1
|
Wang X, Wang Z, Liu Z, Huang F, Pan Z, Zhang Z, Liu T. Nutritional strategies in oncology: The role of dietary patterns in modulating tumor progression and treatment response. Biochim Biophys Acta Rev Cancer 2025; 1880:189322. [PMID: 40228747 DOI: 10.1016/j.bbcan.2025.189322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Dietary interventions can influence tumor growth by restricting tumor-specific nutritional requirements, altering the nutrient availability in the tumor microenvironment, or enhancing the cytotoxicity of anticancer drugs. Metabolic reprogramming of tumor cells, as a significant hallmark of tumor progression, has a profound impact on immune regulation, severely hindering tumor eradication. Dietary interventions can modify tumor metabolic processes to some extent, thereby further improving the efficacy of tumor treatment. In this review, we emphasize the impact of dietary patterns on tumor progression. By exploring the metabolic differences of nutrients in normal cells versus cancer cells, we further clarify how dietary patterns influence cancer treatment. We also discuss the effects of dietary patterns on traditional treatments such as immunotherapy, chemotherapy, radiotherapy, and the gut microbiome, thereby underscoring the importance of precision nutrition.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zeyao Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zihan Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Fanxuan Huang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zhaoyu Pan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Zhiren Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China; Departments of Cardiology and Pharmacy and Breast Cancer surgery, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China.
| | - Tong Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China; Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| |
Collapse
|
2
|
Pekkle Lam HY, Liang TR, Jiang SJ, Peng SY. Schistosoma mansoni soluble egg antigen suppresses colorectal cancer growth in vitro and in vivo. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:241-250. [PMID: 39653602 DOI: 10.1016/j.jmii.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/28/2024] [Accepted: 11/22/2024] [Indexed: 03/18/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common malignant disease around the world. Because the hosts' immunity plays a great part in regulating tumor cells' growth and progression, immunotherapies have therefore aroused great interest in treating cancers. Currently, scientists have investigated the use of Schistosoma-derived soluble egg antigens (SEA), which is known as a strong immune modulator, in treating a series of immune-related diseases. METHODS In this study, we investigated the anti-tumor effect of SEA against CRC using in vitro cell lines, HCT-116 and DLD-1, as well as in vivo mouse xenograft model. Approaches such as migration assay, invasion assay, and western blotting were done to analyze the anti-tumor effect of SEA. Furthermore, qRT-PCR and ELISA were performed to identify the immune profile of SEA-treated cells as well as SEA-treated xenograft mice. RESULTS In vitro studies suggested that SEA can dose-dependently inhibit the growth and progression of HCT-116 and DLD-1 cells. This inhibition was accompanied by a reduction of epithelial-mesenchymal transition (EMT), inflammasome inactivation, and apoptosis. SEA also downregulated the expression of IL-4 and IL-10 in the CRC cells, which may be the reason why their growth and progression were suppressed. In vivo studies showed a similar beneficial effect of SEA, as local administration of 25 μg SEA significantly inhibits tumor cell growth. SEA treatment also shifts the host's immunity from a pro-tumorigenic response to an anti-tumor response. CONCLUSION In conclusion, SEA may provide a beneficial effect against CRC, and further investigation may give promise in CRC treatment.
Collapse
Affiliation(s)
- Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ting-Ruei Liang
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
3
|
Wang H, Ma L, Su W, Liu Y, Xie N, Liu J. NLRP3 inflammasome in health and disease (Review). Int J Mol Med 2025; 55:48. [PMID: 39930811 PMCID: PMC11781521 DOI: 10.3892/ijmm.2025.5489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Activation of inflammasomes is the activation of inflammation‑related caspase mediated by the assembly signal of multi‑protein complex and the maturity of inflammatory factors, such as IL‑1β and IL‑18. Among them, the Nod‑like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most thoroughly studied type of inflammatory corpuscle at present, which is involved in the occurrence and development of numerous human diseases. Therefore, targeting the NLRP3 inflammasome has become the focus of drug development for related diseases. In this paper, the research progress of the NLRP3 inflammasome in recent years is summarized, including the activation and regulation of NLRP3 and its association with diseases. A deep understanding of the regulatory mechanism of NLRP3 will be helpful to the discovery of new drug targets and the development of therapeutic drugs.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Li Ma
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Weiran Su
- Department of Internal Medicine, Jiading District Central Hospital, Shanghai 201800, P.R. China
| | - Yangruoyu Liu
- Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Ning Xie
- Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| |
Collapse
|
4
|
Li S, Yuan H, Li L, Li Q, Lin P, Li K. Oxidative Stress and Reprogramming of Lipid Metabolism in Cancers. Antioxidants (Basel) 2025; 14:201. [PMID: 40002387 PMCID: PMC11851681 DOI: 10.3390/antiox14020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidative stress is a common event involved in cancer pathophysiology, frequently accompanied by unique lipid metabolic reprogramming phenomena. Oxidative stress is caused mainly by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant system in cancer cells. Emerging evidence has reported that oxidative stress regulates the expression and activity of lipid metabolism-related enzymes, leading to the alteration of cellular lipid metabolism; this involves a significant increase in fatty acid synthesis and a shift in the way in which lipids are taken up and utilized. The dysregulation of lipid metabolism provides abundant intermediates to synthesize biological macromolecules for the rapid proliferation of cancer cells; moreover, it contributes to the maintenance of intracellular redox homeostasis by producing a variety of reducing agents. Moreover, lipid derivatives and metabolites play critical roles in signal transduction within cancer cells and in the tumor microenvironment that evades immune destruction and facilitates tumor invasion and metastasis. These findings suggest a close relationship between oxidative stress and lipid metabolism during the malignant progression of cancers. This review focuses on the crosstalk between the redox system and lipid metabolic reprogramming, which provides an in-depth insight into the modulation of ROS on lipid metabolic reprogramming in cancers and discusses potential strategies for targeting lipid metabolism for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Ping Lin
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (S.L.); (H.Y.); (L.L.); (Q.L.)
| | - Kai Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (S.L.); (H.Y.); (L.L.); (Q.L.)
| |
Collapse
|
5
|
Jang JH, Kim DH, Chun KS. Tumor microenvironment regulation by reactive oxygen species-mediated inflammasome activation. Arch Pharm Res 2025; 48:115-131. [PMID: 39888519 DOI: 10.1007/s12272-025-01532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Tumor microenvironment (TME) is composed of diverse cell types whose interactions, both direct and indirect, significantly influence tumorigenesis and therapeutic outcomes. Within TME, reactive oxygen species (ROS) are produced by various cells and exhibit a dual role: moderate ROS levels promote tumor initiation and progression, whereas excessive levels induce cancer cell death, influencing the efficacy of anticancer therapies. Inflammasomes, cytosolic multiprotein complexes, are pivotal in multiple stages of tumorigenesis and play a crucial role in establishing the inflammatory TME. By releasing cytokines such as IL-1β and IL-18, inflammasomes contribute to immune cell recruitment and sustain a chronic inflammatory state that supports tumor growth. ROS are critical regulators of inflammasome activation, with the impact of ROS-mediated activation differing across cell types, leading to distinct influences on tumor progression and therapeutic responses. This review explores how ROS drive inflammasome activation in various TME-associated cells and the reciprocal ROS generation induced by inflammasomes, examining their multifaceted impact on tumorigenesis and therapeutic efficacy. By elucidating the complex interplay between ROS and inflammasomes in TME, we provide insights into potential therapeutic approaches that could modulate cancer progression and enhance treatment outcomes.
Collapse
Affiliation(s)
- Jeong-Hoon Jang
- College of Pharmacy, Daegu Catholic University, Gyeongsan-si, Gyeongbuk, 38430, Republic of Korea
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
6
|
Rahman U, Younas Z, Ahmad I, Yousaf T, Latif R, Rubab U, Hassan H, Shafi U, Mashwani ZUR. Enhancing health and therapeutic potential: innovations in the medicinal and pharmaceutical properties of soy bioactive compounds. Front Pharmacol 2024; 15:1397872. [PMID: 39421675 PMCID: PMC11483366 DOI: 10.3389/fphar.2024.1397872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/24/2024] [Indexed: 10/19/2024] Open
Abstract
An extensive examination of the medical uses of soybean bioactive components is provided by this thorough review. It explores the possible health advantages of isoflavones with phytoestrogenic qualities, like genistein, which may lower the risk of cancer. The review highlights the different roles and possible anticancer activities of phenolic compounds, phytic acid, protease inhibitors, lignans, and saponins, among other bioactive components. It also addresses the benefits of dietary fiber and oligosaccharides derived from soybeans for intestinal health, as well as the impact of soy protein on diabetes, obesity, cancer, and cardiovascular health. Conjugated linoleic acid (CLA) has anticancer and cholesterol-lowering properties; its involvement in promoting metabolic processes is also examined. Pinitol is highlighted in the study as a blood sugar regulator with promise for controlling insulin signaling. In this review, we aim to affirm soybeans' potential as a high-functional, well-being food by examining their recently discovered therapeutic and pharmacological capabilities, rather than to improve upon the previous studies on the reported nutritional advantages of soybeans.
Collapse
Affiliation(s)
| | | | - Ilyas Ahmad
- *Correspondence: Zia-ur-Rehman Mashwani, ; Ilyas Ahmad,
| | | | | | | | | | | | | |
Collapse
|
7
|
Yuan X, Wang Q, Zhao J, Xie H, Pu Z. The m6A methyltransferase METTL3 modifies Kcnk6 promoting on inflammation associated carcinogenesis is essential for colon homeostasis and defense system through histone lactylation dependent YTHDF2 binding. Int Rev Immunol 2024; 44:1-16. [PMID: 39269733 DOI: 10.1080/08830185.2024.2401358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Inflammation induces tumor formation and plays a crucial role in tumor progression and prognosis. KCNK6, by regulating K(+) efflux to reduce NLRP3 Inflammasome-induced lung injury, relaxes the aorta. This study aims to elucidate the effects and biological mechanism of KCNK6 in inflammation-associated carcinogenesis, which may be essential for colon homeostasis and the defense system. To induce colitis, mice were given 3.0% Dextran Sodium Sulfate (DSS) in their drinking water for 7 days. The Azoxymethane (AOM) +DSS method was used to induce colon cancer in the mice model. Bone marrow-derived macrophages (BMDM) from Kcnk6-/- mice, AW264.7 cells, and human colon cancer HCT116 and Caco2 cells were used as in vitro models. The loss of Kcnk6 prevented spontaneous colitis and restored mucosal integrity and homeostatic molecules. Additionally, the loss of Kcnk6 reduced the severity of AOM/DSS-induced carcinogenesis. Kcnk6 promoted cell viability and proliferation in HCT-116 or Caco-2 cells. The loss of Kcnk6 inhibited the levels of inflammatory factors in BMDM cells. Kcnk6 accelerated potassium channel activity, inducing NLRP3 inflammasome activation. METTL3-mediated m6A modification increased Kcnk6 stability in a YTHDF2-dependent manner. Histone lactylation activated the transcription of YTHDF2/Kcnk6. Our study revealed the important role of Kcnk6 in inflammation-associated carcinogenesis progression. The m6A methyltransferase METTL3 and histone lactylation increased Kcnk6 stability in a YTHDF2-dependent manner, providing a potential strategy for inflammation-associated carcinogenesis or colorectal cancer therapy.
