1
|
Kaimuangpak K, Lehtonen M, Rautio J, Weerapreeyakul N. Unraveled cancer cell survival-associated amino acid metabolism of HepG2 cells altered by Thai rat-tailed radish microgreen extract examined by untargeted LC-MS/MS analysis. Food Chem 2025; 474:143206. [PMID: 39954416 DOI: 10.1016/j.foodchem.2025.143206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/02/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Thai rat-tailed radish (RS) microgreens are enriched in macro- and micronutrients and phytochemicals with anticancer potential. This study investigates the antiproliferative effects of RS in the liver HepG2 cell model and untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis. RS was partitioned in water and dichloromethane (DCM). DCM was collected and evaporated to yield crude extract. The extract exhibited antiproliferation with inhibitory concentrations (IC50) of 612.5 ± 24.7 μg/ml at 24 h and 568.6 ± 11.0 μg/ml at 48 h. Metabolic pathways relevant to the anticancer effects are amino acid metabolism, including (1) alanine, aspartate, and glutamate metabolism; (2) nicotinate and nicotinamide metabolism; and (3) cysteine and methionine metabolism. Significantly, glutamine was upregulated, and aspartic acid, NAD, 5'-methylthioadenosine, cystathionine, and S-adenosylhomocysteine were downregulated. This finding suggested plausible effects of RS on liver cancer cell survival and invasion activities.
Collapse
Affiliation(s)
- Karnchanok Kaimuangpak
- Graduate School (in the program of Research and Development in Pharmaceuticals), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland.
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland.
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
2
|
M Ezzat S, M Merghany R, M Abdel Baki P, Ali Abdelrahim N, M Osman S, A Salem M, Peña-Corona SI, Cortés H, Kiyekbayeva L, Leyva-Gómez G, Sharifi-Rad J, Calina D. Nutritional Sources and Anticancer Potential of Phenethyl Isothiocyanate: Molecular Mechanisms and Therapeutic Insights. Mol Nutr Food Res 2024; 68:e2400063. [PMID: 38600885 DOI: 10.1002/mnfr.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 04/12/2024]
Abstract
Phenethyl isothiocyanate (PEITC), a compound derived from cruciferous vegetables, has garnered attention for its anticancer properties. This review synthesizes existing research on PEITC, focusing on its mechanisms of action in combatting cancer. PEITC has been found to be effective against various cancer types, such as breast, prostate, lung, colon, and pancreatic cancers. Its anticancer activities are mediated through several mechanisms, including the induction of apoptosis (programmed cell death), inhibition of cell proliferation, suppression of angiogenesis (formation of new blood vessels that feed tumors), and reduction of metastasis (spread of cancer cells to new areas). PEITC targets crucial cellular signaling pathways involved in cancer progression, notably the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Protein Kinase B (Akt), and Mitogen-Activated Protein Kinase (MAPK) pathways. These findings suggest PEITC's potential as a therapeutic agent against cancer. However, further research is necessary to determine the optimal dosage, understand its bioavailability, and assess potential side effects. This will be crucial for developing PEITC-based treatments that are both effective and safe for clinical use in cancer therapy.
Collapse
Affiliation(s)
- Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Rana M Merghany
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Giza, Egypt
| | - Passent M Abdel Baki
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
| | - Nariman Ali Abdelrahim
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sohaila M Osman
- Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin El Kom, Menoufia, 32511, Egypt
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania
| |
Collapse
|
3
|
Strusi G, Suelzu CM, Weldon S, Giffin J, Münsterberg AE, Bao Y. Combination of Phenethyl Isothiocyanate and Dasatinib Inhibits Hepatocellular Carcinoma Metastatic Potential through FAK/STAT3/Cadherin Signalling and Reduction of VEGF Secretion. Pharmaceutics 2023; 15:2390. [PMID: 37896150 PMCID: PMC10610226 DOI: 10.3390/pharmaceutics15102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Cancerous cells are characterised by their ability to invade, metastasise, and induce angiogenesis. Tumour cells use various molecules that can be targeted to reverse these processes. Dasatinib, a potent Src inhibitor, has shown promising results in treating hepatocellular carcinoma (HCC) in vitro and in vivo. However, its effectiveness is limited by focal adhesion kinase (FAK) activation. Isothiocyanates, on the other hand, are phytochemicals with broad anticancer activity and FAK inhibition capabilities. This study evaluated the synergistic effect of dasatinib and phenethyl isothiocyanate (PEITC) on HCC. The combination was tested using various assays, including MTT, adhesion, scratch, Boyden chamber, chorioallantoic membrane (CAM), and yolk sac membrane (YSM) assays to evaluate the effect of the drug combination on HCC metastatic potential and angiogenesis in vitro and in vivo. The results showed that the combination inhibited the adhesion, migration, and invasion of HepG2 cells and reduced xenograft volume in the CAM assay. Additionally, the combination reduced angiogenesis in vitro, diminishing the growth of vessels in the tube formation assay. The inhibition of FAK/STAT3 signalling led to increased E-cadherin expression and reduced VEGF secretion, reducing HCC metastatic potential. Therefore, a combination of PEITC and dasatinib could be a potential therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Gabriele Strusi
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Shannon Weldon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK (A.E.M.)
| | - Jennifer Giffin
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK (A.E.M.)
| | - Andrea E. Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK (A.E.M.)
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
4
|
Grady R, Traustadóttir T, Lagalante AF, Eggler AL. Bioavailable Sulforaphane Quantitation in Plasma by LC-MS/MS Is Enhanced by Blocking Thiols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12875-12882. [PMID: 37584212 PMCID: PMC10472501 DOI: 10.1021/acs.jafc.3c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Quantifying sulforaphane (SFN) and its thiol metabolites in biological samples using liquid chromatography-tandem mass spectrometry is complicated by SFN's electrophilic nature and the facile dissociation of SFN-thiol conjugates. SFN can be lost during sample preparation due to conjugation with protein thiols, which are precipitated and discarded. We observe that only 32 ± 3% of SFN is recovered 2 h after spiking into fetal bovine serum. The SFN-glutathione conjugate prepared at 10 mM in 0.1% formic acid in water (pH 3) dissociated by approximately 95% to free SFN, highlighting the difficulty in preparing thiol metabolite standards. We used the alkylating agent iodoacetamide (IAA) to both release SFN from protein thiols and force the dissociation of SFN metabolites. This thiol-blocking method increased SFN percent recovery from serum from 32 to 94 ± 5%, with a 4.7 nM method limit of quantitation. Applying the method to clinical samples, SFN concentrations were on average 6 times greater than when IAA was omitted. The IAA thiol-blocking method streamlines the analysis of bioavailable SFN in plasma samples.
Collapse
Affiliation(s)
- Rachel
S. Grady
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Tinna Traustadóttir
- Department
of Biological Sciences, Northern Arizona
University, Flagstaff, Arizona 86001-5766, United States
| | - Anthony F. Lagalante
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Aimee L. Eggler
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
5
|
Kyriakou S, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants (Basel) 2022; 11:antiox11040642. [PMID: 35453327 PMCID: PMC9029005 DOI: 10.3390/antiox11040642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Isothiocyanates are biologically active secondary metabolites liberated via enzymatic hydrolysis of their sulfur enriched precursors, glucosinolates, upon tissue plant disruption. The importance of this class of compounds lies in their capacity to induce anti-cancer, anti-microbial, anti-inflammatory, neuroprotective, and other bioactive properties. As such, their isolation from natural sources is of utmost importance. In this review article, an extensive examination of the various parameters (hydrolysis, extraction, and quantification) affecting the isolation of isothiocyanates from naturally-derived sources is presented. Overall, the effective isolation/extraction and quantification of isothiocyanate is strongly associated with their chemical and physicochemical properties, such as polarity-solubility as well as thermal and acidic stability. Furthermore, the successful activation of myrosinase appears to be a major factor affecting the conversion of glucosinolates into active isothiocyanates.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
- Correspondence: ; Tel.: +357-22392626
| |
Collapse
|
6
|
Janczewski Ł. Sulforaphane and Its Bifunctional Analogs: Synthesis and Biological Activity. Molecules 2022; 27:1750. [PMID: 35268851 PMCID: PMC8911885 DOI: 10.3390/molecules27051750] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/27/2022] Open
Abstract
For decades, various plants have been studied as sources of biologically active compounds. Compounds with anticancer and antimicrobial properties are the most frequently desired. Cruciferous plants, including Brussels sprouts, broccoli, and wasabi, have a special role in the research studies. Studies have shown that consumption of these plants reduce the risk of lung, breast, and prostate cancers. The high chemopreventive and anticancer potential of cruciferous plants results from the presence of a large amount of glucosinolates, which, under the influence of myrosinase, undergo an enzymatic transformation to biologically active isothiocyanates (ITCs). Natural isothiocyanates, such as benzyl isothiocyanate, phenethyl isothiocyanate, or the best-tested sulforaphane, possess anticancer activity at all stages of the carcinogenesis process, show antibacterial activity, and are used in organic synthesis. Methods of synthesis of sulforaphane, as well as its natural or synthetic bifunctional analogues with sulfinyl, sulfanyl, sulfonyl, phosphonate, phosphinate, phosphine oxide, carbonyl, ester, carboxamide, ether, or additional isothiocyanate functional groups, and with the unbranched alkyl chain containing 2-6 carbon atoms, are discussed in this review. The biological activity of these compounds are also reported. In the first section, glucosinolates, isothiocyanates, and mercapturic acids (their metabolites) are briefly characterized. Additionally, the most studied anticancer and antibacterial mechanisms of ITC actions are discussed.
