1
|
Jan N, Sofi S, Abo Mansoor A, Abdelrahim A, Ahmad I, Almilabairy A, Ahmad F, Mir MA. Exploring the role of trifarotene against RAR-α: an investigation of expression pattern and clinicopathological significance of RAR-α in breast cancer. Front Pharmacol 2024; 15:1361679. [PMID: 38910889 PMCID: PMC11190336 DOI: 10.3389/fphar.2024.1361679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction The members retinoic acid receptors (RARs) (α, β, and γ) and retinoid X receptors (RXRs) (α, β, and γ) belong to the retinoid receptor family. They regulate the biological action of classical retinoids through nuclear retinoid receptors, a transcription factor that is regulated by ligands. Through the binding of particular retinoic acid-responsive elements (RAREs) located in target gene promoters, RARs and members of the RXRs form heterodimers. By binding to its nuclear receptors and triggering the transcription of the target genes downstream, retinoic acid (RA) mediates the expression of certain genes. Retinoids so mainly control gene expression to carry out their biological actions. RARs are essential for many biological processes, such as development, immunity, reproduction, organogenesis, and homeostasis. Apart from their physiological functions, RARs are also linked to pathologies and tumors due to mutations, protein fusions, changes in expression levels, or abnormal post-translational changes that lead to aberrant functions and homeostasis breakdown. The oncogenic development of animal tissues or cultured cells is linked to altered expression of retinoid receptors. The RAR-α is over-expressed in several malignancies. Increased invasion and migration in several cancer forms, including HNSC carcinoma, pediatric low-grade gliomas, lung adenocarcinoma, and breast cancer, have been linked to its upregulated expression. Numerous approved therapeutic regimens targeting RAR-α have been developed, improving patient survival rates. Objective This study's main objective was to identify novel RAR-α-targeting drugs and evaluate the expression patterns of RAR-α in breast cancer patients. Methodology In-silico investigation using a variety of bioinformatics tools like UALCAN, TISCH, TIMER 2.0, ENRICHR, and others were employed to examine the expression of RAR-α. Further we evaluated in-silico inhibition of RAR-α with trifarotene and also tested the cytotoxicity of trifarotene in breast cancer cells. Results Our research indicates that RAR-α is upregulated in several malignancies including Breast Cancer. It regulates granulocyte differentiation and has an association with the retinoic acid receptor signaling pathway and cellular response to estrogen stimulus. Furthermore, trifarotene was found as a potential synthetic compound that targets RAR-α through in silico and in-vitro study. Discussion Overall, this research indicates that elevated expression of RAR-α enhances the onset of breast cancer. Using trifarotene medication to target RAR-α will significantly boost the response of breast cancer individuals to treatment and delay the development of resistance to drugs.
Collapse
Affiliation(s)
- Nusrat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Shazia Sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Adel Abo Mansoor
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences (CAMS), King Khalid University, Abha, Saudi Arabia
| | - Adil Abdelrahim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences (CAMS), King Khalid University, Abha, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences (CAMS), King Khalid University, Abha, Saudi Arabia
| | - Abdullah Almilabairy
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
| | - Fuzail Ahmad
- College of Applied Sciences Almaarefa University, Riyadh, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
2
|
BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, Kunnumakkara AB. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev 2024; 43:321-362. [PMID: 38517618 DOI: 10.1007/s10555-024-10171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/24/2024]
Abstract
Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Zhu W, Song S, Xu Y, Sheng H, Wang S. EMP3: A promising biomarker for tumor prognosis and targeted cancer therapy. Cancer Biomark 2024; 40:227-239. [PMID: 39213053 PMCID: PMC11380316 DOI: 10.3233/cbm-230504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Epithelial membrane protein 3 (EMP3) belongs to the peripheral myelin protein 22 kDa (PMP22) gene family, characterized by four transmembrane domains and widespread expression across various human tissues and organs. Other members of the PMP22 family, including EMP1, EMP2, and PMP22, have been linked to various cancers, such as glioblastoma, laryngeal cancer, nasopharyngeal cancer, gastric cancer, breast cancer, and endometrial cancer. However, few studies report on the function and relevance of EMP3 in tumorigenicity. Given the significant structural similarities among members of the PMP22 family, there are likely potential functional similarities as well. Previous studies have established the regulatory role of EMP3 in immune cells like T cells and macrophages. Additionally, EMP3 is found to be involved in critical signaling pathways, including HER-2/PI3K/Akt, MAPK/ERK, and TGF-beta/Smad. Furthermore, EMP3 is associated with cell cycle regulation, cellular proliferation, and apoptosis. Hence, it is likely that EMP3 participates in cancer development through these aforementioned pathways and mechanisms. This review aims to systematically examine and summarize the structure and function of EMP3 and its association to various cancers. EMP3 is expected to emerge as a significant biological marker for tumor prognosis and a potential target in cancer therapeutics.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shu Song
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yangchun Xu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hanyue Sheng
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shuang Wang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Targeting Nuclear Receptors in Lung Cancer—Novel Therapeutic Prospects. Pharmaceuticals (Basel) 2022; 15:ph15050624. [PMID: 35631448 PMCID: PMC9145966 DOI: 10.3390/ph15050624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer, the second most commonly diagnosed cancer, is the major cause of fatalities worldwide for both men and women, with an estimated 2.2 million new incidences and 1.8 million deaths, according to GLOBOCAN 2020. Although various risk factors for lung cancer pathogenesis have been reported, controlling smoking alone has a significant value as a preventive measure. In spite of decades of extensive research, mechanistic cues and targets need to be profoundly explored to develop potential diagnostics, treatments, and reliable therapies for this disease. Nuclear receptors (NRs) function as transcription factors that control diverse biological processes such as cell growth, differentiation, development, and metabolism. The aberrant expression of NRs has been involved in a variety of disorders, including cancer. Deregulation of distinct NRs in lung cancer has been associated with numerous events, including mutations, epigenetic modifications, and different signaling cascades. Substantial efforts have been made to develop several small molecules as agonists or antagonists directed to target specific NRs for inhibiting tumor cell growth, migration, and invasion and inducing apoptosis in lung cancer, which makes NRs promising candidates for reliable lung cancer therapeutics. The current work focuses on the importance of various NRs in the development and progression of lung cancer and highlights the different small molecules (e.g., agonist or antagonist) that influence NR expression, with the goal of establishing them as viable therapeutics to combat lung cancer.
Collapse
|
5
|
Gangwar SK, Kumar A, Jose S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Nuclear receptors in oral cancer-emerging players in tumorigenesis. Cancer Lett 2022; 536:215666. [DOI: 10.1016/j.canlet.2022.215666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
|
6
|
Duester G. Towards a Better Vision of Retinoic Acid Signaling during Eye Development. Cells 2022; 11:cells11030322. [PMID: 35159132 PMCID: PMC8834304 DOI: 10.3390/cells11030322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Retinoic acid (RA) functions as an essential signal for development of the vertebrate eye by controlling the transcriptional regulatory activity of RA receptors (RARs). During eye development, the optic vesicles and later the retina generate RA as a metabolite of vitamin A (retinol). Retinol is first converted to retinaldehyde by retinol dehydrogenase 10 (RDH10) and then to RA by all three retinaldehyde dehydrogenases (ALDH1A1, ALDH1A2, and ALDH1A3). In early mouse embryos, RA diffuses to tissues throughout the optic placode, optic vesicle, and adjacent mesenchyme to stimulate folding of the optic vesicle to form the optic cup. RA later generated by the retina is needed for further morphogenesis of the optic cup and surrounding perioptic mesenchyme; loss of RA at this stage leads to microphthalmia and cornea plus eyelid defects. RA functions by binding to nuclear RARs at RA response elements (RAREs) that either activate or repress transcription of key genes. Binding of RA to RARs regulates recruitment of transcriptional coregulators such as nuclear receptor coactivator (NCOA) or nuclear receptor corepressor (NCOR), which in turn control binding of the generic coactivator p300 or the generic corepressor PRC2. No genes have been identified as direct targets of RA signaling during eye development, so future studies need to focus on identifying such genes and their RAREs. Studies designed to learn how RA normally controls eye development in vivo will provide basic knowledge valuable for determining how developmental eye defects occur and for improving strategies to treat eye defects.
Collapse
Affiliation(s)
- Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Reduction of DNMT3a and RORA in the nucleus accumbens plays a causal role in post-traumatic stress disorder-like behavior: reversal by combinatorial epigenetic therapy. Mol Psychiatry 2021; 26:7481-7497. [PMID: 34253866 DOI: 10.1038/s41380-021-01178-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Post-traumatic stress disorder (PTSD) is an incapacitating trauma-related disorder, with no reliable therapy. Although PTSD has been associated with epigenetic alterations in peripheral white blood cells, it is unknown where such changes occur in the brain, and whether they play a causal role in PTSD. Using an animal PTSD model, we show distinct DNA methylation profiles of PTSD susceptibility in the nucleus accumbens (NAc). Data analysis revealed overall hypomethylation of different genomic CG sites in susceptible animals. This was correlated with the reduction in expression levels of the DNA methyltransferase, DNMT3a. Since epigenetic changes in diseases involve different gene pathways, rather than single candidate genes, we next searched for pathways that may be involved in PTSD. Analysis of differentially methylated sites identified enrichment in the RAR activation and LXR/RXR activation pathways that regulate Retinoic Acid Receptor (RAR) Related Orphan Receptor A (RORA) activation. Intra-NAc injection of a lentiviral vector expressing either RORA or DNMT3a reversed PTSD-like behaviors while knockdown of RORA and DNMT3a increased PTSD-like behaviors. To translate our results into a potential pharmacological therapeutic strategy, we tested the effect of systemic treatment with the global methyl donor S-adenosyl methionine (SAM), for supplementing DNA methylation, or retinoic acid, for activating RORA downstream pathways. We found that combined treatment with the methyl donor SAM and retinoic acid reversed PTSD-like behaviors. Thus, our data point to a novel approach to the treatment of PTSD, which is potentially translatable to humans.
