1
|
Yang Z, Wu X, Zhu Y, Qu Y, Zhou C, Yuan M, Zhan Y, Li Y, Teng W, Zhao X, Han Y. Joint GWAS and WGCNA Identify Genes Regulating the Isoflavone Content in Soybean Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18573-18584. [PMID: 39105709 DOI: 10.1021/acs.jafc.4c03012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Isoflavone is a secondary metabolite of the soybean phenylpropyl biosynthesis pathway with physiological activity and is beneficial to human health. In this study, the isoflavone content of 205 soybean germplasm resources from 3 locations in 2020 showed wide phenotypic variation. A joint genome-wide association study (GWAS) and weighted gene coexpression network analysis (WGCNA) identified 33 single-nucleotide polymorphisms and 11 key genes associated with soybean isoflavone content. Gene ontology enrichment analysis, gene coexpression, and haplotype analysis revealed natural variations in the Glyma.12G109800 (GmOMT7) gene and promoter region, with Hap1 being the elite haplotype. Transient overexpression and knockout of GmOMT7 increased and decreased the isoflavone content, respectively, in hairy roots. The combination of GWAS and WGCNA effectively revealed the genetic basis of soybean isoflavone and identified potential genes affecting isoflavone synthesis and accumulation in soybean, providing a valuable basis for the functional study of soybean isoflavone.
Collapse
Affiliation(s)
- Zhenhong Yang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Xu Wu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Yina Zhu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Yuewen Qu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Changjun Zhou
- Daqing Branch, Heilongjiang Academy of Agricultural Science, Daqing 163711, China
| | - Ming Yuan
- Qiqihar Branch, Heilongjiang Academy of Agricultural Science, Qiqihar 161006, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Jeong GH, Yadav M, Lee SS, Chung BY, Cho JH, Lee IC, Bai HW, Kim TH. Novel Dihydrocoumarins Induced by Radiolysis as Potent Tyrosinase Inhibitors. Molecules 2024; 29:341. [PMID: 38257254 PMCID: PMC10820468 DOI: 10.3390/molecules29020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
A representative naturally occurring coumarin, 4-methylumbelliferone (5), was exposed to 50 kGy of gamma ray, resulting in four newly generated dihydrocoumarin products 1-4 induced by the gamma irradiation. The structures of these new products were elucidated by interpretation of spectroscopic data (NMR, MS, [α]D, and UV). The unusual bisdihydrocoumarin 4 exhibited improved tyrosinase inhibitory capacity toward mushroom tyrosinase with IC50 values of 19.8 ± 0.5 μM as compared to the original 4-methylumbelliferone (5). A kinetic analysis also exhibited that the potent metabolite 4 had non-competitive modes of action. Linkage of the hydroxymethyl group in the C-3 and C-4 positions on the lactone ring probably enhances the tyrosinase inhibitory effect of 4-methylumbelliferone (5). Thus, the novel coumarin analog 4 is an interesting new class of tyrosinase inhibitory candidates that requires further examination.
Collapse
Affiliation(s)
- Gyeong Han Jeong
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea; (G.H.J.); (S.S.L.); (B.Y.C.)
- Center for Companion Animal New Drug Development, Korea Institute of Toxicology (KIT), Jeongeup 56212, Republic of Korea
| | - Manisha Yadav
- Department of Food Science and Biotechnology, Daegu University, Gyeongsan 38453, Republic of Korea;
| | - Seung Sik Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea; (G.H.J.); (S.S.L.); (B.Y.C.)
- Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Byung Yeoup Chung
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea; (G.H.J.); (S.S.L.); (B.Y.C.)
| | - Jae-Hyeon Cho
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju 28674, Republic of Korea;
| | - Hyoung-Woo Bai
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea; (G.H.J.); (S.S.L.); (B.Y.C.)
