1
|
Deppas JJ, Kiesel BF, Guo J, Rigatti LH, Latoche JD, Green A, Knizner P, Clump DA, Pandya P, Vendetti FP, Bakkenist CJ, Beumer JH. Comparative in vivo toxicology of ATR inhibitors ceralasertib, elimusertib, and berzosertib alone and in combination with ionizing radiation. Toxicol Appl Pharmacol 2025; 500:117375. [PMID: 40339611 DOI: 10.1016/j.taap.2025.117375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/08/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Ionizing radiation (IR) induces damage in the form of DNA strand breaks. As an apical initiator of the DNA damage response, Ataxia telangiectasia and Rad3-related (ATR) mitigates DNA damage, limiting therapeutic efficacy. Small molecule ATR inhibitors (ATRi) restrict this effect and sensitize cancer cells to radiation-induced damage. However, the impact of ATR inhibition in non-malignant tissues following IR is currently unknown. Here, we document the impact of ATRi on murine toxicity profiles following total body irradiation (TBI). Mice were stratified to receive single-dose ATRi (ceralasertib, elimusertib, or berzosertib), 6 Gy TBI, or the combination. Mice were euthanized 48 h post TBI. Blood and tissues were collected for analysis of complete blood counts and histopathology. To further distinguish toxicity profiles, IC50 values were compared between ATRi. Pharmacokinetics (PK) and pharmacodynamics (PD) were considered as potential explanatory factors of differences in toxicity profiles. Elimusertib was determined to be the most potent ATRi, and ceralasertib the least. We observed neutrophilia with all ATRi. We found that ATRi did not exacerbate any TBI-induced toxicities in mice. Berzosertib presented a unique profile among all ATRi across several toxicity endpoints, including modest amelioration of TBI-associated effects on spleen and lymphocyte and white blood cell counts. Cardiotoxicity was observed following single-dose ceralasertib, but no other ATRi, possibly due to high unbound plasma drug concentrations. Our results further support and guide clinical development of ATRi in clinic.
Collapse
Affiliation(s)
- Joshua J Deppas
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States of America; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Brian F Kiesel
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States of America; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jianxia Guo
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States of America
| | - Lora H Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph D Latoche
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony Green
- Pitt Biospecimen Core Research Histology Department, Health Sciences Core Research Facilities, Pittsburgh, PA, USA
| | - Paul Knizner
- Pitt Biospecimen Core Research Histology Department, Health Sciences Core Research Facilities, Pittsburgh, PA, USA
| | - D Andy Clump
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pinakin Pandya
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank P Vendetti
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher J Bakkenist
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jan H Beumer
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States of America; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America; Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
2
|
Bradfield DT, Slaven JE, Rittase WB, Rusnak M, Symes AJ, Brehm GV, Muir JM, Lee SH, Anderson JA, Day RM. Cell death and iron deposition in the liver in two murine models of acute radiation syndrome. PLoS One 2025; 20:e0324361. [PMID: 40440310 PMCID: PMC12121821 DOI: 10.1371/journal.pone.0324361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 04/24/2025] [Indexed: 06/02/2025] Open
Abstract
Different tissues exhibit differential sensitivity to ionizing radiation exposure and display different time courses of pathologies that are not well understood. Ionizing radiation causes hemolysis of red blood cells, causing the release of iron that is taken up by a variety of tissues. The increased iron has been associated with altered expression of iron binding proteins and, in some cases, markers of ferroptosis. Here we examined the time course of iron uptake in murine liver following 60Co total body irradiation (TBI) at 7.9 Gy (LD90/30) and 6.85 Gy (LD0/30). 7.9 Gy induced hydropic degeneration, micro-vesicular steatosis, and inflammatory cell infiltration, whereas at 6.85 Gy the livers displayed only inflammatory cell infiltration. In both cases, iron levels increased significantly, maximal at ~21 days post-TBI. Increased iron was associated with altered expression of ferritin, heme oxygenase, an enzyme required for iron recycling, and the pro-inflammatory cytokine serum amyloid A, maximal ~16-21 days. 7.9 Gy induced liver caspase-3 activation consistent with apoptosis. In contrast, 6.85 Gy induced markers of ferroptosis but not of apoptosis. Our data indicate that iron is deposited in the liver at a delayed time point following radiation and is associated with increased ferritin, HO-1, and inflammatory cytokine production.
Collapse
Affiliation(s)
- Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - W. Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Milan Rusnak
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aviva J. Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Grace V. Brehm
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Jeannie M. Muir
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Sang-Ho Lee
- Pathology Department, Research Services, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Joseph A. Anderson
- Comparative Pathology Division, Department of Laboratory Animal Resources, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America.