Collapse
Affiliation(s)
- Xiaolong Yuan
- Department of Pharmacy, Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Qiong Wang
- Department of Stomatology, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical, Wuhu, Anhui, China
| | - Jun Zhao
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Haitang Xie
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Zhichen Pu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical, Wuhu, Anhui, China
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
8
|
Hamamah S, Lobiuc A, Covasa M. Antioxidant Role of Probiotics in Inflammation-Induced Colorectal Cancer. Int J Mol Sci 2024; 25:9026. [PMID: 39201713 PMCID: PMC11354872 DOI: 10.3390/ijms25169026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) continues to be a significant contributor to global morbidity and mortality. Emerging evidence indicates that disturbances in gut microbial composition, the formation of reactive oxygen species (ROS), and the resulting inflammation can lead to DNA damage, driving the pathogenesis and progression of CRC. Notably, bacterial metabolites can either protect against or contribute to oxidative stress by modulating the activity of antioxidant enzymes and influencing signaling pathways that govern ROS-induced inflammation. Additionally, microbiota byproducts, when supplemented through probiotics, can affect tumor microenvironments to enhance treatment efficacy and selectively mediate the ROS-induced destruction of CRC cells. This review aims to discuss the mechanisms by which taxonomical shifts in gut microbiota and related metabolites such as short-chain fatty acids, secondary bile acids, and trimethylamine-N-oxide influence ROS concentrations to safeguard or promote the onset of inflammation-mediated CRC. Additionally, we focus on the role of probiotic species in modulating ROS-mediated signaling pathways that influence both oxidative status and inflammation, such as Nrf2-Keap1, NF-κB, and NLRP3 to mitigate carcinogenesis. Overall, a deeper understanding of the role of gut microbiota on oxidative stress may aid in delaying or preventing the onset of CRC and offer new avenues for adjunct, CRC-specific therapeutic interventions such as cancer immunotherapy.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| |
Collapse
|
9
|
Chen J, Singh N, Ye X, Theune EV, Wang K. Gut microbiota-mediated activation of GSDMD ignites colorectal tumorigenesis. Cancer Gene Ther 2024; 31:1007-1017. [PMID: 38898209 PMCID: PMC11257976 DOI: 10.1038/s41417-024-00796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Activation of Gasdermin D (GSDMD) results in its cleavage, oligomerization, and subsequent formation of plasma membrane pores, leading to a form of inflammatory cell death denoted as pyroptosis. The roles of GSDMD in inflammation and immune responses to infection are well documented. However, whether GSDMD also plays a role in sporadic cancer development, especially that in the gut epithelium, remains unknown. Here, we show that GSDMD is activated in colorectal tumors of both human and mouse origins. Ablation of GSDMD in a mouse model of sporadic colorectal cancer resulted in reduced tumor formation in the colon and rectum, suggesting a tumor-promoting role of the protein in the gut. Both antibiotic-mediated depletion of gut microbiota and pharmacological inhibition of NLRP3 inflammasome reduced the activation of GSDMD. Loss of GSDMD resulted in reduced infiltration of immature myeloid cells, and increased numbers of macrophages in colorectal tumors. Activation of GSDMD is also accompanied by the aggregation of the endosomal sorting complex required for transport (ESCRT) membrane repair proteins on the membrane of colorectal tumor cells, suggesting that active membrane repairment may prevent pyroptosis induced by the formation of GSDMD pore in tumor cells. Our results show that gut microbiota/NLRP3-mediated activation of GSDMD promotes the development of colorectal tumors, and supports the use of NLRP3 inhibitors to treat colon cancer.
Collapse
Affiliation(s)
- Ju Chen
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, 528000, China
| | - Neha Singh
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Xiaoyang Ye
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Eileen Victoria Theune
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA.
| |
Collapse
|
10
|
Lee J, Mani A, Shin MJ, Krauss RM. Leveraging altered lipid metabolism in treating B cell malignancies. Prog Lipid Res 2024; 95:101288. [PMID: 38964473 PMCID: PMC11347096 DOI: 10.1016/j.plipres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
B cell malignancies, comprising over 80 heterogeneous blood cancers, pose significant prognostic challenges due to intricate oncogenic signaling. Emerging evidence emphasizes the pivotal role of disrupted lipid metabolism in the development of these malignancies. Variations in lipid species, such as phospholipids, cholesterol, sphingolipids, and fatty acids, are widespread across B cell malignancies, contributing to uncontrolled cell proliferation and survival. Phospholipids play a crucial role in initial signaling cascades leading to B cell activation and malignant transformation through constitutive B cell receptor (BCR) signaling. Dysregulated cholesterol and sphingolipid homeostasis support lipid raft integrity, crucial for propagating oncogenic signals. Sphingolipids impact malignant B cell stemness, proliferation, and survival, while glycosphingolipids in lipid rafts modulate BCR activation. Additionally, cancer cells enhance fatty acid-related processes to meet heightened metabolic demands. In obese individuals, the obesity-derived lipids and adipokines surrounding adipocytes rewire lipid metabolism in malignant B cells, evading cytotoxic therapies. Genetic drivers such as MYC translocations also intrinsically alter lipid metabolism in malignant B cells. In summary, intrinsic and extrinsic factors converge to reprogram lipid metabolism, fostering aggressive phenotypes in B cell malignancies. Therefore, targeting altered lipid metabolism has translational potential for improving risk stratification and clinical management of diverse B cell malignancy subtypes.
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea; Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA.
| | - Arya Mani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511, USA; Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Min-Jeong Shin
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Ronald M Krauss
- Department of Pediatrics and Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Lu J, He R, Liu Y, Zhang J, Xu H, Zhang T, Chen L, Yang G, Zhang J, Liu J, Chi H. Exploiting cell death and tumor immunity in cancer therapy: challenges and future directions. Front Cell Dev Biol 2024; 12:1416115. [PMID: 38887519 PMCID: PMC11180757 DOI: 10.3389/fcell.2024.1416115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Cancer remains a significant global challenge, with escalating incidence rates and a substantial burden on healthcare systems worldwide. Herein, we present an in-depth exploration of the intricate interplay between cancer cell death pathways and tumor immunity within the tumor microenvironment (TME). We begin by elucidating the epidemiological landscape of cancer, highlighting its pervasive impact on premature mortality and the pronounced burden in regions such as Asia and Africa. Our analysis centers on the pivotal concept of immunogenic cell death (ICD), whereby cancer cells succumbing to specific stimuli undergo a transformation that elicits robust anti-tumor immune responses. We scrutinize the mechanisms underpinning ICD induction, emphasizing the release of damage-associated molecular patterns (DAMPs) and tumor-associated antigens (TAAs) as key triggers for dendritic cell (DC) activation and subsequent T cell priming. Moreover, we explore the contributions of non-apoptotic RCD pathways, including necroptosis, ferroptosis, and pyroptosis, to tumor immunity within the TME. Emerging evidence suggests that these alternative cell death modalities possess immunogenic properties and can synergize with conventional treatments to bolster anti-tumor immune responses. Furthermore, we discuss the therapeutic implications of targeting the TME for cancer treatment, highlighting strategies to harness immunogenic cell death and manipulate non-apoptotic cell death pathways for therapeutic benefit. By elucidating the intricate crosstalk between cancer cell death and immune modulation within the TME, this review aims to pave the way for the development of novel cancer therapies that exploit the interplay between cell death mechanisms and tumor immunity and overcome Challenges in the Development and implementation of Novel Therapies.
Collapse
Affiliation(s)
- Jiaan Lu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Ru He
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yang Liu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jinghan Zhang
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Heng Xu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Tianchi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Li Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Jun Zhang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Wu J, Sun X, Jiang P. Metabolism-inflammasome crosstalk shapes innate and adaptive immunity. Cell Chem Biol 2024; 31:884-903. [PMID: 38759617 DOI: 10.1016/j.chembiol.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Inflammasomes are a central component of innate immunity and play a vital role in regulating innate immune response. Activation of inflammasomes is also indispensable for adaptive immunity, modulating the development and response of adaptive immunity. Recently, increasing studies have shown that metabolic alterations and adaptations strongly influence and regulate the differentiation and function of the immune system. In this review, we will take a holistic view of how inflammasomes bridge innate and adaptive (especially T cell) immunity and how inflammasomes crosstalk with metabolic signals during the immune responses. And, special attention will be paid to the metabolic control of inflammasome-mediated interactions between innate and adaptive immunity in disease. Understanding the metabolic regulatory functions of inflammasomes would provide new insights into future research directions in this area and may help to identify potential targets for inflammasome-associated diseases and broaden therapeutic avenues.
Collapse
Affiliation(s)
- Jun Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xuan Sun
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
13
|
Tripathi S, Gupta E, Galande S. Statins as anti-tumor agents: A paradigm for repurposed drugs. Cancer Rep (Hoboken) 2024; 7:e2078. [PMID: 38711272 PMCID: PMC11074523 DOI: 10.1002/cnr2.2078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Statins, frequently prescribed medications, work by inhibiting the rate-limiting enzyme HMG-CoA reductase (HMGCR) in the mevalonate pathway to reduce cholesterol levels. Due to their multifaceted benefits, statins are being adapted for use as cost-efficient, safe and effective anti-cancer treatments. Several studies have shown that specific types of cancer are responsive to statin medications since they rely on the mevalonate pathway for their growth and survival. RECENT FINDINGS Statin are a class of drugs known for their potent inhibition of cholesterol production and are typically prescribed to treat high cholesterol levels. Nevertheless, there is growing interest in repurposing statins for the treatment of malignant neoplastic diseases, often in conjunction with chemotherapy and radiotherapy. The mechanism behind statin treatment includes targeting apoptosis through the BCL2 signaling pathway, regulating the cell cycle via the p53-YAP axis, and imparting epigenetic modulations by altering methylation patterns on CpG islands and histone acetylation by downregulating DNMTs and HDACs respectively. Notably, some studies have suggested a potential chemo-preventive effect, as decreased occurrence of tumor relapse and enhanced survival rate were reported in patients undergoing long-term statin therapy. However, the definitive endorsement of statin usage in cancer therapy hinges on population based clinical studies with larger patient cohorts and extended follow-up periods. CONCLUSIONS The potential of anti-cancer properties of statins seems to reach beyond their influence on cholesterol production. Further investigations are necessary to uncover their effects on cancer promoting signaling pathways. Given their distinct attributes, statins might emerge as promising contenders in the fight against tumorigenesis, as they appear to enhance the efficacy and address the limitations of conventional cancer treatments.
