1
|
Karakasis P, Patoulias D, Giannakoulas G, Sagris M, Theofilis P, Fragakis N, Biondi-Zoccai G. Effect of Glucagon-like Peptide-1 Receptor Agonism on Aortic Valve Stenosis Risk: A Mendelian Randomization Analysis. J Clin Med 2024; 13:6411. [PMID: 39518550 PMCID: PMC11546526 DOI: 10.3390/jcm13216411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Aortic valve repair is currently the only effective treatment for calcific aortic valve stenosis (CAVS), as no pharmacological therapies exist to prevent or slow its progression. Recent promising results showed that glucagon-like peptide-1 (GLP-1) attenuates the calcification of aortic valve interstitial cells. Therefore, we conducted a two-sample Mendelian randomization analysis to investigate the effect of GLP-1 receptor agonism (GLP-1Ra) on the risk of CAVS. Methods: The inverse variance weighted (IVW) method was used to obtain the primary causal inference, and several sensitivity analyses, including MR-Egger, were performed to assess the robustness of the results. Results: Based on the IVW estimates, the GLP-1Ra showed a neutral effect on the risk of CAVS (odds ratio [OR] per 1 mmol/mol decrease in glycated hemoglobin = 0.87, 95% CI = [0.69, 1.11], p = 0.259; I2 = 4.5%, Cohran's Q = 2.09, heterogeneity p = 0.35; F statistic = 16.8). A non-significant effect was also derived by the sensitivity analyses. No evidence of horizontal pleiotropy was identified. Conclusions: GLP-1Ra was not significantly associated with the risk of CAVS. Furthermore, pragmatically designed studies are required to evaluate the effect of GLP-1Ra on the clinical course of CAVS in different patient subgroups.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
- Department of Hygiene, Social-Preventive Medicine & Medical Statistics, Medical School, Aristotle University of Thessaloniki, University Campus, 54642 Thessaloniki, Greece
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - George Giannakoulas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Marios Sagris
- School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (M.S.); (P.T.)
| | - Panagiotis Theofilis
- School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (M.S.); (P.T.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy
| |
Collapse
|
2
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
3
|
Morettini M, Palumbo MC, Bottiglione A, Danieli A, Del Giudice S, Burattini L, Tura A. Glucagon-like peptide-1 and interleukin-6 interaction in response to physical exercise: An in-silico model in the framework of immunometabolism. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 245:108018. [PMID: 38262127 DOI: 10.1016/j.cmpb.2024.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Glucagon-like peptide 1 (GLP-1) is classically identified as an incretin hormone, secreted in response to nutrient ingestion and able to enhance glucose-stimulated insulin secretion. However, other stimuli, such as physical exercise, may enhance GLP-1 plasma levels, and this exercise-induced GLP-1 secretion is mediated by interleukin-6 (IL-6), a cytokine secreted by contracting skeletal muscle. The aim of the study is to propose a mathematical model of IL-6-induced GLP-1 secretion and kinetics in response to physical exercise of moderate intensity. METHODS The model includes the GLP-1 subsystem (with two pools: gut and plasma) and the IL-6 subsystem (again with two pools: skeletal muscle and plasma); it provides a parameter of possible clinical relevance representing the sensitivity of GLP-1 to IL-6 (k0). The model was validated on mean IL-6 and GLP-1 data derived from the scientific literature and on a total of 100 virtual subjects. RESULTS Model validation provided mean residuals between 0.0051 and 0.5493 pg⋅mL-1 for IL-6 (in view of concentration values ranging from 0.8405 to 3.9718 pg⋅mL-1) and between 0.0133 and 4.1540 pmol⋅L-1 for GLP-1 (in view of concentration values ranging from 0.9387 to 17.9714 pmol⋅L-1); a positive significant linear correlation (r = 0.85, p<0.001) was found between k0 and the ratio between areas under GLP-1 and IL-6 curve, over the virtual subjects. CONCLUSIONS The model accurately captures IL-6-induced GLP-1 kinetics in response to physical exercise.
Collapse
Affiliation(s)
- Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Maria Concetta Palumbo
- Institute for Applied Computing (IAC) "Mauro Picone", National Research Council of Italy, via dei Taurini 19, Rome, 00185, Italy.
| | - Alessandro Bottiglione
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Andrea Danieli
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Simone Del Giudice
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Laura Burattini
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Andrea Tura
- CNR Institute of Neuroscience, Corso Stati Uniti 4, Padova, 35127, Italy.
| |
Collapse
|
4
|
Watkins JD, Carter S, Atkinson G, Koumanov F, Betts JA, Holst JJ, Gonzalez JT. Glucagon-like peptide-1 secretion in people with versus without type 2 diabetes: a systematic review and meta-analysis of cross-sectional studies. Metabolism 2023; 140:155375. [PMID: 36502882 DOI: 10.1016/j.metabol.2022.155375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The aim of this systematic review was to synthesise the study findings on whether GLP-1 secretion in response to a meal tolerance test is affected by the presence of type 2 diabetes (T2D). The influence of putative moderators such as age, sex, meal type, meal form, and assay type were also explored. METHODS A literature search identified 32 relevant studies. The sample mean and SD for fasting GLP-1TOTAL and GLP-1TOTAL iAUC were extracted and used to calculate between-group standardised mean differences (SMD), which were meta-analysed using a random-effects model to derive pooled estimates of Hedges' g and 95 % prediction intervals (PI). RESULTS Pooled across 18 studies, the overall SMD in GLP-1TOTAL iAUC between individuals with T2D (n = 270, 1047 ± 930 pmol·L-1·min) and individuals without T2D (n = 402, 1204 ± 937 pmol·L-1·min) was very small, not statistically significant and heterogenous across studies (g = -0.15, p = 0.43, PI: -1.53, 1.23). Subgroup analyses demonstrated an effect of assay type whereby Hedges' g for GLP-1 iAUC was greater in individuals with, versus those without T2D when using ELISA or Mesoscale (g = 0.67 [moderate], p = 0.009), but not when using RIA (g = -0.30 [small], p = 0.10). Pooled across 30 studies, the SMD in fasting GLP-1TOTAL between individuals with T2D (n = 580, 16.2 ± 6.9 pmol·L-1) versus individuals without T2D (n = 1363, 12.4 ± 5.7 pmol·L-1) was small and heterogenous between studies (g = 0.24, p = 0.21, PI: -1.55, 2.02). CONCLUSIONS Differences in fasting GLP-1TOTAL and GLP-1TOTAL iAUC between individuals with, versus those without T2D were generally small and inconsistent between studies. Factors influencing study heterogeneity such as small sample sizes and poor matching of groups may help to explain the wide prediction intervals observed. Considerations to improve comparisons of GLP-1 secretion in T2D and potential mediating factors more important than T2D diagnosis per se are outlined. PROSPERO ID CRD42020195612.
Collapse
Affiliation(s)
- J D Watkins
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK.
| | - S Carter
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - G Atkinson
- Liverpool John Moores University, Liverpool, UK
| | - F Koumanov
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - J A Betts
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - J J Holst
- Biomedical Sciences, Endocrinology Research Section, University of Copenhagen, Denmark
| | - J T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK.
| |
Collapse
|
5
|
Alsalim W, Lindgren O, Ahrén B. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 secretion in humans: Characteristics and regulation. J Diabetes Investig 2022; 14:354-361. [PMID: 36539382 PMCID: PMC9951578 DOI: 10.1111/jdi.13962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
AIMS/INTRODUCTION Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are important incretin hormones. They are released from the gut after meal ingestion and potentiate glucose-stimulated insulin secretion. Their release after meal ingestion and oral glucose are well established and have been characterized previously. During recent years, knowledge of other regulatory aspects that potentially may affect GIP and GLP-1 secretion after meal ingestion have also begun to emerge. Here, the results of human studies on these novel aspects of meal- and nutrient-stimulated incretin hormone secretion are reviewed. MATERIALS AND METHODS The human literature was revisited by identifying articles in PubMed using key words GIP, GLP-1, secretion, meal, and nutrients. RESULTS The results show that all macronutrients individually stimulate GIP and GLP-1 secretion. However, there was no synergistic action when given in combination. A pre-load 30 min before a meal augments the GIP and GLP-1 response. GIP and GLP-1 secretion have a diurnal variation with a higher response to an identical meal in the morning than in the afternoon. There is no difference in GIP and GLP-1 secretion whether a meal is ingested slowly or rapidly. GIP and GLP-1 secretion after dinner are the same whether or not breakfast and lunch have been ingested. The temperature of the food may be of importance for the incretin hormone response. CONCLUSIONS These novel findings have increased our knowledge on the regulation of the complexity of the incretin system and are also important knowledge when designing future studies.
Collapse
Affiliation(s)
- Wathik Alsalim
- Department of Clinical Sciences LundLund UniversityLundSweden,Department of EndocrinologySkåne University HospitalLundSweden
| | - Ola Lindgren
- Department of Clinical Sciences LundLund UniversityLundSweden,Department of EndocrinologySkåne University HospitalLundSweden
| | - Bo Ahrén
- Department of Clinical Sciences LundLund UniversityLundSweden,Department of EndocrinologySkåne University HospitalLundSweden
| |
Collapse
|
6
|
Zhang X, Cheng Z, Dong S, Rayner C, Wu T, Zhong M, Zhang G, Wang K, Hu S. Effects of ileal glucose infusion on enteropancreatic hormone secretion in humans: relationship to glucose absorption. Metabolism 2022; 131:155198. [PMID: 35395220 DOI: 10.1016/j.metabol.2022.155198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS The distal small intestine plays an important role in regulating the secretion of entero-pancreatic hormones that are critical to the control of glucose metabolism and appetite, but the quantitative contribution of a specific segment to these effects is unknown. PURPOSES To determine the effects of 30 cm of the ileum exposed to glucose on the secretion of ghrelin, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) insulin, C-peptide and glucagon, in relation to glucose absorption in non-diabetic subjects. BASIC PROCEDURES 10 non-diabetic subjects with a loop ileostomy after early-stage rectal cancer resection were studied on 2 days in a double-blind, randomized and crossover fashion, when a catheter was inserted retrogradely 30 cm from the ileostomy for infusion of a glucose solution containing 30 g glucose and 3 g 3-O-methylglucose (as a marker of active glucose absorption), or 0.9% saline, over 60 min. Ghrelin, GIP, GLP-1, insulin, C-peptide, glucagon and ileal glucose absorption (from concentrations of 3-O-methylglucose in serum and glucose in ileostomy effluent) were measured over 180 min. MAIN FINDINGS 12.0 ± 1.2 g glucose was absorbed over 180 min. Compared to saline, ileal glucose resulted in minimal increases in blood glucose and plasma insulin and C-peptide, but substantial increases in plasma GLP-1, without affecting ghrelin, GIP or glucagon. The magnitude of the GLP-1 response to glucose was strongly related to the increase in serum 3-O-methylglucose. PRINCIPAL CONCLUSIONS Stimulation of the terminal ileum by glucose, even over a short length (30 cm), induces substantial GLP-1 release, coupled primarily to active glucose absorption. CLINICAL REGISTRATION NCT05030376 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Xiang Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Zhiqiang Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Shuohui Dong
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Christopher Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.
| | - Sanyuan Hu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China; Shandong University, China.
| |
Collapse
|
7
|
Taskinen MR, Matikainen N, Björnson E, Söderlund S, Ainola M, Hakkarainen A, Lundbom N, Sihlbom C, Thorsell A, Andersson L, Adiels M, Hartmann B, Deacon CF, Holst JJ, Packard CJ, Borén J. Role of endogenous incretins in the regulation of postprandial lipoprotein metabolism. Eur J Endocrinol 2022; 187:75-84. [PMID: 35521766 DOI: 10.1530/eje-21-1187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Incretins are known to influence lipid metabolism in the intestine when administered as pharmacologic agents. The aggregate influence of endogenous incretins on chylomicron production and clearance is less clear, particularly in light of opposing effects of co-secreted hormones. Here, we tested the hypothesis that physiological levels of incretins may impact on production or clearances rates of chylomicrons and VLDL. DESIGN AND METHODS A group of 22 overweight/obese men was studied to determine associations between plasma levels of glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) and glucose-dependent insulinotropic polypeptide (GIP) after a fat-rich meal and the production and clearance rates of apoB48- and apoB100-containing triglyceride-rich lipoproteins. Subjects were stratified by above- and below-median incretin response (area under the curve). RESULTS Stratification yielded subgroups that differed about two-fold in incretin response. There were neither differences in apoB48 production rates in chylomicrons or VLDL fractions nor in apoB100 or triglyceride kinetics in VLDL between men with above- vs below-median incretin responses. The men with above-median GLP-1 and GLP-2 responses exhibited higher postprandial plasma and chylomicron triglyceride levels, but this could not be related to altered kinetic parameters. No differences were found between incretin response subgroups and particle clearance rates. CONCLUSION We found no evidence for a regulatory effect of endogenous incretins on contemporaneous chylomicron or VLDL metabolism following a standardised fat-rich meal. The actions of incretins at pharmacological doses may not be reflected at physiological levels of these hormones.
