, Guangdong 510280, People's Republic of China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong 510280, People's Republic of China.,Department of Cardiology, Dongsheng People's Hospital, Erdos City, Inner Mongolia 017000, People's Republic of China
| | - Yan Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Rui Xiang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xiangdong Li
- Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Zhiliang Li
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China.,Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangdong, Guangdong 510280, People's Republic of China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong 510280, People's Republic of China
| |
Collapse
|
32
|
Wang XM, Lu Y, Song YM, Dong J, Li RY, Wang GL, Wang X, Zhang SD, Dong ZH, Lu M, Wang SY, Ge LY, Luo GD, Ma RZ, George Rozen S, Bai F, Wu D, Ma LL. Integrative genomic study of Chinese clear cell renal cell carcinoma reveals features associated with thrombus. Nat Commun 2020; 11:739. [PMID: 32029730 PMCID: PMC7005298 DOI: 10.1038/s41467-020-14601-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a heterogeneous disease with features that vary by ethnicity. A systematic characterization of the genomic landscape of Chinese ccRCC is lacking, and features of ccRCC associated with tumor thrombus (ccRCC-TT) remain poorly understood. Here, we applied whole-exome sequencing on 110 normal-tumor pairs and 42 normal-tumor-thrombus triples, and transcriptome sequencing on 61 tumor-normal pairs and 30 primary-thrombus pairs from 152 Chinese patients with ccRCC. Our analysis reveals that a mutational signature associated with aristolochic acid (AA) exposure is widespread in Chinese ccRCC. Tumors from patients with ccRCC-TT show a higher mutational burden and genomic instability; in addition, mutations in BAP1 and SETD2 are highly enriched in patients with ccRCC-TT. Moreover, patients with/without TT show distinct molecular characteristics. We reported the integrative genomic sequencing of Chinese ccRCC and identified the features associated with tumor thrombus, which may facilitate ccRCC diagnosis, prognosis and treatment. The genomic heterogeneity of clear cell renal cell carcinoma (ccRCC) across populations is poorly understood. Here, the authors analyse a cohort of Chinese ccRCC cases revealing a mutational signature associated with aristolochic acid exposure, and higher mutational burden and enrichment for BAP1 and SETD2 mutations in ccRCC cases associated with tumor thrombus.
Collapse
Affiliation(s)
- Xiang-Ming Wang
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Yang Lu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yi-Meng Song
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Jun Dong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China.,Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Ruo-Yan Li
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Guo-Liang Wang
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Xu Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Shu-Dong Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Zhou-Huan Dong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Min Lu
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China.,Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shi-Yu Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Li-Yuan Ge
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Guang-Da Luo
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China.,Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Run-Zhuo Ma
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Steve George Rozen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China.
| | - Di Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China.
| | - Lu-Lin Ma
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China.
| |
Collapse
|
33
|
D’Arrigo JS. Nanotargeting of Drug(s) for Delaying Dementia: Relevance of Covid-19 Impact on Dementia. Am J Alzheimers Dis Other Demen 2020; 35:1533317520976761. [PMID: 33307726 PMCID: PMC10623919 DOI: 10.1177/1533317520976761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
By incorporating appropriate drug(s) into lipid (biobased) nanocarriers, one obtains a combination therapeutic for dementia treatment that targets certain cell-surface scavenger receptors (mainly class B type I, or "SR-BI") and thereby crosses the blood-brain barrier. The cardiovascular risk factors for dementia trigger widespread inflammation -- which lead to neurodegeneration, gradual cognitive/memory decline, and eventually (late-onset) dementia. Accordingly, one useful strategy to delay dementia could be based upon nanotargeting drug(s), using lipid nanocarriers, toward a major receptor class responsible for inflammation-associated (cytokine-mediated) cell signaling events. At the same time, the immune response and excessive inflammation, commonly observed in the very recent human coronavirus (COVID-19) pandemic, may accelerate the progression of brain inflammatory neurodegeneration-which increases the probability of post-infection memory impairment and accelerating progression of Alzheimer's disease. Hence, the proposed multitasking combination therapeutic, using a (biobased) lipid nanocarrier, may also display greater effectiveness at different stages of dementia.
