1
|
Shang Y, Li Y, Han D, Deng K, Gao W, Wu M. LRRC4 Deficiency Drives Premature Ovarian Insufficiency by Disrupting Metabolic Homeostasis in Granulosa Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417717. [PMID: 40317712 DOI: 10.1002/advs.202417717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/24/2025] [Indexed: 05/07/2025]
Abstract
Premature ovarian insufficiency (POI), defined by early loss of ovarian activity before the age of 40 years, is the leading cause of infertility and systematic aging in women, posing a public health challenge worldwide. However, its molecular etiology and therapeutic options are still lacking. Here, leucine-rich repeat containing 4 (LRRC4) is identified as a critical regulator of folliculogenesis expressed in granulosa cells (GCs), which contributes to ovarian reserve maintenance. LRRC4 deficiency triggers defective oocyte maturation and excessive follicular atresia through inhibition of GC differentiation and ultimately leads to POI. Mechanistically, LRRC4 balances mitochondrial fission and fusion to inhibit excessive mitophagy by promoting the K48-linked ubiquitination degradation of Yes-associated protein (YAP), thereby maintaining the metabolic homeostasis of mitochondrial aerobic respiration and glycolysis. Importantly, targeting LRRC4 normalized follicular development and ovarian function in POI model mice. In conclusion, these data reveal the novel pathogenesis of POI and suggest that LRRC4 is a potential target for the diagnosis and treatment of POI.
Collapse
Affiliation(s)
- Yujie Shang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410000, China
- School of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, 430060, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Yunjun Li
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Di Han
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450003, China
| | - Kun Deng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, China
| | - Wei Gao
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, China
| | - Minghua Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410000, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, China
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| |
Collapse
|
2
|
Allen-Brady K, Moore B, Verrilli LE, Alvord MA, Kern M, Camp N, Kelley K, Letourneau J, Cannon-Albright L, Yandell M, Johnstone EB, Welt CK. Breast Cancer Is Increased in Women With Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2025; 110:e1678-e1686. [PMID: 38996041 PMCID: PMC12012772 DOI: 10.1210/clinem/dgae480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
CONTEXT DNA damage/repair gene variants are associated with both primary ovarian insufficiency (POI) and cancer risk. OBJECTIVE We hypothesized that a subset of women with POI and family members would have increased risk for cancer. DESIGN Case-control population-based study using records from 1995 to 2022. SETTING Two major Utah academic health care systems serving 85% of the state. SUBJECTS Women with POI (n = 613) were identified using International Classification of Diseases codes and reviewed for accuracy. Relatives were linked using the Utah Population Database. INTERVENTION Cancer diagnoses were identified using the Utah Cancer Registry. MAIN OUTCOME MEASURES The relative risk of cancer in women with POI and relatives was estimated by comparison to population rates. Whole genome sequencing was performed on a subset of women. RESULTS Breast cancer was increased in women with POI (OR, 2.20; 95% CI, 1.30-3.47; P = .0023) and there was a nominally significant increase in ovarian cancer. Probands with POI were 36.5 ± 4.3 years and 59.5 ± 12.7 years when diagnosed with POI and cancer, respectively. Causal and candidate gene variants for cancer and POI were identified. Among second-degree relatives of these women, there was an increased risk of breast (OR, 1.28; 95% CI, 1.08-1.52; P = .0078) and colon cancer (OR, 1.50; 95% CI, 1.14-1.94; P = .0036). Prostate cancer was increased in first- (OR, 1.64; 95% CI, 1.18-2.23; P = .0026), second- (OR, 1.54; 95% CI, 1.32-1.79; P < .001), and third-degree relatives (OR, 1.33; 95% CI, 1.20-1.48; P < .001). CONCLUSION Data suggest common genetic risk for POI and reproductive cancers. Tools are needed to predict cancer risk in women with POI and potentially to counsel about risks of hormone replacement therapy.