Collapse
|
8
|
Rochette-Egly C. Retinoic Acid-Regulated Target Genes During Development: Integrative Genomics Analysis. Subcell Biochem 2020; 95:57-85. [PMID: 32297296 DOI: 10.1007/978-3-030-42282-0_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Retinoic acid (RA), a major natural active metabolite of vitamin A (VA) is well known to play critical roles in embryonic development. The effects of RA are mediated by nuclear receptors (RARs), which regulate the expression of gene batteries involved in cell growth and differentiation. Since the early 1990s several laboratories have focused on understanding how RA-regulated genes and RAR binding sites operate by studying the differentiation of embryonal carcinoma cells and embryonic stem cells. The development of hybridization-based microarray technology and high performance software analysis programs has allowed the characterization of thousands of RA-regulated genes. During the two last decades, publication of the genome sequence of various organisms has allowed advances in massive parallel sequencing and bioinformatics analysis of genome-wide data sets. These new generation sequencing (NGS) technologies have revolutionized the field by providing a global integrated picture of RA-regulated gene networks and the regulatory programs involved in cell fate decisions during embryonal carcinoma and embryonic stem cells differentiation. Now the challenge is to reconstruct the RA-regulated gene networks at the single cell level during the development of specialized embryonic tissues.
Collapse
Affiliation(s)
- Cecile Rochette-Egly
- Université de Strasbourg, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, 1 rue Laurent Fries, BP 10142, 67404, Illkirch Cedex, France.
| |
Collapse
|
9
|
Seiler KM, Waye SE, Kong W, Kamimoto K, Bajinting A, Goo WH, Onufer EJ, Courtney C, Guo J, Warner BW, Morris SA. Single-Cell Analysis Reveals Regional Reprogramming During Adaptation to Massive Small Bowel Resection in Mice. Cell Mol Gastroenterol Hepatol 2019; 8:407-426. [PMID: 31195149 PMCID: PMC6718927 DOI: 10.1016/j.jcmgh.2019.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The small intestine (SI) displays regionality in nutrient and immunological function. Following SI tissue loss (as occurs in short gut syndrome, or SGS), remaining SI must compensate, or "adapt"; the capacity of SI epithelium to reprogram its regional identity has not been described. Here, we apply single-cell resolution analyses to characterize molecular changes underpinning adaptation to SGS. METHODS Single-cell RNA sequencing was performed on epithelial cells isolated from distal SI of mice following 50% proximal small bowel resection (SBR) vs sham surgery. Single-cell profiles were clustered based on transcriptional similarity, reconstructing differentiation events from intestinal stem cells (ISCs) through to mature enterocytes. An unsupervised computational approach to score cell identity was used to quantify changes in regional (proximal vs distal) SI identity, validated using immunofluorescence, immunohistochemistry, qPCR, western blotting, and RNA-FISH. RESULTS Uniform Manifold Approximation and Projection-based clustering and visualization revealed differentiation trajectories from ISCs to mature enterocytes in sham and SBR. Cell identity scoring demonstrated segregation of enterocytes by regional SI identity: SBR enterocytes assumed more mature proximal identities. This was associated with significant upregulation of lipid metabolism and oxidative stress gene expression, which was validated via orthogonal analyses. Observed upstream transcriptional changes suggest retinoid metabolism and proximal transcription factor Creb3l3 drive proximalization of cell identity in response to SBR. CONCLUSIONS Adaptation to proximal SBR involves regional reprogramming of ileal enterocytes toward a proximal identity. Interventions bolstering the endogenous reprogramming capacity of SI enterocytes-conceivably by engaging the retinoid metabolism pathway-merit further investigation, as they may increase enteral feeding tolerance, and obviate intestinal failure, in SGS.
Collapse
Affiliation(s)
- Kristen M Seiler
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Sarah E Waye
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Wenjun Kong
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Kenji Kamimoto
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Adam Bajinting
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - William H Goo
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Emily J Onufer
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Cathleen Courtney
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|
10
|
Goldberg R, Scotta C, Cooper D, Nissim-Eliraz E, Nir E, Tasker S, Irving PM, Sanderson J, Lavender P, Ibrahim F, Corcoran J, Prevost T, Shpigel NY, Marelli-Berg F, Lombardi G, Lord GM. Correction of Defective T-Regulatory Cells From Patients With Crohn's Disease by Ex Vivo Ligation of Retinoic Acid Receptor-α. Gastroenterology 2019; 156:1775-1787. [PMID: 30710527 DOI: 10.1053/j.gastro.2019.01.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Crohn's disease (CD) is characterized by an imbalance of effector and regulatory T cells in the intestinal mucosa. The efficacy of anti-adhesion therapies led us to investigate whether impaired trafficking of T-regulatory (Treg) cells contributes to the pathogenesis of CD. We also investigated whether proper function could be restored to Treg cells by ex vivo expansion in the presence of factors that activate their regulatory activities. METHODS We measured levels of the integrin α4β7 on Treg cells isolated from peripheral blood or lamina propria of patients with CD and healthy individuals (controls). Treg cells were expanded ex vivo and incubated with rapamycin with or without agonists of the retinoic acid receptor-α (RARA), and their gene expression profiles were analyzed. We also studied the cells in cytokine challenge, suppression, and flow chamber assays and in SCID mice with human intestinal xenografts. RESULTS We found that Treg cells from patients with CD express lower levels of the integrin α4β7 than Treg cells from control patients. The pathway that regulates the expression of integrin subunit α is induced by retinoic acid (RA). Treg cells from patients with CD incubated with rapamycin and an agonist of RARA (RAR568) expressed high levels of integrin α4β7, as well as CD62L and FOXP3, compared with cells incubated with rapamycin or rapamycin and all-trans retinoic acid. These Treg cells had increased suppressive activities in assays and migrated under conditions of shear flow; they did not produce inflammatory cytokines, and RAR568 had no effect on cell stability or lineage commitment. Fluorescently labeled Treg cells incubated with RAR568 were significantly more likely to traffic to intestinal xenografts than Treg cells expanded in control medium. CONCLUSIONS Treg cells from patients with CD express lower levels of the integrin α4β7 than Treg cells from control patients. Incubation of patients' ex vivo expanded Treg cells with rapamycin and an RARA agonist induced expression of α4β7 and had suppressive and migratory activities in culture and in intestinal xenografts in mice. These cells might be developed for treatment of CD. ClinicalTrials.gov, Number: NCT03185000.
Collapse
Affiliation(s)
- Rimma Goldberg
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Immunology and Microbial Sciences, King's College London, London, UK; National Institute for Health Research Biomedical Research Centre, Guy's and St Thomas' NHS Trust and King's College London, London, UK
| | - Cristiano Scotta
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Dianne Cooper
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Einat Nissim-Eliraz
- Department of Respiratory Medicine and Allergy, King's College London, London, UK
| | - Eilam Nir
- Department of Respiratory Medicine and Allergy, King's College London, London, UK
| | - Scott Tasker
- School of Immunology and Microbial Sciences, King's College London, London, UK; National Institute for Health Research Biomedical Research Centre, Guy's and St Thomas' NHS Trust and King's College London, London, UK
| | - Peter M Irving
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jeremy Sanderson
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Paul Lavender
- Department of Respiratory Medicine and Allergy, King's College London, London, UK
| | - Fowzia Ibrahim
- Department of Rheumatology, King's College London School of Medicine, Weston Education Centre, King's College London, London, UK
| | - Jonathan Corcoran
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | - Toby Prevost
- Imperial Clinical Trials Unit, Imperial College London, London, UK
| | - Nahum Y Shpigel
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Giovanna Lombardi
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, UK; National Institute for Health Research Biomedical Research Centre, Guy's and St Thomas' NHS Trust and King's College London, London, UK.
| |
Collapse
|
11
|
Laursen KB, Gudas LJ. Combinatorial knockout of RARα, RARβ, and RARγ completely abrogates transcriptional responses to retinoic acid in murine embryonic stem cells. J Biol Chem 2018; 293:11891-11900. [PMID: 29848550 PMCID: PMC6066298 DOI: 10.1074/jbc.ra118.001951] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/17/2018] [Indexed: 11/06/2022] Open
Abstract
All-trans-retinoic acid (RA), a potent inducer of cellular differentiation, functions as a ligand for retinoic acid receptors (RARα, β, and γ). RARs are activated by ligand binding, which induces transcription of direct genomic targets. However, whether embryonic stem cells respond to RA through routes that do not involve RARs is unknown. Here, we used CRISPR technology to introduce biallelic frameshift mutations in RARα, RARβ, and RARγ, thereby abrogating all RAR functions in murine embryonic stem cells. We then evaluated RA-responsiveness of the RAR-null cells using RNA-Seq transcriptome analysis. We found that the RAR-null cells display no changes in transcripts in response to RA, demonstrating that the RARs are essential for the regulation of all transcripts in murine embryonic stem cells in response to RA. Our key finding, that in embryonic stem cells the transcriptional effects of RA all depend on RARs, addresses a long-standing topic of discussion in the field of retinoic acid signaling.
Collapse
Affiliation(s)
| | - Lorraine J Gudas
- From the Departments of Pharmacology and
- Medicine, Weill Cornell Medical College Cornell University, New York, New York 10065
| |
Collapse
|
12
|
Deol GSJ, Cuthbert TN, Gatie MI, Spice DM, Hilton LR, Kelly GM. Wnt and Hedgehog Signaling Regulate the Differentiation of F9 Cells into Extraembryonic Endoderm. Front Cell Dev Biol 2017; 5:93. [PMID: 29119099 PMCID: PMC5660979 DOI: 10.3389/fcell.2017.00093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/09/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse F9 cells differentiate into primitive extraembryonic endoderm (PrE) when treated with retinoic acid (RA), and this is accompanied by an up-regulation of Gata6. The role of the GATA6 network in PrE differentiation is known, and we have shown it directly activates Wnt6. Canonical Wnt/β-catenin signaling is required by F9 cells to differentiate to PrE, and this, like most developmental processes, requires input from one or more additional pathways. We found both RA and Gata6 overexpression, can induce the expression of Indian Hedgehog (Ihh) and a subset of its target genes through Gli activation during PrE induction. Chemical activation of the Hh pathway using a Smoothened agonist (SAG) also increased Gli reporter activity, and as expected, when Hh signaling was blocked with a Smoothened antagonist, cyclopamine, this RA-induced reporter activity was reduced. Interestingly, SAG alone failed to induce markers of PrE differentiation, and had no effect on Wnt/β-catenin-dependent TCF-LEF reporter activity. The expected increase in Wnt/β-catenin-dependent TCF-LEF reporter activity and PrE markers induced by RA was, however, blocked by cyclopamine. Finally, inhibiting GSK3 activity with BIO increased both TCF-LEF and Gli reporter activities. Together, we demonstrate the involvement of Hh signaling in the RA-induced differentiation of F9 cells into PrE, and while the activation of the Hh pathway itself is not sufficient, it as well as active Wnt/β-catenin are necessary for F9 cell differentiation.