- Center for Companion Animal New Drug Development, Korea Institute of Toxicology (KIT), Jeongeup 56212, Republic of Korea
- Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tae Hoon Kim
- Department of Food Science and Biotechnology, Daegu University, Gyeongsan 38453, Republic of Korea;
| |
Collapse
|
3
|
Jiménez-Cortegana C, Palomares F, Alba G, Santa-María C, de la Cruz-Merino L, Sánchez-Margalet V, López-Enríquez S. Dendritic cells: the yin and yang in disease progression. Front Immunol 2024; 14:1321051. [PMID: 38239364 PMCID: PMC10794555 DOI: 10.3389/fimmu.2023.1321051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Dendritic cells (DCs) are antigen presenting cells that link innate and adaptive immunity. DCs have been historically considered as the most effective and potent cell population to capture, process and present antigens to activate naïve T cells and originate favorable immune responses in many diseases, such as cancer. However, in the last decades, it has been observed that DCs not only promote beneficial responses, but also drive the initiation and progression of some pathologies, including inflammatory bowel disease (IBD). In line with those notions, different therapeutic approaches have been tested to enhance or impair the concentration and role of the different DC subsets. The blockade of inhibitory pathways to promote DCs or DC-based vaccines have been successfully assessed in cancer, whereas the targeting of DCs to inhibit their functionality has proved to be favorable in IBD. In this review, we (a) described the general role of DCs, (b) explained the DC subsets and their role in immunogenicity, (c) analyzed the role of DCs in cancer and therapeutic approaches to promote immunogenic DCs and (d) analyzed the role of DCs in IBD and therapeutic approaches to reduced DC-induced inflammation. Therefore, we aimed to highlight the "yin-yang" role of DCs to improve the understand of this type of cells in disease progression.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Gonzalo Alba
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Consuelo Santa-María
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Clinical Oncology Dept. Medicine Department, University of Seville, Virgen Macarena University Hospital, Seville, Spain
| | - Victor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Soledad López-Enríquez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
4
|
Mo S, Jin B, Tseng Y, Lin L, Lin L, Shen X, Song H, Kong M, Luo Z, Chu Y, Jiang C, Cao Z, Liu J, Luo F. A precise molecular subtyping of ulcerative colitis reveals the immune heterogeneity and predicts clinical drug responses. J Transl Med 2023; 21:466. [PMID: 37443022 PMCID: PMC10347743 DOI: 10.1186/s12967-023-04326-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND AND AIMS We sought to identify novel molecular subtypes of ulcerative colitis (UC) based on large-scale cohorts and establish a clinically applicable subtyping system for the precision treatment of the disease. METHODS Eight microarray profiles containing colon samples from 357 patients were utilized. Expression heterogeneity was screened out and stable subtypes were identified among UC patients. Immune infiltration pattern and biological agent response were compared among subtypes to assess the value in guiding treatment. The relationship between PRLR and TNFSF13B genes with the highest predictive value was further validated by functional experiments. RESULTS Three stable molecular subtypes were successfully identified. Immune cell infiltration analysis defined three subtypes as innate immune activated UC (IIA), whole immune activated UC (WIA), and immune homeostasis like UC (IHL). Notably, the response rate towards biological agents (infliximab/vedolizumab) in WIA patients was the lowest (less than 10%), while the response rate in IHL patients was the highest, ranging from 42 to 60%. Among the featured genes of subtypes, the ratio of PRLR to TNFSF13B could effectively screen for IHL UC subtype suitable for biological agent therapies (Area under curve: 0.961-0.986). Furthermore, we demonstrated that PRLR expressed in epithelial cells could inhibit the expression of TNFSF13B in monocyte-derived macrophages through the CXCL1-NF-κB pathway. CONCLUSIONS We identified three stable UC subtypes with a heterogeneous immune pattern and different response rates towards biological agents for the first time. We also established a precise molecular subtyping system and classifier to predict clinical drug response and provide individualized treatment strategies for UC patients.
Collapse
Affiliation(s)
- Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Bryan Jin
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Yujen Tseng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Lingxi Lin
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Lishuang Lin
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Shen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Huan Song
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Mingjia Kong
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Zhongguang Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Yiwei Chu
- Biotherapy Research Center, Department of Immunology, School of Basic Medical Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhiwei Cao
- School of Life Sciences, Fudan University, Shanghai, 200433, China
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
5
|
Jeong GH, Lee H, Woo SY, Lee HK, Chung BY, Bai HW. Novel aminopyridazine derivative of minaprine modified by radiolysis presents potent anti-inflammatory effects in LPS-stimulated RAW 264.7 and DH82 macrophage cells. Sci Rep 2023; 13:10887. [PMID: 37407652 DOI: 10.1038/s41598-023-37812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
Radiation molecularly transforms naturally occurring products by inducing the methoxylation, hydroxylation, and alkylation of parent compounds, thereby affecting the anti-inflammatory capacities of those compounds. Minaprine (1) modified by ionizing radiation generated the novel hydroxymethylation hydropyridazine (2), and its chemical structure was determined based on NMR and HRESIMS spectra. Compared to the original minaprine, the novel generated product showed a highly enhanced anti-inflammatory capacity inhibited nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 and DH82 macrophage cells. In addition, minaprinol (2) effectively inhibited cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) at the protein level and pro-inflammatory cytokine (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-10) production in macrophages.