Collapse
Affiliation(s)
- Kristina Allen-Brady
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Barry Moore
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Lauren E Verrilli
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Intermountain Healthcare, Murray, UT 84107, USA
| | - Margaret A Alvord
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Marina Kern
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Nicola Camp
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Kristen Kelley
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Joseph Letourneau
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lisa Cannon-Albright
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Mark Yandell
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Erica B Johnstone
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Corrine K Welt
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Shen B, Chen X, Zhu X, Chen Z, Fang Y, Dai Q, Li X, Xie Q, Wu W, Wang M. Functional analysis of a novel FOXL2 mutation in blepharophimosis, ptosis, and epicanthus inversus syndrome type II and elucidation of the genotype-phenotype correlation. Hum Genomics 2025; 19:41. [PMID: 40251640 PMCID: PMC12008864 DOI: 10.1186/s40246-025-00752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES) is a rare autosomal dominant disorder caused by genetic mutations. However, the genotype-phenotype correlation remains unclear. This study aimed to identify mutations in a Chinese family with BPES and elucidate the genotype-phenotype relationship. METHODS A comprehensive clinical and molecular genetic analysis was conducted on a three-generation Chinese family with BPES, which was prospectively enrolled at the Eye Hospital of Wenzhou Medical University. Affected individuals underwent systematic phenotyping, including detailed physical and ophthalmic evaluations. Genomic DNA was isolated from peripheral blood samples and subjected to whole-exome sequencing, followed by targeted Sanger sequencing for variant validation. Candidate disease-associated variants were analyzed using in silico predictive algorithms to assess their potential structural and functional impact on encoded proteins. To further elucidate the pathogenicity of the identified mutation, functional studies were performed, including immunofluorescence-based subcellular localization assays and quantitative real-time PCR to evaluate transcriptional regulatory effects. RESULTS Six affected individuals of this pedigree presented with canonical BPES features including small palpebral fissures, ptosis, epicanthus inversus, and telecanthus, without premature ovarian failure, consistent with a diagnosis of BPES type II. Whole-exome sequencing revealed a heterozygous missense mutation (c.313 A > C:p.N105H) in FOXL2, which was subsequently validated by Sanger sequencing. This variant demonstrated complete cosegregation with the BPES phenotype across all affected family members. According to ACMG guidelines, the variant was classified as Likely Pathogenic (PS1 + PM1 + PM2 + PP3). In silico pathogenicity prediction tools classified the p.N105H variant as deleterious. Immunofluorescence assays revealed aberrant nuclear aggregation of the mutant FOXL2 protein, and functional characterization via quantitative real-time PCR demonstrated no significant dysregulation (P > 0.05) of downstream targets (STAR, OSR2). CONCLUSIONS This study provides functional evidence of the pathogenic FOXL2 mutation (c.313 A > C, p.N105H) in BPES type II, demonstrating its disruptive effects on protein localization while maintaining normal transcriptional activity of downstream targets. These findings expand the mutational spectrum of FOXL2 related disorders and enhance our understanding of genotype-phenotype correlations in BPES.
Collapse
Affiliation(s)
- Bingyan Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Key Laboratory of Key Technologies for Visual Pathway Reconstruction, Eye Hospital, Wenzhou Medical University, No. 270 West Xueyuan Road, Wenzhou, 325000, Zhejiang, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Orbital and Oculoplastic Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuying Zhu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Orbital and Oculoplastic Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziwen Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Key Laboratory of Key Technologies for Visual Pathway Reconstruction, Eye Hospital, Wenzhou Medical University, No. 270 West Xueyuan Road, Wenzhou, 325000, Zhejiang, China
| | - Yenan Fang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qin Dai
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiqi Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Department of Orbital and Oculoplastic Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Key Technologies for Visual Pathway Reconstruction, Eye Hospital, Wenzhou Medical University, No. 270 West Xueyuan Road, Wenzhou, 325000, Zhejiang, China.