Collapse
Affiliation(s)
- Sneha Tripathi
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
| | - Ekta Gupta
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
| | - Sanjeev Galande
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
- Centre of Excellence in Epigenetics, Department of Life SciencesShiv Nadar Institution of EminenceGautam Buddha NagarIndia
| |
Collapse
|
14
|
Liu J, Wang T, Zhang W, Huang Y, Wang X, Li Q. Association between Metabolic Reprogramming and Immune Regulation in Digestive Tract Tumors. Oncol Res Treat 2024; 47:273-286. [PMID: 38636467 DOI: 10.1159/000538659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The cancers of the digestive tract, including colorectal cancer (CRC), gastric cancer, and esophageal cancer, are part of the most common cancers as well as one of the most important leading causes of cancer death worldwide. SUMMARY Despite the emergence of immune checkpoint inhibitors (e.g., anti-CTLA-4 and anti-PD-1/PD-L1) in the past decade, offering renewed optimism in cancer treatment, only a fraction of patients derive benefit from these therapies. This limited efficacy may stem from tumor heterogeneity and the impact of metabolic reprogramming on both tumor cells and immune cells within the tumor microenvironment (TME). The metabolic reprogramming of glucose, lipids, amino acids, and other nutrients represents a pivotal hallmark of cancer, serving to generate energy, reducing equivalent and biological macromolecule, thereby fostering tumor proliferation and invasion. Significantly, the metabolic reprogramming of tumor cells can orchestrate changes within the TME, rendering patients unresponsive to immunotherapy. KEY MESSAGES In this review, we predominantly encapsulate recent strides on metabolic reprogramming among digestive tract cancer, especially CRC, in the TME with a focus on how these alterations influence anti-tumor immunity. Additionally, we deliberate on potential strategies to address these abnormities in metabolic pathways and the viability of combined therapy within the realm of anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Jiafeng Liu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Huang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinhai Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
16
|
Xiao YL, Gong Y, Qi YJ, Shao ZM, Jiang YZ. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct Target Ther 2024; 9:59. [PMID: 38462638 PMCID: PMC10925609 DOI: 10.1038/s41392-024-01771-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.
Collapse
Affiliation(s)
- Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Gong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying-Jia Qi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Chen X, Ma Z, Yi Z, Wu E, Shang Z, Tuo B, Li T, Liu X. The effects of metabolism on the immune microenvironment in colorectal cancer. Cell Death Discov 2024; 10:118. [PMID: 38453888 PMCID: PMC10920911 DOI: 10.1038/s41420-024-01865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Colorectal cancer (CRC) is a malignancy that is widely prevalent worldwide. Due to its unsatisfactory treatment outcome and extremely poor prognosis, many studies on the molecular mechanisms and pathological mechanisms of CRC have been published in recent years. The tumor microenvironment (TME) is an extremely important feature of tumorigenesis and one of the hallmarks of tumor development. Metabolic reprogramming is currently a hot topic in tumor research, and studies on this topic have provided important insights into CRC development. In particular, metabolic reprogramming in cancer causes changes in the composition of energy and nutrients in the TME. Furthermore, it can alter the complex crosstalk between immune cells and associated immune factors, such as associated macrophages and T cells, which play important immune roles in the TME, in turn affecting the immune escape of tumors by altering immune surveillance. In this review, we summarize several metabolism-related processes affecting the immune microenvironment of CRC tumors. Our results showed that the immune microenvironment is regulated by metabolic reprogramming and influences the development of CRC.
Collapse
Affiliation(s)
- Xingzhao Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Enqin Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhengye Shang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
18
|
Song J, Ham J, Park W, Song G, Lim W. Osthole impairs mitochondrial metabolism and the autophagic flux in colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155383. [PMID: 38295666 DOI: 10.1016/j.phymed.2024.155383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Osthole is active constituent of Cnidium monnieri (L.) Cuss. with various physiological functions including anti-inflammation and anti-lipedemic effects. However, the regulatory activity of osthole in colorectal cancer development, focusing on mitochondrial metabolism, is not well known. HYPOTHESIS/PURPOSE We hypothesized that osthole may suppress progression of colorectal cancer and aimed to determine the underlying mitochondrial metabolism and the autophagic flux. STUDY DESIGN In this study, we elucidated the mechanism of action of osthole in colorectal cancer using an in vivo azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model and an in vitro cell culture system. METHODS AOM/DSS mouse model was established and analyzed the effects of osthole on survival rate, diseases activity index, number of tumor and histopathology. Then, cell based assays including viability, cell cycle, reactive oxygen species (ROS), apoptosis, calcium efflux, and mitochondrial function were analyzed. Moreover, osthole-mediated signaling was demonstrated by western blot analyses. RESULTS Osthole effectively suppressed the growth of colorectal tumors and alleviated AOM/DSS-induced intestinal injury. Osthole restored the function of goblet cells and impaired the expression of Claudin1 and Axin1 impaired by AOM/DSS. In addition, osthole specifically showed cytotoxicity in colorectal carcinoma cells, but not in normal colon cells. Osthole decreased the ASC/caspase-1/IL-1β inflammasome pathway and induced mitochondrial dysfunction in redox homeostasis, calcium homeostasis. Furthermore, osthole inhibited both oxidative phosphorylation (OXPHOS) and glycolysis, leading to the suppression of ATP production. Moreover, via combination treatment with chloroquine (CQ), we demonstrated that osthole impaired autophagic flux, leading to apoptosis of HCT116 and HT29 cells. Finally, we elucidated that the functional role of tiRNAHisGTG regulated by osthole directly affects the cellular fate of colon cancer cells. CONCLUSION These results suggest that osthole has the potential to manage progression of colorectal cancer by regulating autophagy- and mitochondria-mediated signal transduction.
Collapse
Affiliation(s)
- Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiyeon Ham
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
19
|
Si Y, Liu L, Fan Z. Mechanisms and effects of NLRP3 in digestive cancers. Cell Death Discov 2024; 10:10. [PMID: 38182564 PMCID: PMC10770122 DOI: 10.1038/s41420-023-01783-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Inflammasomes are thought to be important mediators of host defense against microbial pathogens and maintenance of gastrointestinal tract homeostasis. They can modulate caspase-1 to promote IL-18 and IL-1β secretion and promote phagocytosis induced by bacterial pathogens. NLRP3 is an inflammasome comprising a multiprotein complex assembled by pattern recognition receptors in the cell cytoplasm. It is a crucial component of the innate immune system. Dysregulation of NLRP3 may contribute to inflammatory diseases and intestinal cancers. Recent research suggests that NLRP3 plays an essential role in tumor development; therefore, intensive study of its mechanism is warranted as it could play a key role in the treatment of digestive system tumors. In this review, we discuss the mechanism and role of NLRP3 in tumors of the digestive system and response strategies to modulate NLRP3 for potential use in tumor treatment.
Collapse
Affiliation(s)
- Yuxin Si
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Liu
- Laboratory of Pathogenic Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
| |
Collapse
|
20
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
21
|
Muta Y, Linares JF, Martinez-Ordoñez A, Duran A, Cid-Diaz T, Kinoshita H, Zhang X, Han Q, Nakanishi Y, Nakanishi N, Cordes T, Arora GK, Ruiz-Martinez M, Reina-Campos M, Kasashima H, Yashiro M, Maeda K, Albaladejo-Gonzalez A, Torres-Moreno D, García-Solano J, Conesa-Zamora P, Inghirami G, Metallo CM, Osborne TF, Diaz-Meco MT, Moscat J. Enhanced SREBP2-driven cholesterol biosynthesis by PKCλ/ι deficiency in intestinal epithelial cells promotes aggressive serrated tumorigenesis. Nat Commun 2023; 14:8075. [PMID: 38092754 PMCID: PMC10719313 DOI: 10.1038/s41467-023-43690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
The metabolic and signaling pathways regulating aggressive mesenchymal colorectal cancer (CRC) initiation and progression through the serrated route are largely unknown. Although relatively well characterized as BRAF mutant cancers, their poor response to current targeted therapy, difficult preneoplastic detection, and challenging endoscopic resection make the identification of their metabolic requirements a priority. Here, we demonstrate that the phosphorylation of SCAP by the atypical PKC (aPKC), PKCλ/ι promotes its degradation and inhibits the processing and activation of SREBP2, the master regulator of cholesterol biosynthesis. We show that the upregulation of SREBP2 and cholesterol by reduced aPKC levels is essential for controlling metaplasia and generating the most aggressive cell subpopulation in serrated tumors in mice and humans. Since these alterations are also detected prior to neoplastic transformation, together with the sensitivity of these tumors to cholesterol metabolism inhibitors, our data indicate that targeting cholesterol biosynthesis is a potential mechanism for serrated chemoprevention.
Collapse
Affiliation(s)
- Yu Muta
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Juan F Linares
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Anxo Martinez-Ordoñez
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Angeles Duran
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Tania Cid-Diaz
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Hiroto Kinoshita
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiao Zhang
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Qixiu Han
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Thekla Cordes
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - Gurpreet K Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Marc Ruiz-Martinez
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Miguel Reina-Campos
- School of Biological Sciences, Department of Molecular Biology, University of California San Diego, San Diego, CA, USA
| | - Hiroaki Kasashima
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka city, 545-8585, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka city, 545-8585, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka city, 545-8585, Japan
| | - Ana Albaladejo-Gonzalez
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107, Murcia, Spain
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202, Cartagena, Spain
| | - Daniel Torres-Moreno
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107, Murcia, Spain
- Department of Clinical Analysis, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202, Cartagena, Spain
| | - José García-Solano
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107, Murcia, Spain
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202, Cartagena, Spain
| | - Pablo Conesa-Zamora
- Department of Histology and Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), 30107, Murcia, Spain
- Department of Clinical Analysis, Santa Lucía General University Hospital (HGUSL), Calle Mezquita sn, 30202, Cartagena, Spain
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Timothy F Osborne
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St, Petersburg, FL, USA
| | - Maria T Diaz-Meco
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Jorge Moscat
- Department of Pathology and Laboratory Medicine and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
22
|
He X, Lan H, Jin K, Liu F. Cholesterol in colorectal cancer: an essential but tumorigenic precursor? Front Oncol 2023; 13:1276654. [PMID: 38023258 PMCID: PMC10655112 DOI: 10.3389/fonc.2023.1276654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal human malignancies, and with the growth of societies and lifestyle changes, the rate of people suffering from it increases yearly. Important factors such as genetics, family history, nutrition, lifestyle, smoking, and alcohol can play a significant role in increasing susceptibility to this cancer. On the other hand, the metabolism of several macromolecules is also involved in the fate of tumors and immune cells. The evidence discloses that cholesterol and its metabolism can play a role in the pathogenesis of several cancers because there appears to be an association between cholesterol levels and CRC, and cholesterol-lowering drugs may reduce the risk. Furthermore, changes or mutations of some involved genes in cholesterol metabolism, such as CYP7A1 as well as signaling pathways, such as mitogen-activated protein kinase (MAPK), can play a role in CRC pathogenesis. This review summarized and discussed the role of cholesterol in the pathogenesis of CRC as well as available cholesterol-related therapeutic approaches in CRC.