Collapse
Affiliation(s)
- Łukasz Janczewski
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
7
|
Ma X, Ding Q, Hou X, You X. Analysis of Flavonoid Metabolites in Watercress ( Nasturtium officinale R. Br.) and the Non-Heading Chinese Cabbage ( Brassica rapa ssp. chinensis cv. Aijiaohuang) Using UHPLC-ESI-MS/MS. Molecules 2021; 26:5825. [PMID: 34641369 PMCID: PMC8510128 DOI: 10.3390/molecules26195825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Flavonoids from plants play an important role in our diet. Watercress is a special plant that is rich in flavonoids. In this study, four important watercress varieties were compared with non-heading Chinese cabbage by ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS). A total of 132 flavonoid metabolites (including 8 anthocyanins, 2 dihydroflavone, 3 dihydroflavonol, 1 flavanols, 22 flavones, 11 flavonoid carbonosides, 82 flavonols, and 3 isoflavones) were detected. Flavonoid metabolites varied widely in different samples. Both the non-heading Chinese cabbage and the variety of watercress from Guangdong, China, had their own unique metabolites. This work is helpful to better understand flavonoid metabolites between the non-heading Chinese cabbage and the other four watercress varieties, and to provide a reliable reference value for further research.
Collapse
Affiliation(s)
- Xiaoqing Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P. R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (X.M.); (Q.D.)
| | - Qiang Ding
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P. R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (X.M.); (Q.D.)
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P. R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (X.M.); (Q.D.)
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Dingeo G, Brito A, Samouda H, Iddir M, La Frano MR, Bohn T. Phytochemicals as modifiers of gut microbial communities. Food Funct 2021; 11:8444-8471. [PMID: 32996966 DOI: 10.1039/d0fo01483d] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A healthy gut microbiota (GM) is paramount for a healthy lifestyle. Alterations of the GM have been involved in the aetiology of several chronic diseases, including obesity and type 2 diabetes, as well as cardiovascular and neurodegenerative diseases. In pathological conditions, the diversity of the GM is commonly reduced or altered, often toward an increased Firmicutes/Bacteroidetes ratio. The colonic fermentation of dietary fiber has shown to stimulate the fraction of bacteria purported to have beneficial health effects, acting as prebiotics, and to increase the production of short chain fatty acids, e.g. propionate and butyrate, while also improving gut epithelium integrity such as tight junction functionality. However, a variety of phytochemicals, often associated with dietary fiber, have also been proposed to modulate the GM. Many phytochemicals possess antioxidant and anti-inflammatory properties that may positively affect the GM, including polyphenols, carotenoids, phytosterols/phytostanols, lignans, alkaloids, glucosinolates and terpenes. Some polyphenols may act as prebiotics, while carotenoids have been shown to alter immunoglobulin A expression, an important factor for bacteria colonization. Other phytochemicals may interact with the mucosa, another important factor for colonization, and prevent its degradation. Certain polyphenols have shown to influence bacterial communication, interacting with quorum sensing. Finally, phytochemicals can be metabolized in the gut into bioactive constituents, e.g. equol from daidzein and enterolactone from secoisolariciresinol, while bacteria can use glycosides for energy. In this review, we strive to highlight the potential interactions between prominent phytochemicals and health benefits related to the GM, emphasizing their potential as adjuvant strategies for GM-related diseases.
Collapse
Affiliation(s)
| | - Alex Brito
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg. and Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University, Moscow, Russia.
| | - Hanen Samouda
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg.
| | - Mohammed Iddir
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg.
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA. and Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, USA.
| | - Torsten Bohn
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg.
| |
Collapse
|
9
|
Wang Q, Bao Y. Nanodelivery of natural isothiocyanates as a cancer therapeutic. Free Radic Biol Med 2021; 167:125-140. [PMID: 33711418 DOI: 10.1016/j.freeradbiomed.2021.02.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/31/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Natural isothiocyanates (ITCs) are phytochemicals abundant in cruciferous vegetables with the general structure, R-NCS. They are bioactive organosulfur compounds derived from the hydrolysis of glucosinolates by myrosinase. A significant number of isothiocyanates have been isolated from different plant sources that include broccoli, Brussels sprouts, cabbage, cauliflower, kale, mustard, wasabi, and watercress. Several ITCs have been demonstrated to possess significant pharmacological properties including: antioxidant, anti-inflammatory, anti-cancer and antimicrobial activities. Due to their chemopreventive effects on many types of cancer, ITCs have been regarded as a promising anti-cancer therapeutic agent without major toxicity concerns. However, their clinical application has been hindered by several factors including their low aqueous solubility, low bioavailability, instability as well as their hormetic effect. Moreover, the typical dietary uptake of ITCs consumed for promotion of good health may be far from their bioactive (or cytotoxic) dose necessary for cancer prevention and/or treatment. Nanotechnology is one of best options to attain enhanced efficacy and minimize hormetic effect for ITCs. Nanoformulation of ITCs leads to enhance stability of ITCs in plasma and emphasize on their chemopreventive effects. This review provides a summary of the potential bioactivities of ITCs, their mechanisms of action for the prevention and treatment of cancer, as well as the recent research progress in their nanodelivery strategies to enhance solubility, bioavailability, and anti-cancer efficacy.
Collapse
Affiliation(s)
- Qi Wang
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| |
Collapse
|
10
|
Hudlikar R, Wang L, Wu R, Li S, Peter R, Shannar A, Chou PJ, Liu X, Liu Z, Kuo HCD, Kong AN. Epigenetics/Epigenomics and Prevention of Early Stages of Cancer by Isothiocyanates. Cancer Prev Res (Phila) 2020; 14:151-164. [PMID: 33055265 DOI: 10.1158/1940-6207.capr-20-0217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/26/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Cancer is a complex disease and cancer development takes 10-50 years involving epigenetics. Evidence suggests that approximately 80% of human cancers are linked to environmental factors impinging upon genetics/epigenetics. Because advanced metastasized cancers are resistant to radiotherapy/chemotherapeutic drugs, cancer prevention by relatively nontoxic chemopreventive "epigenetic modifiers" involving epigenetics/epigenomics is logical. Isothiocyanates are relatively nontoxic at low nutritional and even higher pharmacologic doses, with good oral bioavailability, potent antioxidative stress/antiinflammatory activities, possess epigenetic-modifying properties, great anticancer efficacy in many in vitro cell culture and in vivo animal models. This review summarizes the latest advances on the role of epigenetics/epigenomics by isothiocyanates in prevention of skin, colon, lung, breast, and prostate cancers. The exact molecular mechanism how isothiocyanates modify the epigenetic/epigenomic machinery is unclear. We postulate "redox" processes would play important roles. In addition, isothiocyanates sulforaphane and phenethyl isothiocyanate, possess multifaceted molecular mechanisms would be considered as "general" cancer preventive agents not unlike chemotherapeutic agents like platinum-based or taxane-based drugs. Analogous to chemotherapeutic agents, the isothiocyanates would need to be used in combination with other nontoxic chemopreventive phytochemicals or drugs such as NSAIDs, 5-α-reductase/aromatase inhibitors targeting different signaling pathways would be logical for the prevention of progression of tumors to late advanced metastatic states.