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Shu M, Zhang J, Huang H, Chen Y, Shi Y, Zeng H, Shao L. Advances in the Regulation of Hematopoietic Homeostasis by Programmed Cell Death Under Radiation Conditions. Stem Cell Rev Rep 2025; 21:935-952. [PMID: 40056317 DOI: 10.1007/s12015-025-10863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
The application of nuclear energy and the frequent occurrence of nuclear contamination have made radiation safety a major challenge to global public health. As a radiation-sensitive target organ, bone marrow is susceptible to both acute and chronic damage effects of ionizing radiation on the hematopoietic system. Researchers have demonstrated that radiation disrupts hematopoietic homeostasis through direct damage to hematopoietic stem cells, which inhibits hematopoietic regeneration indirectly through damage to hematopoietic progenitor cells and their downstream cell populations. However, the multi-target regulatory mechanism of radiation perturbation of hematopoietic homeostasis remains to be systematically elucidated. Recent studies have revealed that, in addition to the classical apoptotic pathway, non-apoptotic programmed cell death modes (e.g. pyroptosis, necroptosis, and ferroptosis) may be involved in the regulation of radiation-induced hematopoietic injury. A systematic review of the roles of the aforementioned programmed death pathways was presented in radiation-damaged hematopoietic cells, with a view to providing a scientific basis for targeted intervention in radiation-induced myelosuppression.
Collapse
Affiliation(s)
- Manling Shu
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, P.R. China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Jinfu Zhang
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, P.R. China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Haocong Huang
- Department of Medicine, Jinggangshan University, Ji'an, 343000, P.R. China
| | - Yuxin Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Yubing Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China.
- Basic Medical Experiment Center, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China.
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Lijian Shao
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, P.R. China.
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China.
| |
Collapse
|
4
|
Gong FH, Liu L, Wang X, Xiang Q, Yi X, Jiang DS. Ferroptosis induced by environmental pollutants and its health implications. Cell Death Discov 2025; 11:20. [PMID: 39856053 PMCID: PMC11759704 DOI: 10.1038/s41420-025-02305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Environmental pollution represents a significant public health concern, with the potential health risks associated with environmental pollutants receiving considerable attention over an extended period. In recent years, a substantial body of research has been dedicated to this topic. Since the discovery of ferroptosis, an iron-dependent programmed cell death typically characterized by lipid peroxidation, in 2012, there have been significant advances in the study of its role and mechanism in various diseases. A growing number of recent studies have also demonstrated the involvement of ferroptosis in the damage caused to the organism by environmental pollutants, and the molecular mechanisms involved have been partially elucidated. The targeting of ferroptosis has been demonstrated to be an effective means of ameliorating the health damage caused by PM2.5, organic and inorganic pollutants, and ionizing radiation. This review begins by providing a summary of the most recent and important advances in ferroptosis. It then proceeds to offer a critical analysis of the health effects and molecular mechanisms of ferroptosis induced by various environmental pollutants. Furthermore, as is the case with all rapidly evolving research areas, there are numerous unanswered questions and challenges pertaining to environmental pollutant-induced ferroptosis, which we discuss in this review in an attempt to provide some directions and clues for future research in this field.
Collapse
Affiliation(s)
- Fu-Han Gong
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Liyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuesheng Wang
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Gao D, Zhang H, Sun W, Wang H, Wang H. Radiation-Induced Intestinal Injury: Molecular Mechanisms and Therapeutic Status. DNA Cell Biol 2024; 43:537-548. [PMID: 39235407 DOI: 10.1089/dna.2024.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Radiation-induced intestinal injury is one of the most common intestinal complications caused by pelvic and abdominal tumor radiotherapy, severely impacting patients' quality of life. Ionizing radiation, while killing tumor cells, inevitably damages healthy tissue. Radiation-induced enteropathy results from radiation therapy-induced intestinal tissue damage and inflammatory responses. This damage involves various complex molecular mechanisms, including cell apoptosis, oxidative stress, release of inflammatory mediators, disruption of immune responses, and imbalance of intestinal microbiota. A thorough understanding of these molecular mechanisms is crucial for developing effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Dandan Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin 300121, China
| | - Heng Zhang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin 300121, China
| | - Wanjun Sun
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin 300121, China