Collapse
Affiliation(s)
- Xing He
- Department of Gastroenterology, Jinhua Wenrong Hospital, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fanlong Liu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Abela GS, Katkoori VR, Pathak DR, Bumpers HL, Leja M, ul Abideen Z, Boumegouas M, Perry D, Al-Janadi A, Richard JE, Barnaba C, Medina Meza IG. Cholesterol crystals induce mechanical trauma, inflammation, and neo-vascularization in solid cancers as in atherosclerosis. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 35:100317. [PMID: 37981958 PMCID: PMC10655498 DOI: 10.1016/j.ahjo.2023.100317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 11/21/2023]
Abstract
Background and aims Cancer and atherosclerosis share common risk factors and inflammatory pathways that promote their proliferation via vascular endothelial growth factor (VEGF). Because CCs cause mechanical injury and inflammation in atherosclerosis, we investigated their presence in solid cancers and their activation of IL-1β, VEGF, CD44, and Ubiquityl-Histone H2B (Ub-H2B), that promote cancer growth. Methods Tumor specimens from eleven different types of human cancers and atherosclerotic plaques were assessed for CCs, free cholesterol content and IL1-β by microscopy, immunohistochemistry, and biochemical analysis. Breast and colon cancer cell lines were cultured with and without CCs to select for expression of VEGF, CD44, and Ub-H2B. Western blot and immunofluorescence were performed on cells to assess the effect of CCs on signaling pathways. Results Cancers displayed higher CC content (+2.29 ± 0.74 vs +1.46 ± 0.84, p < 0.0001), distribution (5.06 ± 3.13 vs 2.86 ± 2.18, p < 0.001) and free cholesterol (3.63 ± 4.02 vs 1.52 ± 0.56 μg/mg, p < 0.01) than cancer free marginal tissues and similarly for atherosclerotic plaques and margins (+2.31 ± 0.51 vs +1.44 ± 0.79, p < 0.02; 14.0 ± 5.74 vs 8.14 ± 5.52, p < 0.03; 0.19 ± 0.14 vs 0.09 ± 0.04 μg/mg, p < 0.02) respectively. Cancers displayed significantly increased expression of IL1-β compared to marginal tissues. CCs treated cancer cells had increased expression of VEGF, CD44, and Ub-H2B compared to control. By microscopy, CCs were found perforating cancer tumors similar to plaque rupture. Conclusions These findings suggest that CCs can induce trauma and activate cytokines that enhance cancer growth as in atherosclerosis.
Collapse
Affiliation(s)
- George S. Abela
- Department of Medicine, Division of Cardiology, Michigan State University, East Lansing, MI, USA
- Department of Physiology, Division of Pathology, Michigan State University, East Lansing, MI, USA
| | - Venkat R. Katkoori
- Department of Physiology, Division of Pathology, Michigan State University, East Lansing, MI, USA
| | - Dorothy R. Pathak
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Harvey L. Bumpers
- Department of Surgery, Michigan State University, East Lansing, MI, USA
| | - Monika Leja
- Department of Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zain ul Abideen
- Department of Medicine, Division of Cardiology, Michigan State University, East Lansing, MI, USA
| | - Manel Boumegouas
- Department of Medicine, Division of Cardiology, Michigan State University, East Lansing, MI, USA
| | - Daniel Perry
- Department of Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Anas Al-Janadi
- Department of Cancer Care Services, Corewell Health, Grand Rapids, MI, USA
| | | | - Carlo Barnaba
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Ilce G. Medina Meza
- Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
24
|
Liu X, Lv M, Zhang W, Zhan Q. Dysregulation of cholesterol metabolism in cancer progression. Oncogene 2023; 42:3289-3302. [PMID: 37773204 DOI: 10.1038/s41388-023-02836-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Cholesterol homeostasis has been implicated in the regulation of cellular and body metabolism. Hence, deregulated cholesterol homeostasis leads to the development of many diseases such as cardiovascular diseases, and neurodegenerative diseases, among others. Recent studies have unveiled the connection between abnormal cholesterol metabolism and cancer development. Cholesterol homeostasis at the cellular level dynamically circulates between synthesis, influx, efflux, and esterification. Any dysregulation of this dynamic process disrupts cholesterol homeostasis and its derivatives, which potentially contributes to tumor progression. There is also evidence that cancer-related signals, which promote malignant progression, also regulate cholesterol metabolism. Here, we described the relationship between cholesterol metabolism and cancer hallmarks, with particular focus on the molecular mechanisms, and the anticancer drugs that target cholesterol metabolism.
Collapse
Affiliation(s)
- Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
- Peking University International Cancer Institute, Beijing, 100191, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Soochow University Cancer Institute, Suzhou, 215127, China.
| |
Collapse
|
25
|
Kanika, Khan R. Functionalized nanomaterials targeting NLRP3 inflammasome driven immunomodulation: Friend or Foe. NANOSCALE 2023; 15:15906-15928. [PMID: 37750698 DOI: 10.1039/d3nr03857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The advancement in drug delivery systems in recent times has significantly enhanced therapeutic effects by enabling site-specific targeting through nanocarriers. These nanocarriers serve as invaluable tools for pharmacotherapeutic advancements against various disorders that enhance the effectiveness of encapsulated drugs by reducing their toxicity and increasing the efficacy of less potent drugs, thereby improving the therapeutic index. Inflammasomes, protein complexes located in the activated immune cell cytoplasm, regulate the activation of caspases involved in inflammation. However, aberrant activation of inflammasomes can result in uncontrolled tissue responses, contributing to the development of various diseases. Therefore, achieving a precise balance between inflammasome inhibition and activation is crucial for effectively treating inflammatory disorders through targeted functionalized nanocarriers. Despite the wealth of available data on the relevance of functionalized nanocarriers in inflammatory disorders, the nanotechnological potential to modulate inflammasomes has not been adequately explored. In this comprehensive review, we highlight the latest research on the modulation of the inflammasome cascade, both upregulating and downregulating its function, using nanocarriers in the context of inflammatory disorders. The utilization of nanocarriers as a therapeutic strategy holds immense potential for researchers aiming to effectively target and modulate inflammasomes in the treatment of inflammatory disorders, thus improving disease severity outcomes.
Collapse
Affiliation(s)
- Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, 5 Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, 5 Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| |
Collapse
|
26
|
Zaky MY, Fan C, Zhang H, Sun XF. Unraveling the Anticancer Potential of Statins: Mechanisms and Clinical Significance. Cancers (Basel) 2023; 15:4787. [PMID: 37835481 PMCID: PMC10572000 DOI: 10.3390/cancers15194787] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Statins are an essential medication class in the treatment of lipid diseases because they inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. They reduce cholesterol levels and reduce the risk of cardiovascular disease in both primary and secondary prevention. In addition to their powerful pharmacologic suppression of cholesterol production, statins appear to have pleitropic effects in a wide variety of other diseases by modulating signaling pathways. In recent years, statins have seen a large increase in interest due to their putative anticancer effects. Statins appear to cause upregulation or inhibition in key pathways involved in cancer such as inhibition of proliferation, angiogenesis, and metastasis as well as reducing cancer stemness. Further, statins have been found to induce oxidative stress, cell cycle arrest, autophagy, and apoptosis of cancer cells. Interestingly, clinical studies have shown that statin use is associated with a decreased risk of cancer formation, lower cancer grade at diagnosis, reduction in the risk of local reoccurrence, and increasing survival in patients. Therefore, our objective in the present review is to summarize the findings of the publications on the underlying mechanisms of statins' anticancer effects and their clinical implications.
Collapse
Affiliation(s)
- Mohamed Y. Zaky
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Chuanwen Fan
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Huan Zhang
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Xiao-Feng Sun
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
27
|
Hajipour A, Ardekanizadeh NH, Roumi Z, Shekari S, Aminnezhad Kavkani B, Shalmani SHM, Bahar B, Tajadod S, Ajami M, Tabesh GA, Gholamalizadeh M, Doaei S. The effect of FTO gene rs9939609 polymorphism on the association between colorectal cancer and different types of dietary fat intake: a case-control study. J Physiol Anthropol 2023; 42:17. [PMID: 37543622 PMCID: PMC10404375 DOI: 10.1186/s40101-023-00333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/17/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers in the world. Some dietary factors such as fat intake have been identified as the risk factors for CRC. This study aimed to investigate the effect of fat mass and obesity-associated (FTO) gene rs9939609 polymorphism on the association between CRC and different types of dietary fats. METHODS This case-control study was performed on 135 CRC cases and 294 healthy controls in Tehran, Iran. Data on demographic factors, anthropometric measurements, physical activity, the intake of different types of dietary fats, and FTO gene rs9939609 polymorphism was collected from all participants. The association between cancer and dietary fat intake in individuals with different FTO genotypes was assessed using different models of logistic regression. RESULTS Oleic acid intake was higher in the case group compared to the control group in both people with TT (7.2±3.46 vs. 5.83±3.06 g/d, P=0.02) and AA/AT genotypes (8.7±6.23 vs. 5.57 ±3.2 g/d, P<0.001). Among carriers of AA/AT genotypes of FTO rs9939609 polymorphism, a positive association was found between CRC and higher intakes of oleic acid (OR=1.12, CI95% 1.03-1.21, P=0.01) and cholesterol (OR=1.01, CI95% 1.00-1.02; P=0.01) after adjusting for age, sex, physical activity, alcohol use, smoking, calorie intake, and body mass index. CONCLUSION Higher intakes of cholesterol and oleic acid were associated with a higher risk of CRC in FTO-risk allele carriers. The association of CRC and dietary fat may be influenced by the FTO genotype. Further longitudinal studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Azadeh Hajipour
- School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Zahra Roumi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Shekari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, UK
| | - Shirin Tajadod
- Department of Nutrition, School of Public Health, International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Ajami
- Department of Food and Nutrition Policy and Planning National Nutrition and Food Technology Research Institute School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Azizi Tabesh
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeid Doaei
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
du Plessis TL, Abdulla N, Kaur M. The utility of 3D models to study cholesterol in cancer: Insights and future perspectives. Front Oncol 2023; 13:1156246. [PMID: 37077827 PMCID: PMC10106729 DOI: 10.3389/fonc.2023.1156246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Cholesterol remains a vital molecule required for life; however, increasing evidence exists implicating cholesterol in cancer development and progression. Numerous studies investigating the relationship between cholesterol and cancer in 2-dimensional (2D) culture settings exist, however these models display inherent limitations highlighting the incipient need to develop better models to study disease pathogenesis. Due to the multifaceted role cholesterol plays in the cell, researchers have begun utilizing 3-dimensional (3D) culture systems, namely, spheroids and organoids to recapitulate cellular architecture and function. This review aims to describe current studies exploring the relationship between cancer and cholesterol in a variety of cancer types using 3D culture systems. We briefly discuss cholesterol dyshomeostasis in cancer and introduce 3D in-vitro culture systems. Following this, we discuss studies performed in cancerous spheroid and organoid models that focused on cholesterol, highlighting the dynamic role cholesterol plays in various cancer types. Finally, we attempt to provide potential gaps in research that should be explored in this rapidly evolving field of study.