Collapse
Affiliation(s)
- Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Xia Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - Zhigang Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Department of Food and Pharmaceutical Engineering, Guiyang University, Guiyang, China
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
11
|
Sarkar P, Thirumurugan K. Modulatory functions of bioactive fruits, vegetables and spices in adipogenesis and angiogenesis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
12
|
Tran HTT, Herz C, Ruf P, Stetter R, Lamy E. Human T2R38 Bitter Taste Receptor Expression in Resting and Activated Lymphocytes. Front Immunol 2018; 9:2949. [PMID: 30619309 PMCID: PMC6297872 DOI: 10.3389/fimmu.2018.02949] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/30/2018] [Indexed: 12/02/2022] Open
Abstract
The human G-protein-coupled bitter taste receptor T2R38 has recently been demonstrated to be expressed on peripheral blood neutrophils, monocytes and lymphocytes. To further define a potential contribution of the T2R38 receptor in adaptive immune response, the objective of this study was to analyze its expression in resting and activated lymphocytes and T cell subpopulations. Freshly isolated PBMC from healthy donors were used for expression analysis by flow cytometry. Quantum™ MESF beads were applied for quantification in absolute fluorescence units. Activation methods of T cells were anti-CD3/CD28, phytohaemagglutinin (PHA) or phorbol 12-myristate 13-acetate (PMA) together with ionomycin. Lymphocytes from young donors expressed higher levels of T2R38 compared to the elderly. CD3+ T cells expressed higher levels that CD19+ B cells. Receptor expression followed T cell activation with an upregulation within 24 h and a peak at 72 h. Higher levels of T2R38 were produced in lymphocytes by stimulation with anti-CD3/CD28 compared to PHA or PMA/ionomycin. Both subpopulations of CD4+ as well as CD8+ T cells were found to express the T2R38 receptor; this was higher in CD4+ than CD8+ cells; the amount of T2R38 in central and effector memory cells was higher as compared to naïve cells, although this was not statistically significant for CD8+ cells without prior activation by anti-CD3/CD28. Upon treatment of PBMC with the natural T2R38 agonist goitrin Calcium flux was activated in the lymphocyte population with functional T2R38 receptor at >20 μM which was completely blocked by phospholipase Cβ-2 inhibitor U73211. Further, goitrin selectively inhibited TNF-alpha secretion in PBMC with functional T2R38. This quantitative analysis of T2R38 expression in distinct PBMC subsets may provide a basis for understanding the significance of bitter compounds in immune modulation. Whether these findings can have implications for the treatment of inflammatory and immunologic disorders by bitter tasting pharmaceuticals or foods needs further investigation.
Collapse
Affiliation(s)
- Hoai T T Tran
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Epidemiology, University Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Albert-Ludwigs-University, Freiburg, Germany
| | - Corinna Herz
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Epidemiology, University Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Ruf
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Epidemiology, University Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rebecca Stetter
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Epidemiology, University Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Evelyn Lamy
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Epidemiology, University Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Allyl Isothiocyanate Ameliorates Dextran Sodium Sulfate-Induced Colitis in Mouse by Enhancing Tight Junction and Mucin Expression. Int J Mol Sci 2018; 19:ijms19072025. [PMID: 30002285 PMCID: PMC6073867 DOI: 10.3390/ijms19072025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic or recurrent inflammation of the gastrointestinal tract. Even though the current strategies to treat IBD include anti-inflammatory drugs and immune modulators, these treatments have side-effects. New strategies are, therefore, required to overcome the limitations of the therapies. In this study, we investigated the anti-colitic effects of allyl isothiocyanate (AITC), which is an active ingredient present in Wasabia japonica. The DSS-induced colitis model in the mouse was used to mimic human IBD and we observed that AITC treatment ameliorated the severity of colitis. We further studied the mechanism involved to ameliorate the colitis. To investigate the involvement of AITC on the intestinal barrier function, the effect on the intercellular tight junction was evaluated in the Caco-2 cell line while mucin expression was assessed in the LS174T cell line. AITC positively regulated tight junction proteins and mucin 2 (MUC2) against DSS-induced damage or depletion. Our data of in vivo studies were also consistent with the in vitro results. Furthermore, we observed that MUC2 increased by AITC is dependent on ERK signaling. In conclusion, we propose that AITC can be considered as a new strategy for treating IBD by modulating tight junction proteins and mucin.
Collapse
|
14
|
BAG3 Protein Is Involved in Endothelial Cell Response to Phenethyl Isothiocyanate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5967890. [PMID: 29955247 PMCID: PMC6000881 DOI: 10.1155/2018/5967890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/15/2018] [Accepted: 04/17/2018] [Indexed: 01/15/2023]
Abstract
Phenethyl isothiocyanate (PEITC), a cruciferous vegetable-derived compound, is a versatile cancer chemopreventive agent that displays the ability to inhibit tumor growth during initiation, promotion, and progression phases in several animal models of carcinogenesis. In this report, we dissect the cellular events induced by noncytotoxic concentrations of PEITC in human umbilical vein endothelial cells (HUVECs). In the early phase, PEITC treatment elicited cells' morphological changes that comprise reduction in cell volume and modification of actin organization concomitantly with a rapid activation of the PI3K/Akt pathway. Downstream to PI3K, PEITC also induces the activity of Rac1 and activation of c-Jun N-terminal kinase (JNK), well-known regulators of actin cytoskeleton dynamics. Interestingly, PEITC modifications of the actin cytoskeleton were abrogated by pretreatment with JNK inhibitor, SP600125. JNK signaling led also to the activation of the c-Jun transcription factor, which is involved in the upregulation of several genes; among them is the BAG3 protein. This protein, a member of the BAG family of heat shock protein (Hsp) 70 cochaperones, is able to sustain survival in different tumor cell lines and neoangiogenesis by directly regulating the endothelial cell cycle. Furthermore, BAG3 is involved in maintaining actin folding. Our findings indicate that BAG3 protein expression is induced in endothelial cells upon exposure to a noncytotoxic concentration of PEITC and its expression is requested for the recovery of normal cell size and morphology after the stressful stimuli. This assigns an additional role for BAG3 protein in the endothelial cells after a stress event.
Collapse
|
15
|
Capuano E, Dekker M, Verkerk R, Oliviero T. Food as Pharma? The Case of Glucosinolates. Curr Pharm Des 2018; 23:2697-2721. [PMID: 28117016 DOI: 10.2174/1381612823666170120160832] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/24/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glucosinolates (GLSs) are dietary plant secondary metabolites occurring in the order Brassicales with potential health effects, in particular as anti-carcinogenic compounds. GLSs are converted into a variety of breakdown products (BPs) upon plant tissue damage and by the gut microbiota. GLS biological activity is related to BPs rather than to GLSs themselves. METHODS we have reviewed the most recent scientific literature on the metabolic fate and the biological effect of GLSs with particular emphasis on the epidemiological evidence for health effect and evidence from clinical trials. An overview of potential molecular mechanisms underlying GLS biological effect is provided. The potential toxic or anti-nutritional effect has also been discussed. RESULTS Epidemiological and human in vivo evidence point towards a potential anti-cancer effect for sulforaphane, indole-3-carbinol and 3,3-diindolylmethane. A number of new human clinical trials are on-going and will likely shed further light on GLS protective effect towards cancer as well as other diseases. BPs biological effect is the results of a plurality of molecular mechanisms acting simultaneously which include modulation of xenobiotic metabolism, modulation of inflammation, regulation of apoptosis, cell cycle arrest, angiogenesis and metastasis and regulation of epigenetic events. BPs have been extensively investigated for their protective effect towards cancer but in recent years the interest also includes other diseases. CONCLUSION It appears that certain BPs may protect against and may even represent a therapeutic strategy against several forms of cancer. Whether this latter effect can be achieved through diet or supplements should be investigated more thoroughly.