Collapse
Affiliation(s)
- Joseph S. D’Arrigo
- Cavitation-Control Technology Inc, Farmington, CT, USA. D’Arrigo is now with Cav-Con, Inc, Bellevue, WA, USA
| |
Collapse
|
34
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
35
|
ER Stress Activates the NLRP3 Inflammasome: A Novel Mechanism of Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3462530. [PMID: 31687078 PMCID: PMC6800950 DOI: 10.1155/2019/3462530] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/21/2019] [Accepted: 08/31/2019] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is an important organelle that regulates several fundamental cellular processes, and ER dysfunction has implications for many intracellular events. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is an intracellularly produced macromolecular complex that can trigger pyroptosis and inflammation, and its activation is induced by a variety of signals. ER stress has been found to affect NLRP3 inflammasome activation through multiple effects including the unfolded protein response (UPR), calcium or lipid metabolism, and reactive oxygen species (ROS) generation. Intriguingly, the role of ER stress in inflammasome activation has not attracted a great deal of attention. In addition, increasing evidence highlights that both ER stress and NLRP3 inflammasome activation contribute to atherosclerosis (AS). AS is a common cardiovascular disease with complex pathogenesis, and the precise mechanisms behind its pathogenesis remain to be determined. Both ER stress and the NLRP3 inflammasome have emerged as critical individual contributors of AS, and owing to the multiple associations between these two events, we speculate that they contribute to the mechanisms of pathogenesis in AS. In this review, we aim to summarize the molecular mechanisms of ER stress, NLRP3 inflammasome activation, and the cross talk between these two pathways in AS in the hopes of providing new pharmacological targets for AS treatment.
Collapse
|
36
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
37
|
Bartlett B, Ludewick HP, Misra A, Lee S, Dwivedi G. Macrophages and T cells in atherosclerosis: a translational perspective. Am J Physiol Heart Circ Physiol 2019; 317:H375-H386. [DOI: 10.1152/ajpheart.00206.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Atherosclerosis is now considered a chronic maladaptive inflammatory disease. The hallmark feature in both human and murine disease is atherosclerotic plaques. Macrophages and various T-cell lineages play a crucial role in atherosclerotic plaque establishment and disease progression. Humans and mice share many of the same processes that occur within atherogenesis. The various similarities enable considerable insight into disease mechanisms and those which contribute to cardiovascular complications. The apolipoprotein E-null and low-density lipoprotein receptor-null mice have served as the foundation for further immunological pathway manipulation to identify pro- and antiatherogenic pathways in attempt to reveal more novel therapeutic targets. In this review, we provide a translational perspective and discuss the roles of macrophages and various T-cell lineages in contrasting proatherosclerotic and atheroprotective settings.