Collapse
Affiliation(s)
- Gyeong Han Jeong
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, 56212, Republic of Korea
- Center for Companion Animal New Drug Development, Korea Institute of Toxicology (KIT), Jeongeup, 56212, Republic of Korea
| | - Hanui Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, 56212, Republic of Korea
- Center for Companion Animal New Drug Development, Korea Institute of Toxicology (KIT), Jeongeup, 56212, Republic of Korea
| | - So-Yeun Woo
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, 56212, Republic of Korea
| | - Hong-Ki Lee
- Center for Companion Animal New Drug Development, Korea Institute of Toxicology (KIT), Jeongeup, 56212, Republic of Korea
| | - Byung Yeoup Chung
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, 56212, Republic of Korea
| | - Hyoung-Woo Bai
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, 56212, Republic of Korea.
- Center for Companion Animal New Drug Development, Korea Institute of Toxicology (KIT), Jeongeup, 56212, Republic of Korea.
- Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
Yi K, Li H, Xu C, Zhong G, Ding Z, Zhang G, Guan X, Zhong M, Li G, Jiang N, Zhang Y. Morphological feature recognition of different differentiation stages of induced ADSCs based on deep learning. Comput Biol Med 2023; 159:106906. [PMID: 37084638 DOI: 10.1016/j.compbiomed.2023.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
In order to accurately identify the morphological features of different differentiation stages of induced Adipose Derived Stem Cells (ADSCs) and judge the differentiation types of induced ADSCs, a morphological feature recognition method of different differentiation stages of induced ADSCs based on deep learning is proposed. Using the super-resolution image acquisition method of ADSCs differentiation based on stimulated emission depletion imaging, after obtaining the super-resolution images at different stages of inducing ADSCs differentiation, the noise of the obtained image is removed and the image quality is optimized through the ADSCs differentiation image denoising model based on low rank nonlocal sparse representation; The denoised image is taken as the recognition target of the morphological feature recognition method for ADSCs differentiation image based on the improved Visual Geometry Group (VGG-19) convolutional neural network. Through the improved VGG-19 convolutional neural network and class activation mapping method, the morphological feature recognition and visual display of the recognition results at different stages of inducing ADSCs differentiation are realized. After testing, this method can accurately identify the morphological features of different differentiation stages of induced ADSCs, and is available.
Collapse
Affiliation(s)
- Ke Yi
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China
| | - Han Li
- Meta Platforms, Inc., Menlo Park, CA 94025, USA
| | - Cheng Xu
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China
| | - Guoqing Zhong
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China
| | - Zhiquan Ding
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China
| | - Guolong Zhang
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China
| | - Xiaohui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang University, Nanchang, China
| | - Meiling Zhong
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, China
| | - Guanghui Li
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China
| | - Nan Jiang
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China
| | - Yuejin Zhang
- School of Information Engineering, East China Jiaotong University, 330013 Nanchang, Jiangxi, China.
| |
Collapse
|
7
|
Wu T, Yang X, Xu B, Zhu H, Guo J, Zhou Y, Liang G, Sun H. Using Network Pharmacology and Molecular Docking Technology to Explore the Mechanism of Modified Pulsatilla Decoction in the Treatment of Ulcerative Colitis. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221098850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Using network pharmacology and molecular docking technology, our aim was to clarify the biological activity, key targets, and potential pharmacological mechanisms of modified Pulsatilla decoction (MPD) in the treatment of ulcerative colitis (UC). Materials and Methods: The main active ingredients of MPD were screened using the traditional Chinese medicine systems pharmacology platform. UC targets were obtained from the GeneCard, OMIM, DisGeNET, PharmGkb, and DrugBank databases. The common genes of MPD in the treatment of UC were identified by Venn diagram. The visual interactive network diagram of “active ingredient-target-disease” was constructed using the software Cytoscape. We used the STRING database to construct a protein–protein interaction network and analyze the correlation in protein interaction. We conducted gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for common genes using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) database and R software. Subsequently, the molecular docking verification of ingredients and targets was conducted through Discovery Studio. Last, in vivo experiments were conducted to further verify the findings. Results: A total of 51 active ingredients were screened, involving 141 common genes. The top 5 ingredients in MPD were quercetin, β-sitosterol, luteolin, kaempferol, and stigmasterol. Pathways involved in the treatment of UC include the advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) signaling pathway, the interleukin-17 (IL-17) signaling pathway, the tumor necrosis factor (TNF) signaling pathway, viral infection-related signaling pathways, and some cancer pathways. Molecular docking showed that the important ingredients of MPD were well docked with mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 8 (MAPK8), RAC-alpha serine (AKT1), vascular endothelial growth factor-A (VEGFA), transcription factor AP-1 (JUN), and interleukin-6 (IL-6). Animal experiments showed that MPD could ameliorate the injury and colitis in dextran sulfate sodium (DSS)-induced colitic rats. MPD inhibited the expression of p-p38A and p-MLC in UC rats. Conclusions: MPD has the characteristics of a multisystem, multi-ingredient, and multitarget in the treatment of UC. The possible mechanisms include inhibition of inflammation, apoptosis, oxidation, and tumor gene transcription. MPD may have a protective effect in the treatment of UC.
