1
|
Berillo O, Paradis P, Schiffrin EL. Role of Immune Cells in Perivascular Adipose Tissue in Vascular Injury in Hypertension. Arterioscler Thromb Vasc Biol 2025; 45:563-575. [PMID: 40079139 DOI: 10.1161/atvbaha.124.321689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Hypertension is associated with vascular injury characterized by vascular dysfunction, remodeling, and stiffening, which contributes to end-organ damage leading to cardiovascular events and potentially death. Innate (macrophages and dendritic cells), innate-like (γδ T cells) and adaptive immune cells (T and B cells) play a role in hypertension and vascular injury. Perivascular adipose tissue that is the fourth layer of the blood vessel wall is an important homeostatic regulator of vascular tone. Increased infiltration of immune cells in perivascular adipose tissue in hypertension results in generation of oxidative stress and production of cytokines that may cause vascular injury. This review presents an overview of the role of the different immune cells that infiltrate the perivascular adipose tissue and are involved in the pathophysiology of hypertension.
Collapse
Affiliation(s)
- Olga Berillo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Quebec, Canada (O.B., P.P., E.L.S.)
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Quebec, Canada (O.B., P.P., E.L.S.)
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Quebec, Canada (O.B., P.P., E.L.S.)
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Québec, Canada (E.L.S.)
- McGill University, Montréal, Québec, Canada (E.L.S.)
| |
Collapse
|
2
|
Corrado A, Guadagni I, Picarelli G, Variola A. Obesity and Chronic Inflammation: Implications for Rheumatoid Arthritis, Spondyloarthritis, and Ulcerative Colitis. Immun Inflamm Dis 2025; 13:e70080. [PMID: 39760506 PMCID: PMC11702394 DOI: 10.1002/iid3.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Immune-mediated inflammatory diseases (IMIDs) are a group of chronic conditions characterized by dysregulated immune responses and persistent inflammation. Rheumatoid arthritis (RA), spondyloarthritis (SpA), and ulcerative colitis (UC) exemplify prominent IMIDs, each presenting unique challenges for their management, that impact patient's quality of life (QoL). Obesity, marked by persistent low-grade inflammation, influences the progression, response to treatment, and clinical management of patients with RA, SpA, and UC. Besides, the emerging role of sarcopenic obesity, a special subtype of obesity with malnutrition, should be considered in the definition of the appropriated therapeutic interventions. METHODS This narrative literature review summarizes recent evidence on the interplay between obesity-induced inflammation and IMIDs. RESULTS Obesity contributes to elevated levels of proinflammatory cytokines, influencing the inflammatory pathways common to IMIDs. White adipose tissue, acting as an endocrine organ, produces cytokines like TNF-α and IL-6, fueling chronic inflammation. The dysregulation of adipokines, such as leptin and adiponectin, further complicates this interplay, impacting immune responses and metabolic processes. CONCLUSIONS Understanding the cross-talk between inflammatory pathways in obesity and IMIDs can provide insight into potential targets for intervention. This includes lifestyle modifications aimed to regulate weight gain, paving the way for comprehensive strategies to manage IMIDs in the context of obesity.
Collapse
Affiliation(s)
- Ada Corrado
- Department of Medical and Surgical Sciences, Rheumatology ClinicUniversity of FoggiaFoggiaItaly
| | | | | | | |
Collapse
|
3
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
4
|
Rimini M, Stefanini B, Tada T, Suda G, Shimose S, Kudo M, Finkelmeier F, Yoo C, Presa J, Amadeo E, Genovesi V, De Grandis MC, Iavarone M, Marra F, Foschi F, Tamburini E, Rossari F, Vitiello F, Bartalini L, Soldà C, Tovoli F, Vivaldi C, Lonardi S, Silletta M, Kumada T, Sakamoto N, Iwamoto H, Aoki T, Himmelsbach V, Montes M, Hiraoka A, Sho T, Niizeki T, Nishida N, Steup C, Hirooka M, Kariyama K, Tani J, Atsukawa M, Takaguchi K, Itobayashi E, Fukunishi S, Tsuji K, Ishikawa T, Tajiri K, Ochi H, Yasuda S, Toyoda H, Ogawa C, Nishimura T, Hatanaka T, Kakizaki S, Shimada N, Kawata K, Tada F, Ohama H, Nouso K, Morishita A, Tsutsui A, Nagano T, Itokawa N, Okubo T, Arai T, Imai M, Kosaka H, Naganuma A, Koizumi Y, Nakamura S, Kaibori M, Iijima H, Hiasa Y, Persano M, Camera S, Foti S, Aldrighetti L, Cascinu S, Casadei-Gardini A, Piscaglia F. Impact of body mass index on the prognosis of unresectable HCC patients receiving first-line Lenvatinib or atezolizumab plus bevacizumab. Liver Int 2024; 44:1108-1125. [PMID: 38517286 DOI: 10.1111/liv.15885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/21/2024] [Accepted: 02/04/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Overweight is a negative prognostic factor in the general population in the long term. However, the role of body mass index (BMI) in the short-mid term in advanced tumours is unclear. The present analysis investigates the role of BMI weight classes in a large sample of patients affected by HCC and receiving atezolizumab plus bevacizumab or lenvatinib as first-line treatment. METHODS AND MATERIAL The cohort included consecutive patients affected by BCLC-c and BCLC-B HCC patients from a multicenter international study group who received atezolizumab plus bevacizumab or lenvatinib as first-line therapy. Population was stratified according to the BMI in under-, over- and normal-weight according to the conventional thresholds. The primary objective of the study was to evaluate the prognostic and predictive impact of BMI in patients affected by advanced or intermediate HCC. Survival curves were estimated using the product-limit method of Kaplan-Meier. The role of stratification factors was analysed with log-rank tests. RESULTS 1292 consecutive patients with HCC were analysed. 466 (36%) patients were treated with lenvatinib and 826 (64%) patients were treated with atezolizumab plus bevacizumab. In the atezolizumab plus bevacizumab arm, 510 (62%) patients were normal-weight, 52 (6%) underweight and 264 (32%) overweight. At the univariate analysis for OS, underweight patients had significantly shorter OS compared to normal-weight patients, whereas no differences were found between normal-weight versus overweight. Multivariate analysis confirmed that underweight patients had significantly shorter OS compared to normal-weight patients (HR: 1.7; 95% CI: 1.0-2.8; p = .0323). In the lenvatinib arm, 26 patients (5.6%) were categorized as underweight, 256 (54.9%) as normal-weight, and 184 (39.5%) as overweight. At the univariate analysis for OS, no significant differences were found between normal-weight versus underweight and between normal-weight versus overweight, which was confirmed at multivariate analysis. CONCLUSION Our analysis highlighted a prognostic role of BMI in a cohort of patients with advanced HCC who received atezolizumab plus bevacizumab, while no prognostic role for low BMI was apparent in patients who received lenvatinib.
Collapse
Affiliation(s)
- Margherita Rimini
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Bernardo Stefanini
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Toshifumi Tada
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shigeo Shimose
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Higashi-osaka, Japan
| | - Fabian Finkelmeier
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Changhoon Yoo
- Department of Oncology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Elisabeth Amadeo
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | | | - Maria Caterina De Grandis
- Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Massimo Iavarone
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Foschi
- Department of Internal Medicine, Ospedale per gli Infermi di Faenza, Faenza, Italy
| | - Emiliano Tamburini
- Department of Oncology and Palliative Care, Cardinale G Panico, Tricase City Hospital, Tricase, Italy
| | - Federico Rossari
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Francesco Vitiello
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | | | - Caterina Soldà
- Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Francesco Tovoli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Sara Lonardi
- Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marianna Silletta
- Operative Research Unit of Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Takashi Kumada
- Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Higashi-osaka, Japan
| | - Vera Himmelsbach
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Margarida Montes
- Department of Oncology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Atsushi Hiraoka
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takashi Niizeki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Higashi-osaka, Japan
| | - Christoph Steup
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kazuya Kariyama
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Joji Tani
- Department of Gastroenterology and Hepatology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Masanori Atsukawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Koichi Takaguchi
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Ei Itobayashi
- Department of Gastroenterology, Asahi General Hospital, Asahi, Japan
| | - Shinya Fukunishi
- Department of Gastroenterology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kunihiko Tsuji
- Center of Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Toru Ishikawa
- Department of Gastroenterology, Saiseikai Niigata Hospital, Niigata, Japan
| | - Kazuto Tajiri
- Department of Gastroenterology, Toyama University Hospital, Toyama, Japan
| | - Hironori Ochi
- Hepato-biliary Center, Japanese Red Cross Matsuyama Hospital, Matsuyama, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Chikara Ogawa
- Department of Gastroenterology, Japanese Red Cross Takamatsu Hospital, Takamatsu, Japan
| | - Takashi Nishimura
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan
| | - Takeshi Hatanaka
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Satoru Kakizaki
- Department of Clinical Research, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Noritomo Shimada
- Division of Gastroenterology and Hepatology, Otakanomori Hospital, Kashiwa, Japan
| | - Kazuhito Kawata
- Department of Hepatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Fujimasa Tada
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Hideko Ohama
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Hepatology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Akemi Tsutsui
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Takuya Nagano
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Norio Itokawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Tomomi Okubo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Taeang Arai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Michitaka Imai
- Department of Gastroenterology, Saiseikai Niigata Hospital, Niigata, Japan
| | - Hisashi Kosaka
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - Atsushi Naganuma
- Department of Gastroenterology, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Yohei Koizumi
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Shinichiro Nakamura
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - Hiroko Iijima
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo Medical University, Nishinomiya, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Silvia Camera
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Silvia Foti
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Luca Aldrighetti
- Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, Milano, Italy
| | - Stefano Cascinu
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Roberts JL, Kapfhamer D, Devarapalli V, Drissi H. IL-17RA Signaling in Prx1+ Mesenchymal Cells Influences Fracture Healing in Mice. Int J Mol Sci 2024; 25:3751. [PMID: 38612562 PMCID: PMC11011315 DOI: 10.3390/ijms25073751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Fracture healing is a complex series of events that requires a local inflammatory reaction to initiate the reparative process. This inflammatory reaction is important for stimulating the migration and proliferation of mesenchymal progenitor cells from the periosteum and surrounding tissues to form the cartilaginous and bony calluses. The proinflammatory cytokine interleukin (IL)-17 family has gained attention for its potential regenerative effects; however, the requirement of IL-17 signaling within mesenchymal progenitor cells for normal secondary fracture healing remains unknown. The conditional knockout of IL-17 receptor a (Il17ra) in mesenchymal progenitor cells was achieved by crossing Il17raF/F mice with Prx1-cre mice to generate Prx1-cre; Il17raF/F mice. At 3 months of age, mice underwent experimental unilateral mid-diaphyseal femoral fractures and healing was assessed by micro-computed tomography (µCT) and histomorphometric analyses. The effects of IL-17RA signaling on the osteogenic differentiation of fracture-activated periosteal cells was investigated in vitro. Examination of the intact skeleton revealed that the conditional knockout of Il17ra decreased the femoral cortical porosity but did not affect any femoral trabecular microarchitectural indices. After unilateral femoral fractures, Il17ra conditional knockout impacted the cartilage and bone composition of the fracture callus that was most evident early in the healing process (day 7 and 14 post-fracture). Furthermore, the in vitro treatment of fracture-activated periosteal cells with IL-17A inhibited osteogenesis. This study suggests that IL-17RA signaling within Prx1+ mesenchymal progenitor cells can influence the early stages of endochondral ossification during fracture healing.