Collapse
Affiliation(s)
- Benjamin Bartlett
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Herbert P. Ludewick
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
| | - Ashish Misra
- Heart Research Institute, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Western Australia, Australia
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
38
|
Song J, Yang S, Yin R, Xiao Q, Ma A, Pan X. MicroRNA-181a regulates the activation of the NLRP3 inflammatory pathway by targeting MEK1 in THP-1 macrophages stimulated by ox-LDL. J Cell Biochem 2019; 120:13640-13650. [PMID: 30938884 DOI: 10.1002/jcb.28637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that is characterized by the deposition of lipids in the vascular wall and the formation of foam cells. Macrophages play a critical role in the development of this chronic inflammation. An increasing amount of research shows that microRNAs affect many steps of inflammation. The goal of our study was to investigate the regulatory effect of miR-181a on the NLRP3 inflammasome pathway and explore its possible mechanism. Compared with the control group, the expression of miR-181a was downregulated in the carotid tissue of AS group mice, while the expression of MEK1 and NLRP3-related proteins was upregulated significantly. In vitro, when THP-1 macrophages were stimulated with oxidized low-density lipoprotein (ox-LDL), the expression of miR-181a was decreased, the MEK/ERK/NF-κB inflammatory pathways were activated and the expression of NLRP3 inflammasome-related proteins was upregulated. Exogenous overexpression of miR-181a downregulated the activation of the MEK/ERK/NF-κB pathway and decreased the expression of NLRP3 inflammasome-related proteins (such as NLRP3, caspase-1, interleukin-18 [IL-18], IL-1β, etc). Exogenous miR-181a knockdown showed the opposite results to those of overexpression group. A luciferase reporter assay proved that miR-181a inhibited the expression of MEK1 by binding to its 3'-untranslated region. When we knocked down miR-181a and then treated cells with U0126 before ox-LDL stimulation, we found that U0126 reversed the increased activation of the MEK/ERK/NF-κB pathway and upregulation of NLRP3 inflammasome-related proteins (NLRP3, caspase-1, IL-18, IL-1β) that resulted from miR-181a knockdown. Our study suggests that miR-181a regulates the activation of the NLRP3 inflammatory pathway by altering the activity of the MEK/ERK/NF-κB pathway via targeting of MEK1.
Collapse
Affiliation(s)
- Jinyang Song
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Shaonan Yang
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Aijun Ma
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
39
|
CD36-Mediated Lipid Accumulation and Activation of NLRP3 Inflammasome Lead to Podocyte Injury in Obesity-Related Glomerulopathy. Mediators Inflamm 2019; 2019:3172647. [PMID: 31097920 PMCID: PMC6487104 DOI: 10.1155/2019/3172647] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/24/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
Podocyte injury critically contributes to the pathogenesis of obesity-related glomerulopathy (ORG). Recently, lipid accumulation and inflammatory responses have been found to be involved in podocyte injury. This study is to explore their role and relationship in podocyte injury of ORG. In animal experiments, the ORG mice developed proteinuria, podocyte injury, and hypertriglyceridemia, accompanied with deregulated lipid metabolism, renal ectopic lipid deposition, activation of NOD-like receptor protein 3 (NLRP3) inflammasome, and secretion of IL-1β of the kidney. The expression of adipose differentiation-related protein (ADRP), CD36, sterol regulatory element-binding protein 1 (SREBP-1), and peroxisome proliferator-activated receptor α (PPARα) in renal tissue were increased. In in vitro cell experiments, after cultured podocytes were stimulated with leptin, similar to ORG mice, we found aggravated podocyte injury, formatted lipid droplet, increased expression of ADRP and CD36, activated NLRP3 inflammasome, and released IL-1β. In addition, after blocking CD36 with inhibitor sulfo-N-succinimidyl oleate (SSO) or CD36 siRNA, activation of NLRP3 inflammasome and release of IL-1β are downregulated, and podocyte injury was alleviated. However, after blocking NLRP3 with MCC950, although podocyte injury was alleviated and release of IL-1β was decreased, there was no change in the expression of CD36, ADRP, and intracellular lipid droplets. Taken together, our study suggests that CD36-mediated lipid accumulation and activation of NLRP3 inflammasome may be one of the potential pathogeneses of ORG podocyte injury.