| | - Huaqing Wang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin 300121, China
| | - Hui Wang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin 300121, China
| |
Collapse
|
6
|
Cao J, Wu M, Mo W, Zhao M, Gu L, Wang X, Zhang B, Cao J. Upregulation of PRRX2 by silencing Marveld3 as a protective mechanism against radiation-induced ferroptosis in skin cells. Mol Med 2024; 30:182. [PMID: 39434056 PMCID: PMC11494952 DOI: 10.1186/s10020-024-00958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Radiation-induced skin injury (RISI) represents a significant complication in patients receiving radiotherapy and individuals exposed to nuclear accidents, characterized by a protracted wound-healing process relative to injuries from other etiologies. Current preventive and management approaches remain inadequate. Consequently, investigating efficacious intervention strategies that target the disease's progression characteristics holds significant practical importance. METHODS Small interfering RNA (siRNA) and overexpression plasmid were used to modulate the expression of Marvel domain containing 3 (Marveld3) and paired related homeobox 2 (PRRX2). Protein and mRNA levels were estimated by Western Blot and real-time PCR, respectively. Intracellular levels of Malondialdehyde (MDA), a terminal product of lipid peroxidation, were measured following the manufacturer's protocol for MDA assay kit. Similarly, intracellular levels of ferrous iron (Fe2+) and reactive oxygen species (ROS) were determined using their respective assay kits. Lipid peroxidation status within the cells was evaluated via BODIPY staining. Immunohistochemistry was conducted to ascertain the expression of PRRX2 in skin tissues collected at various time points following irradiation of rats. The H-score method was used to evaluate the percentage of positively stained cells and staining intensity. RNA sequencing, Gene Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted by OE Biotech Company. RESULTS In this study, our findings indicated that Marveld3 suppression could effectively inhibit lipid peroxidation levels in irradiated skin cells, concomitantly reducing intracellular Fe2+ content. Additionally, the silencing of Marveld3 effectively abrogated the impact of a ferroptosis agonist on cellular viability, resulting in the upregulation of 66 and 178 genes, as well as the downregulation of 188 and 31 genes in irradiated HaCaT and WS1 cells, respectively. Among the differentially expressed genes, the PRRX2 which was found to be involved in the process of ferroptosis, exhibited statistically significant upregulation. And the upregulation of PRRX2 expression may attenuate radiation-induced lipid peroxidation in skin cells, thereby functioning as a potential stress-responsive mechanism to counteract radiation effects. CONCLUSIONS This study elucidates the role of Marveld3 in radiation-induced ferroptosis in skin cells. Inhibition of Marveld3 led to the upregulation of PRRX2, which subsequently resulted in a reduction of Fe2+ and ROS levels, as well as the suppression of lipid peroxidation. These effects collectively mitigated the occurrence of ferroptosis.
Collapse
Affiliation(s)
- Jinming Cao
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Mengyao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Mo
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Min Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liming Gu
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xi Wang
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jianping Cao
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Smith A, Dobinda K, Chen S, Zieba P, Paunesku T, Sun Z, Woloschak GE. X-ray Fluorescence Microscopy to Develop Elemental Classifiers and Investigate Elemental Signatures in BALB/c Mouse Intestine a Week after Exposure to 8 Gy of Gamma Rays. Int J Mol Sci 2024; 25:10256. [PMID: 39408586 PMCID: PMC11477073 DOI: 10.3390/ijms251910256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Iron redistribution in the intestine after total body irradiation is an established phenomenon. However, in the literature, there are no reports about the use of X-ray fluorescence microscopy or equivalent techniques to generate semi-quantitative 2D maps of iron in sectioned intestine samples from irradiated mice. In this work, we used X-ray fluorescence microscopy (XFM) to map the elemental content of iron as well as phosphorus, sulfur, calcium, copper and zinc in tissue sections of the small intestine from eight-week-old BALB/c male mice that developed gastrointestinal acute radiation syndrome (GI-ARS) in response to exposure to 8 Gray of gamma rays. Seven days after irradiation, we found that the majority of the iron is localized as hot spots in the intercellular regions of the area surrounding crypts and stretching between the outer perimeter of the intestine and the surface cell layer of villi. In addition, this study represents our current efforts to develop elemental cell classifiers that could be used for the automated generation of regions of interest for analyses of X-ray fluorescence maps. Once developed, such a tool will be instrumental for studies of effects of radiation and other toxicants on the elemental content in cells and tissues. While XFM studies cannot be conducted on living organisms, it is possible to envision future scenarios where XFM imaging of single cells sloughed from the human (or rodent) intestine could be used to follow up on the progression of GI-ARS.