Collapse
Affiliation(s)
- Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Niina Matikainen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sanni Söderlund
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Mari Ainola
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Antti Hakkarainen
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Nina Lundbom
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Carina Sihlbom
- Proteomics Facility, University of Gothenburg, Gothenburg, Sweden
| | - Annika Thorsell
- Proteomics Facility, University of Gothenburg, Gothenburg, Sweden
| | - Linda Andersson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
8
|
Lindgren O, Ahrén B. Consequences on islet and incretin hormone responses to dinner by omission of lunch in healthy men. Endocrinol Diabetes Metab 2020; 3:e00141. [PMID: 32704562 PMCID: PMC7375076 DOI: 10.1002/edm2.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Omission of breakfast results in higher glucose and lower insulin and incretin hormone levels after both lunch and dinner. Whether omission of lunch has a similar impact on the following meal is not known. AIM This study therefore explored whether omission of lunch ingestion affects glucose, islet and incretin hormones after dinner ingestion in healthy subjects. MATERIALS & METHODS Twelve male volunteers (mean age 22 years, BMI 22.5 kg/m2) underwent two test days in random order with standard breakfast and dinner on both days with provision or omission of standard lunch in between. RESULTS The results showed that throughout the 300 minutes study period, glucose, insulin, glucagon and GIP levels after dinner ingestion did not differ between the two tests. In contrast, C-peptide, and GLP-1 levels were 26%-35% higher at later time points after dinner ingestion when lunch had been omitted (P < .05). CONCLUSION We conclude that omission of lunch increases GLP-1 and insulin secretion and possibly also insulin clearance resulting in unchanged glucose and insulin levels after dinner ingestion.
Collapse
Affiliation(s)
- Ola Lindgren
- Department of Clinical Sciences LundLund UniversityLundSweden
| | - Bo Ahrén
- Department of Clinical Sciences LundLund UniversityLundSweden
| |
Collapse
|
9
|
Clemmensen KKB, Quist JS, Vistisen D, Witte DR, Jonsson A, Pedersen O, Hansen T, Holst JJ, Lauritzen T, Jørgensen ME, Torekov S, Færch K. Role of fasting duration and weekday in incretin and glucose regulation. Endocr Connect 2020; 9:279-288. [PMID: 32163918 PMCID: PMC7159259 DOI: 10.1530/ec-20-0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/11/2020] [Indexed: 11/08/2022]
Abstract
Fasting duration has been associated with lower fasting blood glucose levels, but higher 2-h post-load levels, and research has indicated an adverse effect of 'weekend behavior' on human metabolism. We investigated associations of fasting duration and weekday of examination with glucose, insulin, glucagon and incretin responses to an oral glucose tolerance test (OGTT). This cross-sectional study is based on data from the ADDITION-PRO study, where 2082 individuals attended a health examination including an OGTT. Linear regression analysis was applied to study the associations of overnight fasting duration and day of the week with glucose, insulin, glucagon, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) responses to an OGTT. We found that a 1 h longer fasting duration was associated with 1.7% (95% CI: 0.8,2.5) higher 2-h glucose levels, as well as a 3.0% (95% CI: 1.3,4.7) higher GIP and 2.3% (95% CI: 0.3,4.4) higher GLP-1 response. Fasting insulin levels were 20.6% (95% CI: 11.2,30.7) higher on Mondays compared to the other weekdays, with similar fasting glucose levels (1.7%, 95% CI: 0.0,3.4). In this study, longer overnight fasting duration was associated with a worsening of glucose tolerance and increased incretin response to oral glucose. We found higher fasting insulin levels on Mondays compared to the other days of the week, potentially indicating a worsened glucose regulation after the weekend.
Collapse
Affiliation(s)
- Kim K B Clemmensen
- Department of Clinical Epidemiology, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Correspondence should be addressed to K K Clemmensen:
| | - Jonas S Quist
- Department of Clinical Epidemiology, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Dorte Vistisen
- Department of Clinical Epidemiology, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Anna Jonsson
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torsten Lauritzen
- Section for General Practice, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Marit E Jørgensen
- Department of Clinical Epidemiology, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Signe Torekov
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Færch
- Department of Clinical Epidemiology, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
10
|
Newmire DE, Rivas E, Deemer SE, Willoughby DS, Ben-Ezra V. The Impact of a Large Bolus Dose of l-leucine and l-isoleucine on Enteroendocrine and Pancreatic Hormones, and Glycemia in Healthy, Inactive Adults. Nutrients 2019; 11:nu11112650. [PMID: 31689951 PMCID: PMC6893504 DOI: 10.3390/nu11112650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The ingestion of whey protein and amino acids with carbohydrate (CHO) enhances the release of glucagon-like peptide-1 (GLP-1) and glucose-dependent-insulinotropic peptide (GIP) that promote insulin secretion. It is unknown if L-isoleucine (Ile) and L-leucine (Leu) have this same effect. The purpose of this study was to examine how Ile and Leu influence both GLP-1 and GIP, subsequent pancreatic hormones, and glycemia in healthy, inactive adults. Methods: Twelve adults (6F/6M; age 27.4 ± 2 years; BMI 26.3 ± 2 kg/m2; lean body mass 53.2 ± 5 kg; body fat 34.1 ± 3%) completed four conditions in a randomized, cross-over fashion. Treatments standardized (0.3 g/kg·LBM−1) (1) Leu, (2) Ile, (3) Equal (1:1 g) of Leu + Ile, and (4) placebo (Pla, 3.5 g inert stevia) ingested 30 min prior to an oral glucose tolerance test (OGTT). Samples of plasma glucose, insulin, glucagon, GIPTotal, and GLP-1Active were assessed. Results: A treatment (p = 0.01) effect comparing Ile vs. Leu (p = 0.02) in GIPTotal. Area under the curve showed an increase in GIPTotal from Ile compared to Leu and Pla (p = 0.03). No effect was found on GLP-1. The ingestion of Ile prior to CHO augmented GIP concentration greater than Leu or Pla. No correlation was found between GIP, insulin, and glucose between conditions. Conclusions: Ile impacts GIP concentration, which did not relate to either insulin or glucose concentrations. Neither Ile, nor Leu seem to have an effect on hyperglycemia ingested prior to a CHO drink.
Collapse
Affiliation(s)
- Daniel E Newmire
- Exercise Physiology and Biochemistry Lab, Department of Kinesiology, Texas A&M University-Corpus Christi, Corpus Christi, TX 78414, USA.
| | - Eric Rivas
- Exercise and Thermal Integrative Physiology Laboratory, Department of Kinesiology and Sports Management, Texas Tech University, Lubbock, TX 79409, USA.
| | - Sarah E Deemer
- Nutrition Obesity Research Center, University of Alabama-Birmingham, Birmingham, AL 35233, USA.
| | - Darryn S Willoughby
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, Recreation, Baylor University, Waco, TX 76707, USA.
| | - Victor Ben-Ezra
- Exercise Physiology and Biochemistry Lab, Department of Kinesiology, Texas Woman's University, Denton, TX 76204, USA.
| |
Collapse
|
11
|
Chen YC, Smith HA, Hengist A, Chrzanowski-Smith OJ, Mikkelsen UR, Carroll HA, Betts JA, Thompson D, Saunders J, Gonzalez JT. Co-ingestion of whey protein hydrolysate with milk minerals rich in calcium potently stimulates glucagon-like peptide-1 secretion: an RCT in healthy adults. Eur J Nutr 2019; 59:2449-2462. [PMID: 31531707 PMCID: PMC7413905 DOI: 10.1007/s00394-019-02092-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/11/2019] [Indexed: 11/26/2022]
Abstract
Purpose To examine whether calcium type and co-ingestion with protein alter gut hormone availability. Methods Healthy adults aged 26 ± 7 years (mean ± SD) completed three randomized, double-blind, crossover studies. In all studies, arterialized blood was sampled postprandially over 120 min to determine GLP-1, GIP and PYY responses, alongside appetite ratings, energy expenditure and blood pressure. In study 1 (n = 20), three treatments matched for total calcium content (1058 mg) were compared: calcium citrate (CALCITR); milk minerals rich in calcium (MILK MINERALS); and milk minerals rich in calcium plus co-ingestion of 50 g whey protein hydrolysate (MILK MINERALS + PROTEIN). In study 2 (n = 6), 50 g whey protein hydrolysate (PROTEIN) was compared to MILK MINERALS + PROTEIN. In study 3 (n = 6), MILK MINERALS was compared to the vehicle of ingestion (water plus sucralose; CONTROL). Results MILK MINERALS + PROTEIN increased GLP-1 incremental area under the curve (iAUC) by ~ ninefold (43.7 ± 11.1 pmol L−1 120 min; p < 0.001) versus both CALCITR and MILK MINERALS, with no difference detected between CALCITR (6.6 ± 3.7 pmol L−1 120 min) and MILK MINERALS (5.3 ± 3.5 pmol L−1 120 min; p > 0.999). MILK MINERALS + PROTEIN produced a GLP-1 iAUC ~ 25% greater than PROTEIN (p = 0.024; mean difference: 9.1 ± 6.9 pmol L−1 120 min), whereas the difference between MILK MINERALS versus CONTROL was small and non-significant (p = 0.098; mean difference: 4.2 ± 5.1 pmol L−1 120 min). Conclusions When ingested alone, milk minerals rich in calcium do not increase GLP-1 secretion compared to calcium citrate. Co-ingesting high-dose whey protein hydrolysate with milk minerals rich in calcium increases postprandial GLP-1 concentrations to some of the highest physiological levels ever reported. Registered at ClinicalTrials.gov: NCT03232034, NCT03370484, NCT03370497. Electronic supplementary material The online version of this article (10.1007/s00394-019-02092-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yung-Chih Chen
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
| | - Harry A Smith
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Aaron Hengist
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | | | | | - Harriet A Carroll
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - James A Betts
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - John Saunders
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | | |
Collapse
|
12
|
Christiansen CB, Lind SJ, Svendsen B, Balk-Møller E, Dahlby T, Kuhre RE, Hartmann B, Mandrup-Poulsen T, Deacon CF, Wewer Albrechtsen NJ, Holst JJ. Acute administration of interleukin-6 does not increase secretion of glucagon-like peptide-1 in mice. Physiol Rep 2019; 6:e13788. [PMID: 29981198 PMCID: PMC6035335 DOI: 10.14814/phy2.13788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023] Open
Abstract
Interleukin 6 (IL‐6) is a cytokine secreted from skeletal muscle in response to exercise which, based on animal and cell studies, has been suggested to contribute to glucose metabolism by increasing secretion of the incretin hormone glucagon‐like peptide‐1 (GLP‐1) and affecting secretion of insulin and glucagon from the pancreatic islets. We investigated the effect of IL‐6 on GLP‐1 secretion in GLP‐1 producing cells (GLUTag) and using the perfused mouse small intestine (harboring GLP‐1 producing cells). Furthermore, the direct effect of IL‐6 on insulin and glucagon secretion was studied using isolated perfused mouse pancreas. Incubating GLUTag cells with 1000 ng/mL of IL‐6 for 2 h did not significantly increase secretion of GLP‐1 whereas 10 mmol/L glucose (positive control) did. Similarly, IL‐6 (100 ng/mL) had no effect on GLP‐1 secretion from perfused mouse small intestine whereas bombesin (positive control) increased secretion. Finally, administering IL‐6 (100 ng/mL) to perfused mouse pancreases did not significantly increase insulin or glucagon secretion regardless of perfusate glucose levels (3.5 vs. 12 mmol/L glucose). Acute effects of IL‐6 therefore do not seem to include a stimulatory effect on GLP‐1 secretion in mice.