| | - Min Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Department of Orbital and Oculoplastic Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Key Technologies for Visual Pathway Reconstruction, Eye Hospital, Wenzhou Medical University, No. 270 West Xueyuan Road, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
4
|
Zhao G, Ma J, Shen G, Jiang X, Wang X, Jiang C, Bai H, Zheng Y, Tian K, Yue J, Li D, Shen Y. Identification of an SMC1B Mutation Associated With Necrozoospermia and Failure of Testi-ICSI : SMC1B Mutation Associated With Necrozoospermia. Reprod Sci 2025:10.1007/s43032-025-01828-4. [PMID: 40180776 DOI: 10.1007/s43032-025-01828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
Investigating potential etiologies is important before selecting a therapeutic approach for male infertility. However, the genetic causes of idiopathic necrozoospermia are poorly understood. In this study, a heterozygous missense variant in SMC1B (NM_148674.5: c1856G > T; p.C619F) causing severe necrozoospermia in the infertile proband was identified by Whole-exome sequencing (WES). This phenotype was distinct from the phenotypes of other vertebrates harboring this mutation. Interestingly, Papanicolaou staining, light microscopy and electron microscopy results indicated severe abnormalities in the morphology of the sperm head and an irregular sperm ultrastructure in the patient with the identified variant. Additionally, the sharply decreased protein expression of SMC1B in spermatozoa and testicular tissues ultimately resulted in an abnormal chromatin structure and high sperm DNA fragmentation (SDF) in the male patient. Regrettably, poor outcomes of Intracytoplasmic sperm injection with testicular sperm (Testi-ICSI) treatment were observed for the patient harboring the identified SMC1B mutation. In Conclusion, a missense SMC1B mutation that may mediate impaired sperm vitality was the first time reported, providing new insights into a novel genetic etiology of necrozoospermia in humans.
Collapse
Affiliation(s)
- Guicheng Zhao
- Department of Andrology and Human Sperm Bank, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, West China, China
| | - Jun Ma
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Gan Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaohui Jiang
- Department of Andrology and Human Sperm Bank, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, West China, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Xiang Wang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Hengzhou Bai
- Department of Andrology and Human Sperm Bank, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, West China, China
| | - Yi Zheng
- Department of Andrology and Human Sperm Bank, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, West China, China
| | - Kun Tian
- Department of Andrology and Human Sperm Bank, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, West China, China
| | - Juntao Yue
- Department of Andrology and Human Sperm Bank, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, West China, China
| | - Dingming Li
- Department of Andrology and Human Sperm Bank, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, West China, China.
| | - Ying Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China.
| |
Collapse
|
5
|
Yu H, Yu S, Yang W, Lin W, Yang X, Wang X, Zhang C, Guo L, Chen X. Genome-wide association analysis identified the involvement of MRPS22 in the regulation of Muscovy duck broodiness. Poult Sci 2025; 104:104994. [PMID: 40068571 PMCID: PMC11932677 DOI: 10.1016/j.psj.2025.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Compared to Chinese domesticated duck, Muscovy duck is the only species that retains the broodiness characteristic. Strong broodiness seriously limits its reproductive performance. In order to explore the molecular mechanisms that regulate broody behavior in Muscovy duck, this study used whole genome resequencing (WGRS) to obtain genomic variation sites of Muscovy ducks and conducted association analysis with broody traits. A total of 6,131,623 Single Nucleotide Polymorphisms (SNPs)were obtained from 295 female Muscovy ducks. After genome wide association study (GWAS) with the total broody days, average broody days, broody frequency and the first day of broodiness, 39, 130, 29 and 138 significant SNPs were obtained, respectively. The key genes annotated to these SNPs loci include NCOA6, MRPS22, SCAP, CRY2, CK1δ and EZH1, which could be candidate genes regulating the broodiness of Muscovy ducks. Functional analysis showed that over expression of MRPS22 upregulated the expression of CYP19A1 to promote the synthesis of intracellular estradiol, and downregulated the expression of CYP11A1 and 3β-HSD to inhibit the synthesis of progesterone to regulate broodiness of Muscovy ducks. The genetic polymorphism results showed that MRPS22: g.19000662G>A was significantly associated with average broody days. The average broody days in GA mutant ducks increased by an average of 2.23 days compared to wild GG type, which can be used for molecular marker for broody behavior selection. In conclusion, our study revealed MRPS22 regulated the broody performance by affecting the synthesis of estradiol and progesterone, and g.19000662G>A in MRPS22 was significantly associated with average broody days of Muscovy duck.