Collapse
|
40
|
Castro-Alves VC, Shiga TM, Nascimento JROD. Polysaccharides from chayote enhance lipid efflux and regulate NLRP3 inflammasome priming in macrophage-like THP-1 cells exposed to cholesterol crystals. Int J Biol Macromol 2019; 127:502-510. [PMID: 30658148 DOI: 10.1016/j.ijbiomac.2019.01.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 01/14/2023]
Abstract
The contribution of dietary fiber to decrease the risk of atherosclerosis may occur through other mechanisms besides the increased excretion of cholesterol. Although macrophages are crucial for lipid clearance, the excessive uptake of cholesterol crystals (CC) by these cells induce NLRP3 inflammasome and foam cell formation. Thus, we investigated whether the water-soluble DF from chayote (WSP) regulate CC-pretreated macrophage-like THP-1 cells. Linkage analysis indicated that WSP is composed mainly of pectic homogalacturonan and highly branched type I rhamnogalacturonan as well as hemicellulosic material including glucomannan, xyloglucan, and glucurono(arabino)xylan. WSP reduced interleukin (IL)-1β and chemokine release in CC-pretreated macrophages. Notably, WSP also reduced lipid accumulation in cells previously exposed to CC. Furthermore, WSP upregulated liver X receptor alpha expression, which may account for increased lipid efflux, and reduced matrix metallopeptidase 9 expression. WSP also reduced active caspase-1 protein levels, and downregulated NLRP3 and IL-1β gene expression in CC-pretreated cells, suggesting that this polysaccharide fraction regulates the priming signals required for NLRP3 inflammasome activation. Thus, WSP regulate lipid efflux and suppress inflammasome priming in macrophages, suggesting that the health benefits of this dietary fiber could go beyond its physical properties on the gastrointestinal tract.
Collapse
Affiliation(s)
- Victor Costa Castro-Alves
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - Tânia Misuzu Shiga
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - João Roberto Oliveira do Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
41
|
Gibson MS, Domingues N, Vieira OV. Lipid and Non-lipid Factors Affecting Macrophage Dysfunction and Inflammation in Atherosclerosis. Front Physiol 2018; 9:654. [PMID: 29997514 PMCID: PMC6029489 DOI: 10.3389/fphys.2018.00654] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease and a leading cause of human mortality. The lesional microenvironment contains a complex accumulation of variably oxidized lipids and cytokines. Infiltrating monocytes become polarized in response to these stimuli, resulting in a broad spectrum of macrophage phenotypes. The extent of lipid loading in macrophages influences their phenotype and consequently their inflammatory status. In response to excess atherogenic ligands, many normal cell processes become aberrant following a loss of homeostasis. This can have a direct impact upon the inflammatory response, and conversely inflammation can lead to cell dysfunction. Clear evidence for this exists in the lysosomes, endoplasmic reticulum and mitochondria of atherosclerotic macrophages, the principal lesional cell type. Furthermore, several intrinsic cell processes become dysregulated under lipidotic conditions. Therapeutic strategies aimed at restoring cell function under disease conditions are an ongoing coveted aim. Macrophages play a central role in promoting lesional inflammation, with plaque progression and stability being directly proportional to macrophage abundance. Understanding how mixtures or individual lipid species regulate macrophage biology is therefore a major area of atherosclerosis research. In this review, we will discuss how the myriad of lipid and lipoprotein classes and products used to model atherogenic, proinflammatory immune responses has facilitated a greater understanding of some of the intricacies of chronic inflammation and cell function. Despite this, lipid oxidation produces a complex mixture of products and with no single or standard method of derivatization, there exists some variation in the reported effects of certain oxidized lipids. Likewise, differences in the methods used to generate macrophages in vitro may also lead to variable responses when apparently identical lipid ligands are used. Consequently, the complexity of reported macrophage phenotypes has implications for our understanding of the metabolic pathways, processes and shifts underpinning their activation and inflammatory status. Using oxidized low density lipoproteins and its oxidized cholesteryl esters and phospholipid constituents to stimulate macrophage has been hugely valuable, however there is now an argument that only working with low complexity lipid species can deliver the most useful information to guide therapies aimed at controlling atherosclerosis and cardiovascular complications.
Collapse
Affiliation(s)
- Mark S Gibson
- Lysosomes in Chronic Human Pathologies and Infection, Faculdade de Ciências Médicas, Centro de Estudos de Doenças Crónicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Neuza Domingues
- Lysosomes in Chronic Human Pathologies and Infection, Faculdade de Ciências Médicas, Centro de Estudos de Doenças Crónicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Otilia V Vieira
- Lysosomes in Chronic Human Pathologies and Infection, Faculdade de Ciências Médicas, Centro de Estudos de Doenças Crónicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|