Collapse
Affiliation(s)
- Tingting Wu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xin Yang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Bo Xu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Huiping Zhu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jinwei Guo
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yu Zhou
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Guoqiang Liang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- Suzhou Academy of Wumen Chinese Medicine, Suzhou, China
| | - Hongwen Sun
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| |
Collapse
|
8
|
Song HY, Kim KI, Han JM, Park WY, Seo HS, Lim S, Byun EB. Ionizing radiation technology to improve the physicochemical and biological properties of natural compounds by molecular modification: A review. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Mohammady M, Pourghasemi HR, Yousefi S, Dastres E, Edalat M, Pouyan S, Eskandari S. Modeling and Prediction of Habitat Suitability for Ferula gummosa Medicinal Plant in a Mountainous Area. NATURAL RESOURCES RESEARCH 2021; 30:4861-4884. [DOI: 10.1007/s11053-021-09940-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/23/2021] [Indexed: 09/01/2023]
|
10
|
Zhou Y, Wu R, Cai FF, Zhou WJ, Lu YY, Zhang H, Chen QL, Sun MY, Su SB. Development of a novel anti-liver fibrosis formula with luteolin, licochalcone A, aloe-emodin and acacetin by network pharmacology and transcriptomics analysis. PHARMACEUTICAL BIOLOGY 2021; 59:1594-1606. [PMID: 34808067 PMCID: PMC8635660 DOI: 10.1080/13880209.2021.1999275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/22/2021] [Indexed: 05/13/2023]
Abstract
CONTEXT Xiaoyaosan decoction (XYS), a classical Traditional Chinese Medicine (TCM) formula is used to treat liver fibrosis in clinics. OBJECTIVE This study explores defined compound combinations from XYS decoction to treat liver fibrosis. MATERIALS AND METHODS Network pharmacology combined with transcriptomics analysis was used to analyze the XYS decoction and liver depression and spleen deficiency syndrome liver fibrosis. From the constructed XYS-Syndrome-liver fibrosis network, the top 10 active formulas were developed by topological analysis according to network stability. The most active formula was determined by in vitro study. The anti-fibrosis effect was evaluated by in vitro and in vivo studies. RESULTS According to the network XYS-Syndrome-liver fibrosis network, 8 key compounds and 255 combinations were predicted from in XYS. Luteolin, licochalcone A, aloe-emodin and acacetin formula (LLAAF) had a synergistic effect on the proliferation inhibition of hepatic stellate cells compared to individual compounds alone. The treatment of XYS and LLAAF showed a similar anti-liver fibrotic effect that reduced histopathological changes of liver fibrosis, Hyp content and levels of α-SMA and collagen I in CCl4-induced liver fibrosis in rats. Transcriptomics analysis revealed LLAAF regulated PI3K-Akt, AMPK, FoxO, Jak-STAT3, P53, cell cycle, focal adhesion, and PPAR signalling. Furthermore, LLAAF was confirmed to regulate Jak-STAT and PI3K-Akt-FoxO signalling in vitro and in vivo. CONCLUSIONS This study developed a novel anti-liver formula LLAAF from XYS, and demonstrated its anti-liver fibrotic activity which may be involved in the regulation of Jak-STAT and PI3K-Akt-FoxO signalling.