Collapse
Affiliation(s)
- Gurjoth S J Deol
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tina N Cuthbert
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Mohamed I Gatie
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Danielle M Spice
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Lindsay R Hilton
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Gregory M Kelly
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON, Canada.,Child Health Research Institute, London, ON, Canada.,Ontario Institute for Regenerative Medicine, Toronto, ON, Canada
| |
Collapse
|
13
|
Tumorigenic and Differentiation Potentials of Embryonic Stem Cells Depend on TGF β Family Signaling: Lessons from Teratocarcinoma Cells Stimulated to Differentiate with Retinoic Acid. Stem Cells Int 2017; 2017:7284872. [PMID: 28798778 PMCID: PMC5534322 DOI: 10.1155/2017/7284872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
A significant challenge for the development of safe pluripotent stem cell-based therapies is the incomplete in vitro differentiation of the pluripotent stem cells and the presence of residual undifferentiated cells initiating teratoma development after transplantation in recipients. To understand the mechanisms of incomplete differentiation, a comparative study of retinoic acid-induced differentiation of mouse embryonic stem (ES) and teratocarcinoma (EC) cells was conducted. The present study identified differences in proliferative activity, differentiation, and tumorigenic potentials between ES and EC cells. Higher expression of Nanog and Mvh, as well as Activin A and BMP4, was found in undifferentiated ES cells than in EC cells. However, the expression levels of Activin A and BMP4 increased more sharply in the EC cells during retinoic acid-induced differentiation. Stimulation of the Activin/Nodal and BMP signaling cascades and inhibition of the MEK/ERK and PI3K/Act signaling pathways resulted in a significant decrease in the number of Oct4-expressing ES cells and a loss of tumorigenicity, similar to retinoic acid-stimulated EC cells. Thus, this study demonstrates that a differentiation strategy that modulates prodifferentiation and antiproliferative signaling in ES cells may be effective for eliminating tumorigenic cells and may represent a valuable tool for the development of safe stem cell therapeutics.
Collapse
|
14
|
Wang YW, Cheng HL, Ding YR, Chou LH, Chow NH. EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:199-211. [PMID: 28408326 DOI: 10.1016/j.bbcan.2017.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/15/2017] [Accepted: 04/08/2017] [Indexed: 02/09/2023]
Abstract
The epithelial membrane protein genes 1, 2, and 3 (EMP1, EMP2, and EMP3) belong to the peripheral myelin protein 22-kDa (PMP22) gene family, which consists of at least seven members: PMP22, EMP1, EMP2, EMP3, PERP, brain cell membrane protein 1, and MP20. This review addresses the structural and functional features of EMPs, detailing their tissue distribution and functions in the human body, their expression pattern in a variety of tumors, and highlighting the underlying mechanisms involved in carcinogenesis. The implications in cancer biology, patient prognosis prediction, and potential application in disease therapy are discussed. For example, EMP1 was reported to be a biomarker of gefitinib resistance in lung cancer and contributes to prednisolone resistance in acute lymphoblastic leukemia patients. EMP2 functions as an oncogene in human endometrial and ovarian cancers; however, characteristics of EMP2 in urothelial cancer fulfill the criteria of a suppressor gene. Of particular interest, EMP3 overexpression in breast cancer is significantly related to strong HER-2 expression. Co-expression of HER-2 and EMP3 is the most important indicator of progression-free and metastasis-free survival for patients with urothelial carcinoma of the upper urinary tract. Altogether, discovery of pharmacological inhibitors and/or regulators of EMP protein activity could open novel strategies for enhanced therapy against EMP-mediated human diseases.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Ling Cheng
- National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ya-Rou Ding
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lien-Hsuan Chou
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Nan-Haw Chow
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
15
|
Zheng Z, Luan X, Zha J, Li Z, Wu L, Yan Y, Wang H, Hou D, Huang L, Huang F, Zheng H, Ge L, Guan H. TNF-α inhibits the migration of oral squamous cancer cells mediated by miR-765-EMP3-p66Shc axis. Cell Signal 2017; 34:102-109. [PMID: 28336231 DOI: 10.1016/j.cellsig.2017.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022]
Abstract
Whereas TNF-α can facilitate the metastasis of oral squamous cancer cells (OSCC), whether it inhibits the metastasis is not clear so far. In this study, we demonstrated that high dose TNF-α at 100ng/mL could in vitro significantly inhibit the migration of two OSCC cell lines, CAL-27 and SCC-25. To explore the related mechanisms, we focused on the involvement of the microRNAs and found that TNF-α increased the expression of miR-765. The upregulation of miR-765 was attributed to the inhibition of the migration. We showed that miR-765 directly targeted EMP3 and suppressed its expression. We also found that the expression of EMP3 was much higher in human oral squamous cancer in compare with the surrounding normal tissue. Interestingly, p66Shc, a downstream molecule in the EMP3-related signaling pathway, was increased by TNF-α. We found that the overexpression of p66Shc could suppress the migration through the enhanced E-cadherin and ZO-1 signals. Either silencing the expression of EMP3 or enhancing the expression of miR-765 could upregulate the expression of p66Shc. Together, our results demonstrated that TNF-α inhibited the metastasis of oral squamous cancer cell through the miR-765-EMP3-p66Shc axis, which may provide new insights for the therapy of oral squamous cancer.
Collapse
Affiliation(s)
- Zhichao Zheng
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Xiuwen Luan
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Southern Medical University, Guangzhou 510280, China
| | - Jun Zha
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Zhengmao Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Lihong Wu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Haiyan Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Dan Hou
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Liwen Huang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Feng Huang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Huade Zheng
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, China; South China Institute of Collaborative Innovation, Dongguan 523808, China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Hongbing Guan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China.
| |
Collapse
|
16
|
Chebaro Y, Sirigu S, Amal I, Lutzing R, Stote RH, Rochette-Egly C, Rochel N, Dejaegere A. Allosteric Regulation in the Ligand Binding Domain of Retinoic Acid Receptorγ. PLoS One 2017; 12:e0171043. [PMID: 28125680 PMCID: PMC5268703 DOI: 10.1371/journal.pone.0171043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/13/2017] [Indexed: 11/29/2022] Open
Abstract
Retinoic acid (RA) plays key roles in cell differentiation and growth arrest through nuclear retinoic acid receptors (RARs), which are ligand-dependent transcription factors. While the main trigger of RAR activation is the binding of RA, phosphorylation of the receptors has also emerged as an important regulatory signal. Phosphorylation of the RARγ N-terminal domain (NTD) is known to play a functional role in neuronal differentiation. In this work, we investigated the phosphorylation of RARγ ligand binding domain (LBD), and present evidence that the phosphorylation status of the LBD affects the phosphorylation of the NTD region. We solved the X-ray structure of a phospho-mimetic mutant of the LBD (RARγ S371E), which we used in molecular dynamics simulations to characterize the consequences of the S371E mutation on the RARγ structural dynamics. Combined with simulations of the wild-type LBD, we show that the conformational equilibria of LBD salt bridges (notably R387-D340) are affected by the S371E mutation, which likely affects the recruitment of the kinase complex that phosphorylates the NTD. The molecular dynamics simulations also showed that a conservative mutation in this salt bridge (R387K) affects the dynamics of the LBD without inducing large conformational changes. Finally, cellular assays showed that the phosphorylation of the NTD of RARγ is differentially regulated by retinoic acid in RARγWT and in the S371N, S371E and R387K mutants. This multidisciplinary work highlights an allosteric coupling between phosphorylations of the LBD and the NTD of RARγ and supports the importance of structural dynamics involving electrostatic interactions in the regulation of RARs activity.
Collapse
Affiliation(s)
- Yassmine Chebaro
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Serena Sirigu
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Ismail Amal
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Régis Lutzing
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Roland H. Stote
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Natacha Rochel
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Annick Dejaegere
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| |
Collapse
|
17
|
Simandi Z, Horvath A, Wright LC, Cuaranta-Monroy I, De Luca I, Karolyi K, Sauer S, Deleuze JF, Gudas LJ, Cowley SM, Nagy L. OCT4 Acts as an Integrator of Pluripotency and Signal-Induced Differentiation. Mol Cell 2016; 63:647-661. [PMID: 27499297 DOI: 10.1016/j.molcel.2016.06.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/07/2016] [Accepted: 06/30/2016] [Indexed: 01/30/2023]
Abstract
Cell type specification relies on the capacity of undifferentiated cells to properly respond to specific differentiation-inducing signals. Using genomic approaches along with loss- and gain-of-function genetic models, we identified OCT4-dependent mechanisms that provide embryonic stem cells with the means to customize their response to external cues. OCT4 binds a large set of low-accessible genomic regions. At these sites, OCT4 is required for proper enhancer and gene activation by recruiting co-regulators and RAR:RXR or β-catenin, suggesting an unexpected collaboration between the lineage-determining transcription factor and these differentiation-initiating, signal-dependent transcription factors. As a proof of concept, we demonstrate that overexpression of OCT4 in a kidney cell line is sufficient for signal-dependent activation of otherwise unresponsive genes in these cells. Our results uncover OCT4 as an integral and necessary component of signal-regulated transcriptional processes required for tissue-specific responses.