Collapse
Affiliation(s)
- Joseph L. Roberts
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - David Kapfhamer
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| | - Varsha Devarapalli
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| |
Collapse
|
6
|
Roberts JL, Chiedo B, Drissi H. Systemic inflammatory and gut microbiota responses to fracture in young and middle-aged mice. GeroScience 2023; 45:3115-3129. [PMID: 37821753 PMCID: PMC10643610 DOI: 10.1007/s11357-023-00963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Age is a patient-specific factor that can significantly delay fracture healing and exacerbate systemic sequelae during convalescence. The basis for this difference in healing rates is not well-understood, but heightened inflammation has been suggested to be a significant contributor. In this study, we investigated the systemic cytokine and intestinal microbiome response to closed femur fracture in 3-month-old (young adult) and 15-month-old (middle-aged) female wild-type mice. Middle-aged mice had a serum cytokine profile that was distinct from young mice at days 10, 14, and 18 post-fracture. This was characterized by increased concentrations of IL-17a, IL-10, IL-6, MCP-1, EPO, and TNFα. We also observed changes in the community structure of the gut microbiota in both young and middle-aged mice that was evident as early as day 3 post-fracture. This included an Enterobacteriaceae bloom at day 3 post-fracture in middle-aged mice and an increase in the relative abundance of the Muribaculum genus. Moreover, we observed an increase in the relative abundance of the health-promoting Bifidobacterium genus in young mice after fracture that did not occur in middle-aged mice. There were significant correlations between serum cytokines and specific genera, including a negative correlation between Bifidobacterium and the highly induced cytokine IL-17a. Our study demonstrates that aging exacerbates the inflammatory response to fracture leading to high levels of pro-inflammatory cytokines and disruption of the intestinal microbiota.
Collapse
Affiliation(s)
- Joseph L Roberts
- Department of Orthopaedics, Emory University School of Medicine, 21 Ortho Ln, 6th Fl, Office 12, Atlanta, GA, 30329, USA.
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
- College of Health Solutions, Arizona State University, 850 N 5th St, Office 360J, Phoenix, AZ, 85004, USA.
| | - Brandon Chiedo
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, 21 Ortho Ln, 6th Fl, Office 12, Atlanta, GA, 30329, USA.
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
| |
Collapse
|
7
|
Kushioka J, Chow SKH, Toya M, Tsubosaka M, Shen H, Gao Q, Li X, Zhang N, Goodman SB. Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy. Inflamm Regen 2023; 43:29. [PMID: 37231450 DOI: 10.1186/s41232-023-00279-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Aging of the global population increases the incidence of osteoporosis and associated fragility fractures, significantly impacting patient quality of life and healthcare costs. The acute inflammatory reaction is essential to initiate healing after injury. However, aging is associated with "inflammaging", referring to the presence of systemic low-level chronic inflammation. Chronic inflammation impairs the initiation of bone regeneration in elderly patients. This review examines current knowledge of the bone regeneration process and potential immunomodulatory therapies to facilitate bone healing in inflammaging.Aged macrophages show increased sensitivity and responsiveness to inflammatory signals. While M1 macrophages are activated during the acute inflammatory response, proper resolution of the inflammatory phase involves repolarizing pro-inflammatory M1 macrophages to an anti-inflammatory M2 phenotype associated with tissue regeneration. In aging, persistent chronic inflammation resulting from the failure of M1 to M2 repolarization leads to increased osteoclast activation and decreased osteoblast formation, thus increasing bone resorption and decreasing bone formation during healing.Inflammaging can impair the ability of stem cells to support bone regeneration and contributes to the decline in bone mass and strength that occurs with aging. Therefore, modulating inflammaging is a promising approach for improving bone health in the aging population. Mesenchymal stem cells (MSCs) possess immunomodulatory properties that may benefit bone regeneration in inflammation. Preconditioning MSCs with pro-inflammatory cytokines affects MSCs' secretory profile and osteogenic ability. MSCs cultured under hypoxic conditions show increased proliferation rates and secretion of growth factors. Resolution of inflammation via local delivery of anti-inflammatory cytokines is also a potential therapy for bone regeneration in inflammaging. Scaffolds containing anti-inflammatory cytokines, unaltered MSCs, and genetically modified MSCs can also have therapeutic potential. MSC exosomes can increase the migration of MSCs to the fracture site and enhance osteogenic differentiation and angiogenesis.In conclusion, inflammaging can impair the proper initiation of bone regeneration in the elderly. Modulating inflammaging is a promising approach for improving compromised bone healing in the aging population.
Collapse
Affiliation(s)
- Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Lopes-Pacheco M, Rocco PRM. Functional enhancement strategies to potentiate the therapeutic properties of mesenchymal stromal cells for respiratory diseases. Front Pharmacol 2023; 14:1067422. [PMID: 37007034 PMCID: PMC10062457 DOI: 10.3389/fphar.2023.1067422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Respiratory diseases remain a major health concern worldwide because they subject patients to considerable financial and psychosocial burdens and result in a high rate of morbidity and mortality. Although significant progress has been made in understanding the underlying pathologic mechanisms of severe respiratory diseases, most therapies are supportive, aiming to mitigate symptoms and slow down their progressive course but cannot improve lung function or reverse tissue remodeling. Mesenchymal stromal cells (MSCs) are at the forefront of the regenerative medicine field due to their unique biomedical potential in promoting immunomodulation, anti-inflammatory, anti-apoptotic and antimicrobial activities, and tissue repair in various experimental models. However, despite several years of preclinical research on MSCs, therapeutic outcomes have fallen far short in early-stage clinical trials for respiratory diseases. This limited efficacy has been associated with several factors, such as reduced MSC homing, survival, and infusion in the late course of lung disease. Accordingly, genetic engineering and preconditioning methods have emerged as functional enhancement strategies to potentiate the therapeutic actions of MSCs and thus achieve better clinical outcomes. This narrative review describes various strategies that have been investigated in the experimental setting to functionally potentiate the therapeutic properties of MSCs for respiratory diseases. These include changes in culture conditions, exposure of MSCs to inflammatory environments, pharmacological agents or other substances, and genetic manipulation for enhanced and sustained expression of genes of interest. Future directions and challenges in efficiently translating MSC research into clinical practice are discussed.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| |
Collapse
|
9
|
Discovery of PPARγ and glucocorticoid receptor dual agonists to promote the adiponectin and leptin biosynthesis in human bone marrow mesenchymal stem cells. Eur J Med Chem 2022; 245:114927. [DOI: 10.1016/j.ejmech.2022.114927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
|
10
|
Lee C, Gong J, Kim J, Ko H, An S, Bang S, Deyrup ST, Noh M, Shim SH. Adiponectin-Secretion-Promoting Cyclic Peptide-Polyketide Hybrids from a Halophyte-Associated Fungus, Colletotrichum gloeosporioides JS0417. JOURNAL OF NATURAL PRODUCTS 2022; 85:501-510. [PMID: 35172097 DOI: 10.1021/acs.jnatprod.1c01102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three new cyclic peptide-polyketide hybrids (1-3) and two new chaetiacandin-type polyketides (4 and 5) along with nine known compounds were isolated from cultures of a halophyte-associated fungus, Colletotrichum gloeosporioides JS0417. Spectroscopic analysis revealed that 1-3 were cyclic depsipeptides where 3,5,11-trihydroxy-2,6-dimethyldodecanoic acid was linked to two amino acids through amide and ester bonds to form a 12-membered ring. Relative and absolute configurations for the peptides were determined with spectroscopic analysis and chemical reactions. The cyclic depsipeptides 2 and 6 were determined to act as strong adiponectin-secretion-promoting modulators with potential to treat metabolic diseases associated with hypoadiponectinemia. Notably, a known compound, tryptophol, significantly inhibited PGE2 synthesis and also promoted adiponectin secretion, exhibiting a similar biological activity profile to aspirin, but with greater potency. The presence of an isoleucine moiety and non-glycosylation may be important for biological activity of the cyclic peptide-polyketide hybrids, and non-methoxylation of the side chain may influence activity of the indole derivatives.
Collapse
Affiliation(s)
- Changyeol Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Junpyo Gong
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaekyeong Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyejin Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungchan An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghee Bang
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Stephen T Deyrup
- Department of Chemistry and Biochemistry, Siena College, Londonville, New York 12211, United States
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Krstić J, Mojsilović S, Mojsilović SS, Santibanez JF. Regulation of the mesenchymal stem cell fate by interleukin-17: Implications in osteogenic differentiation. World J Stem Cells 2021; 13:1696-1713. [PMID: 34909118 PMCID: PMC8641017 DOI: 10.4252/wjsc.v13.i11.1696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Bone regeneration is a tightly regulated process that ensures proper repair and functionality after injury. The delicate balance between bone formation and resorption is governed by cytokines and signaling molecules released during the inflammatory response. Interleukin (IL)-17A, produced in the early phase of inflammation, influences the fate of osteoprogenitors. Due to their inherent capacity to differentiate into osteoblasts, mesenchymal stem/stromal cells (MSCs) contribute to bone healing and regeneration. This review presents an overview of IL-17A signaling and the leading cellular and molecular mechanisms by which it regulates the osteogenic differentiation of MSCs. The main findings demonstrating IL-17A’s influence on osteoblastogenesis are described. To this end, divergent information exists about the capacity of IL-17A to regulate MSCs’ osteogenic fate, depending on the tissue context and target cell type, along with contradictory findings in the same cell types. Therefore, we summarize the data showing both the pro-osteogenic and anti-osteogenic roles of IL-17, which may help in the understanding of IL-17A function in bone repair and regeneration.
Collapse
Affiliation(s)
- Jelena Krstić
- Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11129, Serbia
| | - Sonja S Mojsilović
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, Belgrade 11129, Serbia
| | - Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Chile 8370993, Chile
| |
Collapse
|
12
|
He Q, Qin R, Glowacki J, Zhou S, Shi J, Wang S, Gao Y, Cheng L. Synergistic stimulation of osteoblast differentiation of rat mesenchymal stem cells by leptin and 25(OH)D 3 is mediated by inhibition of chaperone-mediated autophagy. Stem Cell Res Ther 2021; 12:557. [PMID: 34717752 PMCID: PMC8557551 DOI: 10.1186/s13287-021-02623-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
Background Vitamin D is important for the mineralization of bones by stimulating osteoblast differentiation of bone marrow mesenchymal stem cells (BMMSCs). BMMSCs are a target of vitamin D action, and the metabolism of 25(OH)D3 to biologically active 1α,25(OH)2D3 in BMMSCs promotes osteoblastogenesis in an autocrine/paracrine manner. Our previous study with human BMMSCs showed that megalin is required for the 25(OH)D3-DBP complex to enter cells and for 25(OH)D3 to stimulate osteoblast differentiation in BMMSCs. Furthermore, we reported that leptin up-regulates megalin in those cells. Leptin is a known inhibitor of PI3K/AKT-dependent chaperone-mediated autophagy (CMA). In this study, we tested the hypothesis that leptin acts synergistically with 25(OH)D3 to promote osteoblastogenesis in rat BMMSCs by a mechanism that entails inhibition of PI3K/AKT-dependent CMA. Methods BMMSCs were isolated from rat bone marrow (4-week-old male SD rats); qRT-PCR and western immunoblots or immunofluorescence were used to evaluate the expression of megalin, ALP, COL1A1, RUNX2, OSX, OSP, and CMA in rBMMSCs. The osteoblast differentiation was evaluated by ALP activity, ALP staining, and calcium deposition. The viability of rBMMSCs was assessed with the CCK-8 kit. Biosynthesis of 1α,25(OH)2D3 was measured by a Rat 1α,25(OH)2D3 ELISA Kit. Results The combination of leptin and 25(OH)D3 treatment significantly enhanced osteoblast differentiation as shown by ALP activity, ALP staining, and calcium deposition, the expression of osteogenic genes ALP, COL1A1, RUNX2, OSX, and OSP by qRT-PCR and western immunoblots in rBMMSCs. Leptin enhanced the expression of megalin and synthesis of 1α,25(OH)2D3 in rBMMSCs. Our data showed that leptin inhibited CMA activity of rBMMSCs by activating PI3K/AKT signal pathway; the ability of leptin to enhance 25(OH)D3 promoted osteoblast differentiation of rBMMSCs was weakened by the PI3K/AKT signal pathway inhibitor. Conclusions Our data reveal the mechanism by which leptin and 25(OH)D3 promote osteoblast differentiation in rBMMSCs. Leptin promoted the expression of megalin by inhibiting CMA, increased the utilization of 25(OH)D3 by rBMMSCs, and enhanced the ability of 25(OH)D3 to induce osteoblast differentiation of rBMMSCs. PI3K/AKT is at least partially involved in the regulation of CMA. These data indicate the importance of megalin in BMMSCs for vitamin D’s role in skeletal health. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02623-z.