Collapse
Affiliation(s)
- Hailiang Yu
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, PR China
| | - Shiqi Yu
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, PR China
| | - Wanli Yang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, PR China
| | - Weihuang Lin
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, PR China
| | - Xiaowei Yang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, PR China
| | - Xiao Wang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, PR China
| | - Cheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, PR China
| | - Liping Guo
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, PR China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, PR China.
| |
Collapse
|
6
|
Wang Y, Wu Q, Zhou Y, Liu W, Cao W, Fan Y, Li N. Functional analysis of 6 variations in FOXL2. SAGE Open Med 2025; 13:20503121251329287. [PMID: 40166712 PMCID: PMC11956509 DOI: 10.1177/20503121251329287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
Objective We aimed to investigate the functional alterations caused by pathogenic variants in the FOXL2 gene, a forkhead transcriptional factor. Methods This study is an experimental research with a duration from January to September 2022. We selected six variants for analysis, including a double missense variant, c.150C>G (p. Asp50Glu) and c.326A>T (p. Asn109Ile); three deletions, c.411_412del (p. Met137Ilefs101), c.533_542del (p. Val178Alafs90), and c.684delA (p. Ala229Leufs43); a nonsense variant, c.214G>T (p. Glu72); and a duplication, c.663_692dup (p. Ala225_Ala234dup). We constructed expression vectors containing these variants and transfected them into HeLa cells. Confocal microscopy was used to observe the subcellular localization of the expressed proteins. We evaluated gene expression using dual luciferase reporter assays and quantitative PCR. Results Proteins expressed by vectors with deletion variants were predominantly localized to the nucleus, while those with the double missense variant exhibited diffuse expression throughout the cell. Proteins from nonsense and duplication variants localized to the cytoplasm. Luciferase activity assays revealed that proteins encoded by the p. Ala229Leufs43, p. Glu72, and p. Ala225_Ala234dup variants significantly diminished the inhibitory effects on the transcription of the StAR gene. Additionally, all proteins encoded by indel and nonsense variants, except for the double missense variant, demonstrated a marked reduction in their inhibitory effects on CCDN2 and INHBB gene expression. Conclusions The double missense variant does not exert a superimposed inhibitory effect on gene expression. Despite differences in subcellular localization, all mutant proteins produced by these variants likely interfere with downstream gene expression through a shared pathway. Furthermore, mutant FOXL2 proteins may disrupt ovarian development via multiple pathways, extending beyond their impact on StAR gene expression.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, China
| | - Qian Wu
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, China
| | - Yunyu Zhou
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wen Liu
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, China
| | - Wenhong Cao
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, China
| | - Yunwei Fan
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, China
| | - Ningdong Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
7
|
Allen-Brady K, Kodama S, Verrilli LE, Ramsay JM, Johnstone EB, Horns JJ, Emery BR, Cannon-Albright L, Aston KI, Hotaling JM, Welt CK. Azoospermia/Oligozoospermia and Prostate Cancer Are Increased in Families of Women With Primary Ovarian Insufficiency. J Endocr Soc 2025; 9:bvaf030. [PMID: 40046104 PMCID: PMC11879197 DOI: 10.1210/jendso/bvaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Indexed: 03/27/2025] Open
Abstract
Background Nonobstructive azoospermia (NOA) and primary ovarian insufficiency (POI) have common genetics that may also predispose patients to cancer risk. Objectives We hypothesized that NOA or severe oligozoospermia and the risk of male cancers would be higher in families of women with POI. Methods Women with POI were identified using International Classification of Disease codes in electronic medical records (1995-2021) from 2 major healthcare systems in Utah and reviewed for accuracy. Using genealogy information in the Utah Population Database, women with POI (n = 392) and their relatives were included if there were at least 3 generations of ancestors available. Men with NOA or severe oligozoospermia (≤5 million/mL) from the Subfertility Health and Assisted Reproduction and the Environment Study were identified in these families and risk was calculated in relatives compared to population rates. The relative risk of prostate and testicular cancer was examined using the Utah Cancer Registry. Results There was an increased risk of NOA/severe oligozoospermia in relatives of women with POI among first- (relative risk 2.8 [95% confidence interval 1.1, 6.7]; P = .03), second- (3.1 [1.1, 6.7]; P = .02), and third-degree relatives (1.8 [1.1, 3.1]; P = .03). In these families with POI and NOA/oligozoospermia (n = 21), prostate cancer risk was higher in first- (3.5 [1.1, 8.1]; P = .016) and second-degree relatives (3.1 [1.9, 4.8]; P = .000008). Conclusion The data demonstrate excess familial clustering of severe spermatogenic impairment compared to matched population rates, along with higher prostate cancer risk in relatives of women with POI. These findings support a common genetic contribution to POI, spermatogenic impairment, and prostate cancer.