Collapse
Affiliation(s)
- Anthony Smith
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Katrina Dobinda
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Si Chen
- X-ray Imaging Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Peter Zieba
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tatjana Paunesku
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zequn Sun
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gayle E. Woloschak
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
8
|
戴 军, 高 昳, 王 坚, 张 舒, 刘 鹏. [Effects of Ionizing Radiation on Intestinal Bile Acid Metabolism: Mechanism of the Radioprotective Effect of Glycoursodeoxycholic Acid]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1195-1201. [PMID: 39507959 PMCID: PMC11536250 DOI: 10.12182/20240960403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Indexed: 11/08/2024]
Abstract
Objective Radioactive intestinal injury is a common complication during radiotherapy of tumors. The aim of this study is to observe the effect of ionizing radiation on short-term changes in intestinal bile acids and to investigate the radioprotective effect of bile acids on intestinal cells. Methods A rat model of small intestinal injury was constructed by exposing the abdomen of the rats to daily irradiation at 2 Gy for 4 d in succession. The bile acids were quantified using metabolomics analysis. IEC-6 cells, a small intestinal epithelial cell line, were divided into a dimethyl sulfoxide (DMSO) control group receiving DMSO and 0 Gy irradiation, a glycoursodeoxycholic acid (GUDCA) experimental group receiving GUDCA and 0 Gy irradiation, a DMSO irradiation group receiving DMSO and 10 Gy irradiation, and a GUDCA irradiation group receiving GUDCA and 10 Gy irradiation. Cell viability and cytotoxicity was assessed by CCK-8 assay test. The apoptosis rate of cells was determined by flow cytometry. The colony formation rate and the radiosensitivity of the cells were determined by colony formation assay on solid media. The expression levels of proteins associated with cell death were determined using Western blot. Results After exposure to irradiation, the small intestine tissues of the rats showed typical radioactive intestinal injury. In addition, various bile acids showed fluctuation before and after irradiation. Among the bile acids, GUDCA increased significantly at 3 d after irradiation, but returned to the pre-irradiation level at 7 d after irradiation. Compared with the control group, after GUDCA treatment at 20 μmol/L for 24 h, the cell viability rate after irradiation was significantly higher than that of the DMSO group (P<0.05); the expression levels of the proteins, including PARP, caspase-3, RIP, and GSDMD, were significantly lower than those in the control group (P<0.05). After GUDCA treatment at 20 μmol/L for 24 h and 48 h, the cell apoptosis rate of the cells after irradiation was lower than that of the DMSO group (P<0.05). Compared with the DMSO control group, the colony formation ability of the GUDCA experimental group was stronger than that of the DMSO group after irradiation at 0, 2, 4, and 6 Gy (P<0.05). D0, or the mean lethal dose, of the GUDCA group was 6.374, while that of the DMSO group was 4.572. Compared with the DMSO control group, the D0 value of the GUDCA treatment group increased, and the sensitization enhancement ratio (SER) was 0.717. Conclusion After exposing the abdomen of rats to irradiation, the intestinal bile acid metabolism of the rats will change significantly, and GUDCA can produce radioprotective effects on intestinal cells to a certain extent.
Collapse
Affiliation(s)
- 军 戴
- 徐州医科大学江阴临床学院 (无锡 214400)Jiangyin Clinical College, Xuzhou Medical University, Wuxi 214400, China
| | - 昳 高
- 徐州医科大学江阴临床学院 (无锡 214400)Jiangyin Clinical College, Xuzhou Medical University, Wuxi 214400, China
| | - 坚 王
- 徐州医科大学江阴临床学院 (无锡 214400)Jiangyin Clinical College, Xuzhou Medical University, Wuxi 214400, China
| | - 舒羽 张
- 徐州医科大学江阴临床学院 (无锡 214400)Jiangyin Clinical College, Xuzhou Medical University, Wuxi 214400, China
| | - 鹏飞 刘
- 徐州医科大学江阴临床学院 (无锡 214400)Jiangyin Clinical College, Xuzhou Medical University, Wuxi 214400, China
| |
Collapse
|
9
|
Su X, Liang F, Zeng Y, Yang ZR, Deng YZ, Xu YH, Cai XW. Radiation-Induced Endothelial Ferroptosis Accelerates Atherosclerosis via the DDHD2-Mediated Nrf2/GPX4 Pathway. Biomolecules 2024; 14:879. [PMID: 39062593 PMCID: PMC11274403 DOI: 10.3390/biom14070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
This study sought to explore potential roles of endothelial ferroptosis in radiation-associated atherosclerosis (RAA) and molecular mechanisms behind this phenomenon. Here, an in vivo RAA mouse model was used and treated with ferroptosis inhibitors. We found that the RAA group had a higher plaque burden and a reduction in endothelial cells with increased lipid peroxidation compared to the control group, while ameliorated by liproxstatin-1. In vitro experiments further confirmed that radiation induced the occurrence of ferroptosis in human artery endothelial cells (HAECs). Then, proteomics analysis of HAECs identified domain-containing protein 2 (DDHD2) as a co-differentially expressed protein, which was enriched in the lipid metabolism pathway. In addition, the level of lipid peroxidation was elevated in DDHD2-knockdown HAECs. Mechanistically, a significant decrease in the protein and mRNA expression of glutathione peroxidase 4 (GPX4) was observed in HAECs following DDHD2 knockdown. Co-immunoprecipitation assays indicated a potential interaction between DDHD2 and nuclear factor erythroid 2-related factor 2 (Nrf2). The downregulation of Nrf2 protein was also detected in DDHD2-knockdown HAECs. In conclusion, our findings suggest that radiation-induced endothelial ferroptosis accelerates atherosclerosis, and DDHD2 is a potential regulatory protein in radiation-induced endothelial ferroptosis through the Nrf2/GPX4 pathway.
Collapse
Affiliation(s)
- Xi Su
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (X.S.); (Z.-R.Y.)