Collapse
Affiliation(s)
- Edoardo Capuano
- Food Quality Design, WU Agrotechnology & Food Sciences, Axis building 118, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Matthijs Dekker
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| | - Ruud Verkerk
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| | - Teresa Oliviero
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| |
Collapse
|
16
|
Lopes LF, Meca G, Bocate KCP, Nazareth TM, Bordin K, Luciano FB. Development of food packaging system containing allyl isothiocyanate against
Penicillium nordicum
in chilled pizza: Preliminary study. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lucas F. Lopes
- School of Life SciencesPontifícia Universidade Católica do ParanáRua Imaculada Conceição 1155, Curitiba Paraná, 80215‐901 Brazil
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of PharmacyUniversity of ValenciaAvenue Vicent Andres Estelles s/n, Burjassot Valencia 46100 Spain
| | - Karla C. P. Bocate
- School of Life SciencesPontifícia Universidade Católica do ParanáRua Imaculada Conceição 1155, Curitiba Paraná, 80215‐901 Brazil
| | - Tiago M. Nazareth
- School of Life SciencesPontifícia Universidade Católica do ParanáRua Imaculada Conceição 1155, Curitiba Paraná, 80215‐901 Brazil
| | - Keliani Bordin
- School of Life SciencesPontifícia Universidade Católica do ParanáRua Imaculada Conceição 1155, Curitiba Paraná, 80215‐901 Brazil
| | - Fernando B. Luciano
- School of Life SciencesPontifícia Universidade Católica do ParanáRua Imaculada Conceição 1155, Curitiba Paraná, 80215‐901 Brazil
| |
Collapse
|
17
|
Yang H, Huang Y, Zou Y, Ma X. Synergistic effects of phenylhexyl isothiocyanate and LY294002 on the PI3K/Akt signaling pathway in HL-60 cells. Oncol Lett 2017; 14:3043-3050. [PMID: 28927052 DOI: 10.3892/ol.2017.6556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 03/17/2017] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to investigate the synergistic effect of phenylhexyl isothiocyanate (PHI) and LY294002 [an inhibitor of phosphoinositide 3-kinase (PI3K)] on the PI3K/protein kinase B (Akt) signaling pathway, modulating histone acetylation, inhibiting cell viability and inducing apoptosis in HL-60 cells. The inhibition of HL-60 cell viability was monitored using an MTT assay. Cell apoptosis was measured using flow cytometry. Expression of acetylated histone H3 and histone H4, and the Akt signaling pathway proteins phosphorylated Akt (p-Akt), phosphorylated mammalian target of rapamycin (p-mTOR) and phosphorylated ribosomal protein S6 kinase (p-p70S6K) was detected using western blotting. The results of the present study identified that PHI and LY294002 were able to inhibit cell viability and induce cell apoptosis in HL-60 cells. The combination exhibited a synergistic effect on cell viability and apoptosis. PHI treatment led to an accumulation of acetylated histone H3 and histone H4, but LY294002 treatment had no effect on histone acetylation. However, LY294002 was identified to enhance the effect of PHI on histone acetylation in HL-60 cells. PHI and/or LY294002 were identified to dephosphorylate proteins in the PI3K/Akt signaling pathway, with a synergistic effect observed when used in combination. The results of the present study indicated that the combination of PHI and LY294002 may offer a novel therapeutic strategy for acute myeloid leukemia.
Collapse
Affiliation(s)
- Huicong Yang
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Yiqun Huang
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Yong Zou
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Xudong Ma
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| |
Collapse
|
18
|
Psurski M, Janczewski Ł, Świtalska M, Gajda A, Goszczyński TM, Oleksyszyn J, Wietrzyk J, Gajda T. Novel phosphonate analogs of sulforaphane: Synthesis, in vitro and in vivo anticancer activity. Eur J Med Chem 2017; 132:63-80. [PMID: 28342398 DOI: 10.1016/j.ejmech.2017.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/13/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
A library of over forty, novel, structurally diverse phosphonate analogs of sulforaphane (P-ITCs) were designed, synthesized and fully characterized. All compounds were evaluated for antiproliferative activity in vitro on Lovo and LoVo/DX colon cancer cell lines. All compounds exhibited high antiproliferative activity, comparable or higher to the activity of naturally occurring benzyl isothiocyanate and sulforaphane. Assessment of the mechanisms of action of selected compounds revealed their potential as inducers of G2/M cell cycle arrest and apoptosis. Further antiproliferative studies for selected compounds with the use of a set of selected cell lines derived from colon, lung, mammary gland and uterus as well as normal murine fibroblasts were performed. In vivo studies of the analyzed phosphonate analogs of sulforaphane showed lower activity in comparison with those of benzyl isothiocyanate. Our studies demonstrated that newly synthesized P-ITCs can be used for as a starting point for the synthesis of novel isothiocyanates with higher anticancer activity in the future.
Collapse
Affiliation(s)
- Mateusz Psurski
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl St., 53-114 Wrocław, Poland
| | - Łukasz Janczewski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Stefan Żeromski St., 90-924 Łódź, Poland
| | - Marta Świtalska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl St., 53-114 Wrocław, Poland
| | - Anna Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Stefan Żeromski St., 90-924 Łódź, Poland
| | - Tomasz M Goszczyński
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl St., 53-114 Wrocław, Poland
| | - Józef Oleksyszyn
- Division of Medicinal Chemistry and Microbiology, Faculty of Chemistry, Wroclaw University of Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl St., 53-114 Wrocław, Poland.
| | - Tadeusz Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Stefan Żeromski St., 90-924 Łódź, Poland.
| |
Collapse
|
19
|
Bordin K, Saladino F, Fernández-Blanco C, Ruiz MJ, Mañes J, Fernández-Franzón M, Meca G, Luciano FB. Reaction of zearalenone and α-zearalenol with allyl isothiocyanate, characterization of reaction products, their bioaccessibility and bioavailability in vitro. Food Chem 2016; 217:648-654. [PMID: 27664682 DOI: 10.1016/j.foodchem.2016.09.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 07/19/2016] [Accepted: 09/06/2016] [Indexed: 11/28/2022]
Abstract
This study investigates the reduction of zearalenone (ZEA) and α-zearalenol (α-ZOL) on a solution model using allyl isothiocyanate (AITC) and also determines the bioaccessibility and bioavailability of the reaction products isolated and identified by MS-LIT. Mycotoxin reductions were dose-dependent, and ZEA levels decreased more than α-ZOL, ranging from 0.2 to 96.9% and 0 to 89.5% respectively, with no difference (p⩽0.05) between pH 4 and 7. Overall, simulated gastric bioaccessibility was higher than duodenal bioaccessibility for both mycotoxins and mycotoxin-AITC conjugates, with duodenal fractions representing ⩾63.5% of the original concentration. Simulated bioavailability of reaction products (α-ZOL/ZEA-AITC) were lower than 42.13%, but significantly higher than the original mycotoxins. The cytotoxicity of α-ZOL and ZEA in Caco-2/TC7 cells was also evaluated, with toxic effects observed at higher levels than 75μM. Further studies should be performed to evaluate the toxicity and estrogenic effect of α-ZOL/ZEA-AITC.
Collapse
Affiliation(s)
- K Bordin
- School of Life Sciences, Pontifícia Universidade Católica, Rua Imaculada Conceição 1155, 80215-910 Curitiba, Paraná, Brazil.
| | - F Saladino
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - C Fernández-Blanco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - M J Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - J Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - M Fernández-Franzón
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - G Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - F B Luciano
- School of Life Sciences, Pontifícia Universidade Católica, Rua Imaculada Conceição 1155, 80215-910 Curitiba, Paraná, Brazil.
| |
Collapse
|
20
|
Bertóti R, Vasas G, Gonda S, Nguyen NM, Szőke É, Jakab Á, Pócsi I, Emri T. Glutathione protects Candida albicans against horseradish volatile oil. J Basic Microbiol 2016; 56:1071-1079. [PMID: 27272511 DOI: 10.1002/jobm.201600082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/19/2016] [Indexed: 01/21/2023]
Abstract
Horseradish essential oil (HREO; a natural mixture of different isothiocyanates) had strong fungicide effect against Candida albicans both in volatile and liquid phase. In liquid phase this antifungal effect was more significant than those of its main components allyl, and 2-phenylethyl isothiocyanate. HREO, at sublethal concentration, induced oxidative stress which was characterized with elevated superoxide content and up-regulated specific glutathione reductase, glutathione peroxidase, catalase and superoxide dismutase activities. Induction of specific glutathione S-transferase activities as marker of glutathione (GSH) dependent detoxification was also observed. At higher concentration, HREO depleted the GSH pool, increased heavily the superoxide production and killed the cells rapidly. HREO and the GSH pool depleting agent, 1-chlore-2,4-dinitrobenzene showed strong synergism when they were applied together to kill C. albicans cells. Based on all these, we assume that GSH metabolism protects fungi against isothiocyanates.