Collapse
Affiliation(s)
- Qiting He
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Ruixi Qin
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, MA, USA
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jie Shi
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Shaoyi Wang
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yuan Gao
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Lei Cheng
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Groen SS, Sinkeviciute D, Bay-Jensen AC, Thudium CS, Karsdal MA, Thomsen SF, Schett G, Nielsen SH. Exploring IL-17 in spondyloarthritis for development of novel treatments and biomarkers. Autoimmun Rev 2021; 20:102760. [PMID: 33485992 DOI: 10.1016/j.autrev.2021.102760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022]
Abstract
Spondyloarthritis (SpA) is an umbrella term describing a family of chronic inflammatory rheumatic diseases. These diseases are characterised by inflammation of the axial skeleton, peripheral joints, and entheseal insertion sites throughout the body which can lead to structural joint damage including formation of axial syndesmophytes and peripheral osteophytes. Genetic evidence, preclinical and clinical studies indicate a clear role of interleukin (IL)- 23 and IL-17 as mediators in SpA pathogenesis. Targeting the IL-23/-17 pathways seems an efficient strategy for treatment of SpA patients, and despite the remaining challenges the pathway holds great promise for further advances and improved therapeutic opportunities. Much research is focusing on serological markers and imaging strategies to correctly diagnose patients in the early stages of SpA. Biomarkers may facilitate personalised medicine tailored to each patient's specific disease to optimise treatment efficacy and to monitor therapeutic response. This narrative review focuses on the IL-17 pathway in SpA-related diseases with emphasis on its role in pathogenesis, current approved IL-17 inhibitors, and the need for biomarkers reflecting core disease pathways for early diagnosis and measurement of disease activity, prognosis, and response to therapy.
Collapse
Affiliation(s)
- Solveig Skovlund Groen
- Immunoscience, Nordic Bioscience, Herlev, Denmark; Biomecial Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Dovile Sinkeviciute
- Immunoscience, Nordic Bioscience, Herlev, Denmark; Department of Clinical Sciences Lund, University of Lund, Lund, Sweden
| | | | | | | | - Simon Francis Thomsen
- Biomecial Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Signe Holm Nielsen
- Immunoscience, Nordic Bioscience, Herlev, Denmark; Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
14
|
Li PH, Zhang R, Cheng LQ, Liu JJ, Chen HZ. Metabolic regulation of immune cells in proinflammatory microenvironments and diseases during ageing. Ageing Res Rev 2020; 64:101165. [PMID: 32898718 DOI: 10.1016/j.arr.2020.101165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
The process of ageing includes molecular changes within cells and interactions between cells, eventually resulting in age-related diseases. Although various cells (immune cells, parenchymal cells, fibroblasts and endothelial cells) in tissues secrete proinflammatory signals in age-related diseases, immune cells are the major contributors to inflammation. Many studies have emphasized the role of metabolic dysregulation in parenchymal cells in age-related inflammatory diseases. However, few studies have discussed metabolic modifications in immune cells during ageing. In this review, we introduce the metabolic dysregulation of major nutrients (glucose, lipids, and amino acids) within immune cells during ageing, which leads to dysfunctional NAD + metabolism that increases immune cell senescence and leads to the acquisition of the corresponding senescence-associated secretory phenotype (SASP). We then focus on senescent immune cell interactions with parenchymal cells and the extracellular matrix and their involvement in angiogenesis, which lead to proinflammatory microenvironments in tissues and inflammatory diseases at the systemic level. Elucidating the roles of metabolic modifications in immune cells during ageing will provide new insights into the mechanisms of ageing and therapeutic directions for age-related inflammatory diseases.
Collapse
Affiliation(s)
- Pei-Heng Li
- Department of Internal Medicine, Peking Union Medical college Hospital, Beijing, China; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ran Zhang
- Buck Institute for Research on Ageing, Novato, United States
| | - Li-Qin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Jin-Jing Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, China.
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
15
|
Jauković A, Kukolj T, Obradović H, Okić-Đorđević I, Mojsilović S, Bugarski D. Inflammatory niche: Mesenchymal stromal cell priming by soluble mediators. World J Stem Cells 2020; 12:922-937. [PMID: 33033555 PMCID: PMC7524701 DOI: 10.4252/wjsc.v12.i9.922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are adult stem cells of stromal origin that possess self-renewal capacity and the ability to differentiate into multiple mesodermal cell lineages. They play a critical role in tissue homeostasis and wound healing, as well as in regulating the inflammatory microenvironment through interactions with immune cells. Hence, MSCs have garnered great attention as promising candidates for tissue regeneration and cell therapy. Because the inflammatory niche plays a key role in triggering the reparative and immunomodulatory functions of MSCs, priming of MSCs with bioactive molecules has been proposed as a way to foster the therapeutic potential of these cells. In this paper, we review how soluble mediators of the inflammatory niche (cytokines and alarmins) influence the regenerative and immunomodulatory capacity of MSCs, highlighting the major advantages and concerns regarding the therapeutic potential of these inflammatory primed MSCs. The data summarized in this review may provide a significant starting point for future research on priming MSCs and establishing standardized methods for the application of preconditioned MSCs in cell therapy.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| |
Collapse
|
16
|
Han Y, Liu J, Ahn S, An S, Ko H, Shin JC, Jin SH, Ki MW, Lee SH, Lee KH, Shin SS, Choi WJ, Noh M. Diallyl Biphenyl-Type Neolignans Have a Pharmacophore of PPARα/γ Dual Modulators. Biomol Ther (Seoul) 2020; 28:397-404. [PMID: 32576717 PMCID: PMC7457167 DOI: 10.4062/biomolther.2019.180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/24/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022] Open
Abstract
Adiponectin secretion-promoting compounds have therapeutic potentials in human metabolic diseases. Diallyl biphenyl-type neolignan compounds, magnolol, honokiol, and 4-O-methylhonokiol, from a Magnolia officinalis extract were screened as adiponectin-secretion promoting compounds in the adipogenic differentiation model of human bone marrow mesenchymal stem cells (hBM-MSCs). In a target identification study, magnolol, honokiol, and 4-O-methylhonokiol were elucidated as PPARα and PPARγ dual modulators. Diallyl biphenyl-type neolignans affected the transcription of lipid metabolism-associated genes in a different way compared to those of specific PPAR ligands. The diallyl biphenyl-type neolignan structure provides a novel pharmacophore of PPARα/γ dual modulators, which may have unique therapeutic potentials in diverse metabolic diseases.
Collapse
Affiliation(s)
- Yujia Han
- College of Pharmacy and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jingjing Liu
- College of Pharmacy and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungjin Ahn
- College of Pharmacy and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungchan An
- College of Pharmacy and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyejin Ko
- College of Pharmacy and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeayoung C Shin
- College of Pharmacy and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Hee Jin
- College of Pharmacy and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Won Ki
- College of Pharmacy and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - So Hun Lee
- SK Bioland, Cheongju 28162, Republic of Korea
| | | | | | - Won Jun Choi
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Ahn S, Basavana Gowda M, Lee M, Masagalli JN, Mailar K, Choi WJ, Noh M. Novel linked butanolide dimer compounds increase adiponectin production during adipogenesis in human mesenchymal stem cells through peroxisome proliferator-activated receptor γ modulation. Eur J Med Chem 2020; 187:111969. [DOI: 10.1016/j.ejmech.2019.111969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
|
18
|
Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, Goodman SB. Modulation of the Inflammatory Response and Bone Healing. Front Endocrinol (Lausanne) 2020; 11:386. [PMID: 32655495 PMCID: PMC7325942 DOI: 10.3389/fendo.2020.00386] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
The optimal treatment for complex fractures and large bone defects is an important unsolved issue in orthopedics and related specialties. Approximately 5-10% of fractures fail to heal and develop non-unions. Bone healing can be characterized by three partially overlapping phases: the inflammatory phase, the repair phase, and the remodeling phase. Eventual healing is highly dependent on the initial inflammatory phase, which is affected by both the local and systemic responses to the injurious stimulus. Furthermore, immune cells and mesenchymal stromal cells (MSCs) participate in critical inter-cellular communication or crosstalk to modulate bone healing. Deficiencies in this inter-cellular exchange, inhibition of the natural processes of acute inflammation, and its resolution, or chronic inflammation due to a persistent adverse stimulus can lead to impaired fracture healing. Thus, an initial and optimal transient stage of acute inflammation is one of the key factors for successful, robust bone healing. Recent studies demonstrated the therapeutic potential of immunomodulation for bone healing by the preconditioning of MSCs to empower their immunosuppressive properties. Preconditioned MSCs (also known as "primed/ licensed/ activated" MSCs) are cultured first with pro-inflammatory cytokines (e.g., TNFα and IL17A) or exposed to hypoxic conditions to mimic the inflammatory environment prior to their intended application. Another approach of immunomodulation for bone healing is the resolution of inflammation with anti-inflammatory cytokines such as IL4, IL10, and IL13. In this review, we summarize the principles of inflammation and bone healing and provide an update on cellular interactions and immunomodulation for optimal bone healing.
Collapse
Affiliation(s)
- Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Claire Rhee
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
- *Correspondence: Stuart B. Goodman
| |
Collapse
|
19
|
Selenium bioisosteric replacement of adenosine derivatives promoting adiponectin secretion increases the binding affinity to peroxisome proliferator-activated receptor δ. Bioorg Med Chem 2020; 28:115226. [PMID: 31806266 DOI: 10.1016/j.bmc.2019.115226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/23/2022]
Abstract
N6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (1a, IB-MECA) exhibited polypharmacological characteristics targeting A3 adenosine receptor (AR), peroxisome proliferator-activated receptor (PPAR) γ, and PPARδ, simultaneously. The bioisosteric replacement of oxygen in 4'-oxoadenosines with selenium significantly increased the PPARδ-binding activity. 2-Chloro-N6-(3-iodobenzyl)-4'-selenoadenosine-5'-N-methyluronamide (3e) and related 4'-selenoadenosine derivatives significantly enhanced adiponectin biosynthesis during adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). The PPARδ-binding affinity, but not the A3 AR binding affinity, of 4'-selenoadenosine derivatives correlated with their adiponectin secretion stimulation. Compared with the sugar ring of 4'-oxoadenosine, that of 4'-selenoadenosine was more favorable in forming the South sugar conformation. In the molecular docking simulation, the South sugar conformation of compound 3e formed additional hydrogen bonds inside the PPARδ ligand-binding pocket compared with the North conformation. Therefore, the sugar conformation of 4'-selenoadenosine PPAR modulators affects the ligand binding affinity against PPARδ.
Collapse
|
20
|
Gibson D, Mehler PS. Anorexia Nervosa and the Immune System-A Narrative Review. J Clin Med 2019; 8:jcm8111915. [PMID: 31717370 PMCID: PMC6912362 DOI: 10.3390/jcm8111915] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of an increasing number of chronic diseases is being attributed to effects of the immune system. However, its role in the development and maintenance of anorexia nervosa is seemingly under-appreciated. Yet, in examining the available research on the immune system and genetic studies in anorexia nervosa, one becomes increasingly suspicious of the immune system’s potential role in the pathophysiology of anorexia nervosa. Specifically, research is suggestive of increased levels of various pro-inflammatory cytokines as well as the spontaneous production of tumor necrosis factor in anorexia nervosa; genetic studies further support a dysregulated immune system in this disorder. Potential contributors to this dysregulated immune system are discussed including increased oxidative stress, chronic physiological/psychological stress, changes in the intestinal microbiota, and an abnormal bone marrow microenvironment, all of which are present in anorexia nervosa.