Collapse
Affiliation(s)
- Zoltan Simandi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Lyndsey C Wright
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Ixchelt Cuaranta-Monroy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Isabella De Luca
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Katalin Karolyi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Sascha Sauer
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; CU Systems Medicine, University of Würzburg, 97070 Würzburg, Germany; Max Delbrück Center for Molecular Medicine (BISMB and BIH), 13125 Berlin, Germany
| | | | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Shaun M Cowley
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Laszlo Nagy
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; MTA-DE "Lendulet" Immunogenomics Research Group, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
18
|
Lenti E, Farinello D, Yokoyama KK, Penkov D, Castagnaro L, Lavorgna G, Wuputra K, Sandell LL, Tjaden NEB, Bernassola F, Caridi N, De Antoni A, Wagner M, Kozinc K, Niederreither K, Blasi F, Pasini D, Majdic G, Tonon G, Trainor PA, Brendolan A. Transcription factor TLX1 controls retinoic acid signaling to ensure spleen development. J Clin Invest 2016; 126:2452-64. [PMID: 27214556 DOI: 10.1172/jci82956] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/05/2016] [Indexed: 12/31/2022] Open
Abstract
The molecular mechanisms that underlie spleen development and congenital asplenia, a condition linked to increased risk of overwhelming infections, remain largely unknown. The transcription factor TLX1 controls cell fate specification and organ expansion during spleen development, and Tlx1 deletion causes asplenia in mice. Deregulation of TLX1 expression has recently been proposed in the pathogenesis of congenital asplenia in patients carrying mutations of the gene-encoding transcription factor SF-1. Herein, we have shown that TLX1-dependent regulation of retinoic acid (RA) metabolism is critical for spleen organogenesis. In a murine model, loss of Tlx1 during formation of the splenic anlage increased RA signaling by regulating several genes involved in RA metabolism. Uncontrolled RA activity resulted in premature differentiation of mesenchymal cells and reduced vasculogenesis of the splenic primordium. Pharmacological inhibition of RA signaling in Tlx1-deficient animals partially rescued the spleen defect. Finally, spleen growth was impaired in mice lacking either cytochrome P450 26B1 (Cyp26b1), which results in excess RA, or retinol dehydrogenase 10 (Rdh10), which results in RA deficiency. Together, these findings establish TLX1 as a critical regulator of RA metabolism and provide mechanistic insights into the molecular determinants of human congenital asplenia.
Collapse
|
19
|
|
20
|
Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72:1559-76. [PMID: 25558812 PMCID: PMC11113123 DOI: 10.1007/s00018-014-1815-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023]
Abstract
The identification of neurological symptoms caused by vitamin A deficiency pointed to a critical, early developmental role of vitamin A and its metabolite, retinoic acid (RA). The ability of RA to induce post-mitotic, neural phenotypes in various stem cells, in vitro, served as early evidence that RA is involved in the switch between proliferation and differentiation. In vivo studies have expanded this "opposing signal" model, and the number of primary neurons an embryo develops is now known to depend critically on the levels and spatial distribution of RA. The proneural and neurogenic transcription factors that control the exit of neural progenitors from the cell cycle and allow primary neurons to develop are partly elucidated, but the downstream effectors of RA receptor (RAR) signaling (many of which are putative cell cycle regulators) remain largely unidentified. The molecular mechanisms underlying RA-induced primary neurogenesis in anamniote embryos are starting to be revealed; however, these data have been not been extended to amniote embryos. There is growing evidence that bona fide RARs are found in some mollusks and other invertebrates, but little is known about their necessity or functions in neurogenesis. One normal function of RA is to regulate the cell cycle to halt proliferation, and loss of RA signaling is associated with dedifferentiation and the development of cancer. Identifying the genes and pathways that mediate cell cycle exit downstream of RA will be critical for our understanding of how to target tumor differentiation. Overall, elucidating the molecular details of RAR-regulated neurogenesis will be decisive for developing and understanding neural proliferation-differentiation switches throughout development.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Stephanie Cherie Wu
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
- Department of Pharmaceutical Sciences, University of California, Irvine, USA
| |
Collapse
|
21
|
Gao Y, Han Z, Li Q, Wu Y, Shi X, Ai Z, Du J, Li W, Guo Z, Zhang Y. Vitamin C induces a pluripotent state in mouse embryonic stem cells by modulating microRNA expression. FEBS J 2015; 282:685-99. [DOI: 10.1111/febs.13173] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/23/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Yuan Gao
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi China
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
- College of Life Sciences; Northwest A&F University; Yangling Shaanxi China
| | - Zhuo Han
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
- College of Life Sciences; Northwest A&F University; Yangling Shaanxi China
| | - Qian Li
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi China
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
| | - Yongyan Wu
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi China
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
| | - Xiaoyan Shi
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
- College of Life Sciences; Northwest A&F University; Yangling Shaanxi China
| | - Zhiying Ai
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
- College of Life Sciences; Northwest A&F University; Yangling Shaanxi China
| | - Juan Du
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
- College of Life Sciences; Northwest A&F University; Yangling Shaanxi China
| | - Wenzhong Li
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
- College of Life Sciences; Northwest A&F University; Yangling Shaanxi China
| | - Zekun Guo
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi China
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
| | - Yong Zhang
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi China
- Key Laboratory of Animal Biotechnology; Ministry of Agriculture; Yangling Shaanxi China
| |
Collapse
|
22
|
Masser DR, Bixler GV, Brucklacher RM, Yan H, Giles CB, Wren JD, Sonntag WE, Freeman WM. Hippocampal subregions exhibit both distinct and shared transcriptomic responses to aging and nonneurodegenerative cognitive decline. J Gerontol A Biol Sci Med Sci 2014; 69:1311-24. [PMID: 24994846 DOI: 10.1093/gerona/glu091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Impairment of hippocampal-dependent spatial learning and memory with aging affects a large segment of the aged population. Hippocampal subregions (CA1, CA3, and DG) have been previously reported to express both common and specific morphological, functional, and gene/protein alterations with aging and cognitive decline. To comprehensively assess gene expression with aging and cognitive decline, transcriptomic analysis of CA1, CA3, and DG was conducted using Adult (12M) and Aged (26M) F344xBN rats behaviorally characterized by Morris water maze performance. Each subregion demonstrated a specific pattern of responses with aging and with cognitive performance. The CA1 and CA3 demonstrating the greatest degree of shared gene expression changes. Analysis of the pathways, processes, and regulators of these transcriptomic changes also exhibit a similar pattern of commonalities and differences across subregions. Gene expression changes between Aged cognitively Intact and Aged cognitively Impaired rats often showed an inversion of the changes between Adult and Aged rats. This failure to adapt rather than an exacerbation of the aging phenotype questions a conventional view that cognitive decline is exaggerated aging. These results are a resource for investigators studying cognitive decline and also demonstrate the need to individually examine hippocampal subregions in molecular analyses of aging and cognitive decline.
Collapse
Affiliation(s)
- Dustin R Masser
- Department of Physiology and Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center
| | - Georgina V Bixler
- Genome Sciences Facility, Penn State College of Medicine, Hershey, Pennsylvania
| | | | - Han Yan
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center
| | - Cory B Giles
- Arthritis & Clinical Immunology Program, Oklahoma Medicine Research Foundation
| | - Jonathan D Wren
- Arthritis & Clinical Immunology Program, Oklahoma Medicine Research Foundation
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center
| | - Willard M Freeman
- Department of Physiology and Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center.
| |
Collapse
|
23
|
Al Tanoury Z, Gaouar S, Piskunov A, Ye T, Urban S, Jost B, Keime C, Davidson I, Dierich A, Rochette-Egly C. Phosphorylation of the retinoic acid receptor RARγ2 is crucial for the neuronal differentiation of mouse embryonic stem cells. J Cell Sci 2014; 127:2095-105. [PMID: 24569880 DOI: 10.1242/jcs.145979] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Retinoic acid (RA) plays key roles in cell differentiation and growth arrest by activating nuclear RA receptors (RARs) (α, β and γ), which are ligand-dependent transcription factors. RARs are also phosphorylated in response to RA. Here, we investigated the in vivo relevance of the phosphorylation of RARs during RA-induced neuronal differentiation of mouse embryonic stem cells (mESCs). Using ESCs where the genes encoding each RAR subtype had been inactivated, and stable rescue lines expressing RARs mutated in phospho-acceptor sites, we show that RA-induced neuronal differentiation involves RARγ2 and requires RARγ2 phosphorylation. By gene expression profiling, we found that the phosphorylated form of RARγ2 regulates a small subset of genes through binding an unusual RA response element consisting of two direct repeats with a seven-base-pair spacer. These new findings suggest an important role for RARγ phosphorylation during cell differentiation and pave the way for further investigations during embryonic development.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U596, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ransom J, Morgan PJ, McCaffery PJ, Stoney PN. The rhythm of retinoids in the brain. J Neurochem 2014; 129:366-76. [PMID: 24266881 PMCID: PMC4283048 DOI: 10.1111/jnc.12620] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 12/24/2022]
Abstract
The retinoids are a family of compounds that in nature are derived from vitamin A or pro-vitamin A carotenoids. An essential part of the diet for mammals, vitamin A has long been known to be essential for many organ systems in the adult. More recently, however, they have been shown to be necessary for function of the brain and new discoveries point to a central role in processes ranging from neuroplasticity to neurogenesis. Acting in several regions of the central nervous system including the eye, hippocampus and hypothalamus, one common factor in its action is control of biological rhythms. This review summarizes the role of vitamin A in the brain; its action through the metabolite retinoic acid via specific nuclear receptors, and the regulation of its concentration through controlled synthesis and catabolism. The action of retinoic acid to regulate several rhythms in the brain and body, from circadian to seasonal, is then discussed to finish with the importance of retinoic acid in the regular pattern of sleep. We review the role of vitamin A and retinoic acid (RA) as mediators of rhythm in the brain. In the suprachiasmatic nucleus and hippocampus they control expression of circadian clock genes while in the cortex retinoic acid is required for delta oscillations of sleep. Retinoic acid is also central to a second rhythm that keeps pace with the seasons, regulating function in the hypothalamus and pineal gland.
Collapse
Affiliation(s)
- Jemma Ransom
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| | - Peter J Morgan
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| | - Peter J McCaffery
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| | - Patrick N Stoney
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| |
Collapse
|
25
|
Rochette-Egly C. Retinoic acid signaling and mouse embryonic stem cell differentiation: Cross talk between genomic and non-genomic effects of RA. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:66-75. [PMID: 24768681 DOI: 10.1016/j.bbalip.2014.04.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 03/31/2014] [Accepted: 04/10/2014] [Indexed: 12/24/2022]
Abstract
Retinoic acid (RA), the active derivative of vitamin A, a fat-soluble vitamin, plays key roles in cell growth and differentiation by activating nuclear receptors, RARs (α, β and γ), which are ligand dependent regulators of transcription. The past years highlighted several novelties in the field that increased the complexity of RA effects. Indeed, in addition to its classical genomic effects, RA also has extranuclear and non-transcriptional effects. RA induces the rapid and transient activation of kinase cascades, which are integrated in the nucleus via the phosphorylation of RARs at a conserved serine residue located in the N-terminal domain and their coregulators. In order to investigate the relevance of RARs' phosphorylation in cell differentiation, mouse embryonic stem (mES) cells were used as a model. When treated with RA, these pluripotent cells give rise to neuronal cells. Cells invalidated for each RAR were generated as well as stable rescue lines expressing RARs mutated in phosphor acceptor sites. Such a strategy revealed that RA-induced neuronal differentiation involves the RARγ2 subtype and requires RARγ2 phosphorylation. Moreover, in gene expression profiling experiments, the phosphorylated form of RARγ2 was found to regulate a small subset of genes through binding a novel RA response element consisting of two direct repeats with a 7 base pair spacer. These new findings suggest an important role for RAR phosphorylation during cell differentiation, and pave the way for further investigations with other cell types and during embryonic development. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics.