Collapse
|
29
|
Yun Z, Nan M, Li X, Liu Z, Xu J, Du X, Dong Q, Hou L. Processed meat, red meat, white meat, and digestive tract cancers: A two-sample Mendelian randomization study. Front Nutr 2023; 10:1078963. [PMID: 36860687 PMCID: PMC9968810 DOI: 10.3389/fnut.2023.1078963] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
Background Previous observational studies suggested inconsistent insights on the associations between meat intake and the risk of digestive tract cancers (DCTs). The causal effect of meat intake on DCTs is unclear. Methods Two-sample Mendelian randomization (MR) was performed based on genome-wide association studies (GWAS) summary data from UK Biobank and FinnGen to evaluate the causal effect of meat intake [processed meat, red meat (pork, beef, and lamb), and white meat (poultry)] on DCTs (esophageal, stomach, liver, biliary tract, pancreatic, and colorectal cancers). The causal effects were estimated using a primary analysis that employed inverse-variance weighting (IVW) and complementary analysis that utilized MR-Egger weighted by the median. A sensitivity analysis was conducted using the Cochran Q statistic, a funnel plot, the MR-Egger intercept, and a leave-one-out approach. MR-PRESSO and Radial MR were performed to identify and remove outliers. To demonstrate direct causal effects, multivariable MR (MVMR) was applied. In addition, risk factors were introduced to explore potential mediators of the relationship between exposure and outcome. Results The results of the univariable MR analysis indicated that genetically proxied processed meat intake was associated with an increased risk of colorectal cancer [IVW: odds ratio (OR) = 2.12, 95% confidence interval (CI) 1.07-4.19; P = 0.031]. The causal effect is consistent in MVMR (OR = 3.85, 95% CI 1.14-13.04; P = 0.030) after controlling for the influence of other types of exposure. The body mass index and total cholesterol did not mediate the causal effects described above. There was no evidence to support the causal effects of processed meat intake on other cancers, except for colorectal cancer. Similarly, there is no causal association between red meat, white meat intake, and DCTs. Conclusions Our study reported that processed meat intake increases the risk of colorectal cancer rather than other DCTs. No causal relationship was observed between red and white meat intake and DCTs.
Collapse
Affiliation(s)
| | | | | | - Zhu Liu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaofeng Du
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Li Hou
- *Correspondence: Li Hou ✉
| |
Collapse
|
30
|
The Multifaceted Role and Regulation of Nlrp3 Inflammasome in Colitis-Associated Colo-Rectal Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24043472. [PMID: 36834883 PMCID: PMC9959003 DOI: 10.3390/ijms24043472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Colitis-associated colo-rectal cancer remains the leading cause of mortality in inflammatory bowel diseases, with inflammation remaining one of the bridging points between the two pathologies. The NLRP3 inflammasome complex plays an important role in innate immunity; however, its misregulation can be responsible for the apparition of various pathologies such as ulcerative colitis. Our review focuses on the potential pathways of upregulation or downregulation of the NLRP3 complex, in addition to evaluating its role in the current clinical setting. Eighteen studies highlighted the potential pathways of NLRP3 complex regulation as well as its role in the metastatic process in colo-rectal cancer, with promising results. Further research is, however, needed in order to validate the results in a clinical setting.
Collapse
|
31
|
Sharma BR, Kanneganti TD. Inflammasome signaling in colorectal cancer. Transl Res 2023; 252:45-52. [PMID: 36150688 PMCID: PMC9839553 DOI: 10.1016/j.trsl.2022.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/17/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths in the world. Inflammation is often an underlying risk factor for developing CRC. Maintaining gut homeostasis and balancing inflammation is therefore critical to prevent CRC development. One key class of molecular complexes that impact gut homeostasis are inflammasomes, cytosolic multiprotein immune complexes that assemble upon sensing various intracellular alterations. Inflammasomes regulate inflammation, cell death, cytokine release, signaling cascades, and other cellular processes. Roles for inflammasomes in colitis and colitis-associated CRC have been shown in multiple animal models. The activation of inflammasomes leads to the release of the bioactive forms of interleukin (IL)-1β and IL-18, the inflammasome effector cytokines. These cytokines ensure an optimal inflammatory immune response during colitis and colitis-associated CRC. The activation of some inflammasome sensors, including NLRP3, NLRP1, NLRP6, and Pyrin, provides protection from colitis-associated CRC via effector cytokine-dependent mechanisms. Additionally, activation of other inflammasome sensors, such as AIM2, NLRC4, and NAIPs, provides mostly effector cytokine-independent protection. Inflammasomes can also act as integral components of PANoptosomes, which are multifaceted complexes that integrate components from other cell death pathways and regulate a unique form of innate immune inflammatory cell death called PANoptosis. Furthermore, IRF1, a key regulator of some inflammasomes and PANoptosomes, has been implicated in CRC. It is therefore critical to consider the role of inflammasomes in effector cytokine-dependent and -independent protection as well as their role in PANoptosis to modulate CRC for therapeutic targeting. Here, we discuss the mechanisms of inflammasome activation, the functions of inflammasomes in CRC, and current obstacles and future perspectives in inflammasome and CRC research.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
32
|
Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89:101198. [PMID: 36379317 DOI: 10.1016/j.plipres.2022.101198] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
The endoplasmic reticulum (ER) is a complex and dynamic organelle that regulates many cellular pathways, including protein synthesis, protein quality control, and lipid synthesis. When one or multiple ER roles are dysregulated and saturated, the ER enters a stress state, which, in turn, activates the highly conserved unfolded protein response (UPR). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved. In recent years, it has emerged that the UPR works intimately with other cellular pathways to maintain lipid homeostasis at the ER, and so does at cellular levels. Lipid distribution, along with lipid anabolism and catabolism, are tightly regulated, in part, by the ER. Dysfunctional and overwhelmed lipid-related pathways, independently or in combination with ER stress, can have reciprocal effects on other cellular functions, contributing to the development of diseases. In this review, we summarize the current understanding of the UPR in response to proteotoxic stress and LBS and the breadth of the functions mitigated by the UPR in different tissues and in the context of diseases.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Wei Sheng Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
33
|
Shang B, Wang R, Qiao H, Zhao X, Wang L, Sui S. Multi-omics analysis of pyroptosis regulation patterns and characterization of tumor microenvironment in patients with hepatocellular carcinoma. PeerJ 2023; 11:e15340. [PMID: 37193028 PMCID: PMC10183172 DOI: 10.7717/peerj.15340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a primary malignant tumor of the liver, and pyroptosis has been identified as a novel cellular program that plays a role in numerous diseases including cancer. However, the functional role of pyroptosis in HCC remains unclear. The purpose of this study is to explore the relationship between the two found hub genes and provide targets for clinical treatment. Methods The Cancer Genome Atlas (TCGA) database was used to collect the gene data and clinically-related information of patients with HCC. After the differentially expressed genes (DEGs) were identified, they were intersected with the genes related to pyroptosis, and a risk prediction model was established to predict the overall survival (OS). Subsequently, drug sensitivity analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA) was used to analyze the biological characteristics of the DEGs. Different immune cell infiltration and related pathways were analyzed, and hub genes were identified by protein-protein interaction (PPI). Finally, the expression of hub genes was verified by real-time quantitative PCR (qRT-PCR) and immunohistochemistry. Results We conducted a comprehensive bioinformatics analysis to investigate the molecular mechanisms of pyroptosis in hepatocellular carcinoma (HCC). A total of 8,958 differentially expressed genes were identified, and 37 differentially expressed genes were associated with pyroptosis through intersection. Moreover, we developed an OS model with excellent predictive ability and discovered the differences in biological function, drug sensitivity, and immune microenvironment between high-risk and low-risk groups. Through enrichment analysis, we found that the differentially expressed genes are related to various biological processes. Then, 10 hub genes were identified from protein-protein interaction networks. Finally, midkine (MDK) was screened from the 10 hub genes and further verified by PCR and immunohistochemistry, which revealed its high expression in HCC. Conclusion We have developed a reliable and consistent predictive model based on the identification of potential hub genes, which can be used to accurately forecast the prognosis of patients, thus providing direction for further clinical research and treatment.
Collapse
Affiliation(s)
- Bingbing Shang
- Emergency Department, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ruohan Wang
- Emergency Department, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Haiyan Qiao
- Research and Teaching Department of Comparative Medicine, Dalian Medical University, Dalian, China
| | - Xixi Zhao
- Emergency Department, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liang Wang
- Research and Teaching Department of Comparative Medicine, Dalian Medical University, Dalian, China
| | - Shaoguang Sui
- Emergency Department, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
34
|
Sun CC, Li L, Tao HQ, Jiang ZC, Wang L, Wang HJ. The role of NLRP3 inflammasome in digestive system malignancy. Front Cell Dev Biol 2022; 10:1051612. [PMID: 36619871 PMCID: PMC9816811 DOI: 10.3389/fcell.2022.1051612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Digestive system malignancies, the most common types of cancer and a major cause of death in the worldwide, are generally characterized by high morbidity, insidious symptoms and poor prognosis. NLRP3 inflammasome, the most studied inflammasome member, is considered to be crucial in tumorigenesis. In this paper, we reviewed its pro-tumorigenic and anti-tumorigenic properties in different types of digestive system malignancy depending on the types of cells, tissues and organs involved, which would provide promising avenue for exploring new anti-cancer therapies.