Collapse
Affiliation(s)
- Dennis Gibson
- Assistant Medical Director, ACUTE Center for Eating Disorders @ Denver Health; Assistant Professor of Medicine, University of Colorado School of Medicine; 777 Bannock St., Denver, CO 80204, USA
- Correspondence: ; Tel.: +303-602-5067; Fax: +303-602-3811
| | - Philip S Mehler
- President, Eating Recovery Center; Founder and Executive Medical Director, ACUTE Center for Eating Disorders @ Denver Health; Glassman Professor of Medicine, University of Colorado School of Medicine; 7351 E Lowry Blvd, Suite 200, Denver, CO 80230, USA;
| |
Collapse
|
21
|
Implication of IL-17 in Bone Loss and Structural Damage in Inflammatory Rheumatic Diseases. Mediators Inflamm 2019; 2019:8659302. [PMID: 31485194 PMCID: PMC6710740 DOI: 10.1155/2019/8659302] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/29/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
Proinflammatory cytokines play an important role in the systemic and focal bone loss associated with chronic inflammatory diseases. Targeting these cytokines with biologics and small molecules has led to a major improvement of the bone health of patients with inflammatory arthritis. Cytokines from the IL-17 family have been shown to be involved in the pathogenesis of several diseases such as spondyloarthritis, psoriatic arthritis, or psoriasis. IL-17A has been the first described and the most studied. The recent development of targeted therapies against IL-17A or its receptor and their efficacy has confirmed the importance of this cytokine in the development of inflammatory diseases. The aim of this review was to describe the effects of the IL-17 family and more particularly of IL-17A on bone and cartilage tissues. At the cellular level, IL-17A is proosteoclastogenic whereas its effects on osteoblasts depend on the stage of differentiation of these cells. In vivo, IL-17A is not required for normal bone homeostasis but plays an important role in bone loss notably in an ovariectomized mouse model of osteoporosis. Preliminary data from clinical trials showed a stabilisation of bone density in patients treated with anti-IL-17A antibodies. IL-17A plays a central role in the cartilage damage through the induction of collagenases and by decreasing the expression of their inhibitors in synergy with the other proinflammatory cytokines. The prevention of structural damage by anti-IL-17A therapies has been demonstrated in several pivotal clinical trials. Overall, blocking the IL-17A pathway seems to have a positive effect on the bone and cartilage damage observed in inflammatory arthritis. Differences and specificity of these effects compared to those already described with other biologics such as anti-TNF therapies remain to be explored.
Collapse
|
22
|
2-Phenyl-8-(1-phenylallyl)-chromenone compounds have a pan-PPAR modulator pharmacophore. Bioorg Med Chem 2019; 27:2948-2958. [PMID: 31128991 DOI: 10.1016/j.bmc.2019.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/30/2022]
Abstract
Adiponectin is an adipocytokine with insulin-sensitizing, anti-atherogenic, and anti-inflammatory properties. Adiponectin secretion-inducing compounds have therapeutic potential in a variety of metabolic diseases. Phenotypic screening led to the discovery that 5,7-dihydroxy-8-(1-(4-hydroxy-3-methoxyphenyl)allyl)-2-phenyl-4H-chromen-4-one (compound 1) had adiponectin secretion-inducing activity during adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). Compound 1 was originally reported to be an anti-cancer chemical isolated from natural honeybee propolis, and its adiponectin secretion-inducing activity was found in non-cytotoxic concentrations. In a target identification study, compound 1 and its potent synthetic derivative compound 5 were shown to be novel pan-peroxisome proliferator-activator receptor (PPAR) modulators. Molecular docking models with PPARs have indicated that the binding modes of chromenone compounds preferentially interacted with the hydrophobic ligand binding pocket of PPARs. In addition, chromenone compounds have been shown to result in different phenotypic outcomes in the transcriptional regulation of lipid metabolic enzymes than those of selective PPAR mono-agonists for PPARα, PPARγ, and PPARδ. In line with the pharmacology of adiponectin and PPAR pan-modulators, compounds 1 and 5 may have diverse therapeutic potentials to treat cancer and metabolic diseases.
Collapse
|
23
|
Noronha NDC, Mizukami A, Caliári-Oliveira C, Cominal JG, Rocha JLM, Covas DT, Swiech K, Malmegrim KCR. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther 2019; 10:131. [PMID: 31046833 PMCID: PMC6498654 DOI: 10.1186/s13287-019-1224-y] [Citation(s) in RCA: 382] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) have been widely explored for cell-based therapy of immune-mediated, inflammatory, and degenerative diseases, due to their immunosuppressive, immunomodulatory, and regenerative potentials. Preclinical studies and clinical trials have demonstrated promising therapeutic results although these have been somewhat limited. Aspects such as low in vivo MSC survival in inhospitable disease microenvironments, requirements for ex vivo cell overexpansion prior to infusions, intrinsic differences between MSC and different sources and donors, variability of culturing protocols, and potency assays to evaluate MSC products have been described as limitations in the field. In recent years, priming approaches to empower MSC have been investigated, thereby generating cellular products with improved potential for different clinical applications. Herein, we review the current priming approaches that aim to increase MSC therapeutic efficacy. Priming with cytokines and growth factors, hypoxia, pharmacological drugs, biomaterials, and different culture conditions, as well as other diverse molecules, are revised from current and future perspectives.
Collapse
Affiliation(s)
- Nádia de Cássia Noronha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Bioscience and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Amanda Mizukami
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Juçara Gastaldi Cominal
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Bioscience and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José Lucas M Rocha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kamilla Swiech
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen C R Malmegrim
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, Ribeirão Preto, SP, 14010-903, Brazil.
| |
Collapse
|
24
|
Ahn S, An S, Lee M, Lee E, Pyo JJ, Kim JH, Ki MW, Jin SH, Ha J, Noh M. A long-wave UVA filter avobenzone induces obesogenic phenotypes in normal human epidermal keratinocytes and mesenchymal stem cells. Arch Toxicol 2019; 93:1903-1915. [DOI: 10.1007/s00204-019-02462-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
|
25
|
Ahn S, Ma CT, Choi JM, An S, Lee M, Le THV, Pyo JJ, Lee J, Choi MS, Kwon SW, Park JH, Noh M. Adiponectin-Secretion-Promoting Phenylethylchromones from the Agarwood of Aquilaria malaccensis. JOURNAL OF NATURAL PRODUCTS 2019; 82:259-264. [PMID: 30672698 DOI: 10.1021/acs.jnatprod.8b00635] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The therapeutic potential of adiponectin regulation has received interest because of its association with diverse human disease conditions, such as diabetes, obesity, atherosclerosis, and cancer. Phenylethylchromone derivatives from Aquilaria malaccensis-derived agarwood promoted adiponectin secretion during adipogenesis in human bone marrow mesenchymal stem cells, and 5,6-dihydroxy-2-(2-phenylethyl)chromone (1) was identified as a new chromone derivative. A target identification study with the most potent adiponectin-secretion-promoting phenylethylchromones, 6-methoxy-2-(2-phenylethyl)chromone (3) and 7-methoxy-2-(2-phenylethyl)chromone (4), showed that they are PPARγ partial agonists. Therefore, the diverse therapeutic effects of agarwood are associated with a PPARγ-mediated adiponectin-secretion-promoting mechanism.
Collapse
Affiliation(s)
- Sungjin Ahn
- Natural Products Research Institute, College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Chi Thanh Ma
- Department of Pharmacognosy , University of Medicine and Pharmacy at Ho Chi Minh City , Ho Chi Minh City , 700000 , Vietnam
| | - Jung Min Choi
- Natural Products Research Institute, College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Seungchan An
- Natural Products Research Institute, College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Moonyoung Lee
- Natural Products Research Institute, College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Thi Hong Van Le
- Department of Pharmacognosy , University of Medicine and Pharmacy at Ho Chi Minh City , Ho Chi Minh City , 700000 , Vietnam
| | - Jeong Joo Pyo
- Natural Products Research Institute, College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Joochang Lee
- Natural Products Research Institute, College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Min Sik Choi
- College of Pharmacy , Dongduk Women's University , Seoul 02748 , Korea
| | - Sung Won Kwon
- Natural Products Research Institute, College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Jeong Hill Park
- Natural Products Research Institute, College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , Republic of Korea
| |
Collapse
|
26
|
Kim SO, Han Y, Ahn S, An S, Shin JC, Choi H, Kim HJ, Park NH, Kim YJ, Jin SH, Rho HS, Noh M. Kojyl cinnamate esters are peroxisome proliferator-activated receptor α/γ dual agonists. Bioorg Med Chem 2018; 26:5654-5663. [PMID: 30352713 DOI: 10.1016/j.bmc.2018.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022]
Abstract
Adiponectin is an adipocytokine with insulin-sensitizing, anti-inflammatory, anti-atherosclerotic, and anti-aging properties. Compounds with the ability to promote adiponectin secretion are of interest for the development of anti-aging drugs to improve skin-aging phenotypes. In the phenotypic assay to measure adiponectin secretion during adipogenesis in human adipose tissue-derived mesenchymal stem cells (hAT-MSCs), kojyl cinnamate ester derivatives increased adiponectin secretion. A target identification study showed that the kojyl cinnamate ester derivatives competitively bound to peroxisome proliferator-activated receptor α/γ (PPARα/γ). The upregulation of adiponectin production induced by kojyl cinnamate ester derivatives was significantly correlated with PPARα and PPARγ binding activities. Kojyl cinnamate ester derivatives significantly increased the transcription of genes encoding cholesterol and fatty acid synthesizing enzymes in hAT-MSCs. Notably, the kojyl cinnamate esters upregulated the gene transcription of lipid metabolic enzymes in human epidermal keratinocytes, which are important in the integrity of skin permeability barrier. In addition, the kojyl cinnamate esters that function as PPARα/γ dual modulators inhibited ultraviolet B irradiation-induced inflammation in human epidermal keratinocytes. Therefore, kojyl cinnamate ester derivatives are a novel class of PPARα/γ dual agonists with the potential to improve skin-aging phenotypes.