Collapse
Affiliation(s)
- Cécile Rochette-Egly
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964; CNRS, UMR7104; Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France.
| |
Collapse
|
26
|
Gillbro JM, Al-Bader T, Westman M, Olsson MJ, Mavon A. Transcriptional changes in organoculture of full-thickness human skin following topical application of all-trans retinoic acid. Int J Cosmet Sci 2014; 36:253-61. [PMID: 24697191 PMCID: PMC4265278 DOI: 10.1111/ics.12121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/09/2014] [Indexed: 12/28/2022]
Abstract
Objective Retinoids are used as therapeutic agents for numerous skin diseases, for example, psoriasis, acne and keratinization disorders. The same substances have also been recognized in the treatment for hyperpigmentation disorders such as melasma. Other studies on photo-damaged skin have shown that retinoids reduce wrinkles, surface roughness, mottled pigmentation, and visual skin appearance as a whole. We tested the hypothesis that an organoculture of full-thickness human skin could be used as a preclinical model to investigate the retinoid transcriptional profile in human skin in vitro. Methods Full-thickness skin explants were exposed to topically applied all-trans retinoic acid (RA) for 24 h. The gene expression profile was analysed using oligonucleotide microarrays, and data were validated with real-time (RT) PCR. Results We showed that the expression of 93 genes was significantly altered more than twofold. Several of the altered genes, for example, KRT4, CYP26 and LCN2, have previously been shown to be affected by RA in keratinocyte monocultures, reconstructed epidermis and skin biopsies from patients treated topically or orally with RA. In addition, genes, such as SCEL, NRIP1, DGAT2, RDH12 EfnB2, MAPK14, SAMD9 and CEACAM6 not previously reported to be affected by RA in human skin, were identified for the first time in this study. Conclusion The results in the present study show that full-thickness human explants represent a valuable pre-clinical model for studying the effects of retinoids in skin. Résumé
Collapse
Affiliation(s)
- J M Gillbro
- Oriflame Skin Research Institute, Mäster Samuelsgatan 56, Stockholm, 11121, Sweden
| | | | | | | | | |
Collapse
|
27
|
Sandieson L, Hwang JTK, Kelly GM. Redox regulation of canonical Wnt signaling affects extraembryonic endoderm formation. Stem Cells Dev 2014; 23:1037-49. [PMID: 24471440 DOI: 10.1089/scd.2014.0010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Retinoic acid (RA) induces mouse F9 cells to form primitive endoderm (PrE) and increased levels of reactive oxygen species (ROS) accompany differentiation. ROS are obligatory for differentiation and while H2O2 alone induces PrE, antioxidants attenuate the response to RA. Evidence shows that ROS can modulate the Wnt/β-catenin pathway and in this study, we show that extraembryonic endoderm formation is dependent on the redox state of nucleoredoxin (NRX). In undifferentiated F9 cells, NRX interacted with dishevelled 2 (Dvl2) and while this association was enhanced under reduced conditions, it decreased following H2O2 treatment. Depleting NRX levels caused morphological changes like those induced by RA, while increasing protein kinase A activity further induced these PrE cells to parietal endoderm. Reduced NRX levels also correlated to an increase in T-cell-factors-lymphoid enhancer factors-mediated transcription, indicative of canonical Wnt signaling. Together these results indicate that a mechanism exists whereby NRX maintains canonical Wnt signaling in the off state in F9 cells, while increased ROS levels lift these constraints. Dvl2 no longer bound to NRX is now positioned to prime the Wnt pathway(s) required for PrE formation.
Collapse
Affiliation(s)
- Leanne Sandieson
- Molecular Genetics Unit, Department of Biology, Child Health Research Institute, Western University , London, Canada
| | | | | |
Collapse
|
28
|
Al Tanoury Z, Piskunov A, Andriamoratsiresy D, Gaouar S, Lutzing R, Ye T, Jost B, Keime C, Rochette-Egly C. Genes involved in cell adhesion and signaling: a new repertoire of retinoic acid receptor target genes in mouse embryonic fibroblasts. J Cell Sci 2014; 127:521-33. [PMID: 24357724 DOI: 10.1242/jcs.131946] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Nuclear retinoic acid (RA) receptors (RARα, β and γ) are ligand-dependent transcription factors that regulate the expression of a battery of genes involved in cell differentiation and proliferation. They are also phosphoproteins and we previously showed the importance of their phosphorylation in their transcriptional activity. In the study reported here, we conducted a genome-wide analysis of the genes that are regulated by RARs in mouse embryonic fibroblasts (MEFs) by comparing wild-type MEFs to MEFs lacking the three RARs. We found that in the absence of RA, RARs control the expression of several gene transcripts associated with cell adhesion. Consequently the knockout MEFs are unable to adhere and to spread on substrates and they display a disrupted network of actin filaments, compared with the WT cells. In contrast, in the presence of the ligand, RARs control the expression of other genes involved in signaling and in RA metabolism. Taking advantage of rescue cell lines expressing the RARα or RARγ subtypes (either wild-type or mutated at the N-terminal phosphorylation sites) in the null background, we found that the expression of RA-target genes can be controlled either by a specific single RAR or by a combination of RAR isotypes, depending on the gene. We also selected genes that require the phosphorylation of the receptors for their regulation by RA. Our results increase the repertoire of genes that are regulated by RARs and highlight the complexity and diversity of the transcriptional programs regulated by RARs, depending on the gene.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Retinoids and rexinoids, as all other ligands of the nuclear receptor (NR) family, act as ligand-regulated trans-acting transcription factors that bind to cis-acting DNA regulatory elements in the promoter regions of target genes (for reviews see [12, 22, 23, 26, 36]). Ligand binding modulates the communication functions of the receptor with the intracellular environment, which essentially entails receptor-protein and receptor-DNA or receptor-chromatin interactions. In this communication network, the receptor simultaneously serves as both intracellular sensor and regulator of cell/organ functions. Receptors are "intelligent" mediators of the information encoded in the chemical structure of a nuclear receptor ligand, as they interpret this information in the context of cellular identity and cell-physiological status and convert it into a dynamic chain of receptor-protein and receptor-DNA interactions. To process input and output information, they are composed of a modular structure with several domains that have evolved to exert particular molecular recognition functions. As detailed in other chapters in this volume, the main functional domains are the DNA-binding (DBD) and ligand-binding (LBD) [5-7, 38, 56, 71]. The LBD serves as a dual input-output information processor. Inputs, such as ligand binding or receptor phosphorylations, induce allosteric changes in receptor surfaces that serve as docking sites for outputs, such as subunits of transcription and epigenetic machineries or enzyme complexes. The complexity of input and output signals and their interdependencies is far from being understood.
Collapse
Affiliation(s)
- Marco-Antonio Mendoza-Parra
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS, INSERM, Université de Strasbourg, BP 10142, 67404, Illkirch Cedex, France
| | | |
Collapse
|
30
|
Wang YW, Li WM, Wu WJ, Chai CY, Liu HS, Lai MD, Chow NH. Potential significance of EMP3 in patients with upper urinary tract urothelial carcinoma: crosstalk with ErbB2-PI3K-Akt pathway. J Urol 2013; 192:242-51. [PMID: 24333112 DOI: 10.1016/j.juro.2013.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE Upper urinary tract (pyelocalyceal cavities and ureter) urothelial carcinoma is a relatively rare neoplastic disease. Although diagnosis and treatment of this tumor variant have improved significantly, accurate risk stratification remains a challenge. To identify the putative oncogene involved in urothelial carcinoma progression we performed bioinformatics guided experimental investigation targeting chromosome 19q13. MATERIALS AND METHODS We investigated the effects of EMP3 on cancer cell growth, migration and adhesion in transfection and siRNA experiments in vitro. Crosstalk of integrins or ErbB2 with EMP3 was examined by reverse transcriptase-polymerase chain reaction and immunoblot. The potential involvement of epigenetic alterations of EMP3 in vitro and in vivo was analyzed by methylation specific polymerase chain reaction. To validate clinical relevance we measured EMP3 expression at the mRNA and protein levels in a cohort of 77 patients with upper urinary tract urothelial carcinoma and compared prognostic significance in relation to that of ErbB2 expression. RESULTS We noted functional crosstalk between ErbB2 and EMP3 in vitro. EMP3 over expression promoted cancer cell proliferation and migration but suppressed cell adhesion in vitro. EMP3 activated the ErbB2-PI3K-AKT pathway to increase cell growth in vitro. In the clinical cohort Kaplan-Meier survival estimates showed that ErbB2 and EMP3 co-expression was the most important indicator of progression-free and metastasis-free survival in patients with upper urinary tract urothelial carcinoma (log rank test p = 0.018 and 0.04, respectively). CONCLUSIONS EMP3 is an important prognostic indicator for selecting patients with upper urinary tract urothelial carcinoma for more intensive therapy. EMP3 is an innovative co-targeting candidate for designing ErbB2 based cancer therapy.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Wei-Ming Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China; Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China; Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| | - Hsiao-Sheng Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ming-Derg Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Nan-Haw Chow
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China; Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.
| |
Collapse
|
31
|
Genome-wide studies of nuclear receptors in cell fate decisions. Semin Cell Dev Biol 2013; 24:706-15. [DOI: 10.1016/j.semcdb.2013.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
|
32
|
Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PCDP, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 2013; 341:1240104. [PMID: 23990565 DOI: 10.1126/science.1240104] [Citation(s) in RCA: 1375] [Impact Index Per Article: 114.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination.