Collapse
Affiliation(s)
- Charlotte B Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara J Lind
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Berit Svendsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Balk-Møller
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Dahlby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Hasegawa T, Komagata M, Hamasaki A, Harada N, Seino Y, Inagaki N. Solid-phase extraction treatment is required for measurement of active glucagon-like peptide-1 by enzyme-linked immunosorbent assay kit affected by heterophilic antibodies. J Diabetes Investig 2019; 10:302-308. [PMID: 29993194 PMCID: PMC6400240 DOI: 10.1111/jdi.12896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/13/2018] [Accepted: 07/01/2018] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION It is reported that interfering substances in the blood might influence the value for measurement of active glucagon-like peptide-1 (GLP-1) in human plasma. Solid phase extraction (SPE) pretreatment is recommended to reduce their influence, but it requires a lot of cost and time. However, there is little investigation about causative inhibitory substances and about methods that can replace solid phase extraction. In the present study, we aimed to seek the candidate of the substances that might interfere with an active GLP-1 enzyme-linked immunosorbent assay (ELISA). MATERIALS AND METHODS Two kinds of active GLP-1 ELISA kits using different antibodies, plural extraction carriers and elution solutions were used to evaluate the SPE method. Active GLP-1 concentration was compared with or without SPE, and with or without a heterophilic blocking tube. RESULTS Active GLP-1 values were often higher without SPE compared with those with SPE pretreatment. This difference was eliminated by pretreatment with a heterophilic blocking tube or ELISA kits that did not use a mouse monoclonal antibody, and was independent of SPE. CONCLUSIONS Substances absorbed to a heterophilic blocking tube carrier might interfere with an active GLP-1 immunoassay. Solid-phase extraction treatment is required for measurement of active GLP-1 by an ELISA kit affected by heterophilic antibodies.
Collapse
Affiliation(s)
| | | | - Akihiro Hamasaki
- Department of Diabetes, Endocrinology and NutritionGraduate School of MedicineKyoto UniversityKyotoJapan
- Center for Diabetes and EndocrinologyTazuke Kofukai Medical Research Institute Kitano HospitalOsakaJapan
| | - Norio Harada
- Department of Diabetes, Endocrinology and NutritionGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Yutaka Seino
- Kansai Electric Power Medical Research InstituteOsakaJapan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and NutritionGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
14
|
Holst JJ, Albrechtsen NJW, Gabe MBN, Rosenkilde MM. Oxyntomodulin: Actions and role in diabetes. Peptides 2018; 100:48-53. [PMID: 29412831 DOI: 10.1016/j.peptides.2017.09.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022]
Abstract
Oxyntomodulin is a product of the glucagon precursor, proglucagon, produced and released from the endocrine L-cells of the gut after enzymatic processing by the precursor prohormone convertase 1/3. It corresponds to the proglucagon sequence 33-69 and thus contains the entire glucagon sequence plus a C-terminal octapeptide, comprising in total 37 amino acids. As might have been expected, it has glucagon-like bioactivity, but also and more surprisingly also activates the receptor for GLP-1. This has given the molecule an interesting status as a glucagon-GLP-1 co-agonist, which is currently attracting considerable interest for its potential in the treatment of diabetes and obesity. Here, we provide an update on oxyntomodulin with a focus on its potential role in metabolic diseases.
Collapse
Affiliation(s)
- Jens J Holst
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Buur Nordskov Gabe
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Zhang J, Liang D, Cheng Q, Cao L, Wu Y, Wang Y, Han S, Yu Z, Cui X, Xu T, Ma D, Hu P, Xu Z. Peptidomic Analysis of Fetal Heart Tissue for Identification of Endogenous Peptides Involved in Tetralogy of Fallot. DNA Cell Biol 2017; 36:451-461. [PMID: 28304193 DOI: 10.1089/dna.2017.3647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Dong Liang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Qing Cheng
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Li Cao
- Department of Ultrasound, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yun Wu
- Department of Ultrasound, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yan Wang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Shuping Han
- Department of Pediatrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhangbin Yu
- Department of Pediatrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xianwei Cui
- Nanjing Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Tianhui Xu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Dingyuan Ma
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Ping Hu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhengfeng Xu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Matikainen N, Söderlund S, Björnson E, Bogl LH, Pietiläinen KH, Hakkarainen A, Lundbom N, Eliasson B, Räsänen SM, Rivellese A, Patti L, Prinster A, Riccardi G, Després JP, Alméras N, Holst JJ, Deacon CF, Borén J, Taskinen MR. Fructose intervention for 12 weeks does not impair glycemic control or incretin hormone responses during oral glucose or mixed meal tests in obese men. Nutr Metab Cardiovasc Dis 2017; 27:534-542. [PMID: 28428027 DOI: 10.1016/j.numecd.2017.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Incretin hormones glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP) are affected early on in the pathogenesis of metabolic syndrome and type 2 diabetes. Epidemiologic studies consistently link high fructose consumption to insulin resistance but whether fructose consumption impairs the incretin response remains unknown. METHODS AND RESULTS As many as 66 obese (BMI 26-40 kg/m2) male subjects consumed fructose-sweetened beverages containing 75 g fructose/day for 12 weeks while continuing their usual lifestyle. Glucose, insulin, GLP-1 and GIP were measured during oral glucose tolerance test (OGTT) and triglycerides (TG), GLP-1, GIP and PYY during a mixed meal test before and after fructose intervention. Fructose intervention did not worsen glucose and insulin responses during OGTT, and GLP-1 and GIP responses during OGTT and fat-rich meal were unchanged. Postprandial TG response increased significantly, p = 0.004, and we observed small but significant increases in weight and liver fat content, but not in visceral or subcutaneous fat depots. However, even the subgroups who gained weight or liver fat during fructose intervention did not worsen their glucose, insulin, GLP-1 or PYY responses. A minor increase in GIP response during OGTT occurred in subjects who gained liver fat (p = 0.049). CONCLUSION In obese males with features of metabolic syndrome, 12 weeks fructose intervention 75 g/day did not change glucose, insulin, GLP-1 or GIP responses during OGTT or GLP-1, GIP or PYY responses during a mixed meal. Therefore, fructose intake, even accompanied with mild weight gain, increases in liver fat and worsening of postprandial TG profile, does not impair glucose tolerance or gut incretin response to oral glucose or mixed meal challenge.
Collapse
Affiliation(s)
- N Matikainen
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki University Hospital, Helsinki, Finland; Endocrinology, Abdominal Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland.
| | - S Söderlund
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - E Björnson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - L H Bogl
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki University Hospital, Helsinki, Finland; Institute for Molecular Medicine FIMM, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - K H Pietiläinen
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki University Hospital, Helsinki, Finland; Endocrinology, Abdominal Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - A Hakkarainen
- Radiology, HUS Medical Imaging Center, Helsinki University Hospital, University of Helsinki, Finland
| | - N Lundbom
- Radiology, HUS Medical Imaging Center, Helsinki University Hospital, University of Helsinki, Finland
| | - B Eliasson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - S M Räsänen
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - A Rivellese
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - L Patti
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - A Prinster
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| | - G Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - J-P Després
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - N Alméras
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - J J Holst
- NNF Centre for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - C F Deacon
- NNF Centre for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M-R Taskinen
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
17
|
Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R. Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Med Res Rev 2017; 38:101-146. [PMID: 28094448 PMCID: PMC7168463 DOI: 10.1002/med.21435] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) are an integral part of the innate immune defense mechanism of many organisms. Due to the alarming increase of resistance to antimicrobial therapeutics, a growing interest in alternative antimicrobial agents has led to the exploitation of AMPs, both synthetic and isolated from natural sources. Thus, many peptide-based drugs have been the focus of increasing attention by many researchers not only in identifying novel AMPs, but in defining mechanisms of antimicrobial peptide activity as well. Herein, we review the available strategies for the identification of AMPs in human body fluids and their mechanism(s) of action. In addition, an overview of the distribution of AMPs across different human body fluids is provided, as well as its relation with microorganisms and infectious conditions.
Collapse
Affiliation(s)
- Paulo Bastos
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - João da Costa
- Department of Chemistry, CESAM, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
18
|
Larsen MP, Torekov SS. Glucagon-Like Peptide 1: A Predictor of Type 2 Diabetes? J Diabetes Res 2017; 2017:7583506. [PMID: 29082261 PMCID: PMC5610892 DOI: 10.1155/2017/7583506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/30/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The incretin effect is impaired in patients with type 2 diabetes. AIM To assess the relation between the incretin hormone GLP-1 and the prediabetic subtypes: impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and the combined IFG/IGT to investigate whether a low GLP-1 response may be a predictor of prediabetes in adults. METHOD 298 articles were found using a broad search phrase on the PubMed database and after the assessment of titles and abstracts 19 articles were included. RESULTS AND DISCUSSION Studies assessing i-IFG/IFG and i-IGT/IGT found both increased, unaltered, and reduced GLP-1 levels. Studies assessing IFG/IGT found unaltered or reduced GLP-1 levels. When assessing the five studies with the largest sample size, it clearly suggests a decreased GLP-1 response in IFG/IGT subjects. Several other factors (BMI, glucagon, age, and nonesterified fatty acids (NEFA)), including medications (metformin), may also influence the secretion of GLP-1. CONCLUSION This review suggests that the GLP-1 response is a variable in prediabetes possibly due to a varying GLP-1-secreting profile during the development and progression of type 2 diabetes or difference in the measurement technique. Longitudinal prospective studies are needed to assess whether a reduced GLP-1 response is a predictor of diabetes.