Collapse
Affiliation(s)
- Cen-Cen Sun
- Basic Medical Experimental Teaching Center, Zhejiang University, Hangzhou, China
| | - Li Li
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hou-Quan Tao
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhi-Chen Jiang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liang Wang
- Center for Plastic and Reconstructive Surgery, Department of Hand and Reconstruction Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hui-Ju Wang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
35
|
Astorga J, Gasaly N, Dubois-Camacho K, De la Fuente M, Landskron G, Faber KN, Urra FA, Hermoso MA. The role of cholesterol and mitochondrial bioenergetics in activation of the inflammasome in IBD. Front Immunol 2022; 13:1028953. [PMID: 36466902 PMCID: PMC9716353 DOI: 10.3389/fimmu.2022.1028953] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 10/15/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is characterized by a loss of intestinal barrier function caused by an aberrant interaction between the immune response and the gut microbiota. In IBD, imbalance in cholesterol homeostasis and mitochondrial bioenergetics have been identified as essential events for activating the inflammasome-mediated response. Mitochondrial alterations, such as reduced respiratory complex activities and reduced production of tricarboxylic acid (TCA) cycle intermediates (e.g., citric acid, fumarate, isocitric acid, malate, pyruvate, and succinate) have been described in in vitro and clinical studies. Under inflammatory conditions, mitochondrial architecture in intestinal epithelial cells is dysmorphic, with cristae destruction and high dynamin-related protein 1 (DRP1)-dependent fission. Likewise, these alterations in mitochondrial morphology and bioenergetics promote metabolic shifts towards glycolysis and down-regulation of antioxidant Nuclear erythroid 2-related factor 2 (Nrf2)/Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling. Although the mechanisms underlying the mitochondrial dysfunction during mucosal inflammation are not fully understood at present, metabolic intermediates and cholesterol may act as signals activating the NLRP3 inflammasome in IBD. Notably, dietary phytochemicals exhibit protective effects against cholesterol imbalance and mitochondrial function alterations to maintain gastrointestinal mucosal renewal in vitro and in vivo conditions. Here, we discuss the role of cholesterol and mitochondrial metabolism in IBD, highlighting the therapeutic potential of dietary phytochemicals, restoring intestinal metabolism and function.
Collapse
Affiliation(s)
- Jessica Astorga
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Naschla Gasaly
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Karen Dubois-Camacho
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marjorie De la Fuente
- Laboratory of Biomedicine Research, School of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Glauben Landskron
- Laboratory of Biomedicine Research, School of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Félix A. Urra
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marcela A. Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
36
|
Képes Z, Barkóczi A, Szabó JP, Kálmán-Szabó I, Arató V, Garai I, Árkosy P, Jószai I, Deák Á, Kertész I, Hajdu I, Trencsényi G. In Vivo Assessments of Mesoblastic Nephroma (Ne/De) and Myelomonoblastic Leukaemia (My1/De) Tumour Development in Hypercholesterolemia Rat Models. Int J Mol Sci 2022; 23:ijms232113060. [PMID: 36361850 PMCID: PMC9656048 DOI: 10.3390/ijms232113060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Given the rising prevalence of lipid metabolic disorders and malignant diseases, we aimed to establish an in vivo hypercholesterinaemic tumour-bearing rat model for the induction and assessment of these conditions. A normal standard CRLT/N, 2 (baseline),- or 4 (2 + 2, pretreated)-week-long butter and cholesterol rich (BCR) diet was applied to mesoblastic nephroma (Ne/De) and myelomonoblastic leukaemia (My1/De) tumour-bearing and healthy control Long—Evans and Fischer 344 rats. The beginning of chow administration started in parallel with tumour induction and the 2 weeks of pre-transplantation in the baseline and pretreated groups, respectively. Fourteen days post-inoculation, the measurement of lipid parameters and [18F]F-FDG PET/MRI examinations was executed. The comparable lipid status of baseline healthy and tumorous rats proves that regardless of tumour presence, BCR-based hypercholesterolemia was achieved. A higher tumour mass among pretreated tumorous animals was found when compared to the control groups (p < 0.05, p < 0.01). Further, a visually greater [18F]F-FDG accumulation was observed in pretreated BCR tumorous animals; however, the quantitative data (SUVmean: 9.86 ± 0.98, 9.68 ± 1.24; SUVmax: 19.63 ± 1.20; 17.56 ± 3.21 for Ne/De and My1/De, respectively) were not statistically significantly different from those of the CRLT/N tumorous rats (SUVmean: 8.40 ± 1.42, 7.22 ± 1.06 and SUVmax: 15.99 ± 2.22, 12.46 ± 1.96 for control Ne/De and My1/De, respectively). Our model seems to be appropriate for simultaneously investigating hypercholesterolemia and cancer in the same rat.
Collapse
Affiliation(s)
- Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Correspondence:
| | - Alexandra Barkóczi
- Department of Urology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Doctoral School of Clinical Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Judit P. Szabó
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Doctoral School of Clinical Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ibolya Kálmán-Szabó
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Viktória Arató
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ildikó Garai
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Péter Árkosy
- Department of Oncology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - István Jószai
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ádám Deák
- Doctoral School of Clinical Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - István Kertész
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - István Hajdu
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Doctoral School of Clinical Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
37
|
Qiang R, Li Y, Dai X, Lv W. NLRP3 inflammasome in digestive diseases: From mechanism to therapy. Front Immunol 2022; 13:978190. [PMID: 36389791 PMCID: PMC9644028 DOI: 10.3389/fimmu.2022.978190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/12/2022] [Indexed: 09/05/2023] Open
Abstract
Digestive system diseases remain a formidable challenge to human health. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex and is involved in a wide range of digestive diseases as intracellular innate immune sensors. It has emerged as a research hotspot in recent years. In this context, we provide a comprehensive review of NLRP3 inflammasome priming and activation in the pathogenesis of digestive diseases, including clinical and preclinical studies. Moreover, the scientific evidence of small-molecule chemical drugs, biologics, and phytochemicals, which acts on different steps of the NLRP3 inflammasome, is reviewed. Above all, deep interrogation of the NLRP3 inflammasome is a better insight of the pathomechanism of digestive diseases. We believe that the NLRP3 inflammasome will hold promise as a novel valuable target and research direction for treating digestive disorders.
Collapse
Affiliation(s)
- Rui Qiang
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | - Yanbo Li
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | | | - Wenliang Lv
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| |
Collapse
|
38
|
Vafaei S, Taheri H, Hajimomeni Y, Fakhre Yaseri A, Abolhasani Zadeh F. The role of NLRP3 inflammasome in colorectal cancer: potential therapeutic target. Clin Transl Oncol 2022; 24:1881-1889. [PMID: 35689136 DOI: 10.1007/s12094-022-02861-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022]
Abstract
All phases of carcinogenesis are affected by inflammation. Activation of the inflammasome is a crucial signaling mechanism that leads to acute and chronic inflammation. When specific nucleotide-binding domains, leucine-rich repeat-containing proteins (NLRs) are activated, inflammasomes are formed. The NLRP3 is one of the NLR family members with the most functional characterization. NLRP3 can modulate the immune systems, apoptosis, growth, and/or the gut microbiome to impact cancer development. Colorectal cancer (CRC) is one of the most common cancers, and it begins as a tissue overgrowth on the internal part of the rectum or colon. In vivo and in vitro studies showed that the NLRP3 inflammasome has a role in CRC development due to its broad activity in shaping immune responses. Here, onwards, we focus on the NLRP3 inflammasome role in CRC development, as well as the therapeutic prospective of modifying NLRP3 inflammasome in the context of anti-cancer therapy.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Taheri
- Internal Medicine Cellular and Molecular, Research Center, Zahedan University of Medical Sciences, Fellowship of GI in Mashhad University of Medical Sciences, Zahedan, Iran
| | - Yasamin Hajimomeni
- Islamic Azad University of Medical Science, Qeshm International Branch, Qeshm, Iran
| | | | | |
Collapse
|
39
|
Abdalkareem Jasim S, Kzar HH, Haider Hamad M, Ahmad I, Al-Gazally ME, Ziyadullaev S, Sivaraman R, Abed Jawad M, Thaeer Hammid A, Oudaha KH, Karampoor S, Mirzaei R. The emerging role of 27-hydroxycholesterol in cancer development and progression: An update. Int Immunopharmacol 2022; 110:109074. [PMID: 35978522 DOI: 10.1016/j.intimp.2022.109074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023]
Abstract
Oxysterols are cholesterol metabolites generated in the liver and other peripheral tissues as a mechanism of removing excess cholesterol. Oxysterols have a wide range of biological functions, including the regulation of sphingolipid metabolism, platelet aggregation, and apoptosis. However, it has been found that metabolites derived from cholesterol play essential functions in cancer development and immunological suppression. In this regard, research indicates that 27-hydroxycholesterol (27-HC) might act as an estrogen, promoting the growth of estrogen receptor (ER) positive breast cancer cells. The capacity of cholesterol to dynamically modulate signaling molecules inside the membrane and particular metabolites serving as signaling molecules are two possible contributory processes. 27-HC is a significant metabolite produced mainly through the CYP27A1 (Cytochrome P450 27A1) enzyme. 27-HC maintains cholesterol balance biologically by promoting cholesterol efflux via the liver X receptor (LXR) and suppressing de novo cholesterol production through the Insulin-induced Genes (INSIGs). It has been demonstrated that 27-HC is able to function as a selective ER regulator. Moreover, enhanced 27-HC production is in favor of the growth of end-stage malignancies in the brain, thyroid organs, and colon, as shown in breast cancer, probably due to pro-survival and pro-inflammatory signaling induced by unbalanced levels of oxysterols. However, the actual role of 27-HC in cancer promotion and progression remains debatable, and many studies are warranted to be performed to unravel the precise function of these molecules. This review article will summarize the latest evidence on the deleterious or beneficial functions of 27-HC in various types of cancer, such as breast cancer, prostate cancer, colon cancer, gastric cancer, ovarian cancer, endometrial cancer, lung cancer, melanoma, glioblastoma, thyroid cancer, adrenocortical cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | - Hamzah H Kzar
- Veterinary medicine college, Al-Qasim green University, Al-Qasim, Iraq
| | - Mohammed Haider Hamad
- Medical Laboratory Techniques Department, Al Mustaqbal University college, Babylon, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Shukhrat Ziyadullaev
- Professor, Doctor of Medical Sciences, No.1 Department of Internal Diseases, Vice-rector for Scientific Affairs and Innovations, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - R Sivaraman
- Department of Mathematics, Institution of Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai, University of Madras, Chennai, India
| | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University Thi-Qar, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
40
|
Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther 2022; 7:196. [PMID: 35725836 PMCID: PMC9208265 DOI: 10.1038/s41392-022-01046-3] [Citation(s) in RCA: 529] [Impact Index Per Article: 176.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, immunotherapy represented by immune checkpoint inhibitors (ICIs) has led to unprecedented breakthroughs in cancer treatment. However, the fact that many tumors respond poorly or even not to ICIs, partly caused by the absence of tumor-infiltrating lymphocytes (TILs), significantly limits the application of ICIs. Converting these immune “cold” tumors into “hot” tumors that may respond to ICIs is an unsolved question in cancer immunotherapy. Since it is a general characteristic of cancers to resist apoptosis, induction of non-apoptotic regulated cell death (RCD) is emerging as a new cancer treatment strategy. Recently, several studies have revealed the interaction between non-apoptotic RCD and antitumor immunity. Specifically, autophagy, ferroptosis, pyroptosis, and necroptosis exhibit synergistic antitumor immune responses while possibly exerting inhibitory effects on antitumor immune responses. Thus, targeted therapies (inducers or inhibitors) against autophagy, ferroptosis, pyroptosis, and necroptosis in combination with immunotherapy may exert potent antitumor activity, even in tumors resistant to ICIs. This review summarizes the multilevel relationship between antitumor immunity and non-apoptotic RCD, including autophagy, ferroptosis, pyroptosis, and necroptosis, and the potential targeting application of non-apoptotic RCD to improve the efficacy of immunotherapy in malignancy.