Collapse
Affiliation(s)
- Regina Bertóti
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| | - Gábor Vasas
- Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Sándor Gonda
- Department of Botany, University of Debrecen, Debrecen, Hungary
| | | | - Éva Szőke
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary.
| | - Ágnes Jakab
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Tamás Emri
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
21
|
Voutsina N, Payne AC, Hancock RD, Clarkson GJJ, Rothwell SD, Chapman MA, Taylor G. Characterization of the watercress (Nasturtium officinale R. Br.; Brassicaceae) transcriptome using RNASeq and identification of candidate genes for important phytonutrient traits linked to human health. BMC Genomics 2016; 17:378. [PMID: 27206485 PMCID: PMC4875719 DOI: 10.1186/s12864-016-2704-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/05/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Consuming watercress is thought to provide health benefits as a consequence of its phytonutrient composition. However, for watercress there are currently limited genetic resources underpinning breeding efforts for either yield or phytonutritional traits. In this paper, we use RNASeq data from twelve watercress accessions to characterize the transcriptome, perform candidate gene mining and conduct differential expression analysis for two key phytonutritional traits: antioxidant (AO) capacity and glucosinolate (GLS) content. RESULTS The watercress transcriptome was assembled to 80,800 transcripts (48,732 unigenes); 71 % of which were annotated based on orthology to Arabidopsis. Differential expression analysis comparing watercress accessions with 'high' and 'low' AO and GLS resulted in 145 and 94 differentially expressed loci for AO capacity and GLS respectively. Differentially expressed loci between high and low AO watercress were significantly enriched for genes involved in plant defence and response to stimuli, in line with the observation that AO are involved in plant stress-response. Differential expression between the high and low GLS watercress identified links to GLS regulation and also novel transcripts warranting further investigation. Additionally, we successfully identified watercress orthologs for Arabidopsis phenylpropanoid, GLS and shikimate biosynthesis pathway genes, and compiled a catalogue of polymorphic markers for future applications. CONCLUSIONS Our work describes the first transcriptome of watercress and establishes the foundation for further molecular study by providing valuable resources, including sequence data, annotated transcripts, candidate genes and markers.
Collapse
Affiliation(s)
- Nikol Voutsina
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Adrienne C Payne
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - Graham J J Clarkson
- Vitacress Salads Ltd, Lower Link Farm, St Mary Bourne, Andover, SP11 6DB, UK
| | - Steve D Rothwell
- Vitacress Salads Ltd, Lower Link Farm, St Mary Bourne, Andover, SP11 6DB, UK
| | - Mark A Chapman
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Gail Taylor
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
22
|
Luang-In V, Narbad A, Cebeci F, Bennett M, Rossiter JT. Identification of Proteins Possibly Involved in Glucosinolate Metabolism in L. agilis R16 and E. coli VL8. Protein J 2016; 34:135-46. [PMID: 25805049 DOI: 10.1007/s10930-015-9607-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study was aimed to identify sinigrin-induced bacterial proteins potentially involved in the metabolism of glucosinolate in two glucosinolate-metabolising bacteria Lactobacillus agilis R16 and Escherichia coli VL8. Sinigrin (2 mM) was used to induce the proteins in both bacteria under anaerobic incubation for 8 h at 30 °C for L. agilis R16 and 37 °C for E. coli VL8 and the controls without sinigrin were performed. Allyl isothiocyanate and allyl nitrile as two degradation products of sinigrin were detected in sinigrin-induced cultures of L. agilis R16 (27% total products) and E. coli VL8 (38% total products) from a complete sinigrin degradation in 8 h for both bacteria. 2D gel electrophoresis was conducted to identify induced proteins with at least twofold increased abundance. Sinigrin-induced L. agilis R16 and the control produced 1561 and 1543 protein spots, respectively. For E. coli VL8, 1363 spots were detected in sinigrin-induced and 1354 spots in the control. A combination of distinct proteins and upregulated proteins of 32 and 35 spots in L. agilis R16 and E. coli VL8, respectively were detected upon sinigrin induction. Of these, 12 and 16 spots from each bacterium respectively were identified by LC-MS/MS. In both bacteria most of the identified proteins are involved in carbohydrate metabolism, oxidoreduction system and sugar transport while the minority belong to purine metabolism, hydrolysis, and proteolysis. This indicated that sinigrin induction led to the expressions of proteins with similar functions in both bacteria and these proteins may play a role in bacterial glucosinolate metabolism.
Collapse
Affiliation(s)
- Vijitra Luang-In
- Natural Antioxidant Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Mahasarakham, 44150, Thailand,
| | | | | | | | | |
Collapse
|
23
|
Ursini F, Maiorino M, Forman HJ. Redox homeostasis: The Golden Mean of healthy living. Redox Biol 2016; 8:205-15. [PMID: 26820564 PMCID: PMC4732014 DOI: 10.1016/j.redox.2016.01.010] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary, while hormesis, although globally protective, results in setting up of a new phenotype, parahormesis contributes to health by favoring maintenance of homeostasis. Redox homeostasis is the continuously challenged oxidative/nucleophilic balance. Rheostatic redox signaling enzymes maintain oxidative/nucleophilic homeostasis. Phytochemicals assist redox homeostasis through oxidative feedback (parahormesis). Adaptation and hormesis while protective establish a new phenotype and set point.
Collapse
Affiliation(s)
- Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, I-35121 Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, I-35121 Padova, Italy
| | - Henry Jay Forman
- Andrus Gerontology Center of the Davis School of Gerontology, University of Southern, California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
24
|
|
25
|
Payne AC, Clarkson GJ, Rothwell S, Taylor G. Diversity in global gene expression and morphology across a watercress (Nasturtium officinale R. Br.) germplasm collection: first steps to breeding. HORTICULTURE RESEARCH 2015; 2:15029. [PMID: 26504575 PMCID: PMC4591680 DOI: 10.1038/hortres.2015.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/23/2015] [Accepted: 05/26/2015] [Indexed: 06/05/2023]
Abstract
Watercress (Nasturtium officinale R. Br.) is a nutrient intense, leafy crop that is consumed raw or in soups across the globe, but for which, currently no genomic resources or breeding programme exists. Promising morphological, biochemical and functional genomic variation was identified for the first time in a newly established watercress germplasm collection, consisting of 48 watercress accessions sourced from contrasting global locations. Stem length, stem diameter and anti-oxidant (AO) potential varied across the accessions. This variation was used to identify three extreme contrasting accessions for further analysis. Variation in global gene expression was investigated using an Affymetrix Arabidopsis ATH1 microarray gene chip, using the commercial control (C), an accession selected for dwarf phenotype with a high AO potential (dwarfAO, called 'Boldrewood') and one with high AO potential alone. A set of transcripts significantly differentially expressed between these three accessions, were identified, including transcripts involved in the regulation of growth and development and those involved in secondary metabolism. In particular, when differential gene expression was compared between C and dwarfAO, the dwarfAO was characterised by increased expression of genes encoding glucosinolates, which are known precursors of phenethyl isothiocyanate, linked to the anti-carcinogenic effects well-documented in watercress. This study provides the first analysis of natural variation across the watercress genome and has identified important underpinning information for future breeding for enhanced anti-carcinogenic properties and morphology traits in this nutrient-intense crop.
Collapse
Affiliation(s)
- Adrienne C. Payne
- Centre for Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Graham J.J. Clarkson
- Vitacress Salads Ltd, Lower Link Farm, St Mary Bourne, Andover, Hampshire, SP11 6DB, UK
| | - Steve Rothwell
- Vitacress Salads Ltd, Lower Link Farm, St Mary Bourne, Andover, Hampshire, SP11 6DB, UK
| | - Gail Taylor
- Centre for Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
26
|
Rajesh E, Sankari LS, Malathi L, Krupaa JR. Naturally occurring products in cancer therapy. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2015; 7:S181-3. [PMID: 26015704 PMCID: PMC4439664 DOI: 10.4103/0975-7406.155895] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 10/31/2014] [Accepted: 11/09/2014] [Indexed: 01/15/2023] Open
Abstract
Natural products have been used for the treatment of various diseases and are becoming an important research area for drug discovery. These products, especially phytochemicals have been extensively studies and have exhibited anti-carcinogenic activities by interfering with the initiation, development and progression of cancer through the modulation of various mechanisms including cellular proliferation, differentiation, apoptosis, angiogenesis, and metastasis. This concept is gaining attention because it is a cost-effective alternative to cancer treatment. In this article, we have discussed some of the naturally occurring products used in cancer treatment.