Collapse
Affiliation(s)
- Matthias Ploug Larsen
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Signe Sørensen Torekov
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
19
|
Reidelberger R, Haver A, Anders K, Apenteng B, Lanio C. Effects of solid-phase extraction of plasma in measuring gut metabolic hormones in fasted and fed blood of lean and diet-induced obese rats. Physiol Rep 2016; 4:4/10/e12800. [PMID: 27207785 PMCID: PMC4886168 DOI: 10.14814/phy2.12800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/26/2016] [Indexed: 12/25/2022] Open
Abstract
Glucagon‐like peptide‐1 (GLP‐1), peptide YY (3‐36) [PYY(3‐36)], amylin, ghrelin, insulin, and leptin are thought to act as hormonal signals from periphery to brain to control food intake. Here, we determined the effects of solid‐phase extraction of plasma in measuring these hormones in blood of lean and diet‐induced obese rats. Individual enzyme‐linked immunoassays and a multiplex assay were used to measure active GLP‐1, total PYY, active amylin, active ghrelin, insulin, leptin, and total GIP in response to (1) addition of known amounts of the peptides to lean and obese plasma, (2) a large meal in lean and obese rats, and (3) intravenous infusions of anorexigenic doses of GLP‐1, PYY(3‐36), amylin, and leptin in lean rats. Extraction of lean and obese plasma prior to assays produced consistent recoveries across assays for GLP‐1, PYY, amylin, ghrelin, and insulin, reflecting losses inherent to the extraction procedure. Plasma extraction prior to assays generally revealed larger meal‐induced changes in plasma GLP‐1, PYY, amylin, ghrelin, and insulin in lean and obese rats. Plasma extraction and the multiplex assay were used to compare plasma levels of GLP‐1, PYY, and amylin after a large meal with plasma levels produced by IV infusions of anorexigenic doses of GLP‐1, PYY(3‐36), and amylin. Infusions produced dose‐dependent increases in plasma peptide levels, which were well above their postprandial levels. These results do not support the hypothesis that postprandial plasma levels of GLP‐1, PYY(3‐36), and amylin are sufficient to decrease food intake by an endocrine mechanism.
Collapse
Affiliation(s)
- Roger Reidelberger
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska VA Research Service, VA Nebraska Western Iowa Health Care System, Omaha, Nebraska
| | - Alvin Haver
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska VA Research Service, VA Nebraska Western Iowa Health Care System, Omaha, Nebraska
| | - Krista Anders
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Bettye Apenteng
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Craig Lanio
- EMD Millipore Corp., Billerica, Massachusetts
| |
Collapse
|
20
|
Yabe D, Seino Y. Alogliptin for the treatment of type 2 diabetes: a drug safety evaluation. Expert Opin Drug Saf 2016; 15:249-64. [PMID: 26607297 DOI: 10.1517/14740338.2016.1125467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Dipeptidyl peptidase-4 (DPP-4) inhibitors such as alogliptin are becoming more widely established as treatment options for patients with type 2 diabetes (T2DM) because of their ability to improve glycemic control without increasing the risk of hypoglycemia or weight gain. New therapies with improved safety profiles are needed, especially because of the chronic and progressive nature of T2DM. AREAS COVERED In this article, the overall safety and tolerability of alogliptin are evaluated based upon a review of the literature. In particular, adverse events (AEs) that have been of interest for the DPP-4 class of drugs, such as the risk of major cardiovascular (CV) events and acute pancreatitis, will be investigated in detail. EXPERT OPINION Alogliptin is generally well-tolerated in a broad range of patient populations including different ethnic groups and the elderly. In the pivotal EXAMINE clinical trial, alogliptin was found not to be associated with an increased risk of major CV events or acute pancreatitis/pancreatic cancer.
Collapse
Affiliation(s)
- Daisuke Yabe
- a Yutaka Seino Distinguished Center for Diabetes Research , Kansai Electric Power Medical Research Institute , Kobe , Japan.,b Center for Diabetes, Endocrinology and Metabolism , Kansai Electric Power Hospital , Osaka , Japan.,c Center for Clinical Nutrition and Metabolism , Kansai Electric Power Hospital , Osaka , Japan
| | - Yutaka Seino
- a Yutaka Seino Distinguished Center for Diabetes Research , Kansai Electric Power Medical Research Institute , Kobe , Japan.,b Center for Diabetes, Endocrinology and Metabolism , Kansai Electric Power Hospital , Osaka , Japan
| |
Collapse
|
21
|
Graaf CD, Donnelly D, Wootten D, Lau J, Sexton PM, Miller LJ, Ahn JM, Liao J, Fletcher MM, Yang D, Brown AJH, Zhou C, Deng J, Wang MW. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol Rev 2016; 68:954-1013. [PMID: 27630114 PMCID: PMC5050443 DOI: 10.1124/pr.115.011395] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain-binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders.
Collapse
Affiliation(s)
- Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Dan Donnelly
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Denise Wootten
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jesper Lau
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Patrick M Sexton
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Laurence J Miller
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jung-Mo Ahn
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jiayu Liao
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Madeleine M Fletcher
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Dehua Yang
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Alastair J H Brown
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Caihong Zhou
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jiejie Deng
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Ming-Wei Wang
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| |
Collapse
|
22
|
Matikainen N, Björnson E, Söderlund S, Borén C, Eliasson B, Pietiläinen KH, Bogl LH, Hakkarainen A, Lundbom N, Rivellese A, Riccardi G, Després JP, Alméras N, Holst JJ, Deacon CF, Borén J, Taskinen MR. Minor Contribution of Endogenous GLP-1 and GLP-2 to Postprandial Lipemia in Obese Men. PLoS One 2016; 11:e0145890. [PMID: 26752550 PMCID: PMC4709062 DOI: 10.1371/journal.pone.0145890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/09/2015] [Indexed: 11/28/2022] Open
Abstract
Context Glucose and lipids stimulate the gut-hormones glucagon-like peptide (GLP)-1, GLP-2 and glucose-dependent insulinotropic polypeptide (GIP) but the effect of these on human postprandial lipid metabolism is not fully clarified. Objective To explore the responses of GLP-1, GLP-2 and GIP after a fat-rich meal compared to the same responses after an oral glucose tolerance test (OGTT) and to investigate possible relationships between incretin response and triglyceride-rich lipoprotein (TRL) response to a fat-rich meal. Design Glucose, insulin, GLP-1, GLP-2 and GIP were measured after an OGTT and after a fat-rich meal in 65 healthy obese (BMI 26.5–40.2 kg/m2) male subjects. Triglycerides (TG), apoB48 and apoB100 in TG-rich lipoproteins (chylomicrons, VLDL1 and VLDL2) were measured after the fat-rich meal. Main Outcome Measures Postprandial responses (area under the curve, AUC) for glucose, insulin, GLP-1, GLP-2, GIP in plasma, and TG, apoB48 and apoB100 in plasma and TG-rich lipoproteins. Results The GLP-1, GLP-2 and GIP responses after the fat-rich meal and after the OGTT correlated strongly (r = 0.73, p<0.0001; r = 0.46, p<0.001 and r = 0.69, p<0.001, respectively). Glucose and insulin AUCs were lower, but the AUCs for GLP-1, GLP-2 and GIP were significantly higher after the fat-rich meal than after the OGTT. The peak value for all hormones appeared at 120 minutes after the fat-rich meal, compared to 30 minutes after the OGTT. After the fat-rich meal, the AUCs for GLP-1, GLP-2 and GIP correlated significantly with plasma TG- and apoB48 AUCs but the contribution was very modest. Conclusions In obese males, GLP-1, GLP-2 and GIP responses to a fat-rich meal are greater than following an OGTT. However, the most important explanatory variable for postprandial TG excursion was fasting triglycerides. The contribution of endogenous GLP-1, GLP-2 and GIP to explaining the variance in postprandial TG excursion was minor.
Collapse
Affiliation(s)
- Niina Matikainen
- Research programs Unit, Diabetes and Obesity, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sanni Söderlund
- Research programs Unit, Diabetes and Obesity, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Christofer Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Björn Eliasson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kirsi H. Pietiläinen
- Research programs Unit, Diabetes and Obesity, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Leonie H. Bogl
- Research programs Unit, Diabetes and Obesity, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Antti Hakkarainen
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Nina Lundbom
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Angela Rivellese
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Jean-Pierre Després
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Natalie Alméras
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Jens Juul Holst
- NNF Centre for Basic Metabolic Research, and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F. Deacon
- NNF Centre for Basic Metabolic Research, and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
- * E-mail:
| | - Marja-Riitta Taskinen
- Research programs Unit, Diabetes and Obesity, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
23
|
Manning S, Pucci A, Batterham RL. GLP-1: a mediator of the beneficial metabolic effects of bariatric surgery? Physiology (Bethesda) 2015; 30:50-62. [PMID: 25559155 DOI: 10.1152/physiol.00027.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There has been increasing interest in the role that gut hormones may play in contributing to the physiological changes produced by certain bariatric procedures, such as Roux-en-Y gastric bypass and sleeve gastrectomy. Here, we review the evidence implicating one such gut hormone, glucagon-like peptide-1, as a mediator of the metabolic benefits of these two procedures.
Collapse
Affiliation(s)
- Sean Manning
- Department of Medicine, Centre for Obesity Research, Rayne Institute, University College London, London, United Kingdom; UCLH Centre for Weight Loss, Metabolic and Endocrine Surgery, University College London Hospitals, London, United Kingdom; National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Andrea Pucci
- Department of Medicine, Centre for Obesity Research, Rayne Institute, University College London, London, United Kingdom; UCLH Centre for Weight Loss, Metabolic and Endocrine Surgery, University College London Hospitals, London, United Kingdom
| | - Rachel L Batterham
- Department of Medicine, Centre for Obesity Research, Rayne Institute, University College London, London, United Kingdom; UCLH Centre for Weight Loss, Metabolic and Endocrine Surgery, University College London Hospitals, London, United Kingdom; National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
24
|
Yabe D, Kuroe A, Watanabe K, Iwasaki M, Hamasaki A, Hamamoto Y, Harada N, Yamane S, Lee S, Murotani K, Deacon CF, Holst JJ, Hirano T, Inagaki N, Kurose T, Seino Y. Early phase glucagon and insulin secretory abnormalities, but not incretin secretion, are similarly responsible for hyperglycemia after ingestion of nutrients. J Diabetes Complications 2015; 29:413-21. [PMID: 25613093 DOI: 10.1016/j.jdiacomp.2014.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 01/08/2023]
Abstract
AIMS Hypersecretion of glucagon and reduced insulin secretion both contribute to hyperglycemia in type 2 diabetes (T2DM). However, the relative contributions of impaired glucagon and insulin secretions in glucose excursions at the various stages of T2DM development remain to be determined. METHODS The responses of glucagon and insulin as well as those of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) were examined before and after ingestion of glucose or mixed meal in Japanese subjects with normal or impaired glucose tolerance (NGT and IGT) and in non-obese, untreated T2DM of short duration. RESULTS In OGTT, T2DM showed a rise in glucagon at 0-30 min, unlike NGT and IGT, along with reduced insulin. In MTT, all three groups showed a rise in glucagon at 0-30 min, with that in T2DM being highest, while T2DM showed a significant reduction in insulin. Linear regression analyses revealed that glucose area under the curve (AUC)0-120 min was associated with glucagon-AUC0-30 min and insulin-AUC0-30 min in both OGTT and MTT. Total and biologically intact GIP and GLP-1 levels were similar among the three groups. CONCLUSIONS Disordered early phase insulin and glucagon secretions but not incretin secretion are involved in hyperglycemia after ingestion of nutrients in T2DM of even a short duration.