Collapse
Affiliation(s)
- Kristina Allen-Brady
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84108, USA
| | - Samantha Kodama
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Lauren E Verrilli
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Murray, UT 84107, USA
| | - Joemy M Ramsay
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, UT 84132, USA
| | - Erica B Johnstone
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Joshua J Horns
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, UT 84132, USA
| | - Benjamin R Emery
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, UT 84132, USA
| | - Lisa Cannon-Albright
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84108, USA
| | - Kenneth I Aston
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, UT 84132, USA
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, UT 84132, USA
| | - Corrine K Welt
- Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
8
|
Chian R, Guan Y, He X, Xu J, Shu J, Li J. The quality of human eggs and its pre-IVF incubation. Reprod Med Biol 2025; 24:e12652. [PMID: 40321658 PMCID: PMC12048747 DOI: 10.1002/rmb2.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Background Multi-factors influence the success rate of infertility treatments, and one of the important points is to obtain good quality eggs. Methods Based on the literatures and unpublished data, the factors affecting egg quality were summarized. Main Findings Results Egg quality is an important determinant in successful infertility treatment. In addition to maternal age, controlled ovarian hyperstimulation (COH) protocols also play a key role in affecting the quality of the egg. After egg retrieval, the insemination occurs 3-6 h after collection, with a pre-IVF incubation time by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) (39-42 h post-HCG injection). The pre-IVF incubation refers to the short period time of 3 to 6 h after oocyte retrieval and before the insemination by IVF or ICSI. The pre-IVF incubation of collected eggs in the designed culture medium improves egg quality in terms of maturation and early embryonic development. Conclusions Pre-IVF incubation of the collected eggs contributes to the improvement of the quality of eggs; therefore, it may increase subsequent pregnancy and implantation rates following embryo transfer.
Collapse
Affiliation(s)
- Ri‐Cheng Chian
- Laboratory of Research and DevelopmentARSCI Biomedical Inc.Jiaxing CityPeople's Republic of China
| | - Yi‐Chun Guan
- Center for Reproductive MedicineThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhou CityPeople's Republic of China
| | - Xiao‐Jin He
- Center for Reproductive MedicineThe First People's Hospital of Jiaotong UniversityShanghaiPeople's Republic of China
| | - Jian Xu
- Center for Reproductive MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwuPeople's Republic of China
| | - Jin‐Hui Shu
- Center of Reproductive MedicineMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningPeople's Republic of China
| | - Jian‐Hua Li
- Reproductive Medical Center, Department of Obstetrics and GynecologySeventh Medical Center of PLA General HospitalBeijingPeople's Republic of China
| |
Collapse
|
9
|
Li D, Liu Y, Hui Y, Li B, Hao C. A Glimpse of Research Trends and Frontiers in the Etiology of Premature Ovarian Insufficiency via Bibliometric Analysis. Endocr Metab Immune Disord Drug Targets 2025; 25:310-325. [PMID: 38919087 PMCID: PMC12079320 DOI: 10.2174/0118715303313887240624071238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Premature Ovarian Insufficiency (POI) is the most common reproductive aging disorder in women of reproductive age, which is characterized by decreased ovarian function in women before the age of 40. Etiology research of POI has garnered interest and attention from scholars worldwide over the past decades. METHODS However, to the best of our knowledge, no comprehensive survey with bibliometric analysis has been conducted yet on the research trends of POI etiology. This article aimed to analyze current scientific findings on the etiology of POI, offering innovative ideas for further research. Research articles on the etiology of POI from 1994 to 2023 were collected from the Web of Science Core Collection. A total of 456 research articles were included, and the total number of publications increased annually. We used VOSviewer and bibliometric.com to analyze the keywords, terms, institution, publication country/region, author name, publication journal, and the sum of times the articles have been cited. RESULTS This study has shown that a research hotspot is the genetic etiology of POI; however, there is still a lack of research on the impact of epigenetic alterations, iatrogenic injuries, environmental pollution, social stress, and unhealthy lifestyles on the pathogenesis of POI. CONCLUSION The factors illustrated here represent potential future directions for POI etiology research and warrant more attention from researchers.