Collapse
Affiliation(s)
- E. Rajesh
- Department of Oral Pathology and Microbiology, Sree Balaji Dental College and Hospital, Bharath University, Chennai, Tamil Nadu, India
| | - Leena S. Sankari
- Department of Oral Pathology and Microbiology, Sree Balaji Dental College and Hospital, Bharath University, Chennai, Tamil Nadu, India
| | - L. Malathi
- Department of Oral Pathology and Microbiology, Sree Balaji Dental College and Hospital, Bharath University, Chennai, Tamil Nadu, India
| | - Jayasri R. Krupaa
- Department of Oral Pathology and Microbiology, Sree Balaji Dental College and Hospital, Bharath University, Chennai, Tamil Nadu, India
| |
Collapse
|
27
|
Hanschen FS, Lamy E, Schreiner M, Rohn S. Reactivity and stability of glucosinolates and their breakdown products in foods. Angew Chem Int Ed Engl 2014; 53:11430-50. [PMID: 25163974 DOI: 10.1002/anie.201402639] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 12/25/2022]
Abstract
The chemistry of glucosinolates and their behavior during food processing is very complex. Their instability leads to the formation of a bunch of breakdown and reaction products that are very often reactive themselves. Although excessive consumption of cabbage varieties has been thought for long time to have adverse, especially goitrogenic effects, nowadays, epidemiologic studies provide data that there might be beneficial health effects as well. Especially Brassica vegetables, such as broccoli, radish, or cabbage, are rich in these interesting plant metabolites. However, information on the bioactivity of glucosinolates is only valuable when one knows which compounds are formed during processing and subsequent consumption. This review provides a comprehensive, in-depth overview on the chemical reactivity of different glucosinolates and breakdown products thereof during food preparation.
Collapse
Affiliation(s)
- Franziska S Hanschen
- Department of Quality, Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren and Erfurt e.V. Theodor-Echtermeyer-Weg 1, 14979 Großbeeren (Germany) http://www.igzev.de.
| | | | | | | |
Collapse
|
28
|
Hanschen FS, Lamy E, Schreiner M, Rohn S. Reaktivität und Stabilität von Glucosinolaten und ihren Abbauprodukten in Lebensmitteln. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Nikhil K, Sharan S, Chakraborty A, Roy P. Pterostilbene-isothiocyanate conjugate suppresses growth of prostate cancer cells irrespective of androgen receptor status. PLoS One 2014; 9:e93335. [PMID: 24699278 PMCID: PMC3974779 DOI: 10.1371/journal.pone.0093335] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/03/2014] [Indexed: 01/11/2023] Open
Abstract
Chemotherapy and anti-hormonal therapies are the most common treatments for non-organ-confined prostate cancer (PCa). However, the effectiveness of these therapies is limited, thus necessitating the development of alternative approaches. The present study focused on analyzing the role of pterostilbene (PTER)-isothiocyanate (ITC) conjugate--a novel class of hybrid compound synthesized by appending an ITC moiety on PTER backbone--in regulating the functions of androgen receptor (AR), thereby causing apoptosis of PCa cells. The conjugate molecule caused 50% growth inhibition (IC50) at 40 ± 1.12 and 45 ± 1.50 μM in AR positive (LNCaP) and negative (PC-3) cells, respectively. The reduced proliferation of PC-3 as well as LNCaP cells by conjugate correlated with accumulation of cells in G2/M phase and induction of caspase dependent apoptosis. Both PI3K/Akt and MAPK/ERK pathways played an important and differential role in conjugate-induced apoptosis of these PCa cells. While the inhibitor of Akt (A6730) or Akt-specific small interference RNA (siRNA) greatly sensitized PC-3 cells to conjugate-induced apoptosis, on the contrary, apoptosis was accelerated by inhibition of ERK (by PD98059 or ERK siRNA) in case of LNCaP cells, both ultimately culminating in the expression of cleaved caspase-3 protein. Moreover, anti-androgenic activity of the conjugate was mediated by decreased expression of AR and its co-activators (SRC-1, GRIP-1), thus interfering in their interactions with AR. All these data suggests that conjugate-induced inhibition of cell proliferation and induction of apoptosis are partly mediated by the down regulation of AR, Akt, and ERK signaling. These observations provide a rationale for devising novel therapeutic approaches for treating PCa by using conjugate alone or in combination with other therapeutics.
Collapse
Affiliation(s)
- Kumar Nikhil
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shruti Sharan
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Ajanta Chakraborty
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
30
|
Deep G, Agarwal R. Targeting tumor microenvironment with silibinin: promise and potential for a translational cancer chemopreventive strategy. Curr Cancer Drug Targets 2014; 13:486-99. [PMID: 23617249 DOI: 10.2174/15680096113139990041] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/16/2012] [Accepted: 03/30/2012] [Indexed: 12/31/2022]
Abstract
Tumor microenvironment (TME) refers to the dynamic cellular and extra-cellular components surrounding tumor cells at each stage of the carcinogenesis. TME has now emerged as an integral and inseparable part of the carcinogenesis that plays a critical role in tumor growth, angiogenesis, epithelial to mesenchymal transition (EMT), invasion, migration and metastasis. Besides its vital role in carcinogenesis, TME is also a better drug target because of its relative genetic stability with lesser probability for the development of drug-resistance. Several drugs targeting the TME (endothelial cells, macrophages, cancer-associated fibroblasts, or extra-cellular matrix) have either been approved or are in clinical trials. Recently, non-steroidal anti-inflammatory drugs targeting inflammation were reported to also prevent several cancers. These exciting developments suggest that cancer chemopreventive strategies targeting both tumor and TME would be better and effective towards preventing, retarding or reversing the process of carcinogenesis. Here, we have reviewed the effect of a well established hepatoprotective and chemopreventive agent silibinin on cellular (endothelial, fibroblast and immune cells) and non-cellular components (cytokines, growth factors, proteinases etc.) of the TME. Silibinin targets TME constituents as well as their interaction with cancer cells, thereby inhibiting tumor growth, angiogenesis, inflammation, EMT, and metastasis. Silibinin is already in clinical trials, and based upon completed studies we suggest that its chemopreventive effectiveness should be verified through its effect on biological end points in both tumor and TME. Overall, we believe that the chemopreventive strategies targeting both tumor and TME have practical and translational utility in lowering the cancer burden.
Collapse
Affiliation(s)
- Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, CO, USA
| | | |
Collapse
|
31
|
Minarini A, Milelli A, Fimognari C, Simoni E, Turrini E, Tumiatti V. Exploring the effects of isothiocyanates on chemotherapeutic drugs. Expert Opin Drug Metab Toxicol 2013; 10:25-38. [PMID: 24087843 DOI: 10.1517/17425255.2013.843668] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Chemoprevention has emerged as a promising strategy to reduce the risk and to control cancer. In this context, isothiocyanates (ITCs), found in abundance in the form of glucosinolates in cruciferous vegetables, have gained increasing consideration for their chemopreventive activity. ITCs exert their effects mainly by inducing carcinogen metabolism or by inhibiting tumor cell proliferation. AREAS COVERED In recent years, novel combination treatments, by coupling chemopreventive agents and typical chemotherapeutics, have been exploited to increase the antitumor activities. The aim of this article is to examine the foremost studies carried out, so far, on the effects of dietary and synthetic ITCs on different signaling pathways involved in the pharmacokinetics and pharmacodynamics of chemotherapeutic agents, in order to enhance their effectiveness. EXPERT OPINION Undoubtedly, the beneficial anticarcinogenic potential of ITCs, both singly and in combination, has emerged in in vitro and in vivo studies. However, only a few clinical trials have been carried out so far with ITCs, which try to better define both the pharmacokinetic and pharmacodynamic impacts in humans. More toxicological evaluations after long-term administration of ITCs in different species are required for the clinical development of ITCs as anticarcinogenic agents.