Collapse
Affiliation(s)
- Daisuke Yabe
- Center for Diabetes, Endocrinology, and Metabolism, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka 553-0003, Japan; Center for Metabolism and Clinical Nutrition, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka 553-0003, Japan; Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojimaminamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Akira Kuroe
- Center for Diabetes, Endocrinology, and Metabolism, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka 553-0003, Japan
| | - Koin Watanabe
- Center for Diabetes, Endocrinology, and Metabolism, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka 553-0003, Japan
| | - Masahiro Iwasaki
- Center for Metabolism and Clinical Nutrition, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka 553-0003, Japan; Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojimaminamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Akihiro Hamasaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshiyuki Hamamoto
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shunsuke Yamane
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Soushou Lee
- Department of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kenta Murotani
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Carolyn F Deacon
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Tsutomu Hirano
- Department of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takeshi Kurose
- Center for Diabetes, Endocrinology, and Metabolism, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka 553-0003, Japan
| | - Yutaka Seino
- Center for Diabetes, Endocrinology, and Metabolism, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka 553-0003, Japan.
| |
Collapse
|
25
|
Kuhre RE, Wewer Albrechtsen NJ, Hartmann B, Deacon CF, Holst JJ. Measurement of the incretin hormones: glucagon-like peptide-1 and glucose-dependent insulinotropic peptide. J Diabetes Complications 2015; 29:445-50. [PMID: 25623632 DOI: 10.1016/j.jdiacomp.2014.12.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
The two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), are secreted from the gastrointestinal tract in response to meals and contribute to the regulation of glucose homeostasis by increasing insulin secretion. Assessment of plasma concentrations of GLP-1 and GIP is often an important endpoint in both clinical and preclinical studies and, therefore, accurate measurement of these hormones is important. Here, we provide an overview of current approaches for the measurement of the incretin hormones, with particular focus on immunological methods.
Collapse
Affiliation(s)
- Rune Ehrenreich Kuhre
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Nicolai Jacob Wewer Albrechtsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Carolyn F Deacon
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
26
|
Wewer Albrechtsen NJ, Bak MJ, Hartmann B, Christensen LW, Kuhre RE, Deacon CF, Holst JJ. Stability of glucagon-like peptide 1 and glucagon in human plasma. Endocr Connect 2015; 4:50-7. [PMID: 25596009 PMCID: PMC4317691 DOI: 10.1530/ec-14-0126] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/14/2023]
Abstract
To investigate the stability of glucagon-like peptide 1 (GLP-1) and glucagon in plasma under short- and long-term storage conditions. Pooled human plasma (n=20), to which a dipeptidyl peptidase 4 (DPP4) inhibitor and aprotinin were added, was spiked with synthetic GLP-1 (intact, 7-36NH2 as well as the primary metabolite, GLP-1 9-36NH2) or glucagon. Peptide recoveries were measured in samples kept for 1 and 3 h at room temperature or on ice, treated with various enzyme inhibitors, after up to three thawing-refreezing cycles, and after storage at -20 and -80 °C for up to 1 year. Recoveries were unaffected by freezing cycles or if plasma was stored on ice for up to 3 h, but were impaired when samples stood at RT for more than 1 h. Recovery of intact GLP-1 increased by addition of a DPP4 inhibitor (no ice), but was not further improved by neutral endopeptidase 24.11 inhibitor or an inhibitor cocktail. GLP-1, but not glucagon, was stable for at least 1 year. Surprisingly, the recovery of glucagon was reduced by almost 50% by freezing compared with immediate analysis, regardless of storage time. Plasma handling procedures can significantly influence results of subsequent hormone analysis. Our data support addition of DPP4 inhibitor for GLP-1 measurement as well as cooling on ice of both GLP-1 and glucagon. Freeze-thaw cycles did not significantly affect stability of GLP-1 or glucagon. Long-term storage may affect glucagon levels regardless of storage temperature and results should be interpreted with caution.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- NNF Center for Basic Metabolic Research and Department of Biomedical SciencesDepartment of ScienceFaculty of Health Science, University of Copenhagen, Blegdamsvej 3B, 12.2, DK-2200 Copenhagen N, Denmark
| | - Monika J Bak
- NNF Center for Basic Metabolic Research and Department of Biomedical SciencesDepartment of ScienceFaculty of Health Science, University of Copenhagen, Blegdamsvej 3B, 12.2, DK-2200 Copenhagen N, Denmark NNF Center for Basic Metabolic Research and Department of Biomedical SciencesDepartment of ScienceFaculty of Health Science, University of Copenhagen, Blegdamsvej 3B, 12.2, DK-2200 Copenhagen N, Denmark
| | - Bolette Hartmann
- NNF Center for Basic Metabolic Research and Department of Biomedical SciencesDepartment of ScienceFaculty of Health Science, University of Copenhagen, Blegdamsvej 3B, 12.2, DK-2200 Copenhagen N, Denmark
| | - Louise Wulff Christensen
- NNF Center for Basic Metabolic Research and Department of Biomedical SciencesDepartment of ScienceFaculty of Health Science, University of Copenhagen, Blegdamsvej 3B, 12.2, DK-2200 Copenhagen N, Denmark
| | - Rune E Kuhre
- NNF Center for Basic Metabolic Research and Department of Biomedical SciencesDepartment of ScienceFaculty of Health Science, University of Copenhagen, Blegdamsvej 3B, 12.2, DK-2200 Copenhagen N, Denmark
| | - Carolyn F Deacon
- NNF Center for Basic Metabolic Research and Department of Biomedical SciencesDepartment of ScienceFaculty of Health Science, University of Copenhagen, Blegdamsvej 3B, 12.2, DK-2200 Copenhagen N, Denmark
| | - Jens J Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical SciencesDepartment of ScienceFaculty of Health Science, University of Copenhagen, Blegdamsvej 3B, 12.2, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
27
|
Ripken D, van der Wielen N, van der Meulen J, Schuurman T, Witkamp R, Hendriks H, Koopmans S. Cholecystokinin regulates satiation independently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy. Physiol Behav 2015; 139:167-76. [DOI: 10.1016/j.physbeh.2014.11.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 09/16/2014] [Accepted: 11/10/2014] [Indexed: 11/25/2022]
|
28
|
Abstract
Incretin-based therapy has clearly emerged as one of the most sought out strategy in managing type 2 diabetes, primarily because they generally do not causes hypoglycemia and possess weight-neutral or weight losing properties. Efficacy-wise too, these agents, are more or less similar to commonly used drugs metformin and sulfonylureas. Interestingly, some studies recently suggested that glycemic response to these incretin-based therapies could also differ ethnicity-wise. Subsequently, meta-analysis from these studies also suggested that Asians may have better response to these incretin-based therapies. This review will be an attempt to critically analyze those studies available in literature and to address as to why East-Asians and South-Asians may have different incretin response compared to non-Asians.
Collapse
Affiliation(s)
- Awadhesh Kumar Singh
- Consultant Endocrinologist, G.D. Diabetes Hospital, Kolkata, West Bengal, and Sun Valley Diabetes Hospital, Guwahati, Assam, India
| |
Collapse
|
29
|
Tsuchimochi W, Ueno H, Yamashita E, Tsubouchi C, Sakoda H, Nakamura S, Nakazato M. Teneligliptin improves glycemic control with the reduction of postprandial insulin requirement in Japanese diabetic patients. Endocr J 2015; 62:13-20. [PMID: 25252844 DOI: 10.1507/endocrj.ej14-0393] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Teneligliptin is a novel peptidomimetic-chemotype prolylthiazolidine-based inhibitor of dipeptidyl peptidase-4 (DPP-4). The aim of this study was to evaluate the effects of teneligliptin on 24 h blood glucose control and gastrointestinal hormone responses to a meal tolerance test, and to investigate the glucose-lowering mechanisms of teneligliptin. Ten patients with type 2 diabetes mellitus (T2DM) were treated for 3 days with teneligliptin (20 mg/day). Postprandial profiles for glucose, insulin, glucagon, active glucagon-like peptide-1 (GLP-1), active glucose-dependent insulinotropic polypeptide (GIP), ghrelin, des-acyl ghrelin, and 24 h glycemic fluctuations were measured via continuous glucose monitoring for 4 days. Once daily teneligliptin administration for 3 days significantly lowered postprandial and fasting glucose levels. Significant elevations of fasting and postprandial active GLP-1 and postprandial active GIP levels were observed. Teneligliptin lowered postprandial glucose elevations, 24 h mean blood glucose levels, standard deviation of 24 h glucose levels and mean amplitude of glycemic excursions (MAGE) without hypoglycemia. Serum insulin levels in the fasting state and 30 min after a meal were similar before and after teneligliptin treatment; however significant reductions at 60 to 180 min after treatment were observed. A significant elevation in early-phase insulin secretion estimated by insulinogenic and oral disposition indices, and a significant reduction in postprandial glucagon AUC were observed. Both plasma ghrelin and des-acyl ghrelin levels were unaltered following teneligliptin treatment. Teneligliptin improved 24 h blood glucose levels by increasing active incretin levels and early-phase insulin secretion, reducing the postprandial insulin requirement, and reducing glucagon secretion. Even short-term teneligliptin treatment may offer benefits for patients with T2DM.
Collapse
Affiliation(s)
- Wakaba Tsuchimochi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Although GLP-1 (glucagon like peptide-1) based therapies (GLP-1 agonists and dipeptidyl peptidase-4 inhibitors) is currently playing a cornerstone role in the treatment of type 2 diabetes, dilemma does exist about some of its basic physiology. So far, we know that GLP-1 is secreted by the direct actions of luminal contents on the L cells in distal jejunum and proximal ileum. However, there is growing evidence now, which suggest that other mechanism via "neural" or "upper gut" signals may be playing a second fiddle and could stimulate GLP-1 secretion even before the luminal contents have reached into the proximities of L cells. Therefore, the contribution of direct and indirect mechanism to GLP-1 secretion remains elusive. Furthermore, no clear consensus exists about the pattern of GLP-1 secretion, although many believe it is monophasic. One of the most exciting issues in incretin science is GLP-1 level and GLP-1 responsiveness. It is not exactly known as to what happens to endogenous GLP-1 with progressive worsening of dysglycemia from normal glucose tolerance to impaired glucose to frank diabetes and furthermore with increasing duration of diabetes. Although, conventional wisdom suggests that there may be a decrease in endogenous GLP-1 level with the worsening of dysglycemia, literature showed discordant results. Furthermore, there is emerging evidence to suggest that GLP-1 response can vary with ethnicity. This mini review is an attempt to put a brief perspective on all these issues.