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China;
| | - Ya Zeng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (X.S.); (Z.-R.Y.)
| | - Zhang-Ru Yang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (X.S.); (Z.-R.Y.)
| | - Yue-Zhen Deng
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yun-Hua Xu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xu-Wei Cai
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (X.S.); (Z.-R.Y.)
| |
Collapse
|
10
|
Berry CE, Kendig CB, An N, Fazilat AZ, Churukian AA, Griffin M, Pan PM, Longaker MT, Dixon SJ, Wan DC. Role of ferroptosis in radiation-induced soft tissue injury. Cell Death Discov 2024; 10:313. [PMID: 38969638 PMCID: PMC11226648 DOI: 10.1038/s41420-024-02003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 07/07/2024] Open
Abstract
Ionizing radiation has been pivotal in cancer therapy since its discovery. Despite its therapeutic benefits, IR causes significant acute and chronic complications due to DNA damage and the generation of reactive oxygen species, which harm nucleic acids, lipids, and proteins. While cancer cells are more vulnerable to ionizing radiation due to their inefficiency in repairing damage, healthy cells in the irradiated area also suffer. Various types of cell death occur, including apoptosis, necrosis, pyroptosis, autophagy-dependent cell death, immunogenic cell death, and ferroptosis. Ferroptosis, driven by iron-dependent lipid peroxide accumulation, has been recognized as crucial in radiation therapy's therapeutic effects and complications, with extensive research across various tissues. This review aims to summarize the pathways involved in radiation-related ferroptosis, findings in different organs, and drugs targeting ferroptosis to mitigate its harmful effects.
Collapse
Affiliation(s)
- Charlotte E Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Carter B Kendig
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas An
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Z Fazilat
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew A Churukian
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Phoebe M Pan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Horseman T, Rittase WB, Slaven JE, Bradfield DT, Frank AM, Anderson JA, Hays EC, Ott AC, Thomas AE, Huppmann AR, Lee SH, Burmeister DM, Day RM. Ferroptosis, Inflammation, and Microbiome Alterations in the Intestine in the Göttingen Minipig Model of Hematopoietic-Acute Radiation Syndrome. Int J Mol Sci 2024; 25:4535. [PMID: 38674120 PMCID: PMC11050692 DOI: 10.3390/ijms25084535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hematopoietic acute radiation syndrome (H-ARS) involves injury to multiple organ systems following total body irradiation (TBI). Our laboratory demonstrated that captopril, an angiotensin-converting enzyme inhibitor, mitigates H-ARS in Göttingen minipigs, with improved survival and hematopoietic recovery, as well as the suppression of acute inflammation. However, the effects of captopril on the gastrointestinal (GI) system after TBI are not well known. We used a Göttingen minipig H-ARS model to investigate captopril's effects on the GI following TBI (60Co 1.79 or 1.80 Gy, 0.42-0.48 Gy/min), with endpoints at 6 or 35 days. The vehicle or captopril (0.96 mg/kg) was administered orally twice daily for 12 days, starting 4 h post-irradiation. Ilea were harvested for histological, protein, and RNA analyses. TBI increased congestion and mucosa erosion and hemorrhage, which were modulated by captopril. GPX-4 and SLC7A11 were downregulated post-irradiation, consistent with ferroptosis at 6 and 35 days post-irradiation in all groups. Interestingly, p21/waf1 increased at 6 days in vehicle-treated but not captopril-treated animals. An RT-qPCR analysis showed that radiation increased the gene expression of inflammatory cytokines IL1B, TNFA, CCL2, IL18, and CXCL8, and the inflammasome component NLRP3. Captopril suppressed radiation-induced IL1B and TNFA. Rectal microbiome analysis showed that 1 day of captopril treatment with radiation decreased overall diversity, with increased Proteobacteria phyla and Escherichia genera. By 6 days, captopril increased the relative abundance of Enterococcus, previously associated with improved H-ARS survival in mice. Our data suggest that captopril mitigates senescence, some inflammation, and microbiome alterations, but not ferroptosis markers in the intestine following TBI.
Collapse
Affiliation(s)
- Timothy Horseman
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.H.); (D.M.B.)
| | - W. Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - Andrew M. Frank
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Joseph A. Anderson
- Comparative Pathology Division, Department of Laboratory Animal Resources, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Evelyn C. Hays
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - Andrew C. Ott
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - Anjali E. Thomas
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - Alison R. Huppmann
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC 29605, USA;
| | - Sang-Ho Lee
- Pathology Department, Research Services, Naval Medical Research Center, Silver Spring, MD 20910, USA;
| | - David M. Burmeister
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.H.); (D.M.B.)