Collapse
Affiliation(s)
- Joe Swift
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kashyap V, Laursen KB, Brenet F, Viale AJ, Scandura JM, Gudas LJ. RARγ is essential for retinoic acid induced chromatin remodeling and transcriptional activation in embryonic stem cells. J Cell Sci 2013; 126:999-1008. [PMID: 23264745 PMCID: PMC3625813 DOI: 10.1242/jcs.119701] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2012] [Indexed: 01/06/2023] Open
Abstract
We have utilized retinoic acid receptor γ (gamma) knockout (RARγ(-/-)) embryonic stem (ES) cells as a model system to analyze RARγ mediated transcriptional regulation of stem cell differentiation. Most of the transcripts regulated by all-trans retinoic acid (RA) in ES cells are dependent upon functional RARγ signaling. Notably, many of these RA-RARγ target genes are implicated in retinoid uptake and metabolism. For instance, Lrat (lecithin:retinol acyltransferase), Stra6 (stimulated by retinoic acid 6), Crabp2 (cellular retinoic acid binding protein 2), and Cyp26a1 (cytochrome p450 26a1) transcripts are induced in wild type (WT), but not in RARγ(-/-) cells. Transcripts for the transcription factors Pbx1 (pre-B cell leukemia homeobox-1), Wt1 (Wilm's tumor gene-1), and Meis1 (myeloid ecotropic viral integration site-1) increase upon RA treatment of WT, but not RARγ(-/-) cells. In contrast, Stra8, Dleu7, Leftb, Pitx2, and Cdx1 mRNAs are induced by RA even in the absence of RARγ. Mapping of the epigenetic signature of Meis1 revealed that RA induces a rapid increase in the H3K9/K14ac epigenetic mark at the proximal promoter and at two sites downstream of the transcription start site in WT, but not in RARγ(-/-) cells. Thus, RA-associated increases in H3K9/K14ac epigenetic marks require RARγ and are associated with increased Meis1 transcript levels, whereas H3K4me3 is present at the Meis1 proximal promoter even in the absence of RARγ. In contrast, at the Lrat proximal promoter primarily the H3K4me3 mark, and not the H3K9/K14ac mark, increases in response to RA, independently of the presence of RARγ. Our data show major epigenetic changes associated with addition of the RARγ agonist RA in ES cells.
Collapse
Affiliation(s)
- Vasundhra Kashyap
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Weill Graduate School of Biomedical Sciences, 1300 York Avenue, New York, NY 10065, USA
| | - Kristian B. Laursen
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Fabienne Brenet
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Agnes J. Viale
- Genomics Core Laboratory, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Joseph M. Scandura
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Weill Graduate School of Biomedical Sciences, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
34
|
Ochsner SA, Watkins CM, McOwiti A, Xu X, Darlington YF, Dehart MD, Cooney AJ, Steffen DL, Becnel LB, McKenna NJ. Transcriptomine, a web resource for nuclear receptor signaling transcriptomes. Physiol Genomics 2012; 44:853-63. [PMID: 22786849 DOI: 10.1152/physiolgenomics.00033.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear receptor (NR) superfamily of ligand-regulated transcription factors directs ligand- and tissue-specific transcriptomes in myriad developmental, metabolic, immunological, and reproductive processes. The NR signaling field has generated a wealth of genome-wide expression data points, but due to deficits in their accessibility, annotation, and integration, the full potential of these studies has not yet been realized. We searched public gene expression databases and MEDLINE for global transcriptomic datasets relevant to NRs, their ligands, and coregulators. We carried out extensive, deep reannotation of the datasets using controlled vocabularies for RNA Source and regulating molecule and resolved disparate gene identifiers to official gene symbols to facilitate comparison of fold changes and their significance across multiple datasets. We assembled these data points into a database, Transcriptomine (http://www.nursa.org/transcriptomine), that allows for multiple, menu-driven querying strategies of this transcriptomic "superdataset," including single and multiple genes, Gene Ontology terms, disease terms, and uploaded custom gene lists. Experimental variables such as regulating molecule, RNA Source, as well as fold-change and P value cutoff values can be modified, and full data records can be either browsed or downloaded for downstream analysis. We demonstrate the utility of Transcriptomine as a hypothesis generation and validation tool using in silico and experimental use cases. Our resource empowers users to instantly and routinely mine the collective biology of millions of previously disparate transcriptomic data points. By incorporating future transcriptome-wide datasets in the NR signaling field, we anticipate Transcriptomine developing into a powerful resource for the NR- and other signal transduction research communities.
Collapse
Affiliation(s)
- Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hwang JTK, Kelly GM. GATA6 and FOXA2 regulate Wnt6 expression during extraembryonic endoderm formation. Stem Cells Dev 2012; 21:3220-32. [PMID: 22607194 DOI: 10.1089/scd.2011.0492] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the earliest epithelial-to-mesenchymal transitions in mouse embryogenesis involves the differentiation of inner cell mass cells into primitive and then into parietal endoderm. These processes can be recapitulated in vitro using F9 teratocarcinoma cells, which differentiate into primitive endoderm when treated with retinoic acid (RA) and into parietal endoderm with subsequent treatment with dibutyryl cyclic adenosine monophosphate (db-cAMP). Our previous work on how primitive endoderm develops revealed that the Wnt6 gene is upregulated by RA, leading to the activation of the canonical WNT-β-catenin pathway. The mechanism by which Wnt6 is regulated was not determined, but in silico analysis of the human WNT6 promoter region had suggested that the GATA6 and FOXA2 transcription factors might be involved [1]. Subsequent analysis determined that both Gata6 and Foxa2 mRNA are upregulated in F9 cells treated with RA or RA and db-cAMP. More specifically, overexpression of Gata6 or Foxa2 alone induced molecular and morphological markers of primitive endoderm, which occurred concomitantly with the upregulation of the Wnt6 gene. Gata6- or Foxa2-overexpressing cells were also found to have increased levels in T-cell factor (TCF)-dependent transcription, and when these cells were treated with db-cAMP, they developed into parietal endoderm. Chromatin immunoprecipitation analysis revealed that GATA6 and FOXA2 were bound to the Wnt6 promoter, and overexpression studies showed that these transcription factors were sufficient to switch on the gene expression of a Wnt6 reporter construct. Together, these results provide evidence for the direct regulation of Wnt6 that leads to the activation of the canonical WNT-β-catenin pathway and subsequent induction of primitive extraembryonic endoderm.
Collapse
Affiliation(s)
- Jason T K Hwang
- Molecular Genetics Unit, Department of Biology, Child Health Research Institute, Western University, London, Ontario, Canada
| | | |
Collapse
|
36
|
Sakamoto S, Kojima F, Momose I, Kawada M, Adachi H, Nishimura Y. Decalpenic acid induces early osteoblastic markers in pluripotent mesenchymal cells via activation of retinoic acid receptor γ. Biochem Biophys Res Commun 2012; 422:751-7. [PMID: 22618236 DOI: 10.1016/j.bbrc.2012.05.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 12/27/2022]
Abstract
Decalpenic acid is a natural small molecule previously isolated from the fermentation broth of fungi that induces early osteoblastic markers in pluripotent mesenchymal cells. Treatment of mouse pluripotent mesenchymal C3H10T1/2 cells with decalpenic acid gave rise to a morphological change similar to that induced by the treatment with retinoic acid, i.e. the cells adopted a more elongated spindle shape. Using a retinoic acid response element reporter and receptor activity assays, we show that decalpenic acid is a new retinoid with selectivity towards retinoic acid receptors γ and α. The induction of early osteoblastic markers by decalpenic acid was significantly inhibited by treatment with the retinoid antagonist, LE540, or with small interfering RNA-mediated knockdown of retinoic acid receptor γ. These results demonstrated that decalpenic acid induces early osteoblastic markers in pluripotent mesenchymal cells through activation of retinoic acid receptor γ.
Collapse
Affiliation(s)
- Shuichi Sakamoto
- Institute of Microbial Chemistry, Tokyo, 3-14-23 Kamiosaki, Tokyo 141-0021, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Mendoza-Parra MA, Walia M, Sankar M, Gronemeyer H. Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics. Mol Syst Biol 2011; 7:538. [PMID: 21988834 PMCID: PMC3261707 DOI: 10.1038/msb.2011.73] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 08/20/2011] [Indexed: 01/11/2023] Open
Abstract
Retinoic acid (RA) triggers physiological processes by activating heterodimeric transcription factors (TFs) comprising retinoic acid receptor (RARα, β, γ) and retinoid X receptor (RXRα, β, γ). How a single signal induces highly complex temporally controlled networks that ultimately orchestrate physiological processes is unclear. Using an RA-inducible differentiation model, we defined the temporal changes in the genome-wide binding patterns of RARγ and RXRα and correlated them with transcription regulation. Unexpectedly, both receptors displayed a highly dynamic binding, with different RXRα heterodimers targeting identical loci. Comparison of RARγ and RXRα co-binding at RA-regulated genes identified putative RXRα-RARγ target genes that were validated with subtype-selective agonists. Gene-regulatory decisions during differentiation were inferred from TF-target gene information and temporal gene expression. This analysis revealed six distinct co-expression paths of which RXRα-RARγ is associated with transcription activation, while Sox2 and Egr1 were predicted to regulate repression. Finally, RXRα-RARγ regulatory networks were reconstructed through integration of functional co-citations. Our analysis provides a dynamic view of RA signalling during cell differentiation, reveals RAR heterodimer dynamics and promiscuity, and predicts decisions that diversify the RA signal into distinct gene-regulatory programs.
Collapse
Affiliation(s)
- Marco A Mendoza-Parra
- Department of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/Université de Strasbourg, Illkirch Cedex, France
| | - Mannu Walia
- Department of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/Université de Strasbourg, Illkirch Cedex, France
| | - Martial Sankar
- Department of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/Université de Strasbourg, Illkirch Cedex, France
| | - Hinrich Gronemeyer
- Department of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/Université de Strasbourg, Illkirch Cedex, France
| |
Collapse
|
38
|
Lalevée S, Anno YN, Chatagnon A, Samarut E, Poch O, Laudet V, Benoit G, Lecompte O, Rochette-Egly C. Genome-wide in silico identification of new conserved and functional retinoic acid receptor response elements (direct repeats separated by 5 bp). J Biol Chem 2011; 286:33322-34. [PMID: 21803772 PMCID: PMC3190930 DOI: 10.1074/jbc.m111.263681] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 07/28/2011] [Indexed: 11/06/2022] Open
Abstract
The nuclear retinoic acid receptors interact with specific retinoic acid (RA) response elements (RAREs) located in the promoters of target genes to orchestrate transcriptional networks involved in cell growth and differentiation. Here we describe a genome-wide in silico analysis of consensus DR5 RAREs based on the recurrent RGKTSA motifs. More than 15,000 DR5 RAREs were identified and analyzed for their localization and conservation in vertebrates. We selected 138 elements located ±10 kb from transcription start sites and gene ends and conserved across more than 6 species. We also validated the functionality of these RAREs by analyzing their ability to bind retinoic acid receptors (ChIP sequencing experiments) as well as the RA regulation of the corresponding genes (RNA sequencing and quantitative real time PCR experiments). Such a strategy provided a global set of high confidence RAREs expanding the known experimentally validated RAREs repertoire associated to a series of new genes involved in cell signaling, development, and tumor suppression. Finally, the present work provides a valuable knowledge base for the analysis of a wider range of RA-target genes in different species.