Collapse
Affiliation(s)
- Yuan Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei-fei Cai
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Jun Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Yu Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Long Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-Yu Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi-Bing Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Hogenkamp A, Ehlers A, Garssen J, Willemsen LEM. Allergy Modulation by N-3 Long Chain Polyunsaturated Fatty Acids and Fat Soluble Nutrients of the Mediterranean Diet. Front Pharmacol 2020; 11:1244. [PMID: 32973501 PMCID: PMC7472571 DOI: 10.3389/fphar.2020.01244] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The Mediterranean diet, containing valuable nutrients such as n-3 long chain poly-unsaturated fatty acids (LCPUFAs) and other fat-soluble micronutrients, is known for its health promoting and anti-inflammatory effects. Its valuable elements might help in the battle against the rising prevalence of non-communicable diseases (NCD), including the development of allergic diseases and other (chronic) inflammatory diseases. The fat fraction of the Mediterranean diet contains bioactive fatty acids but can also serve as a matrix to dissolve and increase the uptake of fat-soluble vitamins and phytochemicals, such as luteolin, quercetin, resveratrol and lycopene with known immunomodulatory and anti-inflammatory capacities. Especially n-3 LCPUFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived from marine oils can target specific receptors or signaling cascades, act as eicosanoid precursors and/or alter membrane fluidity and lipid raft formation, hereby exhibiting anti-inflammatory properties. Beyond n-3 LCPUFAs, fat-soluble vitamins A, D, E, and K1/2 have the potential to affect pro-inflammatory signaling cascades by interacting with receptors or activating/inhibiting signaling proteins or phosphorylation in immune cells (DCs, T-cells, mast cells) involved in allergic sensitization or the elicitation/effector phase of allergic reactions. Moreover, fat-soluble plant-derived phytochemicals can manipulate signaling cascades, mostly by interacting with other receptors or signaling proteins compared to those modified by fat-soluble vitamins, suggesting potential additive or synergistic actions by applying a combination of these nutrients which are all part of the regular Mediterranean diet. Research concerning the effects of phytochemicals such as polyphenols has been hampered due to their poor bio-availability. However, their solubility and uptake are improved by applying them within the dietary fat matrix. Alternatively, they can be prepared for targeted delivery by means of pharmaceutical approaches such as encapsulation within liposomes or even unique nanoparticles. This review illuminates the molecular mechanisms of action and possible immunomodulatory effects of n-3 LCPUFAs and fat-soluble micronutrients from the Mediterranean diet in allergic disease development and allergic inflammation. This will enable us to further appreciate how to make use of the beneficial effects of n-3 LCPUFAs, fat-soluble vitamins and a selection of phytochemicals as active biological components in allergy prevention and/or symptom reduction.
Collapse
Affiliation(s)
- Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Ehlers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
12
|
Xiu W, Chen Y, Chen Q, Deng B, Su J, Guo Z. Sauchinone attenuates inflammatory responses in dendritic cells via Blimp-1 and ameliorates dextran sulfate sodium (DSS)-induced colitis. Biochem Biophys Res Commun 2020; 527:902-908. [PMID: 32430179 DOI: 10.1016/j.bbrc.2020.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease (IBD) is a complex inflammatory disorder of the digestive tract with dysregulated innate and adaptive immune responses. Dendritic cells (DC), the most important antigen presenting cells, act as bridges connecting the adaptive and innate immune systems, and play a crucial role in the regulation of local homeostasis in the gut and are also essential mediators in the initiation and development of intestinal inflammation. Our recent study found that sauchinone (SAU) was able to ameliorate experimental colitis in mice by restraining Th17 cell differentiation and their pathogenicity. Here, we found that SAU significantly inhibited LPS-induced DC activation. Moreover, SAU suppressed the ability of LPS-primed DC to induce Th1/Th17 cell differentiation, but SAU-treated DC up-regulated their ability to initiate Foxp3+ Treg cell generation. Of note, we found that genetical ablation of Blimp-1 in DC markedly abrogated the SAU suppression of pro-inflammatory cytokine or promote immunomodulatory molecule production by DC. Blimp-1 deficiency boosted the ability of DC to polarize naïve CD4+ T cells into Th1/Th17 cell lineages. SAU failed to alleviated DSS-induced colitis in mice with Blimp-1-deficient DC. Our results shed new lights on the mechanisms of how SAU regulates DC biology and intestinal inflammation.
Collapse
Affiliation(s)
- Wenbo Xiu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanxi Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qinyuan Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bolin Deng
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiang Su
- Department of Rheumatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zhenzhen Guo
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|