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| |
Collapse
|
12
|
Talapko J, Talapko D, Katalinić D, Kotris I, Erić I, Belić D, Vasilj Mihaljević M, Vasilj A, Erić S, Flam J, Bekić S, Matić S, Škrlec I. Health Effects of Ionizing Radiation on the Human Body. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:653. [PMID: 38674299 PMCID: PMC11052428 DOI: 10.3390/medicina60040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) electromagnetic waves. People may be exposed to radiation in various forms, as casualties of nuclear accidents, workers in power plants, or while working and using different radiation sources in medicine and health care. Acute radiation syndrome (ARS) occurs in subjects exposed to a very high dose of radiation in a very short period of time. Each form of radiation has a unique pathophysiological effect. Unfortunately, higher organisms-human beings-in the course of evolution have not acquired receptors for the direct "capture" of radiation energy, which is transferred at the level of DNA, cells, tissues, and organs. Radiation in biological systems depends on the amount of absorbed energy and its spatial distribution, particularly depending on the linear energy transfer (LET). Photon radiation with low LET leads to homogeneous energy deposition in the entire tissue volume. On the other hand, radiation with a high LET produces a fast Bragg peak, which generates a low input dose, whereby the penetration depth into the tissue increases with the radiation energy. The consequences are mutations, apoptosis, the development of cancer, and cell death. The most sensitive cells are those that divide intensively-bone marrow cells, digestive tract cells, reproductive cells, and skin cells. The health care system and the public should raise awareness of the consequences of ionizing radiation. Therefore, our aim is to identify the consequences of ARS taking into account radiation damage to the respiratory system, nervous system, hematopoietic system, gastrointestinal tract, and skin.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Domagoj Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivan Kotris
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- General Hospital Vukovar, Županijska 35, 32000 Vukovar, Croatia
| | - Ivan Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Surgery, Osijek University Hospital Center, 31000 Osijek, Croatia
| | - Dino Belić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Mila Vasilj Mihaljević
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Vukovar, 32000 Vukovar, Croatia
| | - Ana Vasilj
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Josipa Flam
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
13
|
Yamaga S, Aziz M, Murao A, Brenner M, Wang P. DAMPs and radiation injury. Front Immunol 2024; 15:1353990. [PMID: 38333215 PMCID: PMC10850293 DOI: 10.3389/fimmu.2024.1353990] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The heightened risk of ionizing radiation exposure, stemming from radiation accidents and potential acts of terrorism, has spurred growing interests in devising effective countermeasures against radiation injury. High-dose ionizing radiation exposure triggers acute radiation syndrome (ARS), manifesting as hematopoietic, gastrointestinal, and neurovascular ARS. Hematopoietic ARS typically presents with neutropenia and thrombocytopenia, while gastrointestinal ARS results in intestinal mucosal injury, often culminating in lethal sepsis and gastrointestinal bleeding. This deleterious impact can be attributed to radiation-induced DNA damage and oxidative stress, leading to various forms of cell death, such as apoptosis, necrosis and ferroptosis. Damage-associated molecular patterns (DAMPs) are intrinsic molecules released by cells undergoing injury or in the process of dying, either through passive or active pathways. These molecules then interact with pattern recognition receptors, triggering inflammatory responses. Such a cascade of events ultimately results in further tissue and organ damage, contributing to the elevated mortality rate. Notably, infection and sepsis often develop in ARS cases, further increasing the release of DAMPs. Given that lethal sepsis stands as a major contributor to the mortality in ARS, DAMPs hold the potential to function as mediators, exacerbating radiation-induced organ injury and consequently worsening overall survival. This review describes the intricate mechanisms underlying radiation-induced release of DAMPs. Furthermore, it discusses the detrimental effects of DAMPs on the immune system and explores potential DAMP-targeting therapeutic strategies to alleviate radiation-induced injury.
Collapse
Affiliation(s)
- Satoshi Yamaga
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
14
|
Lu Q, Liang Y, Tian S, Jin J, Zhao Y, Fan H. Radiation-Induced Intestinal Injury: Injury Mechanism and Potential Treatment Strategies. TOXICS 2023; 11:1011. [PMID: 38133412 PMCID: PMC10747544 DOI: 10.3390/toxics11121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Radiation-induced intestinal injury (RIII) is one of the most common intestinal complications caused by radiotherapy for pelvic and abdominal tumors and it seriously affects the quality of life of patients. However, the treatment of acute RIII is essentially symptomatic and nutritional support treatment and an ideal means of prevention and treatment is lacking. Researchers have conducted studies at the cellular and animal levels and found that some chemical or biological agents have good therapeutic effects on RIII and may be used as potential candidates for clinical treatment. This article reviews the injury mechanism and potential treatment strategies based on cellular and animal experiments to provide new ideas for the diagnosis and treatment of RIII in clinical settings.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
15
|
Tang LF, Ma X, Xie LW, Zhou H, Yu J, Wang ZX, Li M. Perillaldehyde Mitigates Ionizing Radiation-Induced Intestinal Injury by Inhibiting Ferroptosis via the Nrf2 Signaling Pathway. Mol Nutr Food Res 2023; 67:e2300232. [PMID: 37658487 DOI: 10.1002/mnfr.202300232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/12/2023] [Indexed: 09/03/2023]
Abstract
SCOPE Gastrointestinal toxicity is one of the major side effects of abdominopelvic tumor radiotherapy. Studies have shown that perillaldehyde (PAH) has antioxidant, antiinflammatory, antimicrobial activity, and antitumor effects. This study aims to determine whether PAH has radioprotective effects on radiation-induced intestinal injury and explore the underlying mechanisms. METHODS AND RESULTS C57BL/6J mice are gavaged with PAH for 7 days, then exposed to a single dose of 13 Gy X-ray total abdominal irradiation (TAI). PAH treatment prolongs the survival time, promotes the survival of crypt cells, attenuates radiation-induced DNA damage, and mitigates intestinal barrier damage in the irradiated mice. PAH also shows radioprotective effects in intestinal crypt organoids and human intestinal epithelial cells (HIEC-6). PAH-mediated radioprotection is associated with the upregulation of nuclear factor erythroid-2 related factor 2 (Nrf2), activation of the antioxidant pathway, and inhibition of ferroptosis. Notably, treatment with the Nrf2 inhibitor ML385 abolishes the protective effects of PAH, indicating that Nrf2 activation is essential for PAH activity. CONCLUSION PAH inhibits ionizing radiation (IR)-induced ferroptosis and attenuates intestinal injury after irradiation by activating Nrf2 signaling. Therefore, PAH is a promising therapeutic strategy for IR-induced intestinal injury.