Collapse
Affiliation(s)
- Sébastien Lalevée
- From the Department of Functional Genomics and Cancer and
- CNRS UMR5534, F-69622 Villeurbanne
| | - Yannick N. Anno
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596 and CNRS UMR7104, Université de Strasbourg, F_67404 Illkirch Cedex
| | - Amandine Chatagnon
- CNRS UMR5534, F-69622 Villeurbanne
- Université Lyon 1, UMR5534, F-69622 Villeurbanne, and
| | - Eric Samarut
- From the Department of Functional Genomics and Cancer and
| | - Olivier Poch
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596 and CNRS UMR7104, Université de Strasbourg, F_67404 Illkirch Cedex
| | - Vincent Laudet
- Institut de Génomique Fonctionelle de Lyon, UMR 5242, Institut National de la Recherche Agronomique, Université de Lyon, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Gerard Benoit
- CNRS UMR5534, F-69622 Villeurbanne
- Université Lyon 1, UMR5534, F-69622 Villeurbanne, and
| | - Odile Lecompte
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596 and CNRS UMR7104, Université de Strasbourg, F_67404 Illkirch Cedex
| | | |
Collapse
|
39
|
Duong V, Rochette-Egly C. The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1023-31. [DOI: 10.1016/j.bbadis.2010.10.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/15/2010] [Indexed: 12/20/2022]
|
40
|
Chapuis J, Vingtdeux V, Campagne F, Davies P, Marambaud P. Growth arrest-specific 1 binds to and controls the maturation and processing of the amyloid-beta precursor protein. Hum Mol Genet 2011; 20:2026-36. [PMID: 21357679 DOI: 10.1093/hmg/ddr085] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by cerebral deposition of amyloid-β (Aβ), a series of peptides derived from the processing of the amyloid-β precursor protein (APP). To identify new candidate genes for AD, we recently performed a transcriptome analysis to screen for genes preferentially expressed in the hippocampus and located in AD linkage regions. This strategy identified CALHM1 (calcium homeostasis modulator 1), a gene modulating AD age at onset and Aβ metabolism. Here, we focused our attention on another candidate identified using this screen, growth arrest-specific 1 (Gas1), a gene involved in the central nervous system development. We found that Gas1 formed a complex with APP and controlled APP maturation and processing. Gas1 expression inhibited APP full glycosylation and routing to the cell surface by leading to a trafficking blockade of APP between the endoplasmic reticulum and the Golgi. Gas1 expression also resulted in a robust inhibition of APP transport into multivesicular bodies, further demonstrating that Gas1 negatively regulated APP intracellular trafficking. Consequently, Gas1 overexpression led to a reduction in Aβ production, and conversely, Gas1 silencing in cells expressing endogenously Gas1 increased Aβ levels. These results suggest that Gas1 is a novel APP-interacting protein involved in the control of APP maturation and processing.
Collapse
Affiliation(s)
- Julien Chapuis
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, North Shore-LIJ, Manhasset, NY 11030, USA
| | | | | | | | | |
Collapse
|
41
|
Kashyap V, Gudas LJ, Brenet F, Funk P, Viale A, Scandura JM. Epigenomic reorganization of the clustered Hox genes in embryonic stem cells induced by retinoic acid. J Biol Chem 2011; 286:3250-60. [PMID: 21087926 PMCID: PMC3030330 DOI: 10.1074/jbc.m110.157545] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/29/2010] [Indexed: 12/19/2022] Open
Abstract
Retinoic acid (RA) regulates clustered Hox gene expression during embryogenesis and is required to establish the anterior-posterior body plan. Using mutant embryonic stem cell lines deficient in the RA receptor γ (RARγ) or Hoxa1 3'-RA-responsive element, we studied the kinetics of transcriptional and epigenomic patterning responses to RA. RARγ is essential for RA-induced Hox transcriptional activation, and deletion of its binding site in the Hoxa1 enhancer attenuates transcriptional and epigenomic activation of both Hoxa and Hoxb gene clusters. The kinetics of epigenomic reorganization demonstrate that complete erasure of the polycomb repressive mark H3K27me3 is not necessary to initiate Hox transcription. RARγ is not required to establish the bivalent character of Hox clusters, but RA/RARγ signaling is necessary to erase H3K27me3 from activated Hox genes during embryonic stem cell differentiation. Highly coordinated, long range epigenetic Hox cluster reorganization is closely linked to transcriptional activation and is triggered by RARγ located at the Hoxa1 3'-RA-responsive element.
Collapse
Affiliation(s)
| | - Lorraine J. Gudas
- From the Departments of Pharmacology and
- Medicine, Weill Cornell Medical College, New York, New York 10065 and
| | - Fabienne Brenet
- Medicine, Weill Cornell Medical College, New York, New York 10065 and
| | - Patricia Funk
- Medicine, Weill Cornell Medical College, New York, New York 10065 and
| | - Agnes Viale
- the Genomics Core Laboratory, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | |
Collapse
|
42
|
Amat R, Gudas LJ. RARγ is required for correct deposition and removal of Suz12 and H2A.Z in embryonic stem cells. J Cell Physiol 2011; 226:293-8. [PMID: 20857416 PMCID: PMC3369573 DOI: 10.1002/jcp.22420] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Retinoic acid (RA) induces embryonic stem cell differentiation. The effects of RA are mediated by retinoic acid receptors (RARs) that promote epigenetic changes controlling gene transcription. We show here that RARγ, in the absence of the ligand RA, is required for deposition of the histone variant H2A.Z and the polycomb group protein Suz12 at RA target genes, and that in embryonic stem cells both RARγ and Suz12 exist in a multi-protein complex in the absence of ligand. Addition of RA causes removal of H2A.Z and Suz12 from RARγ target genes when the genes are transcriptionally activated.
Collapse
Affiliation(s)
- Ramon Amat
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY
| |
Collapse
|
43
|
Mechanism of inhibition of MMTV-neu and MMTV-wnt1 induced mammary oncogenesis by RARalpha agonist AM580. Oncogene 2010; 29:3665-76. [PMID: 20453882 PMCID: PMC2891995 DOI: 10.1038/onc.2010.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We hypothesized that specific activation of a single retinoic acid receptor-alpha (RARalpha), without direct and concurrent activation of RARbeta and gamma, will inhibit mammary tumor oncogenesis in murine models relevant to human cancer. A total of 50 uniparous mouse mammary tumor virus (MMTV)-neu and 50 nuliparous MMTV-wnt1 transgenic mice were treated with RARalpha agonist (retinobenzoic acid, Am580) that was added to the diet for 40 (neu) and 35 weeks (wnt1), respectively. Among the shared antitumor effects was the inhibition of epithelial hyperplasia, a significant increase (P<0.05) in tumor-free survival and a reduction in tumor incidence and in the growth of established tumors. In both models, the mechanisms responsible for these effects involved inhibition of proliferation and survival pathways, and induction of apoptosis. The treatment was more effective in the MMTV-wnt1 model in which Am580 also induced differentiation, in both in vivo and three-dimensional (3D) cultures. In these tumors Am580 inhibited the wnt pathway, measured by loss of nuclear beta-catenin, suggesting partial oncogene dependence of therapy. Am580 treatment increased RARbeta and lowered the level of RARgamma, an isotype whose expression we linked with tumor proliferation. The anticancer effect of RARalpha, together with the newly discovered pro-proliferative role of RARgamma, suggests that specific activation of RARalpha and inhibition of RARgamma might be effective in breast cancer therapy.
Collapse
|
44
|
Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: Insights into early anterior–posterior patterning of the chordate body plan. Dev Biol 2010; 338:98-106. [DOI: 10.1016/j.ydbio.2009.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 01/08/2023]
|
45
|
Liu L, Tang XH, Scognamiglio T, Gudas LJ. Oral carcinogenesis induced by 4-nitroquinoline 1-oxide in lecithin:retinol acyltransferase gene knockout mice. J Nutr Biochem 2009; 21:975-82. [PMID: 19954945 DOI: 10.1016/j.jnutbio.2009.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/13/2009] [Accepted: 07/31/2009] [Indexed: 01/10/2023]
Abstract
Lecithin:retinol acyltransferase (LRAT) regulates retinol (vitamin A) metabolism by esterifying retinol. LRAT expression is decreased in cultured human squamous cell carcinoma cells of the head and neck relative to normal epithelial cells. We investigated whether the carcinogen 4-nitroquinoline 1-oxide (4-NQO) induced a higher incidence of oral cancer in LRAT knockout (LRAT(-/-)) than in wild-type (Wt) mice. We also investigated retinol deprivation during 4-NQO treatment in LRAT(-/-) mice as a model for rapid retinol deficiency. We observed higher levels of secreted frizzled-related protein (Sfrp) 2, an inhibitor of WNT signaling, in tongue tumors in LRAT(-/-) versus Wt. LRAT(-/-) embryonic stem cells also expressed higher Sfrp2 transcripts, indicating an interaction between retinol and WNT signaling. Cox-2, Cyclin D1, p21, Trop2 and RARβ2 were not differentially expressed in Wt versus LRAT(-/-) tongue tumors. Wt and LRAT(-/-) mice fed a retinol-sufficient diet showed the same oral tumor incidence after 4-NQO treatment. In contrast, tongue tumors developed in 60% of Wt mice and in 100% of LRAT(-/-) mice fed a retinol-deficient diet during 4-NQO treatment (P=.22); moreover, the bromodeoxyuridine labeling index was 21.0 ± 2.4% in LRAT(-/-) normal tongue epithelium as compared to 9.9 ± 0.8% in Wt normal tongue epithelium (P<.001). Thus, partial retinol deficiency during carcinogen treatment (achieved in LRAT(-/-)) resulted in more proliferating cells in tongue epithelia from LRAT(-/-) mice and, ultimately, a greater probability of carcinogenesis.