Collapse
Affiliation(s)
- Awadhesh Kumar Singh
- Senior Consultant Endocrinologist, G.D Diabetes Hospital, Kolkata, West Bengal, India
- Sun Valley Diabetes Hospital, Guwahati, Assam, India
| |
Collapse
|
31
|
Bak MJ, Wewer Albrechtsen NJ, Pedersen J, Knop FK, Vilsbøll T, Jørgensen NB, Hartmann B, Deacon CF, Dragsted LO, Holst JJ. Specificity and sensitivity of commercially available assays for glucagon-like peptide-1 (GLP-1): implications for GLP-1 measurements in clinical studies. Diabetes Obes Metab 2014; 16:1155-64. [PMID: 25041349 DOI: 10.1111/dom.12352] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/23/2014] [Accepted: 06/30/2014] [Indexed: 12/18/2022]
Abstract
AIMS To evaluate the performances of commercially available glucagon-like peptide-1 (GLP-1) assays and the implications for clinical studies. METHODS Known concentrations (5-300 pmol/l) of synthetic GLP-1 isoforms (GLP-1 1-36NH2, 7-36NH2, 9-36NH2, 1-37, 7-37 and 9-37) were added to the matrix (assay buffer) supplied with 10 different kits and to human plasma, and recoveries were determined. Assays yielding meaningful results were analysed for precision and sensitivity by repeated analysis and ability to discriminate low concentrations. Endogenous GLP-1 levels in clinical samples were assessed using three commercial kits. RESULTS The USCN LIFE assay detected none of the GLP-1 isoforms. The active GLP-1 enzyme-linked immunosorbent assays (ELISAs) from Millipore and DRG appeared identical and were specific for intact GLP-1 in buffer and plasma. The Meso Scale Discovery (MSD) total GLP-1 kit detected all six GLP-1 isoforms, although recovery of non-active forms was incomplete, especially in plasma. Millipore total GLP-1 ELISA kit detected all isoforms in buffer, but mainly amidated forms in plasma. The Alpco, Phoenix and Bio-Rad kits detected only amidated GLP-1, but the Alpco kit had a limited measurement range (30 pmol/l), the Phoenix kit had incomplete recovery in plasma and the Bio-Rad kit was insensitive (detection limit in plasma 40 pmol/l). The pattern of postprandial GLP-1 responses in clinical samples was similar between the kits tested, but the absolute concentrations measured varied. CONCLUSIONS The specificity and sensitivity of commercially available kits for the analysis of GLP-1 levels vary considerably. This should be taken into account when selecting which assay to use and when comparing data from different studies.
Collapse
Affiliation(s)
- M J Bak
- NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Human Nutrition, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Reidelberger R, Haver A, Anders K, Apenteng B. Role of capsaicin-sensitive peripheral sensory neurons in anorexic responses to intravenous infusions of cholecystokinin, peptide YY-(3-36), and glucagon-like peptide-1 in rats. Am J Physiol Endocrinol Metab 2014; 307:E619-29. [PMID: 25117406 PMCID: PMC4200310 DOI: 10.1152/ajpendo.00024.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholecystokinin (CCK)-induced suppression of feeding is mediated by vagal sensory neurons that are destroyed by the neurotoxin capsaicin (CAP). Here we determined whether CAP-sensitive neurons mediate anorexic responses to intravenous infusions of gut hormones peptide YY-(3-36) [PYY-(3-36)] and glucagon-like peptide-1 (GLP-1). Rats received three intraperitoneal injections of CAP or vehicle (VEH) in 24 h. After recovery, non-food-deprived rats received at dark onset a 3-h intravenous infusion of CCK-8 (5, 17 pmol·kg⁻¹·min⁻¹), PYY-(3-36) (5, 17, 50 pmol·kg⁻¹·min⁻¹), or GLP-1 (17, 50 pmol·kg⁻¹·min⁻¹). CCK-8 was much less effective in reducing food intake in CAP vs. VEH rats. CCK-8 at 5 and 17 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 39 and 71% in VEH rats and 7 and 18% in CAP rats. In contrast, PYY-(3-36) and GLP-1 were similarly effective in reducing food intake in VEH and CAP rats. PYY-(3-36) at 5, 17, and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 15, 33, and 70% in VEH rats and 13, 30, and 33% in CAP rats. GLP-1 at 17 and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 48 and 60% in VEH rats and 30 and 52% in CAP rats. These results suggest that anorexic responses to PYY-(3-36) and GLP-1 are not primarily mediated by the CAP-sensitive peripheral sensory neurons (presumably vagal) that mediate CCK-8-induced anorexia.
Collapse
MESH Headings
- Animals
- Anorexia/metabolism
- Anorexia/physiopathology
- Anorexia/prevention & control
- Behavior, Animal/drug effects
- Capsaicin/administration & dosage
- Capsaicin/toxicity
- Cholecystokinin/administration & dosage
- Cholecystokinin/metabolism
- Disease Models, Animal
- Energy Intake/drug effects
- Feeding Behavior/drug effects
- Glucagon-Like Peptide 1/administration & dosage
- Glucagon-Like Peptide 1/metabolism
- Infusions, Intravenous
- Injections, Intraperitoneal
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/innervation
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/physiopathology
- Intestine, Small/drug effects
- Intestine, Small/innervation
- Intestine, Small/metabolism
- Intestine, Small/physiopathology
- Male
- Neuritis/chemically induced
- Neuritis/metabolism
- Neuritis/physiopathology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Peptide Fragments/administration & dosage
- Peptide Fragments/metabolism
- Peptide YY/administration & dosage
- Peptide YY/metabolism
- Rats
- Vagus Nerve/drug effects
- Vagus Nerve/metabolism
- Vagus Nerve/physiopathology
- Vagus Nerve Diseases/chemically induced
- Vagus Nerve Diseases/metabolism
- Vagus Nerve Diseases/physiopathology
Collapse
Affiliation(s)
- Roger Reidelberger
- Veterans Affairs Research Service, Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, Nebraska; and Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Alvin Haver
- Veterans Affairs Research Service, Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, Nebraska; and Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Krista Anders
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Bettye Apenteng
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| |
Collapse
|
33
|
Abstract
Gastric inhibitory polypeptide (GIP) and glucagon‐like peptide‐1 (GLP‐1) are the two primary incretin hormones secreted from the intestine on ingestion of glucose or nutrients to stimulate insulin secretion from pancreatic β cells. GIP and GLP‐1 exert their effects by binding to their specific receptors, the GIP receptor (GIPR) and the GLP‐1 receptor (GLP‐1R), which belong to the G‐protein coupled receptor family. Receptor binding activates and increases the level of intracellular cyclic adenosine monophosphate in pancreatic β cells, thereby stimulating insulin secretion glucose‐dependently. In addition to their insulinotropic effects, GIP and GLP‐1 play critical roles in various biological processes in different tissues and organs that express GIPR and GLP‐1R, including the pancreas, fat, bone and the brain. Within the pancreas, GIP and GLP‐1 together promote β cell proliferation and inhibit apoptosis, thereby expanding pancreatic β cell mass, while GIP enhances postprandial glucagon response and GLP‐1 suppresses it. In adipose tissues, GIP but not GLP‐1 facilitates fat deposition. In bone, GIP promotes bone formation while GLP‐1 inhibits bone absorption. In the brain, both GIP and GLP‐1 are thought to be involved in memory formation as well as the control of appetite. In addition to these differences, secretion of GIP and GLP‐1 and their insulinotropic effects on β cells have been shown to differ in patients with type 2 diabetes compared to healthy subjects. We summarize here the similarities and differences of these two incretin hormones in secretion and metabolism, their insulinotropic action on pancreatic β cells, and their non‐insulinotropic effects, and discuss their potential in treatment of type 2 diabetes. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00022.x, 2010)
Collapse
Affiliation(s)
- Yutaka Seino
- The Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Mitsuo Fukushima
- The Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka ; The Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Daisuke Yabe
- The Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| |
Collapse
|
34
|
Yabe D, Kuroe A, Lee S, Watanabe K, Hyo T, Hishizawa M, Kurose T, Deacon CF, Holst JJ, Hirano T, Inagaki N, Seino Y. Little enhancement of meal-induced glucagon-like peptide 1 secretion in Japanese: Comparison of type 2 diabetes patients and healthy controls. J Diabetes Investig 2014; 1:56-9. [PMID: 24843409 PMCID: PMC4020678 DOI: 10.1111/j.2040-1124.2010.00010.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Although glucose-dependent insulinotropic polypeptide (GIP) levels have been characterized previously, GLP-1 levels in Asians remain unclear. Here, we investigate total and intact levels of GLP-1, as well as GIP during oral glucose and meal tolerance tests (OGTT and MTT) in Japanese patients with or without type 2 diabetes (T2DM). Seventeen Japanese healthy controls and 18 age-matched and untreated patients with T2DM of short duration participated in the present study. Fasting levels of total GPL-1 were similar between the two groups (approximately 15 pM), and intact GLP-1 levels were considerably low in both groups (less than 1 pM). In both groups, total GLP-1 reached a peak 30 min after glucose ingestion (30-40 pM), whereas intact GLP-1 levels remained low with no significant peak. In MTT, total and intact GLP-1 showed no obvious peak. The current data indicate that intact GLP-1 levels are considerably low in the Japanese and that meal-induced enhancement of GLP-1 secretion is negligible in the Japanese. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00010.x, 2010).
Collapse
Affiliation(s)
- Daisuke Yabe
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Akira Kuroe
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Soushou Lee
- Department of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Koin Watanabe
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Takanori Hyo
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Masahiro Hishizawa
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Takeshi Kurose
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Carolyn F Deacon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tsutomu Hirano
- Department of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Nobuya Inagaki
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yutaka Seino
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| |
Collapse
|
35
|
Yabe D, Watanabe K, Sugawara K, Kuwata H, Kitamoto Y, Sugizaki K, Fujiwara S, Hishizawa M, Hyo T, Kuwabara K, Yokota K, Iwasaki M, Kitatani N, Kurose T, Inagaki N, Seino Y. Comparison of incretin immunoassays with or without plasma extraction: Incretin secretion in Japanese patients with type 2 diabetes. J Diabetes Investig 2014; 3:70-9. [PMID: 24843548 PMCID: PMC4014935 DOI: 10.1111/j.2040-1124.2011.00141.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aims/Introduction: The effectiveness of incretin‐based therapies in Asian type 2 diabetes requires investigation of the secretion and metabolism of glucose‐dependent insulinotropic polypepide (GIP) and glucagon‐like peptide 1 (GLP‐1). Plasma extractions have been suggested to reduce variability in intact GLP‐1 levels among individuals by removing interference that affects immunoassays, although no direct demonstration of this method has been reported. We have evaluated the effects of ethanol and solid‐phase extractions on incretin immunoassays. We determined incretin levels during meal tolerance tests in Japanese patients with type 2 diabetes and characterized predictors for incretin secretion. Materials and Methods: Japanese patients with type 2 diabetes (23 anti‐diabetic drug‐naïve and 18 treated with sulfonylurea [SU] alone) were subjected to meal tolerance tests, and incretin levels were determined by immunoassays with or without extraction. Results: Intact GLP‐1 levels determined by an intact GLP‐1 immunoassay with ethanol and solid‐phase extractions were lower than those determined without extraction. Intact GLP‐1 levels determined by the extractions were highly correlated with each other, much more so than the levels with and without extraction. Total GLP‐1 was unaffected by extractions, showing that extractions remove interference only in the case of intact GLP‐1. Incretin secretion after meal ingestion was similar between drug‐naïve and SU‐treated patients. Fasting and postprandial GLP‐1 levels were correlated positively with fasting free fatty acids and negatively with dipeptidyl peptidase‐4 activity. Conclusions: Ethanol and solid‐phase extractions remove interference for intact GLP‐1 immunoassay. SU showed little effect on incretin secretion. GLP‐1 and GIP secretion were predicted by different factors. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2011.00141.x, 2012)
Collapse
Affiliation(s)
- Daisuke Yabe
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Koin Watanabe
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Kenji Sugawara
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Hitoshi Kuwata
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Yuka Kitamoto
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Kazu Sugizaki
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Shuichi Fujiwara
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Masahiro Hishizawa
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Takanori Hyo
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Kyoko Kuwabara
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Kayo Yokota
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Masahiro Iwasaki
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Naomi Kitatani
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Takeshi Kurose
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Nobuya Inagaki
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yutaka Seino
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| |
Collapse
|
36
|
Liu CY, Huang CJ, Huang LH, Chen IJ, Chiu JP, Hsu CH. Effects of green tea extract on insulin resistance and glucagon-like peptide 1 in patients with type 2 diabetes and lipid abnormalities: a randomized, double-blinded, and placebo-controlled trial. PLoS One 2014; 9:e91163. [PMID: 24614112 PMCID: PMC3948786 DOI: 10.1371/journal.pone.0091163] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 01/10/2014] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED The aim of this study is to investigate the effect of green tea extract on patients with type 2 diabetes mellitus and lipid abnormalities on glycemic and lipid profiles, and hormone peptides by a double-blinded, randomized and placebo-controlled clinical trial. This trial enrolled 92 subjects with type 2 diabetes mellitus and lipid abnormalities randomized into 2 arms, each arm comprising 46 participants. Of the participants, 39 in therapeutic arm took 500 mg green tea extract, three times a day, while 38 in control arm took cellulose with the same dose and frequency to complete the 16-week study. Anthropometrics measurements, glycemic and lipid profiles, safety parameters, and obesity-related hormone peptides were analyzed at screening and after 16-week course. Within-group comparisons showed that green tea extract caused a significant decrease in triglyceride and homeostasis model assessment of insulin resistance index after 16 weeks. Green tea extract also increased significantly high density lipoprotein cholesterol. The HOMA-IR index decreased from 5.4±3.9 to 3.5±2.0 in therapeutic arm only. Adiponectin, apolipoprotein A1, and apolipoprotein B100 increased significantly in both arms, but only glucagon-like peptide 1 increased in the therapeutic arm. However, only decreasing trend in triglyceride was found in between-group comparison. Our study suggested that green tea extract significantly improved insulin resistance and increased glucagon-like peptide 1 only in within-group comparison. The potential effects of green tea extract on insulin resistance and glucagon-like peptide 1 warrant further investigation. TRIAL REGISTRATION ClinicalTrials.gov NCT01360567.