Collapse
Affiliation(s)
- Lin-Feng Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Xiaoming Ma
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, 223800, China
| | - Li-Wei Xie
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Hao Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jiahua Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhen-Xin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
16
|
Kong P, Yang M, Wang Y, Yu KN, Wu L, Han W. Ferroptosis triggered by STAT1- IRF1-ACSL4 pathway was involved in radiation-induced intestinal injury. Redox Biol 2023; 66:102857. [PMID: 37611494 PMCID: PMC10466894 DOI: 10.1016/j.redox.2023.102857] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Radiation-induced intestinal injury (RIII), a common gastrointestinal complication caused by radiotherapy on pelvic, abdominal and retroperitoneal tumors, seriously affects the life quality of patients and may result in termination of radiotherapy. At present, the pathogenesis of RIII has not been fully understood. Herein, we demonstrated that ferroptosis played a critical role in RIII occurrence. The RNA sequencing analysis strongly hinted ferroptosis was involved in RIII mice. In line with this, the levels of 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), markers of lipid peroxidation, remarkably increased in RIII mice. And the ferroptosis inhibitor, Ferrostatin-1 (Fer-1), improved the mice survival and alleviated intestinal fibrosis in vivo. Moreover, our results revealed that arachidonic acid (AA) enhanced ferroptosis in cultured intestinal epithelial cells (IECs) and organoids in vitro after irradiation, and AA gavage aggravated RIII in mice. Mechanistic studies revealed the level of ACSL4 protein significantly increased in mouse jejunums and IECs after irradiation. Radiation-induced ferroptosis in IECs was also prevented following ACSL4 knockdown or with the function inhibitor of ACSL4. Furthermore, we found that transcription of ACSL4 induced by irradiation was regulated by STAT1/IRF1 axis, and AMPK activation triggered by AA negatively regulated radiation-induced ferroptosis. Taken together, our results suggest that ferroptosis mediates RIII and reducing dietary AA intake as well as targeting the STAT1-IRF1-ACSL4 axis or AMPK may be the potential approaches to alleviate RIII.
Collapse
Affiliation(s)
- Peizhong Kong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Miaomiao Yang
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230011, PR China; Anhui Public Health Clinical Center, Hefei, 230011, PR China
| | - Ying Wang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - K N Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, 999077, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, 999077, Hong Kong, China
| | - Lijun Wu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215006, PR China.
| |
Collapse
|
17
|
Zhou P, Zhang S, Wang M, Zhou J. The Induction Mechanism of Ferroptosis, Necroptosis, and Pyroptosis in Inflammatory Bowel Disease, Colorectal Cancer, and Intestinal Injury. Biomolecules 2023; 13:biom13050820. [PMID: 37238692 DOI: 10.3390/biom13050820] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Cell death includes programmed and nonprogrammed cell death. The former mainly includes ferroptosis, necroptosis, pyroptosis, autophagy, and apoptosis, while the latter refers to necrosis. Accumulating evidence shows that ferroptosis, necroptosis, and pyroptosis play essential regulatory roles in the development of intestinal diseases. In recent years, the incidence of inflammatory bowel disease (IBD), colorectal cancer (CRC), and intestinal injury induced by intestinal ischemia-reperfusion (I/R), sepsis, and radiation have gradually increased, posing a significant threat to human health. The advancement in targeted therapies for intestinal diseases based on ferroptosis, necroptosis, and pyroptosis provides new strategies for treating intestinal diseases. Herein, we review ferroptosis, necroptosis, and pyroptosis with respect to intestinal disease regulation and highlight the underlying molecular mechanisms for potential therapeutic applications.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| | - Shun Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| | - Maohua Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| |
Collapse
|
18
|
Chen H, Han Z, Luo Q, Wang Y, Li Q, Zhou L, Zuo H. Radiotherapy modulates tumor cell fate decisions: a review. Radiat Oncol 2022; 17:196. [PMID: 36457125 PMCID: PMC9714175 DOI: 10.1186/s13014-022-02171-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer has always been a worldwide problem, and the application of radiotherapy has greatly improved the survival rate of cancer patients. Radiotherapy can modulate multiple cell fate decisions to kill tumor cells and achieve its therapeutic effect. With the development of radiotherapy technology, how to increase the killing effect of tumor cells and reduce the side effects on normal cells has become a new problem. In this review, we summarize the mechanisms by which radiotherapy induces tumor cell apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, autophagy, senescence, mitotic catastrophe, and cuproptosis. An in-depth understanding of these radiotherapy-related cell fate decisions can greatly improve the efficiency of radiotherapy for cancer.