Collapse
Affiliation(s)
- Weitong Gao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, changsha, 410008, China
| | - Yang Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xueqian Wang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
41
|
Pretre V, Papadopoulos D, Regard J, Pelletier M, Woo J. Interleukin-1 (IL-1) and the inflammasome in cancer. Cytokine 2022; 153:155850. [PMID: 35279620 DOI: 10.1016/j.cyto.2022.155850] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/13/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022]
Abstract
Numerous preclinical and clinical studies have demonstrated the significant contribution of inflammation to the development and progression of various types of cancer. Inflammation in the tumor microenvironment mediates complex interactions between innate immunity, adaptive immunity, microbiomes and stroma, and ultimately alters the overall fitness of tumor cells at multiple stages of carcinogenesis. Malignancies are known to arise in areas of chronic inflammation and inflammation in the tumor microenvironment (often called tumor-promoting inflammation) is believed to allow cancer cells to evade immunosurveillance while promoting genetic instability, survival and progression. Among the strongest data suggesting a causal role for inflammation in cancer come from the recent CANTOS trial which demonstrated that interleukin-1β (IL-1β) inhibition with canakinumab leads to a significant, dose-dependent decrease in incident lung cancer. This observation has launched a series of additional clinical studies to understand the role of IL-1β and the inflammasome in cancer, and the clinical utility of IL-1β inhibition in different stages of lung cancer. In this article we will review recent data implicating IL-1β signaling and its upstream regulator NLRP3 in both solid tumor and hematologic malignancies. We will discuss the key preclinical observations and the current clinical landscape, and describe the pharmacologic tools which will be used to evaluate the effects of blocking tumor-promoting inflammation clinically.
Collapse
|
42
|
Swallah MS, Yang X, Li J, Korese JK, Wang S, Fan H, Yu H, Huang Q. The Pros and Cons of Soybean Bioactive Compounds: An Overview. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| | - Xiaoqing Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Jiaxin Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Joseph Kudadam Korese
- Agricultural Mechanization and Irrigation Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development StudiesDepartment of, Tamale, Ghana
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Qing Huang
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| |
Collapse
|
43
|
Heravi G, Yazdanpanah O, Podgorski I, Matherly LH, Liu W. Lipid metabolism reprogramming in renal cell carcinoma. Cancer Metastasis Rev 2022; 41:17-31. [PMID: 34741716 PMCID: PMC10045462 DOI: 10.1007/s10555-021-09996-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
Metabolic reprogramming is recognized as a hallmark of cancer. Lipids are the essential biomolecules required for membrane biosynthesis, energy storage, and cell signaling. Altered lipid metabolism allows tumor cells to survive in the nutrient-deprived environment. However, lipid metabolism remodeling in renal cell carcinoma (RCC) has not received the same attention as in other cancers. RCC, the most common type of kidney cancer, is associated with almost 15,000 death in the USA annually. Being refractory to conventional chemotherapy agents and limited available targeted therapy options has made the treatment of metastatic RCC very challenging. In this article, we review recent findings that support the importance of synthesis and metabolism of cholesterol, free fatty acids (FFAs), and polyunsaturated fatty acids (PUFAs) in the carcinogenesis and biology of RCC. Delineating the detailed mechanisms underlying lipid reprogramming can help to better understand the pathophysiology of RCC and to design novel therapeutic strategies targeting this malignancy.
Collapse
Affiliation(s)
- Gioia Heravi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Omid Yazdanpanah
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Larry H Matherly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA. .,Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
44
|
Keshavarz Shahbaz S, Koushki K, Ayati SH, Bland AR, Bezsonov EE, Sahebkar A. Inflammasomes and Colorectal Cancer. Cells 2021; 10:2172. [PMID: 34571825 PMCID: PMC8467678 DOI: 10.3390/cells10092172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammasomes are important intracellular multiprotein signaling complexes that modulate the activation of caspase-1 and induce levels of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 in response to pathogenic microorganisms and molecules that originated from host proteins. Inflammasomes play contradictory roles in the development of inflammation-induced cancers. Based on several findings, inflammasomes can initiate and promote carcinogenesis. On the contrary, inflammasomes also exhibit anticancer effects by triggering pyroptosis and immunoregulatory functions. Herein, we review extant studies delving into different functions of inflammasomes in colorectal cancer development.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Science, Qazvin 3419759811, Iran;
| | - Khadijeh Koushki
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Seyed Hassan Ayati
- Immunobiochemistry Lab, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Abigail R. Bland
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Evgeny E. Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia;
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 1313199137, Iran
- School of Medicine, The University of Western Australia, Perth 6009, Australia
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|
45
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|
46
|
Lu X, Guo T, Zhang X. Pyroptosis in Cancer: Friend or Foe? Cancers (Basel) 2021; 13:cancers13143620. [PMID: 34298833 PMCID: PMC8304688 DOI: 10.3390/cancers13143620] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pyroptosis is a new form of programmed cell death that differs from apoptosis in terms of its release of inflammatory factors and its characteristic bubble-like morphology. Pyroptosis was first discovered in the process of immune defense against bacterial infection, but the field of research soon spread to other inflammatory diseases and cancer. As cancer constitutes a serious risk for public health, numerous studies investigating pyroptosis in cancer have been carried out during these years. Tumorigenesis and new therapeutic treatments have been the focus of much recent research. This review discusses the role of pyroptosis in tumorigenesis and its influence on tumor immunity. Abstract Pyroptosis is an inflammatory form of programmed cell death that is mediated by pore-forming proteins such as the gasdermin family (GSDMs), including GSDMA-E. Upon cleavage by activated caspases or granzyme proteases, the N-terminal of GSDMs oligomerizes in membranes to form pores, resulting in pyroptosis. Though all the gasdermin proteins have been studied in cancer, the role of pyroptosis in cancer remains mysterious, with conflicting findings. Numerous studies have shown that various stimuli, such as pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and chemotherapeutic drugs, could trigger pyroptosis when the cells express GSDMs. However, it is not clear whether pyroptosis in cancer induced by chemotherapeutic drugs or CAR T cell therapy is beneficial or harmful for anti-tumor immunity. This review discusses the discovery of pyroptosis as well as its role in inflammatory diseases and cancer, with an emphasis on tumor immunity.
Collapse
|
47
|
Jin Y, Chen Z, Dong J, Wang B, Fan S, Yang X, Cui M. SREBP1/FASN/cholesterol axis facilitates radioresistance in colorectal cancer. FEBS Open Bio 2021; 11:1343-1352. [PMID: 33665967 PMCID: PMC8091817 DOI: 10.1002/2211-5463.13137] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 11/30/2022] Open
Abstract
Acquired and intrinsic radioresistance remains a major challenge during the treatment of patients with colorectal cancer (CRC). Aberrant cholesterol metabolism precipitates the development of multiple cancers. Here, we report that exogenous or endogenous cholesterol enhances the radioresistance of CRC cells. The addition of cholesterol protects CRC cells against irradiation both in vitro and in vivo. Sterol response element‐binding protein 1/fatty acid synthase (SREBP1/FASN) signaling is rapidly increased in response to radiation stimuli, resulting in cholesterol accumulation, cell proliferation and inhibition of apoptosis. Blocking the SREBP1/FASN pathway impedes cholesterol synthesis and accelerates radiation‐induced CRC cell death. Our findings provide novel insights into the role of the SREBP1/FASN/cholesterol axis in radiotherapy and suggest that it may be a potential target for CRC treatment. Clinically, our results suggest that CRC patients undergoing radiotherapy may benefit from a lowered cholesterol intake.