Collapse
Affiliation(s)
- Sae On Kim
- College of Pharmacy and Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yujia Han
- College of Pharmacy and Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungjin Ahn
- College of Pharmacy and Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seungchan An
- College of Pharmacy and Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jeayoung C Shin
- College of Pharmacy and Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyunjung Choi
- AmorePacific Corporation R&D Center, Yongin, Gyeounggi-do 17074, Republic of Korea
| | - Hyoung-June Kim
- AmorePacific Corporation R&D Center, Yongin, Gyeounggi-do 17074, Republic of Korea
| | - Nok Hyun Park
- AmorePacific Corporation R&D Center, Yongin, Gyeounggi-do 17074, Republic of Korea
| | - Yong-Jin Kim
- AmorePacific Corporation R&D Center, Yongin, Gyeounggi-do 17074, Republic of Korea
| | - Sun Hee Jin
- College of Pharmacy and Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ho Sik Rho
- Department of Chemical and Material Engineering, The University of Suwon, Gyeounggi-do 18323, Republic of Korea.
| | - Minsoo Noh
- College of Pharmacy and Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
27
|
Qi XY, Qu SL, Xiong WH, Rom O, Chang L, Jiang ZS. Perivascular adipose tissue (PVAT) in atherosclerosis: a double-edged sword. Cardiovasc Diabetol 2018; 17:134. [PMID: 30305178 PMCID: PMC6180425 DOI: 10.1186/s12933-018-0777-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/06/2018] [Indexed: 02/06/2023] Open
Abstract
Perivascular adipose tissue (PVAT), the adipose tissue that surrounds most of the vasculature, has emerged as an active component of the blood vessel wall regulating vascular homeostasis and affecting the pathogenesis of atherosclerosis. Although PVAT characteristics resemble both brown and white adipose tissues, recent evidence suggests that PVAT develops from its own distinct precursors implying a closer link between PVAT and vascular system. Under physiological conditions, PVAT has potent anti-atherogenic properties mediated by its ability to secrete various biologically active factors that induce non-shivering thermogenesis and metabolize fatty acids. In contrast, under pathological conditions (mainly obesity), PVAT becomes dysfunctional, loses its thermogenic capacity and secretes pro-inflammatory adipokines that induce endothelial dysfunction and infiltration of inflammatory cells, promoting atherosclerosis development. Since PVAT plays crucial roles in regulating key steps of atherosclerosis development, it may constitute a novel therapeutic target for the prevention and treatment of atherosclerosis. Here, we review the current literature regarding the roles of PVAT in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Xiao-Yan Qi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| | - Oren Rom
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI USA
| | - Lin Chang
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| |
Collapse
|
28
|
Guzik TJ, Cosentino F. Epigenetics and Immunometabolism in Diabetes and Aging. Antioxid Redox Signal 2018; 29:257-274. [PMID: 28891325 PMCID: PMC6012980 DOI: 10.1089/ars.2017.7299] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE A strong relationship between hyperglycemia, impaired insulin pathway, and cardiovascular disease in type 2 diabetes (T2D) is linked to oxidative stress and inflammation. Immunometabolic pathways link these pathogenic processes and pose important potential therapeutic targets. Recent Advances: The link between immunity and metabolism is bidirectional and includes the role of inflammation in the pathogenesis of metabolic disorders such as T2D, obesity, metabolic syndrome, and hypertension and the role of metabolic factors in regulation of immune cell functions. Low-grade inflammation, oxidative stress, balance between superoxide and nitric oxide, and the infiltration of macrophages, T cells, and B cells in insulin-sensitive tissues lead to metabolic impairment and accelerated aging. CRITICAL ISSUES Inflammatory infiltrate and altered immune cell phenotype precede development of metabolic disorders. Inflammatory changes are tightly linked to alterations in metabolic status and energy expenditure and are controlled by epigenetic mechanisms. FUTURE DIRECTIONS A better comprehension of these mechanistic insights is of utmost importance to identify novel molecular targets. In this study, we describe a complex scenario of epigenetic changes and immunometabolism linking to diabetes and aging-associated vascular disease. Antioxid. Redox Signal. 29, 257-274.
Collapse
Affiliation(s)
- Tomasz J. Guzik
- BHF Centre for Research Excellence, Institute of Cardiovascular and Medical Research (ICAMS), University of Glasgow, Glasgow, United Kingdom
- Department of Internal and Agricultural Medicine, Laboratory of Translational Medicine, Jagiellonian University Collegium Medicum, Krakow, Poland
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Jo S, Wang SE, Lee YL, Kang S, Lee B, Han J, Sung IH, Park YS, Bae SC, Kim TH. IL-17A induces osteoblast differentiation by activating JAK2/STAT3 in ankylosing spondylitis. Arthritis Res Ther 2018; 20:115. [PMID: 29880011 PMCID: PMC5992730 DOI: 10.1186/s13075-018-1582-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/27/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND IL-17A has recently emerged as a potential target that regulates the extensive inflammation and abnormal bone formation observed in ankylosing spondylitis (AS). Blocking IL-17A is expected to inhibit bony ankylosis. Here, we investigated the effects of anti IL-17A agents in AS. METHODS TNFα, IL-17A, and IL-12/23 p40 levels in serum and synovial fluid from patients with ankylosing spondylitis (AS), rheumatoid arthritis (RA), osteoarthritis (OA), or healthy controls (HC) were measured by ELISA. Bone tissue samples were obtained at surgery from the facet joints of ten patients with AS and ten control (Ct) patients with noninflammatory spinal disease. The functional relevance of IL-17A, biological blockades, Janus kinase 2 (JAK2), and non-receptor tyrosine kinase was assessed in vitro with primary bone-derived cells (BdCs) and serum from patients with AS. RESULTS Basal levels of IL-17A and IL-12/23 p40 in body fluids were elevated in patients with AS. JAK2 was also highly expressed in bone tissue and primary BdCs from patients with AS. Furthermore, addition of exogenous IL-17A to primary Ct-BdCs promoted the osteogenic stimulus-induced increase in ALP activity and mineralization. Intriguingly, blocking IL-17A with serum from patients with AS attenuated ALP activity and mineralization in both Ct and AS-BdCs by inhibiting JAK2 phosphorylation and downregulating osteoblast-involved genes. Moreover, JAK2 inhibitors effectively reduced JAK2-driven ALP activity and JAK2-mediated events. CONCLUSIONS Our findings indicate that IL-17A regulates osteoblast activity and differentiation via JAK2/STAT3 signaling. They shed light on AS pathogenesis and suggest new rational therapies for clinical AS ankylosis.
Collapse
Affiliation(s)
- Sungsin Jo
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
| | - Sung Eun Wang
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Young Lim Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
| | - Suman Kang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
| | - Bitnara Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
| | - Jinil Han
- Gencurix, Inc, Hanhwan Bizmetro 1, Guro 3-dong, Guro-gu, Seoul, Republic of Korea
| | - Il-Hoon Sung
- Department of Orthopedic Surgery, Hanyang University Hospital, Seoul, Republic of Korea
| | - Ye-Soo Park
- Department of Orthopedic Surgery, Hanyang University Hospital, Guri, Republic of Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
- Clinical Research Center for Rheumatoid Arthritis (CRCRA), Seoul, Republic of Korea
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
| |
Collapse
|
30
|
Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res 2018; 113:1009-1023. [PMID: 28838042 PMCID: PMC5852626 DOI: 10.1093/cvr/cvx108] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/05/2017] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue (AT) dysfunction, characterized by loss of its homeostatic functions, is a hallmark of non-communicable diseases. It is characterized by chronic low-grade inflammation and is observed in obesity, metabolic disorders such as insulin resistance and diabetes. While classically it has been identified by increased cytokine or chemokine expression, such as increased MCP-1, RANTES, IL-6, interferon (IFN) gamma or TNFα, mechanistically, immune cell infiltration is a prominent feature of the dysfunctional AT. These immune cells include M1 and M2 macrophages, effector and memory T cells, IL-10 producing FoxP3+ T regulatory cells, natural killer and NKT cells and granulocytes. Immune composition varies, depending on the stage and the type of pathology. Infiltrating immune cells not only produce cytokines but also metalloproteinases, reactive oxygen species, and chemokines that participate in tissue remodelling, cell signalling, and regulation of immunity. The presence of inflammatory cells in AT affects adjacent tissues and organs. In blood vessels, perivascular AT inflammation leads to vascular remodelling, superoxide production, endothelial dysfunction with loss of nitric oxide (NO) bioavailability, contributing to vascular disease, atherosclerosis, and plaque instability. Dysfunctional AT also releases adipokines such as leptin, resistin, and visfatin that promote metabolic dysfunction, alter systemic homeostasis, sympathetic outflow, glucose handling, and insulin sensitivity. Anti-inflammatory and protective adiponectin is reduced. AT may also serve as an important reservoir and possible site of activation in autoimmune-mediated and inflammatory diseases. Thus, reciprocal regulation between immune cell infiltration and AT dysfunction is a promising future therapeutic target.
Collapse
Affiliation(s)
- Tomasz J Guzik
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK.,Translational Medicine Laboratory, Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Dominik S Skiba
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK.,Translational Medicine Laboratory, Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Rhian M Touyz
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - David G Harrison
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK.,Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
31
|
2-Formyl-komarovicine promotes adiponectin production in human mesenchymal stem cells through PPARγ partial agonism. Bioorg Med Chem 2018; 26:1069-1075. [DOI: 10.1016/j.bmc.2018.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
|
32
|
Fang S, Huang Y, Zhong S, Li Y, Zhang Y, Li Y, Sun J, Liu X, Wang Y, Zhang S, Xu T, Sun X, Gu P, Li D, Zhou H, Li B, Fan X. Regulation of Orbital Fibrosis and Adipogenesis by Pathogenic Th17 Cells in Graves Orbitopathy. J Clin Endocrinol Metab 2017; 102:4273-4283. [PMID: 28938397 DOI: 10.1210/jc.2017-01349] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
CONTEXT T helper (Th)17 cells are correlated with many human autoimmune disorders, including Graves disease, and may play key roles in the pathogenesis of Graves orbitopathy (GO). OBJECTIVE To study the phenotype of Th17 cells in patients with GO and healthy subjects, investigate the fibrosis and adipogenesis in orbital fibroblasts (OFs) modulated by interleukin (IL)-17A, and determine the interaction between Th17 cells and OFs. DESIGN/SETTING/PARTICIPANTS Blood samples and orbital tissues from GO patients and healthy controls were collected. MAIN OUTCOME MEASURES We conducted multicolor flow cytometry, immunohistochemical and immunofluorescent stainings, Western blotting, a PathScan intracellular signaling assay, Luminex and enzyme-linked immunosorbent assays, and protein mass spectrum. RESULTS Interferon-γ- and IL-22-expressing Th17 cells are increased in GO patients, which are positively related to clinical activity score. Costimulatory molecules are highly expressed in GO orbits and most GO OFs are CD90+. IL-17A promotes TGF-β-induced fibrosis in CD90+ OFs but impedes 15-deoxy-Δ12,14-prostaglandin J2-induced adipogenesis in CD90- OFs. Th17 cells promote proinflammatory cytokine secretion in both CD90+ and CD90- OFs. Meanwhile, both CD90+ and CD90- OFs contribute to Th17 cell differentiation through prostaglandin E2 production, which can be attenuated by indomethacin. Furthermore, Th17 cells upregulate costimulatory molecule expression on OFs. CONCLUSION Our findings unravel the pathogenicity of IL-17A in the initiation and progression of GO. In-depth interpretation of the molecular basis of OFs delineated by CD90 and Th17-OF interaction will help to afford a novel approach to better therapeutic strategies for GO.
Collapse
Affiliation(s)
- Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Yazhuo Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Sisi Zhong
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yangyang Li
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Yidan Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yinwei Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Jing Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Xingtong Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yang Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Shuo Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Tianle Xu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
33
|
Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol 2017; 174:3496-3513. [PMID: 28063251 PMCID: PMC5610164 DOI: 10.1111/bph.13705] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
Perivascular adipose tissue (PVAT) plays a critical role in the pathogenesis of cardiovascular disease. In vascular pathologies, perivascular adipose tissue increases in volume and becomes dysfunctional, with altered cellular composition and molecular characteristics. PVAT dysfunction is characterized by its inflammatory character, oxidative stress, diminished production of vaso-protective adipocyte-derived relaxing factors and increased production of paracrine factors such as resistin, leptin, cytokines (IL-6 and TNF-α) and chemokines [RANTES (CCL5) and MCP-1 (CCL2)]. These adipocyte-derived factors initiate and orchestrate inflammatory cell infiltration including primarily T cells, macrophages, dendritic cells, B cells and NK cells. Protective factors such as adiponectin can reduce NADPH oxidase superoxide production and increase NO bioavailability in the vessel wall, while inflammation (e.g. IFN-γ or IL-17) induces vascular oxidases and eNOS dysfunction in the endothelium, vascular smooth muscle cells and adventitial fibroblasts. All of these events link the dysfunctional perivascular fat to vascular dysfunction. These mechanisms are important in the context of a number of cardiovascular disorders including atherosclerosis, hypertension, diabetes and obesity. Inflammatory changes in PVAT's molecular and cellular responses are uniquely different from classical visceral or subcutaneous adipose tissue or from adventitia, emphasizing the unique structural and functional features of this adipose tissue compartment. Therefore, it is essential to develop techniques for monitoring the characteristics of PVAT and assessing its inflammation. This will lead to a better understanding of the early stages of vascular pathologies and the development of new therapeutic strategies focusing on perivascular adipose tissue. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- Ryszard Nosalski
- Institute of Cardiovascular and Medical SciencesUniversity of GlasgowScotlandUK
- Department of Internal and Agricultural MedicineJagiellonian University, Collegium MedicumKrakowPoland
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical SciencesUniversity of GlasgowScotlandUK
- Department of Internal and Agricultural MedicineJagiellonian University, Collegium MedicumKrakowPoland
| |
Collapse
|
34
|
Yu J, Ahn S, Kim HJ, Lee M, Ahn S, Kim J, Jin SH, Lee E, Kim G, Cheong JH, Jacobson KA, Jeong LS, Noh M. Polypharmacology of N 6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and Related A 3 Adenosine Receptor Ligands: Peroxisome Proliferator Activated Receptor (PPAR) γ Partial Agonist and PPARδ Antagonist Activity Suggests Their Antidiabetic Potential. J Med Chem 2017; 60:7459-7475. [PMID: 28799755 PMCID: PMC5956890 DOI: 10.1021/acs.jmedchem.7b00805] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A3 adenosine receptor (AR) ligands including A3 AR agonist, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (1a, IB-MECA) were examined for adiponectin production in human bone marrow mesenchymal stem cells (hBM-MSCs). In this model, 1a significantly increased adiponectin production, which is associated with improved insulin sensitivity. However, A3 AR antagonists also promoted adiponectin production in hBM-MSCs, indicating that the A3 AR pathway may not be directly involved in the adiponectin promoting activity. In a target deconvolution study, their adiponectin-promoting activity was significantly correlated to their binding activity to both peroxisome proliferator activated receptor (PPAR) γ and PPARδ. They functioned as both PPARγ partial agonists and PPARδ antagonists. In the diabetic mouse model, 1a and its structural analogues A3 AR antagonists significantly decreased the serum levels of glucose and triglyceride, supporting their antidiabetic potential. These findings indicate that the polypharmacophore of these compounds may provide therapeutic insight into their multipotent efficacy against various human diseases.