Collapse
Affiliation(s)
| | - Zhongyu Han
- Chengdu Xinhua Hospital, Chengdu, China ,grid.411304.30000 0001 0376 205XSchool of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Luo
- Chengdu Xinhua Hospital, Chengdu, China
| | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Qiju Li
- Chengdu Xinhua Hospital, Chengdu, China
| | | | | |
Collapse
|
19
|
Su J, Bian C, Zheng Z, Wang H, Meng L, Xin Y, Jiang X. Cooperation effects of radiation and ferroptosis on tumor suppression and radiation injury. Front Cell Dev Biol 2022; 10:951116. [PMID: 36176274 PMCID: PMC9513389 DOI: 10.3389/fcell.2022.951116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Ferroptosis is a kind of oxidative stress-dependent cell death characterized by iron accumulation and lipid peroxidation. It can work in conjunction with radiation to increase reactive oxygen species (ROS) generation and disrupt the antioxidant system, suppressing tumor progression. Radiation can induce ferroptosis by creating ROS, depleting glutathione, activating genes linked to DNA damage and increasing the expression of acyl-CoA synthetase long-chain family member 4 (ACSL4) in tumor cells. Furthermore, ferroptosis can enhance radiosensitivity by causing an iron overload, destruction of the antioxidant system, and lipid peroxidation. Radiation can also cause ferroptosis in normal cells, resulting in radiation injury. The role of ferroptosis in radiation-induced lung, intestinal, skin, and hematological injuries have been studied. In this review, we summarize the potential mechanisms linking ferroptosis, oxidative stress and radiation; analyze the function of ferroptosis in tumor suppression and radiation injury; and discuss the potential of ferroptosis regulation to improve radiotherapy efficacy and reduce adverse effects.
Collapse
Affiliation(s)
- Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| |
Collapse
|
20
|
Zhou H, Zhou YL, Mao JA, Tang LF, Xu J, Wang ZX, He Y, Li M. NCOA4-mediated ferritinophagy is involved in ionizing radiation-induced ferroptosis of intestinal epithelial cells. Redox Biol 2022; 55:102413. [PMID: 35932693 PMCID: PMC9356278 DOI: 10.1016/j.redox.2022.102413] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a newly recognized form of regulated cell death that is characterized by severe lipid peroxidation initiated by iron overload and the generation of reactive oxygen species (ROS). However, the role of iron in ionizing radiation (IR)-induced intestinal injury has not been fully illustrated yet. In this study, we found that IR induced ferroptosis in intestinal epithelial cells, as indicated by the increase in intracellular iron levels and lipid peroxidation, upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA, reduced glutathione peroxidase 4 (GPX4) mRNA and glutathione (GSH) levels, and significant mitochondrial damage. In addition, the iron chelator deferoxamine (DFO) attenuated IR-induced ferroptosis and intestinal injury in vitro and in vivo. Intriguingly, pharmacological inhibition of autophagy with 3-methyladenine (3-MA) mitigated IR-induced ferritin downregulation, iron overload and ferroptosis. IR increased the levels of nuclear receptor coactivator 4 (NCOA4) mRNA and protein. NCOA4 knockdown significantly inhibited the reduction of ferritin, decreased the level of intracellular free iron, and mitigated ferroptosis induced by IR in HIEC cells, indicating that NCOA4-mediated autophagic degradation of ferritin (ferritinophagy) was required for IR-induced ferroptosis. Furthermore, cytoplasmic iron further activated mitoferrin2 (Mfrn2) on the mitochondrial membrane, which in turn increased iron transport into the mitochondria, resulting in increased ROS production and ferroptosis. In addition, mice fed with an iron-deficient diet for 3 weeks showed a significant reversal in the intestinal injury induced by abdominal IR exposure. Taken together, ferroptosis is a novel mechanism of IR-induced intestinal epithelial cytotoxicity, and is dependent on NCOA4-mediated ferritinophagy.
Collapse
Affiliation(s)
- Hao Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ya-Li Zhou
- MOE Engineering Center of Hematological Disease, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Jiu-Ang Mao
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Lin-Feng Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jie Xu
- MOE Engineering Center of Hematological Disease, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Zhen-Xin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yang He
- MOE Engineering Center of Hematological Disease, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|