Collapse
Affiliation(s)
- Yuxiao Jin
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
48
|
Sharma BR, Kanneganti TD. NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol 2021; 22:550-559. [PMID: 33707781 PMCID: PMC8132572 DOI: 10.1038/s41590-021-00886-5] [Citation(s) in RCA: 664] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
The NLRP3 inflammasome is a multimeric cytosolic protein complex that assembles in response to cellular perturbations. This assembly leads to the activation of caspase-1, which promotes maturation and release of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18, as well as inflammatory cell death (pyroptosis). The inflammatory cytokines contribute to the development of systemic low-grade inflammation, and aberrant NLRP3 activation can drive a chronic inflammatory state in the body to modulate the pathogenesis of inflammation-associated diseases. Therefore, targeting NLRP3 or other signaling molecules downstream, such as caspase-1, IL-1β or IL-18, has the potential for great therapeutic benefit. However, NLRP3 inflammasome-mediated inflammatory cytokines play dual roles in mediating human disease. While they are detrimental in the pathogenesis of inflammatory and metabolic diseases, they have a beneficial role in numerous infectious diseases and some cancers. Therefore, fine tuning of NLRP3 inflammasome activity is essential for maintaining proper cellular homeostasis and health. In this Review, we will cover the mechanisms of NLRP3 inflammasome activation and its divergent roles in the pathogenesis of inflammation-associated diseases such as cancer, atherosclerosis, diabetes and obesity, highlighting the therapeutic potential of targeting this pathway.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Correspondence to: Thirumala-Devi Kanneganti, Department of Immunology, St. Jude Children’s Research Hospital, MS #351, 262 Danny Thomas Place, Memphis TN 38105-3678, Tel: (901) 595-3634; Fax. (901) 595-5766.,
| |
Collapse
|
49
|
Kho PF, Amant F, Annibali D, Ashton K, Attia J, Auer PL, Beckmann MW, Black A, Brinton L, Buchanan DD, Chanock SJ, Chen C, Chen MM, Cheng THT, Cook LS, Crous-Bous M, Czene K, De Vivo I, Dennis J, Dörk T, Dowdy SC, Dunning AM, Dürst M, Easton DF, Ekici AB, Fasching PA, Fridley BL, Friedenreich CM, García-Closas M, Gaudet MM, Giles GG, Goode EL, Gorman M, Haiman CA, Hall P, Hankinson SE, Hein A, Hillemanns P, Hodgson S, Hoivik EA, Holliday EG, Hunter DJ, Jones A, Kraft P, Krakstad C, Lambrechts D, Le Marchand L, Liang X, Lindblom A, Lissowska J, Long J, Lu L, Magliocco AM, Martin L, McEvoy M, Milne RL, Mints M, Nassir R, Otton G, Palles C, Pooler L, Proietto T, Rebbeck TR, Renner SP, Risch HA, Rübner M, Runnebaum I, Sacerdote C, Sarto GE, Schumacher F, Scott RJ, Setiawan VW, Shah M, Sheng X, Shu XO, Southey MC, Tham E, Tomlinson I, Trovik J, Turman C, Tyrer JP, Van Den Berg D, Wang Z, Wentzensen N, Xia L, Xiang YB, Yang HP, Yu H, Zheng W, Webb PM, Thompson DJ, Spurdle AB, Glubb DM, O'Mara TA. Mendelian randomization analyses suggest a role for cholesterol in the development of endometrial cancer. Int J Cancer 2021; 148:307-319. [PMID: 32851660 PMCID: PMC7757859 DOI: 10.1002/ijc.33206] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 01/14/2023]
Abstract
Blood lipids have been associated with the development of a range of cancers, including breast, lung and colorectal cancer. For endometrial cancer, observational studies have reported inconsistent associations between blood lipids and cancer risk. To reduce biases from unmeasured confounding, we performed a bidirectional, two-sample Mendelian randomization analysis to investigate the relationship between levels of three blood lipids (low-density lipoprotein [LDL] and high-density lipoprotein [HDL] cholesterol, and triglycerides) and endometrial cancer risk. Genetic variants associated with each of these blood lipid levels (P < 5 × 10-8 ) were identified as instrumental variables, and assessed using genome-wide association study data from the Endometrial Cancer Association Consortium (12 906 cases and 108 979 controls) and the Global Lipids Genetic Consortium (n = 188 578). Mendelian randomization analyses found genetically raised LDL cholesterol levels to be associated with lower risks of endometrial cancer of all histologies combined, and of endometrioid and non-endometrioid subtypes. Conversely, higher genetically predicted HDL cholesterol levels were associated with increased risk of non-endometrioid endometrial cancer. After accounting for the potential confounding role of obesity (as measured by genetic variants associated with body mass index), the association between genetically predicted increased LDL cholesterol levels and lower endometrial cancer risk remained significant, especially for non-endometrioid endometrial cancer. There was no evidence to support a role for triglycerides in endometrial cancer development. Our study supports a role for LDL and HDL cholesterol in the development of non-endometrioid endometrial cancer. Further studies are required to understand the mechanisms underlying these findings.
Collapse
Affiliation(s)
- Pik-Fang Kho
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Frederic Amant
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University Hospitals KU Leuven, University of Leuven, Leuven, Belgium
| | - Daniela Annibali
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University Hospitals KU Leuven, University of Leuven, Leuven, Belgium
| | - Katie Ashton
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, New South Wales, Australia
- Centre for Information Based Medicine, University of Newcastle, Callaghan, New South Wales, Australia
- Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - John Attia
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, New South Wales, Australia
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Paul L. Auer
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Louise Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Daniel D. Buchanan
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Stephen J. Chanock
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chu Chen
- Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Maxine M. Chen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Timothy H. T. Cheng
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Linda S. Cook
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Alberta, Canada
| | - Marta Crous-Bous
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Sean C. Dowdy
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Mayo Clinic, Rochester, Minnesota
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Matthias Dürst
- Department of Gynaecology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Arif B. Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, California
| | - Brooke L. Fridley
- Department of Biostatistics, Kansas University Medical Center, Kansas City, Kansas
| | - Christine M. Friedenreich
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Alberta, Canada
| | - Montserrat García-Closas
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mia M. Gaudet
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Graham G. Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Ellen L. Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota
| | - Maggie Gorman
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Susan E. Hankinson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Biostatistics & Epidemiology, University of Massachusetts, Amherst, Amherst, Massachusetts
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Peter Hillemanns
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Shirley Hodgson
- Department of Clinical Genetics, St George's, University of London, London, UK
| | - Erling A. Hoivik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Elizabeth G. Holliday
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, New South Wales, Australia
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - David J. Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Angela Jones
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Camilla Krakstad
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Xiaolin Liang
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Cancer Center, Oncology Institute, Warsaw, Poland
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lingeng Lu
- Chronic Disease Epidemiology, Yale School of Medicine, New Haven, Connecticut
| | - Anthony M. Magliocco
- Department of Anatomic Pathology, Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Lynn Martin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Mark McEvoy
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Roger L. Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Miriam Mints
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Rami Nassir
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California
| | - Geoffrey Otton
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Claire Palles
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Loreall Pooler
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Tony Proietto
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Timothy R. Rebbeck
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stefan P. Renner
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Harvey A. Risch
- Chronic Disease Epidemiology, Yale School of Medicine, New Haven, Connecticut
| | - Matthias Rübner
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Ingo Runnebaum
- Department of Gynaecology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Carlotta Sacerdote
- Center for Cancer Prevention (CPO-Peimonte), Turin, Italy
- Human Genetics Foundation (HuGeF), Turin, Italy
| | - Gloria E. Sarto
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Fredrick Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Rodney J. Scott
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, New South Wales, Australia
- Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Division of Molecular Medicine, Pathology North, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - V. Wendy Setiawan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Xin Sheng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Melissa C. Southey
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska Institutet, Stockholm, Sweden
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Jone Trovik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jonathan P. Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - David Van Den Berg
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Lucy Xia
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hannah P. Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Penelope M. Webb
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Deborah J. Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Amanda B. Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Dylan M. Glubb
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Tracy A. O'Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
50
|
Kimbung S, Inasu M, Stålhammar T, Nodin B, Elebro K, Tryggvadottir H, Ygland Rödström M, Jirström K, Isaksson K, Jernström H, Borgquist S. CYP27A1 expression is associated with risk of late lethal estrogen receptor-positive breast cancer in postmenopausal patients. Breast Cancer Res 2020; 22:123. [PMID: 33176848 PMCID: PMC7656740 DOI: 10.1186/s13058-020-01347-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022] Open
Abstract
Background 27-Hydroxycholesterol (27HC) stimulates estrogen receptor-positive (ER+) breast cancer (BC) progression. Inhibiting the sterol 27-hydroxylase (CYP27A1) abrogates these growth-promoting effects of 27HC in mice. However, the significance of CYP27A1 expression on BC biology and prognosis is unclear. Methods Intratumoral CYP27A1 expression in invasive BC was measured by immunohistochemistry in two Swedish population-based cohorts (n = 645 and n = 813, respectively). Cox proportional hazards models were used to evaluate the association between CYP27A1 expression and prognosis. Results CYP27A1 was highly expressed in less than 1/3 of the tumors. High CYP27A1 expression was more frequent among high-grade tumors lacking hormone receptor expression and with larger tumor sizes. Over a median of 12.2 years follow-up in cohort 1, high CYP27A1 expression was associated with impaired survival, specifically after 5 years from diagnosis among all patients [overall survival (OS), HRadjusted = 1.93, 95%CI = 1.26–2.97, P = 0.003; breast cancer-specific survival (BCSS), HRadjusted = 2.33, 95%CI = 1.28–4.23, P = 0.006] and among patients ≥ 55 years presenting with ER+ tumors [OS, HRadjusted = 1.99, 95%CI = 1.24–3.21, P = 0.004; BCSS, HRadjusted = 2.78, 95%CI = 1.41–5.51, P = 0.003]. Among all patients in cohort 2 (median follow-up of 7.0 years), CYP27A1 expression was significantly associated with shorter OS and RFS in univariable analyses across the full follow-up period. However after adjusting for tumor characteristics and treatments, the association with survival after 5 years from diagnosis was non-significant among all patients [OS, HRadjusted = 1.08, 95%CI = 0.05–2.35, P = 0.83 and RFS, HRadjusted = 1.22, 95%CI = 0.68–2.18, P = 0.50] as well as among patients ≥ 55 years presenting with ER+ tumors [OS, HRadjusted = 0.46 95% CI = 0.11–1.98, P = 0.30 and RFS, HRadjusted = 0.97 95% CI = 0.44–2.10, P = 0.93]. Conclusion CYP27A1 demonstrated great potentials as a biomarker of aggressive tumor biology and late lethal disease in postmenopausal patients with ER+ BC. Future studies should investigate if the benefits of prolonged endocrine therapy and cholesterol-lowering medication in BC are modified by CYP27A1 expression.
Collapse
Affiliation(s)
- Siker Kimbung
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden.
| | - Maria Inasu
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden
| | - Tor Stålhammar
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences Lund, Division of Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Karin Elebro
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden.,Department of Reconstructive Plastic Surgery, Skåne University Hospital, Malmö, Sweden
| | - Helga Tryggvadottir
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden
| | - Maria Ygland Rödström
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Division of Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Karolin Isaksson
- Department of Clinical Sciences Lund, Division of Surgery, Lund University, Lund, Sweden.,Department of Surgery, Central Hospital, Kristianstad, Sweden
| | - Helena Jernström
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden
| | - Signe Borgquist
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85, Lund, Sweden. .,Department of Oncology, Aarhus University Hospital, Aarhus University, Aarhus, Denmark.
| |
Collapse
|