Collapse
Affiliation(s)
- Limin Liu
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
46
|
Scotland KB, Chen S, Sylvester R, Gudas LJ. Analysis of Rex1 (zfp42) function in embryonic stem cell differentiation. Dev Dyn 2009; 238:1863-77. [PMID: 19618472 DOI: 10.1002/dvdy.22037] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rex1 (zfp42) is a zinc finger protein expressed primarily in undifferentiated stem cells, both in the embryo and the adult. Upon all-trans retinoic acid induced differentiation of murine embryonic stem (ES) cells, Rex1 mRNA levels decrease several fold. To characterize the function(s) of Rex1 more extensively, we generated Rex1 double knockout ES cell lines. The disruption of the Rex1 gene enhanced the expression of ectoderm, mesoderm, and endoderm markers as compared to wild-type (Wt) cells. We propose that Rex1 acts to reduce retinoic acid induced differentiation in ES cells. We performed microarray analyses on Wt and Rex1-/- cells cultured in the presence or absence of LIF to identify potential Rex1 targets. We also evaluated gene expression in a Wt line that overexpresses Rex1 and in a Rex1-/- line in which Rex1 expression was restored. These data, taken together, suggest that Rex1 influences differentiation, cell cycle regulation, and cancer progression.
Collapse
Affiliation(s)
- Kymora B Scotland
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York 10065, USA
| | | | | | | |
Collapse
|
47
|
Krawetz R, Kelly GM. Coordinate Gα13 and Wnt6-β-catenin signaling in F9 embryonal carcinoma cells is required for primitive endoderm differentiation. Biochem Cell Biol 2009; 87:567-80. [DOI: 10.1139/o09-014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mouse F9 embryonal carcinoma cell line is ideally suited to study the epithelial-to-mesenchymal transition accompanying the differentiation of primitive to parietal extraembryonic endoderm. In F9 cells, the application of exogenous agents including retinoic acid or activation of signal transduction cascades downstream of G-proteins triggers widespread changes in gene expression and leads to the formation of primitive endoderm. The epithelial-to-mesenchymal transition is completed and parietal endoderm develops as of result of increasing PKA activity in primitive endoderm cells. Expression of a constitutively active form of Gα13(Q226L) is sufficient to induce F9 cells into parietal endoderm and a model is emerging that a signaling axis linking G-protein signaling to RhoA and the ERM protein moesin is required for differentiation. In this study, we found that expression of either p115RhoGEF or a constitutively active, GTPase-deficient form of RhoA(L63) promoted primitive, but not parietal, endoderm formation. The overexpression of Gα13(Q226L) or p115RhoGEF, but not Rho(L63), caused β-catenin to translocate to the nucleus. Surprisingly, the stimulation of the Wnt-β-catenin pathway was accompanied by nuclear β-catenin and primitive endoderm formation, even when a dominant negative was used to block the signaling axis at the level of p115RhoGEF or when ROCK activity was inhibited using the pharmacological agent Y-27632. Together, results indicate that the coordinate signaling by two independent pathways, one involving canonical Wnt-β-catenin activation of target genes and the other with Gα13 signaling to ERM proteins to modulate cytoarchitectural changes, is required during the retinoic acid induced differentiation of F9 cells to primitive endoderm.
Collapse
Affiliation(s)
- Roman Krawetz
- Department of Biology, Molecular Genetics Unit, University of Western Ontario, London, ON N6A 5B7, Canada
- Child Health Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Gregory M. Kelly
- Department of Biology, Molecular Genetics Unit, University of Western Ontario, London, ON N6A 5B7, Canada
- Child Health Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
48
|
Han YH, Zhou H, Kim JH, Yan TD, Lee KH, Wu H, Lin F, Lu N, Liu J, Zeng JZ, Zhang XK. A unique cytoplasmic localization of retinoic acid receptor-gamma and its regulations. J Biol Chem 2009; 284:18503-14. [PMID: 19416983 PMCID: PMC2709335 DOI: 10.1074/jbc.m109.007708] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/13/2009] [Indexed: 11/06/2022] Open
Abstract
Recent evidence suggests that extranuclear action of retinoid receptors is involved in mediating the pleiotropic effects of retinoids. However, whether they reside in the cytoplasm remains elusive. Here, we showed that retinoic acid receptor-gamma (RARgamma) was cytoplasmic in confluent cells, or when cells were released from serum depletion or treated with growth factors. In studying the regulation of RARgamma subcellular localization, we observed that ectopically overexpressed RARgamma was mainly cytoplasmic irrespective of serum concentration and cell density. The cytoplasmic retention of RARgamma was inhibited by ligand retinoic acid (RA). In addition, coexpression of retinoid X receptor-alpha (RXRalpha) resulted in nuclear localization of RARgamma through their heterodimerization. Mutagenesis studies revealed that a C-terminal fragment of RXRalpha potently prevents RA-induced RARgamma nuclear localization and transcriptional function. Furthermore, our results showed that the cytoplasmic retention of RARgamma was due to the presence of its unique N-terminal A/B domain, which was subject to regulation by p38 MAPK-mediated phosphorylation. Deletion or mutation of the N-terminal A/B domain largely impaired its cytoplasmic localization. Together, our data demonstrate that the subcellular localization of RARgamma is regulated by complex interactions among ligand binding, receptor phosphorylation, and receptor dimerizations.
Collapse
Affiliation(s)
- Young-Hoon Han
- From The Burnham Institute for Medical Research, Cancer Center, La Jolla, California 92037
- the Divsion of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea, and
| | - Hu Zhou
- From The Burnham Institute for Medical Research, Cancer Center, La Jolla, California 92037
| | - Jin-Hee Kim
- the Divsion of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea, and
| | - Ting-dong Yan
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | - Kee-Ho Lee
- the Divsion of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea, and
| | - Hua Wu
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | - Feng Lin
- From The Burnham Institute for Medical Research, Cancer Center, La Jolla, California 92037
| | - Na Lu
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | - Jie Liu
- From The Burnham Institute for Medical Research, Cancer Center, La Jolla, California 92037
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | - Jin-zhang Zeng
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | - Xiao-kun Zhang
- From The Burnham Institute for Medical Research, Cancer Center, La Jolla, California 92037
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| |
Collapse
|
49
|
Zhao X, Graves C, Ames SJ, Fisher DE, Spanjaard RA. Mechanism of regulation and suppression of melanoma invasiveness by novel retinoic acid receptor-gamma target gene carbohydrate sulfotransferase 10. Cancer Res 2009; 69:5218-25. [PMID: 19470764 DOI: 10.1158/0008-5472.can-09-0705] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retinoic acid (RA) induces growth arrest and differentiation of S91 murine melanoma cells and serves as a valuable model for this disease. RA acts through activation of RA receptors (RAR), which are members of the nuclear receptor superfamily of ligand-inducible transcription factors. Interestingly, differentiation is mediated by RARgamma, but not by RARalpha or RARbeta, suggesting that RARgamma possesses unique and uncharacterized molecular properties. To address this question, DNA microarrays in combination with RAR isoform-specific agonists were employed to identify novel RARgamma target genes that may play a role in this process. Here, we identified and validated carbohydrate sulfotransferase 10 (CHST10) as a novel RARgamma target gene in S91 cells. The RARgamma-inducible CHST10 promoter was obtained, and two atypical, independently functioning RA response elements were identified in a 425 bp region. Surprisingly, this fragment is bound by RARgamma, but not by RARalpha or RARbeta, thus providing a mechanism for the observed RARgamma-specific regulation. CHST10 is a sulfotransferase that forms HNK-1 glycan on neural cell adhesion proteins and glycolipids, and HNK-1 is thought to modulate cell adhesion and possibly metastasis. We show that CHST10 is also regulated by RARgamma in a significant subset of human melanoma cells, and three-dimensional cell culture migration assays suggest that CHST10 functions as a suppressor of invasiveness, but not proliferation, in these cells. Induction of CHST10 by RARgamma-activating retinoids may present a novel therapeutic strategy to inhibit invasiveness in a subset of melanoma patients.
Collapse
Affiliation(s)
- Xiansi Zhao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, USA
| | | | | | | | | |
Collapse
|
50
|
Cai K, Gudas LJ. Retinoic acid receptors and GATA transcription factors activate the transcription of the human lecithin:retinol acyltransferase gene. Int J Biochem Cell Biol 2009; 41:546-53. [PMID: 18652909 PMCID: PMC2628449 DOI: 10.1016/j.biocel.2008.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/13/2008] [Accepted: 06/21/2008] [Indexed: 11/29/2022]
Abstract
Lecithin:retinol acyltransferase (LRAT) catalyzes the esterification of retinol (vitamin A). Retinyl esters and LRAT protein levels are reduced in many types of cancer cells. We present data that both the LRAT and retinoic acid receptor beta(2) (RARbeta(2)) mRNA levels in the human prostate cancer cell line PC-3 are lower than those in cultured normal human prostate epithelial cells (PrEC). The activity of the human LRAT promoter (2.0 kb) driving a luciferase reporter gene in PC-3 cells is less than 40% of that in PrEC cells. Retinoic acid (RA) treatment increased this LRAT promoter-luciferase activity in PrEC cells, but not in PC-3 cells. Deletion of various regions of the human LRAT promoter demonstrated that a 172-bp proximal promoter region is essential for LRAT transcription and confers RA responsiveness in PrEC cells. This 172-bp region, contained within the 186 bp pLRAT/luciferase construct, has five putative GATA binding sites. Cotransfection of RARbeta(2) or RARgamma and the transcription factor GATA-4 increased LRAT (pLRAT186) promoter activity in both PrEC and PC-3 cells. In addition, we found that both retinoic acid and retinol induced transcripts for the STRA6 gene, which encodes a membrane receptor involved in retinol (vitamin A) uptake, in PrEC cells but not in PC-3 cells. In summary, our data show that the transcriptional regulation of the human LRAT gene is aberrant in human prostate cancer cells and that GATA transcription factors are involved in the transcriptional activation of LRAT in PrEC cells.
Collapse
Affiliation(s)
- Kun Cai
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | | |
Collapse
|