Collapse
Affiliation(s)
- Duan Li
- Centre for Reproductive Medicine, Women and Children’s Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Yingxue Liu
- Centre for Reproductive Medicine, Women and Children’s Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Yameng Hui
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Cuifang Hao
- Centre for Reproductive Medicine, Women and Children’s Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Wu PL, Tang SH, Wang HY, Zhang HM, Peng L, Liu Y, Yang Y, Zheng CB, Zhang XP. Human umbilical cord mesenchymal stem cells improve the ovarian function through oxidative stress-mediated PERK/eIF-2α/ATF4/CHOP signaling in premature ovarian insufficiency mice. Mol Biol Rep 2024; 52:85. [PMID: 39724303 DOI: 10.1007/s11033-024-10189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a refractory disease that severely affects female fertility. The PERK/eIF-2α/ATF4/CHOP pathway is one of the classical pathways involved in the unfolded protein response to endoplasmic reticulum stress by regulating protein synthesis and promoting apoptosis. This study aimed to investigate the functional role and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in the POI animal model through the PERK/eIF-2α/ATF4/CHOP pathway. METHODS AND RESULTS Forty-five sexually mature female C57 mice were divided into a blank control group, POI model group, and hUCMSCs intervention group. To establish the POI model, mice received intraperitoneal injections of cyclophosphamide (CTX) (70 mg/kg) daily for 14 consecutive days, while the control group received saline only. In the hUCMSC intervention group, mice were given hUCMSCs on days 14 and 28, based on CTX modeling in the POI model group. The hUCMSCs were isolated, labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) fluorescent dye, and tail vein-injected, and the distribution of the DiR signal was monitored in the mice using a fluorescence imaging detection method. The ovarian tissues were hematoxylin and eosin stained to observe the ovarian structure, and the number of primordial follicles were counted. An enzyme-linked immunosorbent assay was used to detect the serum levels of estradiol, anti-mullerian hormone, and follicle-stimulating hormone. Terminal deoxynucleotidyl transferase dUTP nick end labeling was used to detect the apoptosis of granulosa cells (GCs). The reactive oxygen species (ROS) content of ovarian tissue was detected by flow cytometry assay. The RNA expression of PERK, eIF-2α, ATF4, and CHOP was determined by quantitative real-time polymerase chain reaction, and protein levels of the targets were determined by western blot and immunohistochemistry. We identified hUCMSCs using surface antigenic markers (CD90, CD44, CD105, and CD73), and osteoblasts and chondroplast differentiation assays. Our studies demonstrated that hUCMSC intervention significantly restored ovarian function by improving the irregular estrous cycle, increasing the number of follicles, decreasing ROS, and inhibiting GC apoptosis in POI mice. Moreover, hUCMSCs suppressed CTX-induced PERK/eIF-2a/ATF4/CHOP pathway activation. CONCLUSIONS HUCMSCs can migrate to the damaged ovaries of POI mice, and improve the ovarian function of POI mice by inhibiting oxidative stress, down-regulating the expression of the PERK/eIF-2α/ATF4/CHOP pathway, and reducing the apoptosis of GCs.