Collapse
Affiliation(s)
- Anna Minarini
- Alma Mater Studiorum-University of Bologna, Department of Pharmacy and Biotechnology , Via Belmeloro 6, 40126 Bologna , Italy +39 051 2099709 ; +39 051 2099734 ;
| | | | | | | | | | | |
Collapse
|
32
|
Huang CS, Lin AH, Liu CT, Tsai CW, Chang IS, Chen HW, Lii CK. Isothiocyanates protect against oxidized LDL-induced endothelial dysfunction by upregulating Nrf2-dependent antioxidation and suppressing NFκB activation. Mol Nutr Food Res 2013; 57:1918-30. [PMID: 23836589 DOI: 10.1002/mnfr.201300063] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/16/2013] [Accepted: 04/21/2013] [Indexed: 12/30/2022]
Abstract
SCOPE Oxidative stress plays a pivotal role in the pathophysiology of cardiovascular diseases. Oxidized low-density lipoprotein (oxLDL) is a key contributor to atherogenesis through multiple mechanisms. In this study, we investigated the protection by three structurally related isothiocyanates, i.e., sulforaphane (SFN), benzyl isothiocyanate (BITC), and phenethyl isocyanate (PEITC), against oxLDL-induced leukocyte adhesion to vascular endothelium and the mechanism involved. METHODS AND RESULTS The protection against oxLDL-induced endothelial dysfunction by isothiocyanates was studied in human umbilical vein endothelial cells (HUVECs). oxLDL increased reactive oxygen species (ROS) production, stimulated nuclear factor-kappaB (NFκB) activation, and enhanced intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin expression in HUVECs, which led to promotion of monocyte adhesion to HUVECs. Treatment with SFN, BITC, and PEITC (0-10 μM) dose-dependently induced heme oxygenase (HO)-1, glutamate cysteine ligase (GCL) catalytic and modifier subunit expression, intracellular glutathione content, and antioxidant response element (ARE)-luciferase reporter activity. SFN, BITC, and PEITC pretreatment reversed oxLDL-induced ROS production, NFκB nuclear translocation, κB-reporter activity, ICAM-1, VCAM-1, and E-selectin expression, and monocyte adhesion to endothelial cells. Both heme oxygenase 1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) knockdown attenuated the isothiocyanate inhibition of oxLDL-induced ROS production, κB-reporter activity, and adhesion molecule expression. CONCLUSION SFN, BITC, and PEITC protect against oxLDL-induced endothelial damage by upregulating Nrf2-dependent HO-1 and GCL expression, which leads to inhibition of NFκB activation and ICAM-1, VCAM-1, and E-selectin expression.
Collapse
Affiliation(s)
- Chin-Shiu Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
33
|
García-Caballero M, Marí-Beffa M, Cañedo L, Medina MÁ, Quesada AR. Toluquinol, a marine fungus metabolite, is a new angiosuppresor that interferes with the Akt pathway. Biochem Pharmacol 2013; 85:1727-40. [PMID: 23603293 DOI: 10.1016/j.bcp.2013.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
Toluquinol, a methylhydroquinone produced by a marine fungus, was selected in the course of a blind screening for new potential inhibitors of angiogenesis. In the present study we provide the first evidence that toluquinol is a new anti-angiogenic-compound. In a variety of experimental systems, representing the sequential events of the angiogenic process, toluquinol treatment of activated endothelial cells resulted in strong inhibitory effect. Toluquinol inhibited the growth of endothelial and tumor cells in culture in the micromolar range. Our results indicate that the observed growth inhibitory effect could be due, at least in part, to an induction of apoptosis. Toluquinol induced endothelial cell death is mediated via apoptosis after a cell cycle block and caspase activation. Capillary tube formation on Matrigel and migratory, invasive and proteolytic capabilities of endothelial cells were inhibited by addition of toluquinol at subtoxic concentrations. Inhibition of the mentioned essential steps of in vitro angiogenesis agrees with the observed inhibition of the in vivo angiogenesis, substantiated by using the chick chorioallatoic membrane assay and confirmed by the murine Matrigel plug, the zebrafish embryo neovascularization and the zebrafish caudal fin regeneration assays. Data here shown altogether indicate that toluquinol has antiangiogenic effects both in vitro and in vivo that are exerted partly by suppression of the VEGF and FGF-induced Akt activation of endothelial cells. These effects are carried out at lower concentrations to those required for other inhibitors of angiogenesis, what makes toluquinol a promising drug candidate for further evaluation in the treatment of cancer and other angiogenesis-related pathologies.
Collapse
Affiliation(s)
- Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, E-29071 Málaga, Spain
| | | | | | | | | |
Collapse
|
34
|
Growth Inhibition and Apoptosis of Neuroblastoma Cells Through ROS-Independent MEK/ERK Activation by Sulforaphane. Cell Biochem Biophys 2013; 66:765-74. [DOI: 10.1007/s12013-013-9522-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Schaefer EA, Stohr S, Meister M, Aigner A, Gudermann T, Buech TR. Stimulation of the chemosensory TRPA1 cation channel by volatile toxic substances promotes cell survival of small cell lung cancer cells. Biochem Pharmacol 2013; 85:426-38. [DOI: 10.1016/j.bcp.2012.11.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 12/19/2022]
|
36
|
Syed Alwi SS, Cavell BE, Donlevy A, Packham G. Differential induction of apoptosis in human breast cancer cell lines by phenethyl isothiocyanate, a glutathione depleting agent. Cell Stress Chaperones 2012; 17:529-38. [PMID: 22351438 PMCID: PMC3535168 DOI: 10.1007/s12192-012-0329-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/03/2012] [Accepted: 02/03/2012] [Indexed: 10/28/2022] Open
Abstract
Phenethyl isothiocyanate (PEITC) is a naturally occurring electrophile which depletes intracellular glutathione (GSH) levels and triggers accumulation of reactive oxygen species (ROS). PEITC is of considerable interest as a potential chemopreventive/chemotherapeutic agent, and in this work, we have investigated the effects of PEITC on human breast cancer cell lines. Whereas PEITC readily induced apoptosis in MDA-MB-231 cells (associated with rapid activation of caspases 9 and 3, and decreased expression of BAX), MCF7 cells were relatively resistant to the apoptosis promoting effects of PEITC. The relative resistance of MCF7 cells was associated with high basal expression of NRF2, a transcription factor that coordinates cellular protective responses to oxidants and electrophiles and raised intracellular levels of GSH. This raised basal expression of NRF2 appeared to be a response to on-going production of ROS, since treatment with the antioxidant and GSH precursor N-acetylcysteine (NAC) reduced NRF2 expression. Moreover, pre-treatment of MDA-MB-231 cells with NAC rendered these cells relatively resistant to PEITC-induced apoptosis. In summary, our data confirm that PEITC may be an effective chemopreventive/therapeutic agents for breast cancer. However, differences in the basal expression of NRF2 and resultant changes in GSH levels may be an important determinant of sensitivity to PEITC-induced apoptosis.
Collapse
Affiliation(s)
- Sharifah S. Syed Alwi
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Somers Cancer Research Building (MP824), Tremona Road, Southampton, SO16 6YD UK
| | - Breeze E. Cavell
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Somers Cancer Research Building (MP824), Tremona Road, Southampton, SO16 6YD UK
| | - Alison Donlevy
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Somers Cancer Research Building (MP824), Tremona Road, Southampton, SO16 6YD UK
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Somers Cancer Research Building (MP824), Tremona Road, Southampton, SO16 6YD UK
| |
Collapse
|
37
|
Singh SV, Singh K. Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Carcinogenesis 2012; 33:1833-42. [PMID: 22739026 DOI: 10.1093/carcin/bgs216] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inverse association between dietary intake of cruciferous vegetables and cancer risk observed in population-based case-control studies is partly attributable to structurally simple but mechanistically complex phytochemicals with an isothiocyanate (-N=C=S) functional group. Cancer protective role for dietary isothiocyanates (ITCs) is substantiated by preclinical studies in rodent models. A common feature of many naturally occurring ITCs relates to their ability to cause growth arrest and cell death selectively in cancer cells. At the same time, evidence continues to accumulate to suggest that even subtle change in chemical structure of the ITCs can have a profound effect on their activity and mechanism of action. Existing mechanistic paradigm stipulates that ITCs may not only prevent cancer initiation by altering carcinogen metabolism but also inhibit post-initiation cancer development by suppressing many processes relevant to tumor progression, including cellular proliferation, neoangiogenesis, epithelial-mesenchymal transition, and self-renewal of cancer stem cells. Moreover, the ITCs are known to suppress diverse oncogenic signaling pathways often hyperactive in human cancers (e.g. nuclear factor-κB, hormone receptors, signal transducer and activator of transcription 3) to elicit cancer chemopreventive response. However, more recent studies highlight potential adverse effect of Notch activation by ITCs on their ability to inhibit migration of cancer cells. Mechanisms underlying ITC-mediated modulation of carcinogen metabolism, growth arrest, and cell death have been reviewed extensively. This article provides a perspective on bench-cage-bedside evidence supporting cancer chemopreventive role for some of the most promising ITCs. Structure-activity relationship and mechanistic complexity in the context of cancer chemoprevention with ITCs is also highlighted.