Collapse
Affiliation(s)
- Jinha Yu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seyeon Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Moonyoung Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sungjin Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jungmin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sun Hee Jin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Eunyoung Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Minsoo Noh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
35
|
Snelling SJB, Bas S, Puskas GJ, Dakin SG, Suva D, Finckh A, Gabay C, Hoffmeyer P, Carr AJ, Lübbeke A. Presence of IL-17 in synovial fluid identifies a potential inflammatory osteoarthritic phenotype. PLoS One 2017; 12:e0175109. [PMID: 28399156 PMCID: PMC5388337 DOI: 10.1371/journal.pone.0175109] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 03/21/2017] [Indexed: 11/30/2022] Open
Abstract
Purpose Osteoarthritis (OA) is a common and heterogeneous arthritic disorder. Patients suffer pain and their joints are characterized by articular cartilage loss and osteophyte formation. Risk factors for OA include age and obesity with inflammation identified as a key mediator of disease pathogenesis. Interleukin-17A (IL-17) is a pro-inflammatory cytokine that has been implicated in inflammatory diseases such as rheumatoid arthritis. IL-17 can upregulate expression of inflammatory cytokines and adipocytokines. The aim of this study was to evaluate IL-17 levels in the synovial fluid of patients with end-stage knee and hip OA in relation to inflammation- and pain-related cytokines and adipocytokines in synovial fluid and serum, and clinical and radiographic disease parameters. Methods This is a cross-sectional study of 152 patients undergoing total hip and knee arthroplasty for OA. IL-17, IL-6, leptin, adiponectin, visfatin, resistin, C-C Motif Chemokine Ligand 2 (CCL2), C-C Motif Chemokine Ligand 7 (CCL7) and nerve growth factor (NGF) protein levels were measured in synovial fluid and serum using enzyme-linked immunosorbent assay (ELISA). Baseline characteristics included age, sex, body mass index, co-morbidities, pain and function, and radiographic analyses (OA features, K&L grade, minimal joint space width). Results 14 patients (9.2%) had detectable IL-17 in synovial fluid. These patients had significantly higher median concentrations of IL-6, leptin, resistin, CCL7 and NGF. Osteophytes, sclerosis and minimum joint space width were significantly reduced in patients with detectable IL-17 in synovial fluid. No differences were found in pain, function and comorbidities. IL-17 concentrations in synovial fluid and serum were moderately correlated (r = 0.482). Conclusion The presence of IL-17 in the synovial fluid therefore identifies a substantial subset of primary end-stage OA patients with distinct biological and clinical features. Stratification of patients on the basis of IL-17 may identify those responsive to therapeutic targeting.
Collapse
MESH Headings
- Aged
- Arthroplasty, Replacement, Hip
- Arthroplasty, Replacement, Knee
- Biomarkers/metabolism
- Comorbidity
- Cross-Sectional Studies
- Female
- Humans
- Interleukin-17/metabolism
- Male
- Osteoarthritis, Hip/diagnostic imaging
- Osteoarthritis, Hip/immunology
- Osteoarthritis, Hip/surgery
- Osteoarthritis, Knee/diagnostic imaging
- Osteoarthritis, Knee/immunology
- Osteoarthritis, Knee/surgery
- Pain/diagnostic imaging
- Pain/etiology
- Pain/immunology
- Pain/surgery
- Patient Reported Outcome Measures
- Synovial Fluid/diagnostic imaging
- Synovial Fluid/immunology
Collapse
Affiliation(s)
- Sarah J. B. Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Sylvette Bas
- Division of Rheumatology, Geneva University Hospitals, Geneva, Switzerland
| | - Gabor J. Puskas
- Division of Orthopaedic Surgery and Traumatology, Geneva University Hospitals, Geneva, Switzerland
| | - Stephanie G. Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Domizio Suva
- Division of Orthopaedic Surgery and Traumatology, Geneva University Hospitals, Geneva, Switzerland
| | - Axel Finckh
- Division of Rheumatology, Geneva University Hospitals, Geneva, Switzerland
| | - Cem Gabay
- Division of Rheumatology, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre Hoffmeyer
- Division of Orthopaedic Surgery and Traumatology, Geneva University Hospitals, Geneva, Switzerland
| | - Andrew J. Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Anne Lübbeke
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Division of Orthopaedic Surgery and Traumatology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
36
|
Chiricozzi A, Raimondo A, Lembo S, Fausti F, Dini V, Costanzo A, Monfrecola G, Balato N, Ayala F, Romanelli M, Balato A. Crosstalk between skin inflammation and adipose tissue-derived products: pathogenic evidence linking psoriasis to increased adiposity. Expert Rev Clin Immunol 2016; 12:1299-1308. [PMID: 27322922 DOI: 10.1080/1744666x.2016.1201423] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Psoriasis is a chronic skin disorder associated with several comorbid conditions. In psoriasis pathogenesis, the role of some cytokines, including TNF-α and IL-17, has been elucidated. Beside their pro-inflammatory activity, they may also affect glucose and lipid metabolism, possibly promoting insulin resistance and obesity. On the other hand, adipose tissue, secreting adipokines such as chemerin, visfatin, leptin, and adiponectin, not only regulates glucose and lipid metabolism, and endothelial cell function regulation, but it may contribute to inflammation. Areas covered: This review provides an updated 'state-of-the-art' about the reciprocal contribution of a small subset of conventional cytokines and adipokines involved in chronic inflammatory pathways, upregulated in both psoriasis and increased adiposity. A systematic search was conducted using the PubMed Medline database for primary articles. Expert commentary: Because psoriasis is associated with increased adiposity, it would be important to define the contribution of chronic skin inflammation to the onset of obesity and vice versa. Clarifying the pathogenic mechanism underlying this association, a therapeutic strategy having favorable effects on both psoriasis and increased adiposity could be identified.
Collapse
Affiliation(s)
| | - Annunziata Raimondo
- b Department of Clinical Medicine and Surgery, Section of Dermatology , University of Naples Federico II , Naples , Italy
| | - Serena Lembo
- c Department of Medicine and Surgery , University of Salerno , Salerno , Italy
| | - Francesca Fausti
- d Skin Biology Laboratory , University of Rome Tor Vergata , Rome , Italy
| | - Valentina Dini
- a Department of Dermatology , University of Pisa , Pisa , Italy
| | - Antonio Costanzo
- e Dermatology Unit, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS) , Sapienza University of Rome , Rome , Italy
| | - Giuseppe Monfrecola
- b Department of Clinical Medicine and Surgery, Section of Dermatology , University of Naples Federico II , Naples , Italy
| | - Nicola Balato
- b Department of Clinical Medicine and Surgery, Section of Dermatology , University of Naples Federico II , Naples , Italy
| | - Fabio Ayala
- b Department of Clinical Medicine and Surgery, Section of Dermatology , University of Naples Federico II , Naples , Italy
| | - Marco Romanelli
- a Department of Dermatology , University of Pisa , Pisa , Italy
| | - Anna Balato
- f Department of Advanced Biomedical Sciences , University of Naples Federico II , Naples , Italy
| |
Collapse
|
37
|
Niu CC, Lin SS, Chen WJ, Liu SJ, Chen LH, Yang CY, Wang CJ, Yuan LJ, Chen PH, Cheng HY. Benefits of biphasic calcium phosphate hybrid scaffold-driven osteogenic differentiation of mesenchymal stem cells through upregulated leptin receptor expression. J Orthop Surg Res 2015; 10:111. [PMID: 26179165 PMCID: PMC4506435 DOI: 10.1186/s13018-015-0236-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/12/2015] [Indexed: 11/20/2022] Open
Abstract
Background The use of mesenchymal stem cells (MSCs) and coralline hydroxyapatite (HA) or biphasic calcium phosphate (BCP) as a bone substitute for posterolateral spinal fusion has been reported. However, the genes and molecular signals by which MSCs interact with their surrounding environment require further elucidation. Methods MSCs were harvested from bone grafting patients and identified by flow cytometry. A composite scaffold was developed using poly(lactide-co-glycolide) (PLGA) copolymer, coralline HA, BCP, and collagen as a carrier matrix for MSCs. The gene expression profiles of MSCs cultured in the scaffolds were measured by microarrays. The alkaline phosphatase (ALP) activity of the MSCs was assessed, and the expression of osteogenic genes and proteins was determined by quantitative polymerase chain reaction (Q-PCR) and Western blotting. Furthermore, we cultured rabbit MSCs in BCP or coralline HA hybrid scaffolds and transplanted these mixtures into rabbits for spinal fusion. We investigated the differences between BCP and coralline HA hybrid scaffolds by dual-energy X-ray absorptiometry (DEXA) and computed tomography (CT). Results Tested in vitro, the cells were negative for hematopoietic cell markers and positive for MSC markers. There was higher expression of 80 genes and lower of 101 genes of MSCs cultured in BCP hybrid scaffolds. Some of these genes have been shown to play a role in osteogenesis of MSCs. In addition, MSCs cultured in BCP hybrid scaffolds produced more messenger RNA (mRNA) for osteopontin, osteocalcin, Runx2, and leptin receptor (leptin-R) than those cultured in coralline HA hybrid scaffolds. Western blotting showed more Runx2 and leptin-R protein expression in BCP hybrid scaffolds. For in vivo results, 3D reconstructed CT images showed continuous bone bridges and fusion mass incorporated with the transverse processes. Bone mineral content (BMC) values were higher in the BCP hybrid scaffold group than in the coralline HA hybrid scaffold group. Conclusions The BCP hybrid scaffold for osteogenesis of MSCs is better than the coralline HA hybrid scaffold by upregulating expression of leptin-R. This was consistent with in vivo data, which indicated that BCP hybrid scaffolds induced more bone formation in a spinal fusion model.