Collapse
Affiliation(s)
- Chia-Yu Liu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Chinese Medicine, Branch of Linsen and Chinese Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Chien-Jung Huang
- Department of Metabolism, Branch of Linsen and Chinese Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Lin-Huang Huang
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - I-Ju Chen
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Chinese Medicine, Branch of Linsen and Chinese Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Jung-Peng Chiu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Chinese Medicine, Branch of Linsen and Chinese Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Chinese Medicine, Branch of Linsen and Chinese Medicine, Taipei City Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Osborne S, Chen W, Addepalli R, Colgrave M, Singh T, Tran C, Day L. In vitrotransport and satiety of a beta-lactoglobulin dipeptide and beta-casomorphin-7 and its metabolites. Food Funct 2014; 5:2706-18. [DOI: 10.1039/c4fo00164h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In vitrotransport of β-CM7 occurs through rapid hydrolysis into three peptide metabolites that transport at variable rates.
Collapse
Affiliation(s)
- Simone Osborne
- CSIRO Animal, Food and Health Sciences
- St Lucia, Australia
| | - Wei Chen
- CSIRO Animal, Food and Health Sciences
- St Lucia, Australia
| | - Rama Addepalli
- CSIRO Animal, Food and Health Sciences
- St Lucia, Australia
| | | | - Tanoj Singh
- CSIRO Animal, Food and Health Sciences
- Werribee, Australia
| | - Cuong Tran
- CSIRO Animal, Food and Health Sciences
- Adelaide, Australia
| | - Li Day
- CSIRO Animal, Food and Health Sciences
- Werribee, Australia
| |
Collapse
|
38
|
Description and application of a novel glucagon-like peptide-1 (GLP-1) radioimmunoassay. J Radioanal Nucl Chem 2013. [DOI: 10.1007/s10967-013-2751-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Kapur A, O'Connor-Semmes R, Hussey EK, Dobbins RL, Tao W, Hompesch M, Smith GA, Polli JW, James CD, Mikoshiba I, Nunez DJ. First human dose-escalation study with remogliflozin etabonate, a selective inhibitor of the sodium-glucose transporter 2 (SGLT2), in healthy subjects and in subjects with type 2 diabetes mellitus. BMC Pharmacol Toxicol 2013; 14:26. [PMID: 23668634 PMCID: PMC3700763 DOI: 10.1186/2050-6511-14-26] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/12/2013] [Indexed: 11/22/2022] Open
Abstract
Background Remogliflozin etabonate (RE) is the prodrug of remogliflozin, a selective inhibitor of the renal sodium-dependent glucose transporter 2 (SGLT2), which could increase urine glucose excretion (UGE) and lower plasma glucose in humans. Methods This double-blind, randomized, placebo-controlled, single-dose, dose-escalation, crossover study is the first human trial designed to evaluate safety, tolerability, pharmacokinetics (PK) and pharmacodynamics of RE. All subjects received single oral doses of either RE or placebo separated by approximately 2 week intervals. In Part A, 10 healthy subjects participated in 5 dosing periods where they received RE (20 mg, 50 mg, 150 mg, 500 mg, or 1000 mg) or placebo (4:1 active to placebo ratio per treatment period). In Part B, 6 subjects with type 2 diabetes mellitus (T2DM) participated in 3 dose periods where they received RE (50 mg and 500 mg) or placebo (2:1 active to placebo per treatment period). The study protocol was registered with the NIH clinical trials data base with identifier NCT01571661. Results RE was generally well-tolerated; there were no serious adverse events. In both populations, RE was rapidly absorbed and converted to remogliflozin (time to maximum plasma concentration [Cmax;Tmax] approximately 1 h). Generally, exposure to remogliflozin was proportional to the administered dose. RE was rapidly eliminated (mean T½ of ~25 min; mean plasma T½ for remogliflozin was 120 min) and was independent of dose. All subjects showed dose-dependent increases in 24-hour UGE, which plateaued at approximately 200 to 250 mmol glucose with RE doses ≥150 mg. In T2DM subjects, increased plasma glucose following OGTT was attenuated by RE in a drug-dependent fashion, but there were no clear trends in plasma insulin. There were no apparent effects of treatment on plasma or urine electrolytes. Conclusions The results support progression of RE as a potential treatment for T2DM. Trial registration ClinicalTrials.gov NCT01571661
Collapse
|
40
|
Miyachi A, Murase T, Yamada Y, Osonoi T, Harada KI. Quantitative Analytical Method for Determining the Levels of Gastric Inhibitory Polypeptides GIP1–42 and GIP3–42 in Human Plasma Using LC–MS/MS/MS. J Proteome Res 2013; 12:2690-9. [DOI: 10.1021/pr400069f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Atsushi Miyachi
- Laboratory Management Department, Sanwa Kagaku Kenkyusho Co., Ltd., Mie 511-0406, Japan
| | - Takayo Murase
- Laboratory Management Department, Sanwa Kagaku Kenkyusho Co., Ltd., Mie 511-0406, Japan
| | - Yuichiro Yamada
- Department of Endocrinology
and Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | | | - Ken-ichi Harada
- Graduate School of Environmental
and Human Science and Faculty of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
| |
Collapse
|
41
|
Sonoki K, Iwase M, Takata Y, Nakamoto T, Masaki C, Hosokawa R, Murakami S, Chiwata K, Inoue H. Effects of thirty-times chewing per bite on secretion of glucagon-like peptide-1 in healthy volunteers and type 2 diabetic patients. Endocr J 2013; 60:311-9. [PMID: 23138354 DOI: 10.1507/endocrj.ej12-0310] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is secreted from the small intestine to the blood in response to glucose intake during a meal; however, it is not known whether mastication affects GLP-1 secretion. Here, we examined the relationship between mastication and GLP-1 secretion, along with postprandial blood glucose and insulin concentrations. We compared the levels of blood glucose, serum insulin, and plasma active GLP-1 concentrations after young healthy volunteers ate a test meal either by usual eating (control) or in one of three specified ways: 1. unilateral chewing, 2. quick eating, 3. 30-times chewing per bite. Ten volunteers participated in each of the three groups. Plasma active GLP-1 concentrations did not change by unilateral chewing or quick eating, but did increase by the third method, without affecting the concentrations of blood glucose or serum insulin. Next, we tested whether 30-times chewing per bite increased plasma active GLP-1 concentrations in 15 patients with type 2 diabetes mellitus, but there was no difference in results between usual eating and 30-times chewing per bite. This is a pilot trial with a small number of subjects, but is the first study to investigate the relationships between various styles of mastication and the GLP-1 secretion in young healthy volunteers and type 2 diabetic patients.
Collapse
Affiliation(s)
- Kazuo Sonoki
- Department of Oral Health Management, Kyushu Dental University, Kitakyushu, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhao SS, Zhong X, Tie C, Chen DD. Capillary electrophoresis-mass spectrometry for analysis of complex samples. Proteomics 2012; 12:2991-3012. [DOI: 10.1002/pmic.201200221] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/10/2012] [Accepted: 07/18/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Shuai Sherry Zhao
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| | - Xuefei Zhong
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| | - Cai Tie
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| | - David D.Y. Chen
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
43
|
Jensen DH, Aaboe K, Henriksen JE, Vølund A, Holst JJ, Madsbad S, Krarup T. Steroid-induced insulin resistance and impaired glucose tolerance are both associated with a progressive decline of incretin effect in first-degree relatives of patients with type 2 diabetes. Diabetologia 2012; 55:1406-16. [PMID: 22286551 DOI: 10.1007/s00125-012-2459-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/28/2011] [Indexed: 11/27/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to evaluate the separate impact of insulin resistance and impaired glucose tolerance (IGT) on the incretin effect. METHODS Twenty-one healthy glucose-tolerant first-degree relatives of patients with type 2 diabetes underwent a 75 g OGTT, an isoglycaemic i.v. glucose test and a mixed meal to evaluate the incretin effect before and after treatment with dexamethasone to increase insulin resistance. Beta cell glucose sensitivity, beta cell index and fasting proinsulin were measured as indices of beta cell function. RESULTS After dexamethasone, ten individuals had increased insulin resistance but normal glucose tolerance (NGT), while 11 individuals with an equal increase in insulin resistance developed IGT. In the NGT and IGT groups, the incretin effects were 71 ± 3.2% and 67 ± 4.6% (p = 0.4) before treatment, but decreased significantly in both groups to 58 ± 5.2% and 32 ± 8.8% (p < 0.05 between groups) after treatment. Dexamethasone increased total glucagon-like peptide-1 and glucose-dependent insulinotropic peptide responses to the OGTT. The impaired incretin effect in NGT was observed in the absence of reductions in beta cell glucose sensitivity and beta cell index during i.v. glucose, corrected for insulin resistance, but in parallel with increased proinsulin/C-peptide ratio. CONCLUSION/INTERPRETATION Insulin resistance and IGT, representing two stages in the path towards diabetes, are associated with differential reductions in the incretin effect seen before the development of IGT and overt type 2 diabetes. The reduction is unrelated to secretion of incretin hormones, but is related to insulin resistance and subtle beta cell defects, and is further aggravated on development of IGT. TRIAL REGISTRATION ClinicalTrials.gov NCT00784745. FUNDING This study was supported by a grant from the Novo Nordisk Foundation.