Collapse
Affiliation(s)
- Shivendra V Singh
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
38
|
Cavell BE, Syed Alwi SS, Donlevy AM, Proud CG, Packham G. Natural product-derived antitumor compound phenethyl isothiocyanate inhibits mTORC1 activity via TSC2. JOURNAL OF NATURAL PRODUCTS 2012; 75:1051-1057. [PMID: 22607231 DOI: 10.1021/np300049b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phenethyl isothiocyanate (1) is a natural dietary phytochemical with cytostatic, cytotoxic, and antitumor activity. The effects of 1 were investigated on the activity of mTOR, a kinase that enhances the translation of many RNAs encoding proteins critical for cancer cell growth, including the angiogenesis regulator HIF1α. Compound 1 effectively blocked HIF1α RNA translation in MCF7 breast cancer cells, and this was associated with reduced phosphorylation of 4E-BP1 and p70 S6K, well-characterized downstream substrates of the mTOR-containing mTORC1 complex. Compound 1 also inhibited mTORC1 activity in mouse embryonic fibroblasts (MEFs). The 1-mediated inhibition of mTORC1 activity appeared to be independent of the upstream regulators PTEN, AKT, ERK1/2, and AMPK. By contrast, 1-mediated inhibition of mTORC1 activity was dependent on the presence of TSC2, part of a complex that regulates mTORC1 activity negatively. TSC2-deficient MEFs were resistant to 1-mediated inhibition of p70 S6K phosphorylation. TSC2-deficient MEFs were also partially resistant to 1-mediated growth inhibition. Overall, the present results confirm that 1 inhibits mTORC1 activity. This is dependent on the presence of TSC2, and inhibition of mTORC1 contributes to optimal 1-induced growth inhibition. Inhibition of RNA translation may be an important component of the antitumor effects of phenethyl isothiocyanate.
Collapse
Affiliation(s)
- Breeze E Cavell
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| | | | | | | | | |
Collapse
|
39
|
Han NR, Kim IK, Kim HM, Jeong HJ. Methallyl isothiocyanate inhibits the caspase-1 activity through the inhibition of intracellular calcium levels. Biochimie 2012; 94:816-22. [DOI: 10.1016/j.biochi.2011.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/26/2011] [Indexed: 02/02/2023]
|
40
|
Li D, Wang W, Shan Y, Barrera LN, Howie AF, Beckett GJ, Wu K, Bao Y. Synergy between sulforaphane and selenium in the up-regulation of thioredoxin reductase and protection against hydrogen peroxide-induced cell death in human hepatocytes. Food Chem 2012; 133:300-7. [PMID: 25683399 DOI: 10.1016/j.foodchem.2012.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/26/2011] [Accepted: 01/14/2012] [Indexed: 02/07/2023]
Abstract
Dietary isothiocyanates and selenium are chemopreventive agents and potent inducers of antioxidant enzymes. It has been previously shown that sulforaphane and selenium have a synergistic effect on the upregulation of thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells. In this paper, further evidence is presented to show that sulforaphane and selenium synergistically induce TrxR-1 expression in immortalised human hepatocytes. Sulforaphane was found to be more toxic toward hepatocytes than HepG2 cells with IC50=25.1 and 56.4 μM, respectively. Sulforaphane can protect against hydrogen peroxide-induced cell death and this protection was enhanced by co-treatment with selenium. Using siRNA to knock down TrxR-1 or Nrf2, sulforaphane (5 μM)-protected cell viability was reduced from 73% to 46% and 34%, respectively, suggesting that TrxR-1 is an important enzyme in protection against hydrogen peroxide-induced cell death. Sulforaphane-induced TrxR-1 expression was positively associated with significant levels of Nrf2 translocation into the nucleus, but co-treatment with selenium showed no significant increase in Nrf2 translocation. Moreover, MAPK (ERK, JNK and p38) and PI3K/Akt signalling pathways were found to play no significant role in sulforaphane-induced Nrf2 translocation into the nucleus. However, blocking ERK and JNK signalling pathways decreased sulforaphane-induced TrxR-1 mRNA by about 20%; whereas blocking p38 and PI3K/AKT increased TrxR-1 transcription. In summary, a combination of sulforaphane and selenium resulted in a synergistic upregulation of TrxR-1 that contributed to the enhanced protection against free radical-mediated oxidative damage in human hepatocytes.
Collapse
Affiliation(s)
- Dan Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Wei Wang
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Yujuan Shan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Lawrence N Barrera
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Alexander F Howie
- University of Edinburgh, Division of Reproduction and Development Sciences, Edinburgh EH16 4SB, UK
| | - Geoffrey J Beckett
- University of Edinburgh, Division of Reproduction and Development Sciences, Edinburgh EH16 4SB, UK
| | - Kun Wu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Yongping Bao
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
41
|
Prashar A, Siddiqui F, Singh AK. Synthetic and green vegetable isothiocyanates target red blood leukemia cancers. Fitoterapia 2011; 83:255-65. [PMID: 22120500 DOI: 10.1016/j.fitote.2011.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 11/09/2011] [Accepted: 11/13/2011] [Indexed: 01/05/2023]
Abstract
Isothiocyanates (ITCs), the breakdown products of glucosinolates found primarily in species of Brassicaceae (Cruciferae), are potential anti-cancer compounds. This review compiles data on how through different modes of action ITCs and their synthetic counterparts target leukemia.
Collapse
Affiliation(s)
- Anjali Prashar
- Lifezone Biotech Private Limited, B-102, Phase III, KSSIDC, Electronic City, Bangalore, India.
| | | | | |
Collapse
|
42
|
Navarro SL, Li F, Lampe JW. Mechanisms of action of isothiocyanates in cancer chemoprevention: an update. Food Funct 2011; 2:579-87. [PMID: 21935537 PMCID: PMC3204939 DOI: 10.1039/c1fo10114e] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Isothiocyanates (ITC), derived from glucosinolates, are thought to be responsible for the chemoprotective actions conferred by higher cruciferous vegetable intake. Evidence suggests that isothiocyanates exert their effects through a variety of distinct but interconnected signaling pathways important for inhibiting carcinogenesis, including those involved in detoxification, inflammation, apoptosis, and cell cycle and epigenetic regulation, among others. This article provides an update on the latest research on isothiocyanates and these mechanisms, and points out remaining gaps in our understanding of these events. Given the variety of ITC produced from glucosinolates, and the diverse pathways on which these compounds act, a systems biology approach, in vivo, may help to better characterize their integrated role in cancer prevention. In addition, the effects of dose, duration of exposure, and specificity of different ITC should be considered.
Collapse
Affiliation(s)
- Sandi L. Navarro
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, 98109
- Interdisciplinary Graduate Program in Nutritional Sciences, Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Fei Li
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, 98109
| | - Johanna W. Lampe
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, 98109
- Interdisciplinary Graduate Program in Nutritional Sciences, Department of Epidemiology, University of Washington, Seattle, WA 98195
| |
Collapse
|
43
|
Brown KK, Hampton MB. Biological targets of isothiocyanates. Biochim Biophys Acta Gen Subj 2011; 1810:888-94. [PMID: 21704127 DOI: 10.1016/j.bbagen.2011.06.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 05/13/2011] [Accepted: 06/07/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Isothiocyanates are phytochemicals with a broad array of effects in biological systems. Bioactivity includes the stimulation of cellular antioxidant systems, induction of apoptosis and interference with cytokine production and activity. Epidemiological evidence and experimental studies indicate that naturally occurring isothiocyanates and synthetic derivatives have anti-cancer and anti-inflammatory properties. SCOPE OF REVIEW This review focuses on the molecular targets of isothiocyanates, and how target modification translates into a biological response. MAJOR CONCLUSIONS Isothiocyanates may mediate their effects via direct protein modification or indirectly by disruption of redox homeostasis and increased thiol oxidation. Some target proteins have been identified, but in-depth searches with new techniques are needed to reveal novel targets. Site-directed mutagenesis and isothiocyanate structure-activity relationships will assist in determining the biological significance of specific modifications. GENERAL SIGNIFICANCE Target identification is important for rational drug design and exploiting the therapeutic potential of isothiocyanates. It also provides insight into the diverse pathways that these compounds regulate.
Collapse
Affiliation(s)
- Kristin K Brown
- Free Radical Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | | |
Collapse
|