Collapse
Affiliation(s)
- Chi-Chien Niu
- Department of Orthopaedics, Chang Gung Memorial Hospital, No. 5, Fu-Hsing Street 333, Kweishan, Taoyuan, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Song-Shu Lin
- Department of Orthopaedics, Chang Gung Memorial Hospital, No. 5, Fu-Hsing Street 333, Kweishan, Taoyuan, Taiwan.
| | - Wen-Jer Chen
- Department of Orthopaedics, Chang Gung Memorial Hospital, No. 5, Fu-Hsing Street 333, Kweishan, Taoyuan, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan.
| | - Lih-Huei Chen
- Department of Orthopaedics, Chang Gung Memorial Hospital, No. 5, Fu-Hsing Street 333, Kweishan, Taoyuan, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Chuen-Yung Yang
- Department of Orthopaedics, Chang Gung Memorial Hospital, No. 5, Fu-Hsing Street 333, Kweishan, Taoyuan, Taiwan.
| | - Chao-Jan Wang
- Department of Radiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Li-Jen Yuan
- Department of Orthopaedics, Chang Gung Memorial Hospital, No. 5, Fu-Hsing Street 333, Kweishan, Taoyuan, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Po-Han Chen
- Department of Orthopaedics, Chang Gung Memorial Hospital, No. 5, Fu-Hsing Street 333, Kweishan, Taoyuan, Taiwan.
| | - Hsiao-Yang Cheng
- Department of Radiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
38
|
Eljaafari A, Robert M, Chehimi M, Chanon S, Durand C, Vial G, Bendridi N, Madec AM, Disse E, Laville M, Rieusset J, Lefai E, Vidal H, Pirola L. Adipose Tissue-Derived Stem Cells From Obese Subjects Contribute to Inflammation and Reduced Insulin Response in Adipocytes Through Differential Regulation of the Th1/Th17 Balance and Monocyte Activation. Diabetes 2015; 64:2477-88. [PMID: 25765019 DOI: 10.2337/db15-0162] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/04/2015] [Indexed: 12/19/2022]
Abstract
Obesity, through low-grade inflammation, can drive insulin resistance and type 2 diabetes. While infiltration of adipose tissue (AT) with mononuclear cells (MNCs) is well established in obesity, the functional consequences of these interactions are less understood. Herein, we cocultured human adipose-derived stem cells (ASCs) from obese individuals with MNCs and analyzed their reciprocal behavior. Presence of ASCs 1) enhanced interleukin (IL)-17A secretion by Th17 cells, 2) inhibited γ-interferon and tumor necrosis factor α secretion by Th1 cells, and 3) increased monocyte-mediated IL-1β secretion. IL-17A secretion also occurred in stromal vascular fractions issued from obese but not lean individuals. Th17 polarization mostly depended on physical contacts between ASCs and MNCs-with a contribution of intracellular adhesion molecule-1-and occurred through activation of the inflammasome and phosphatidylinositol 3-kinase pathways. ASCs favored STAT3 over STAT5 transcription factor binding on STAT binding sites within the IL-17A/F gene locus. Finally, conditioned media from activated ASC-MNC cocultures inhibited adipocyte differentiation mRNA markers and impaired insulin-mediated Akt phosphorylation and lipolysis inhibition. In conclusion, we report that obese- but not lean-derived ASCs induce Th17 promotion and monocyte activation. This proinflammatory environment, in turn, inhibits adipogenesis and adipocyte insulin response. The demonstration of an ASC-Th17-monocyte cell axis reveals a novel proinflammatory process taking place in AT during obesity and defines novel putative therapeutic targets.
Collapse
Affiliation(s)
- Assia Eljaafari
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA U1397, INSA-Lyon, Lyon, France Clinical Research Department, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Maud Robert
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA U1397, INSA-Lyon, Lyon, France Gastroenterology and Surgery Department, Edouard Herriot Hospital, Lyon, France
| | - Marwa Chehimi
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA U1397, INSA-Lyon, Lyon, France
| | - Stephanie Chanon
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA U1397, INSA-Lyon, Lyon, France
| | - Christine Durand
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA U1397, INSA-Lyon, Lyon, France
| | - Guillaume Vial
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA U1397, INSA-Lyon, Lyon, France
| | - Nadia Bendridi
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA U1397, INSA-Lyon, Lyon, France
| | - Anne-Marie Madec
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA U1397, INSA-Lyon, Lyon, France
| | - Emmanuel Disse
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA U1397, INSA-Lyon, Lyon, France Clinical Research Department, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Martine Laville
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA U1397, INSA-Lyon, Lyon, France Clinical Research Department, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Jennifer Rieusset
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA U1397, INSA-Lyon, Lyon, France
| | - Etienne Lefai
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA U1397, INSA-Lyon, Lyon, France
| | - Hubert Vidal
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA U1397, INSA-Lyon, Lyon, France
| | - Luciano Pirola
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA U1397, INSA-Lyon, Lyon, France
| |
Collapse
|
39
|
Shin B, Ahn S, Noh M, Shin J, Oh DC. Suncheonosides A-D, Benzothioate Glycosides from a Marine-Derived Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2015; 78:1390-1396. [PMID: 26078114 DOI: 10.1021/acs.jnatprod.5b00284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A marine-derived Streptomyces strain, SSC21, was isolated from the sediment of Suncheon Bay, Republic of Korea. Chemical analysis of the bacterial strain resulted in the isolation of four new metabolites, suncheonosides A-D (1-4, respectively), each bearing a sulfur atom. The planar structures of the suncheonosides were identified as hexasubstituted benzothioate glycosides by combined spectroscopic analyses. Analysis of the configuration of the sugar moieties based on ROESY nuclear magnetic resonance correlations, one-bond (1)H-(13)C coupling constant analysis, and chemical derivatizations indicated that the suncheonosides incorporate only l-rhamnose. Suncheonosides A, B, and D promoted adiponectin production in a concentration-dependent manner during adipogenesis in human mesenchymal stem cells, suggesting antidiabetic potential.
Collapse
Affiliation(s)
- Bora Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Seyeon Ahn
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
40
|
Osta B, Roux JP, Lavocat F, Pierre M, Ndongo-Thiam N, Boivin G, Miossec P. Differential Effects of IL-17A and TNF-α on Osteoblastic Differentiation of Isolated Synoviocytes and on Bone Explants from Arthritis Patients. Front Immunol 2015; 6:151. [PMID: 25904914 PMCID: PMC4387961 DOI: 10.3389/fimmu.2015.00151] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/21/2015] [Indexed: 11/24/2022] Open
Abstract
Objective TNF-α and IL-17A act on fibroblast-like synoviocytes (FLS) and contribute to cytokine production, inflammation, and tissue destruction in rheumatoid arthritis (RA). The aim of this study was to compare their effects on osteogenic differentiation of isolated FLS and on whole bone explants from RA and osteoarthritis (OA) patients. Methods Fibroblast-like synoviocytes and bone explants were cultured in the presence or absence of TNF-α and/or IL-17A. Mineralization of extracellular matrix of FLS was measured by alizarin red and alkaline phosphatase activity (ALP). mRNA expression was analyzed by qRT-PCR for Wnt5a, BMP2, and RUNX2, key genes associated with osteogenesis. IL-6 and IL-8 levels were measured by enzyme-linked immunosorbent assays. Bone explant structure was quantified by histomorphometry. Results In isolated OA and RA FLS, the combination of TNF-α and IL-17A induced matrix mineralization, increased ALP activity and expression of the osteogenesis-associated genes Wnt5a, BMP2, and Runx2, indicating an osteogenic differentiation. Wnt5a levels increased with TNF-α alone and in combination with IL-17A. BMP2 expression decreased with IL-17A and TNF-α after 12 h with OA FLS and 24 h with RA FLS. Runx2 expression decreased only with combination of TNF-α and IL-17A in OA FLS and with cytokines alone and combined in RA FLS. IL-6 and IL-8 production increased with IL-17A and/or TNF-α in both FLS and bone samples, especially from RA. Treatment of bone explants with cytokine combination increased ALP in OA but not RA samples. A decrease in bone volume was seen with cytokine combination, especially with RA explants. Conclusion Differences were observed for the effects of IL-17A and TNF-α on osteogenic differentiation. In isolated FLS, increased osteoblastogenesis was observed, contrasting with the inhibitory effect in whole bone, specifically in RA. The net effect of IL-17A and TNF-α appears to depend on the disease state and the presence of other cells.
Collapse
Affiliation(s)
- Bilal Osta
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Jean-Paul Roux
- UMR 1033, INSERM, UFR de Médecine Lyon Est , Lyon , France
| | - Fabien Lavocat
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Marlène Pierre
- UMR 1033, INSERM, UFR de Médecine Lyon Est , Lyon , France
| | - Ndieme Ndongo-Thiam
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Georges Boivin
- UMR 1033, INSERM, UFR de Médecine Lyon Est , Lyon , France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| |
Collapse
|
41
|
Ghali O, Broux O, Falgayrac G, Haren N, van Leeuwen JPTM, Penel G, Hardouin P, Chauveau C. Dexamethasone in osteogenic medium strongly induces adipocyte differentiation of mouse bone marrow stromal cells and increases osteoblast differentiation. BMC Cell Biol 2015; 16:9. [PMID: 25887471 PMCID: PMC4359404 DOI: 10.1186/s12860-015-0056-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/19/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteoblasts and adipocytes share a common mesenchymal stem cell origin. Therefore, it has been suggested that the accumulation of marrow adipocytes observed in bone loss is caused by a shift in the commitment of mesenchymal stem cells from the osteogenic pathway to the adipogenic pathway. Supporting this hypothesis the competition between adipogenic and osteogenic lineages was widely demonstrated on partially homogeneous cell populations. However, some data from mouse models showed the existence of an independent relationship between bone mineral content and bone marrow adiposity. Therefore, the combination of adipogenesis and osteogenesis in primary culture would be helpful to determine if this competition would be observed on a whole bone marrow stromal cell population in a culture medium allowing both lineages. In this aim, mouse bone marrow stromal cells were cultured in a standard osteogenic medium added with different concentrations of Dexamethasone, known to be an important regulator of mesenchymal progenitor cell differentiation. RESULTS Gene expression of osteoblast and adipocyte markers, biochemical and physical analyses demonstrated the presence of both cell types when Dexamethasone was used at 100 nM. Overall, our data showed that in this co-differentiation medium both differentiation lineages were enhanced compared to classical adipogenic or osteogenic culture medium. This suggests that in this model, adipocyte phenotype does not seem to increase at the expense of the osteoblast lineage. CONCLUSION This model appears to be a promising tool to study osteoblast and adipocyte differentiation capabilities and the interactions between these two processes.
Collapse
Affiliation(s)
- Olfa Ghali
- Lille2-ULCO, PMOI, F-62200, Boulogne-sur-Mer, France.
| | - Odile Broux
- Lille2-ULCO, PMOI, F-62200, Boulogne-sur-Mer, France.
| | | | | | | | | | | | - Christophe Chauveau
- Lille2-ULCO, PMOI, F-62200, Boulogne-sur-Mer, France. .,PMOI, ULCO, Boulevard Napoléon, BP 120, 62327, Boulogne-sur-mer, Cedex, France.
| |
Collapse
|
42
|
Osta B, Lavocat F, Eljaafari A, Miossec P. Effects of Interleukin-17A on Osteogenic Differentiation of Isolated Human Mesenchymal Stem Cells. Front Immunol 2014; 5:425. [PMID: 25228904 PMCID: PMC4151036 DOI: 10.3389/fimmu.2014.00425] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/19/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is characterized by defective bone repair and excessive destruction and ankylosing spondylitis (AS) by increased ectopic bone formation with syndesmophytes. Since TNF-α and IL-17A are involved in both diseases, this study investigated their effects on the osteogenic differentiation of isolated human bone marrow-derived mesenchymal stem cells (hMSCs). METHODS Differentiation of hMSCs into osteoblasts was induced in the presence or absence of IL-17A and/or TNF-α. Matrix mineralization (MM) was evaluated by alizarin red staining and alkaline phosphatase (ALP) activity. mRNA expression was measured by qRT-PCR for bone morphogenetic protein (BMP)-2 and Runx2, genes associated with osteogenesis, DKK-1, a negative regulator of osteogenesis, Schnurri-3 and receptor activator of nuclear factor kappa B ligand (RANKL), associated with the cross talk with osteoclasts, and TNF-α receptor type I and TNF-α receptor type II (TNFRII). RESULTS TNF-α alone increased both MM and ALP activity. IL-17A alone increased ALP but not MM. Their combination was more potent. TNF-α alone increased BMP2 mRNA expression at 6 and 12 h. These levels decreased in combination with IL-17A at 6 h only. DKK-1 mRNA expression was inhibited by TNF-α and IL-17A either alone or combined. Supporting an imbalance toward osteoblastogenesis, RANKL expression was inhibited by TNF-α and IL-17A. However, TNF-α but not IL-17 alone decreased Runx2 mRNA expression at 6 h. In parallel, TNF-α but not IL-17 alone increased Schnurri-3 expression with a synergistic effect with their combination. This may be related to an increase of TNFRII overexpression. CONCLUSION IL-17 increased the effects of TNF-α on bone matrix formation by hMSCs. However, IL-17 decreased the TNF-α-induced BMP2 inhibition. Synergistic interactions between TNF-α and IL-17 were seen for RANKL inhibition and Schnurri-3 induction. Such increase of Schnurri-3 may in turn activate osteoclasts leading to bone destruction as in RA. Conversely, in the absence of osteoclasts, this could promote ectopic bone formation as in AS.