Collapse
Affiliation(s)
- D H Jensen
- Department of Endocrinology, Bispebjerg University Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
44
|
Ma J, Pilichiewicz AN, Feinle-Bisset C, Wishart JM, Jones KL, Horowitz M, Rayner CK. Effects of variations in duodenal glucose load on glycaemic, insulin, and incretin responses in type 2 diabetes. Diabet Med 2012; 29:604-608. [PMID: 22004512 DOI: 10.1111/j.1464-5491.2011.03496.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS Postprandial glucagon-like peptide-1 (GLP-1) secretion and the 'incretin effect' have been reported to be deficient in Type 2 diabetes, but most studies have not controlled for variations in the rate of gastric emptying. We evaluated blood glucose, and plasma insulin, GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) responses to intraduodenal glucose in Type 2 diabetes, and compared these with data from healthy controls. METHODS Eight males with well-controlled Type 2 diabetes, managed by diet alone, were studied on four occasions in single-blind, randomized order. Blood glucose, and plasma insulin, GLP-1, and GIP were measured during 120-min intraduodenal glucose infusions at 1 kcal/min (G1), 2 kcal/min (G2) and 4 kcal/min (G4) or saline control. RESULTS Type 2 patients had higher basal (P < 0.0005) and incremental (P < 0.0005) blood glucose responses to G2 and G4, when compared with healthy controls. In both groups, the stimulation of insulin and GLP-1 by increasing glucose loads was not linear; responses to G1 and G2 were minimal, whereas responses to G4 were much greater (P < 0.005 for each) (incremental area under the GLP-1 curve 224 ± 65, 756 ± 331 and 2807 ± 473 pmol/l.min, respectively, in Type 2 patients and 373 ± 231, 505 ± 161 and 1742 ± 456 pmol/l.min, respectively, in healthy controls). The GLP-1 responses appeared comparable in the two groups. In both groups there was a load-dependent increase in plasma GIP with no difference between them. CONCLUSIONS In patients with well-controlled Type 2 diabetes, blood glucose, insulin and GLP-1 responses are critically dependent on the small intestinal glucose load, and GLP-1 responses are not deficient.
Collapse
Affiliation(s)
- J Ma
- University of Adelaide, Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
45
|
Porter D, Faivre E, Flatt PR, Hölscher C, Gault VA. Actions of incretin metabolites on locomotor activity, cognitive function and in vivo hippocampal synaptic plasticity in high fat fed mice. Peptides 2012; 35:1-8. [PMID: 22465882 DOI: 10.1016/j.peptides.2012.03.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 02/05/2023]
Abstract
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) improve markers of cognitive function in obesity-diabetes, however, both are rapidly degraded to their major metabolites, GLP-1(9-36)amide and GIP(3-42), respectively. Therefore, the present study investigated effects of GLP-1(9-36)amide and GIP(3-42) on locomotor activity, cognitive function and hippocampal synaptic plasticity in mice with diet-induced obesity and insulin resistance. High-fat fed Swiss TO mice treated with GLP-1(9-36)amide, GIP(3-42) or exendin(9-39)amide (twice-daily for 60 days) did not exhibit any changes in bodyweight, non-fasting plasma glucose and plasma insulin concentrations or glucose tolerance compared with high-fat saline controls. Similarly, locomotor and feeding activity, O(2) consumption, CO(2) production, respiratory exchange ratio and energy expenditure were not altered by chronic treatment with incretin metabolites. Administration of the truncated metabolites did not alter general behavior in an open field test or learning and memory ability as recorded during an object recognition test. High-fat mice exhibited a significant impairment in hippocampal long-term potentiation (LTP) which was not affected by treatment with incretin metabolites. These data indicate that incretin metabolites do not influence locomotor activity, cognitive function and hippocampal synaptic plasticity when administered at pharmacological doses to mice fed a high-fat diet.
Collapse
Affiliation(s)
- David Porter
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Valderas JP, Irribarra V, Rubio L, Boza C, Escalona M, Liberona Y, Matamala A, Maiz A. Effects of sleeve gastrectomy and medical treatment for obesity on glucagon-like peptide 1 levels and glucose homeostasis in non-diabetic subjects. Obes Surg 2012; 21:902-9. [PMID: 21347823 DOI: 10.1007/s11695-011-0375-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The effects of medical and surgical treatments for obesity on glucose metabolism and glucagon-like peptide 1 (GLP-1) levels independent of weight loss remain unclear. This study aims to assess plasma glucose levels, insulin sensitivity and secretion, and GLP-1 levels before and after sleeve gastrectomy (SG) or medical treatment (MED) for obesity. METHODS This study is a prospective, controlled, non-randomised study. Two groups of non-diabetic obese patients with similar BMIs, including a SG group (BMI, 35.5 ± 0.9 kg/m(2); n = 6) and a MED group (BMI, 37.7 ± 1.9 kg/m(2); n = 6) and a group of lean subjects (BMI, 21.7 ± 0.7 kg/m(2); n = 8). RESULTS Plasma glucose, insulin, and total GLP-1 levels at fasting and after the intake of a standard liquid meal at baseline and at 2 months post-intervention. At baseline, total GLP-1 levels were similar, but obese patients had lower insulin sensitivity and higher insulin secretion than lean subjects. At 2 months post-intervention, SG and MED patients achieved similar weight loss (14.4 ± 0.8%, 15.3 ± 0.9%, respectively). Insulin sensitivity increased in SG and MED patients; however, postprandial insulin secretion decreased after MED, but not after SG. The incremental area under the curve of GLP-1 increased after SG (P = 0.04), but not after MED. CONCLUSIONS Weight loss by medical or surgical treatment improved insulin sensitivity. However, only MED corrected the hyperinsulinemic postprandial state associated to obesity. Postprandial GLP-1 levels increased significantly after SG without duodenal exclusion, which may explain why insulin secretion did not decrease following this surgery.
Collapse
Affiliation(s)
- Juan Patricio Valderas
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Catolica de Chile, Marcoleta 367, 6510260, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Masuda K, Aoki K, Terauchi Y. Comparison of plasma active glucagon-like peptide-1 (GLP-1) levels assayed with or without plasma extraction in non-diabetic men. Endocr J 2012; 59:435-8. [PMID: 22353624 DOI: 10.1507/endocrj.ej12-0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recently, interference from cross-reacting peptides in plasma has been recognized as being responsible for inter-subject differences in active glucagon-like peptide-1 (GLP-1) values. An ethanol or solid-phase extraction step could reduce such interference. A working group of the Japan Diabetes Society now recommends the inclusion of an extraction step when measuring active GLP-1 values. We measured the active GLP-1 levels of 200 specimens derived from 10 subjects using both methods and compared the results. The active GLP-1 levels measured by extraction method for 169 specimens with values greater than 2.0 pM tended to be lower than those by direct method. However, the correlation between the GLP-1 levels measured by extraction and direct method was r=0.9225 (p < 0.0001). In one case, the active GLP-1 level obtained using the extraction method was significantly lower than that obtained using the direct method. Therefore, though there is a good correlation between the two methods, extraction is recommended for more accurate active GLP-1 measurements.
Collapse
Affiliation(s)
- Kiyomi Masuda
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | | | | |
Collapse
|
48
|
Seino Y, Fujita T, Hiroi S, Hirayama M, Kaku K. Alogliptin plus voglibose in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial with an open-label, long-term extension. Curr Med Res Opin 2011; 27 Suppl 3:21-9. [PMID: 22106975 DOI: 10.1185/03007995.2011.614936] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To compare the efficacy and safety of alogliptin and placebo as add-on therapy in Japanese patients with type 2 diabetes who experienced inadequate glycemic control on voglibose plus diet/exercise therapy. RESEARCH DESIGN AND METHODS During an 8 week screening phase, patients aged ≥ 20 years were stabilized on voglibose 0.2 mg three times daily plus diet/exercise therapy. Those with HbA1c between ≥ 6.9% and <10.4% were randomly assigned to 12 weeks' double-blind treatment with once daily alogliptin 12.5 or 25 mg, or placebo. The primary endpoint was the change in HbA1c at 12 weeks from baseline. Patients then entered an open-label, 40 week extension trial (patients in the placebo group were randomly allocated to alogliptin 12.5 or 25 mg). CLINICAL TRIALS REGISTRATION www.clinicaltrials.gov ; pivotal trial NCT01263483; Long term trial NCT01263509. RESULTS Least square mean change in HbA1c after 12 weeks' therapy from baseline (primary endpoint) was significantly greater in the alogliptin 12.5 mg (-0.96%; P < 0.0001) and 25 mg (-0.93%; P < 0.0001) groups compared with placebo (+0.06%). This was associated with statistically significant improvements in other measures of glycemic control, in particular sustained reductions in fasting plasma glucose and postprandial plasma glucose. These benefits were maintained for the duration of the 1 year study and, importantly, they were achieved without detrimental effects on tolerability/safety. In particular, there was no increase in the rate of hypoglycemia and almost no changes in mean body weight. CONCLUSIONS Addition of once daily alogliptin to voglibose monotherapy in Japanese patients with uncontrolled type 2 diabetes produced clinically significant improvements in glycemic control, and was well tolerated.
Collapse
|
49
|
Tinoco AD, Saghatelian A. Investigating endogenous peptides and peptidases using peptidomics. Biochemistry 2011; 50:7447-61. [PMID: 21786763 DOI: 10.1021/bi200417k] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rather than simply being protein degradation products, peptides have proven to be important bioactive molecules. Bioactive peptides act as hormones, neurotransmitters, and antimicrobial agents in vivo. The dysregulation of bioactive peptide signaling is also known to be involved in disease, and targeting peptide hormone pathways has been a successful strategy in the development of novel therapeutics. The importance of bioactive peptides in biology has spurred research to elucidate the function and regulation of these molecules. Classical methods for peptide analysis have relied on targeted immunoassays, but certain scientific questions necessitated a broader and more detailed view of the peptidome--all the peptides in a cell, tissue, or organism. In this review we discuss how peptidomics has emerged to fill this need through the application of advanced liquid chromatography--tandem mass spectrometry (LC-MS/MS) methods that provide unique insights into peptide activity and regulation.
Collapse
Affiliation(s)
- Arthur D Tinoco
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
50
|
Yabe D, Seino Y. Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and β cell preservation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:248-56. [PMID: 21820006 DOI: 10.1016/j.pbiomolbio.2011.07.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/20/2011] [Indexed: 12/16/2022]
Abstract
Gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the two primary incretin hormones secreted from the intestine upon ingestion of glucose or nutrients to stimulate insulin secretion from pancreatic β cells. GIP and GLP-1 exert their effects by binding to their specific receptors, the GIP receptor (GIPR) and the GLP-1 receptor (GLP-1R), which belong to the G-protein coupled receptor family. Receptor binding activates and increases the level of intracellular cAMP in pancreatic β cells, thereby stimulating insulin secretion glucose-dependently. In addition to their insulinotropic effects, GIP and GLP-1 have been shown to preserve pancreatic β cell mass by inhibiting apoptosis of β cells and enhancing their proliferation. Due to such characteristics, incretin hormones have been gaining mush attention as attractive targets for treatment of type 2 diabetes, and indeed incretin-based therapeutics have been rapidly disseminated worldwide. However, despites of plethora of rigorous studies, molecular mechanisms underlying how GIPR and GLP-1R activation leads to enhancement of glucose-dependent insulin secretion are still largely unknown. Here, we summarize the similarities and differences of these two incretin hormones in secretion and metabolism, their insulinotropic actions and their effects on pancreatic β cell preservation. We then try to discuss potential of GLP-1 and GIP in treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Daisuke Yabe
- The Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, 2-1-7 Fukushima, Fukushima-ku, Osaka 553-0003, Japan.
| | | |
Collapse
|