Collapse
Affiliation(s)
- Bilal Osta
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Fabien Lavocat
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Assia Eljaafari
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| |
Collapse
|
43
|
Rho HS, Hong SH, Park J, Jung HI, Park YH, Lee JH, Shin SS, Noh M. Kojyl cinnamate ester derivatives promote adiponectin production during adipogenesis in human adipose tissue-derived mesenchymal stem cells. Bioorg Med Chem Lett 2014; 24:2141-5. [PMID: 24703658 DOI: 10.1016/j.bmcl.2014.03.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 02/23/2014] [Accepted: 03/13/2014] [Indexed: 12/25/2022]
Abstract
The subcutaneous fat tissue mass gradually decreases with age, and its regulation is a strategy to develop anti-aging compounds to ameliorate the photo-aging of human skin. The adipogenesis of human adipose tissue-mesenchymal stem cells (hAT-MSCs) can be used as a model to discover novel anti-aging compounds. Cinnamomum cassia methanol extracts were identified as adipogenesis-promoting agents by natural product library screening. Cinnamates, the major chemical components of Cinnamomum cassia extracts, promoted adipogenesis in hAT-MSCs. We synthesized kojyl cinnamate ester derivatives to improve the pharmacological activity of cinnamates. Structure-activity studies of kojyl cinnamate derivatives showed that both the α,β-unsaturated carbonyl ester group and the kojic acid moiety play core roles in promoting adiponectin production during adipogenesis in hAT-MSCs. We conclude that kojyl cinnamate ester derivatives provide novel pharmacophores that can regulate adipogenesis in hAT-MSCs.
Collapse
Affiliation(s)
- Ho Sik Rho
- Skin Research Institute, AmorePacific Corporation R&D Center, Yongin, Gyeonggi-do 446-729, Republic of Korea
| | - Soo Hyun Hong
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jongho Park
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Young-Ho Park
- Skin Research Institute, AmorePacific Corporation R&D Center, Yongin, Gyeonggi-do 446-729, Republic of Korea
| | - John Hwan Lee
- Skin Research Institute, AmorePacific Corporation R&D Center, Yongin, Gyeonggi-do 446-729, Republic of Korea
| | - Song Seok Shin
- Skin Research Institute, AmorePacific Corporation R&D Center, Yongin, Gyeonggi-do 446-729, Republic of Korea.
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| |
Collapse
|
44
|
Newman G, Gonzalez-Perez RR. Leptin-cytokine crosstalk in breast cancer. Mol Cell Endocrinol 2014; 382:570-582. [PMID: 23562747 PMCID: PMC3844060 DOI: 10.1016/j.mce.2013.03.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 03/26/2013] [Indexed: 02/07/2023]
Abstract
Despite accumulating evidence suggesting a positive correlation between leptin levels, obesity, post-menopause and breast cancer incidence, our current knowledge on the mechanisms involved in these relationships is still incomplete. Since the cloning of leptin in 1994 and its receptor (OB-R) 1 year later by Friedman's laboratory (Zhang et al., 1994) and Tartaglia et al. (Tartaglia et al., 1995), respectively, more than 22,000 papers related to leptin functions in several biological systems have been published (Pubmed, 2012). The ob gene product, leptin, is an important circulating signal for the regulation of body weight. Additionally, leptin plays critical roles in the regulation of glucose homeostasis, reproduction, growth and the immune response. Supporting evidence for leptin roles in cancer has been shown in more than 1000 published papers, with almost 300 papers related to breast cancer (Pubmed, 2012). Specific leptin-induced signaling pathways are involved in the increased levels of inflammatory, mitogenic and pro-angiogenic factors in breast cancer. In obesity, a mild inflammatory condition, deregulated secretion of proinflammatory cytokines and adipokines such as IL-1, IL-6, TNF-α and leptin from adipose tissue, inflammatory and cancer cells could contribute to the onset and progression of cancer. We used an in silico software program, Pathway Studio 9, and found 4587 references citing these various interactions. Functional crosstalk between leptin, IL-1 and Notch signaling (NILCO) found in breast cancer cells could represent the integration of developmental, proinflammatory and pro-angiogenic signals critical for leptin-induced breast cancer cell proliferation/migration, tumor angiogenesis and breast cancer stem cells (BCSCs). Remarkably, the inhibition of leptin signaling via leptin peptide receptor antagonists (LPrAs) significantly reduced the establishment and growth of syngeneic, xenograft and carcinogen-induced breast cancer and, simultaneously decreased the levels of VEGF/VEGFR2, IL-1 and Notch. Inhibition of leptin-cytokine crosstalk might serve as a preventative or adjuvant measure to target breast cancer, particularly in obese women. This review is intended to present an update analysis of leptin actions in breast cancer, highlighting its crosstalk to inflammatory cytokines and growth factors essential for tumor development, angiogenesis and potential role in BCSC.
Collapse
Affiliation(s)
- Gale Newman
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States.
| | - Ruben Rene Gonzalez-Perez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States.
| |
Collapse
|
45
|
Berthelot JM, Le Goff B, Maugars Y. Pathogenesis of hyperostosis: A key role for mesenchymatous cells? Joint Bone Spine 2013; 80:592-6. [PMID: 23731645 DOI: 10.1016/j.jbspin.2013.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 01/07/2023]
|
46
|
Harnessing the power of macrophages/monocytes for enhanced bone tissue engineering. Trends Biotechnol 2013; 31:342-6. [DOI: 10.1016/j.tibtech.2013.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 12/15/2022]
|
47
|
Köllmer M, Buhrman JS, Zhang Y, Gemeinhart RA. Markers Are Shared Between Adipogenic and Osteogenic Differentiated Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2013; 5:18-25. [PMID: 24013643 DOI: 10.5897/jdbte2013.0065] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The stem cell differentiation paradigm is based on the progression of cells through generations of daughter cells that eventually become restricted and committed to one lineage resulting in fully differentiated cells. Herein, we report on the differentiation of adult human mesenchymal stem cells (hMSCs) towards adipogenic and osteogenic lineages using established protocols. Lineage specific geneswere evaluated by quantitative real-time PCR relative to two reference genes. The expression of osteoblast-associated genes (alkaline phosphatase, osteopontin, and osteocalcin)was detected in hMSCs that underwent adipogenesis. When normalized, the expression of adipocyte marker genes (adiponectin, fatty acid binding protein P4, and leptin) increasedin a time-dependent manner during adipogenic induction. Adiponectin and leptin were also detected in osteoblast-induced cells. Lipid vacuoles that represent the adipocyte phenotype were only present in the adipogenic induction group. Conforming to the heterogeneous nature of hMSCs and the known plasticity between osteogenic and adipogenic lineages, these data indicatea marker overlap between MSC-derived adipocytes and osteoblasts. Weproposea careful consideration of experimental conditions such as investigated timepoints, selected housekeeping genesand the evidence indicating lack of differentiation into other lineageswhen evaluating hMSC differentiation.
Collapse
Affiliation(s)
- Melanie Köllmer
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA
| | | | | | | |
Collapse
|
48
|
The opposite effect of isotype-selective monoamine oxidase inhibitors on adipogenesis in human bone marrow mesenchymal stem cells. Bioorg Med Chem Lett 2013; 23:3273-6. [PMID: 23611731 DOI: 10.1016/j.bmcl.2013.03.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/22/2013] [Accepted: 03/27/2013] [Indexed: 12/15/2022]
Abstract
Adiponectin production during adipocyte differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) can be used to evaluate the pharmacological activity of anti-diabetic drugs to improve insulin sensitivity. Monoamine oxidase (MAO) inhibitors such as phenelzine and pargyline inhibit adipogenesis in murine pre-adipocytes. In this study, however, we found that selective MAO-A inhibitors, moclobemide and Ro41-1049, and a selective MAO-B inhibitor, selegiline, promoted adiponectin production during adipocyte differentiation in hBM-MSCs, which suggested the anti-diabetic potential of these drugs. In contrast, non-selective MAO inhibitors, phenelzine and tranylcypromine, inhibited adipocyte differentiation of hBM-MSCs. Concomitant treatments of MAO-A and MAO-B selective inhibitors did not change the stimulatory effect on adiponectin production in hBM-MSCs. Taken together, the opposite effects of isotype-selective MAO inhibitors on adiponectin production during adipogenesis in hBM-MSCs may not be directly associated with the inhibitory effects of MAO, suggested that the structure of MAO inhibitors may contain a novel anti-diabetic pharmacophore.
Collapse
|
49
|
Caetano-Lopes J, Rodrigues A, Lopes A, Vale AC, Pitts-Kiefer MA, Vidal B, Perpétuo IP, Monteiro J, Konttinen YT, Vaz MF, Nazarian A, Canhão H, Fonseca JE. Rheumatoid Arthritis Bone Fragility Is Associated With Upregulation of IL17 and DKK1 Gene Expression. Clin Rev Allergy Immunol 2013; 47:38-45. [DOI: 10.1007/s12016-013-8366-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
IL-17 inhibits adipogenesis in part via C/EBPα, PPARγ and Krüppel-like factors. Cytokine 2013; 61:898-905. [PMID: 23332504 DOI: 10.1016/j.cyto.2012.12.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/14/2012] [Accepted: 12/06/2012] [Indexed: 12/27/2022]
Abstract
IL-17 is an inflammatory cytokine associated with anti-microbial host defense and pathogenesis of autoimmune diseases. Obesity is considered to be an inflammatory condition, but how cytokines and fat metabolism are interconnected remains poorly understood. Mesenchymal stem cells can differentiate into adipocytes, which serve as depots for stored fat. Despite the pro-inflammatory properties of IL-17, both IL-17- and IL-17RA-deficient mice are overweight. Consistently, IL-17 suppresses maturation of cells with adipogenic potential. However, the mechanism underlying IL-17-mediated inhibition is not defined. In this study, we addressed this question by evaluating the impact of IL-17 on a variety of transcription factors (TFs) that control adipogenesis, using 3T3-L1 cells to model adipocyte differentiation. Surprisingly, IL-17 does not suppress adipogenesis via C/EBPβ and C/EBPδ, TFs often considered to be central regulators of adipogenesis. Rather, IL-17 suppresses expression of several pro-adipogenic TFs, including PPARγ and C/EBPα. Moreover, we found that IL-17 regulates expression of several members of the Krüppel-like family (KLF). Specifically, IL-17 suppresses KLF15, a pro-adipogenic TF, and enhances expression of KLF2 and KLF3, which are anti-adipogenic. Thus, IL-17 suppresses adipogenesis at least in part through the combined effects of TFs that regulate adipocyte differentiation.
Collapse
|