Collapse
Affiliation(s)
- Pei-Ling Wu
- The Affiliated Loudi Hospital, Hengyang Medical School, University of South China, Loudi, Hunan, 417000, China
| | - Shi-Huan Tang
- The Affiliated Loudi Hospital, Hengyang Medical School, University of South China, Loudi, Hunan, 417000, China
| | | | - Hong-Mei Zhang
- The Affiliated Loudi Hospital, Hengyang Medical School, University of South China, Loudi, Hunan, 417000, China
| | - Lu Peng
- The Affiliated Loudi Hospital, Hengyang Medical School, University of South China, Loudi, Hunan, 417000, China
| | - Yao Liu
- The Affiliated Loudi Hospital, Hengyang Medical School, University of South China, Loudi, Hunan, 417000, China
| | - Yuan Yang
- Hunan Yuanpin Cell Technology (Yuanpin Biotech), Changsha, Hunan, 410100, China
| | - Chun-Bing Zheng
- Hunan Yuanpin Cell Technology (Yuanpin Biotech), Changsha, Hunan, 410100, China.
| | - Xian-Ping Zhang
- The Affiliated Loudi Hospital, Hengyang Medical School, University of South China, Loudi, Hunan, 417000, China.
| |
Collapse
|
11
|
Qiu Z, Huang EYZ, Li Y, Du J, Kan J. Association of dietary preferences with primary ovarian insufficiency (POI): a mendelian randomization-based analysis. BMC Womens Health 2024; 24:652. [PMID: 39709418 DOI: 10.1186/s12905-024-03488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/28/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) is a critical cause of infertility and is increasingly recognized as a complex metabolic disorder. Dietary factors may influence the risk of POI, but causal relationships remain unclear. METHODS We conducted an MR study using genetic instrumental variables for 83 dietary preferences from the UK Biobank, with the Inverse Variance Weighted method as the primary analysis. RESULTS Consumption of butter and full-fat dairy products was strongly associated with an increased risk of primary ovarian insufficiency (POI). Women who consumed butter had nearly ten times the risk of developing POI (OR = 9.54, p = 0.048), while full-cream milk was associated with an even greater risk (OR = 29.22, p = 0.018). Interestingly, semi-skimmed milk, despite its lower fat content, also showed a significant positive association with POI (OR > 100, p = 0.008). In contrast, dietary patterns including oily fish and pork were protective against POI. Oily fish, rich in omega-3 fatty acids, was linked to a 82% reduced risk of POI (OR = 0.18, p = 0.008), and pork consumption also showed a protective effect (OR = 0.13, p = 0.041). Additionally, women who did not consume eggs had a significantly lower risk of POI (OR < 0.001, p = 0.044). CONCLUSION This study demonstrates that high-fat dairy products may increase the risk of POI, while oily fish and pork consumption could offer protective effects. These findings providing a foundation for future clinical and public health strategies targeting reproductive health.
Collapse
Affiliation(s)
- Zhengqi Qiu
- The Institute of Mental Psychology, School of Health Management, Guangzhou Medical University, Guangzhou, 510370, China
- Guangdong-Hong Kong-Macao Greater Bay Area Medical and Health Industry High Quality Development Rule of Law Guarantee Research Center, Guangzhou Medical University, 510370, Guangzhou, China
| | | | - Yufei Li
- The Institute of Mental Psychology, School of Health Management, Guangzhou Medical University, Guangzhou, 510370, China
| | - Jun Du
- Nutrilite Health Institute, 720 Cailun Road, 201203, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, 720 Cailun Road, 201203, Shanghai, China.
| |
Collapse
|
12
|
Xu Y, Liu X, Liu Y, Zhu H, Wu J, Han B, Ling S, Cao R, Yao H, Chen Y, Liu Y, Rao Y, Liu X, Zhao S, Song H, Qiao J. Clinical spectrum and molecular basis in 19 Chinese patients with 46, XY disorder of sexual development caused by NR5A1 mutations. Orphanet J Rare Dis 2024; 19:453. [PMID: 39623453 PMCID: PMC11610102 DOI: 10.1186/s13023-024-03472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Nuclear receptor subfamily 5 group A member 1 (NR5A1) plays pivotal roles in steroidogenesis and gonadal development. 46, XY disorder of sexual development (DSD) caused by NR5A1 mutations is a rare genetic condition. This study aimed to provide a comprehensive analysis of the clinical characteristics and molecular defects observed in 19 Chinese patients with NR5A1 variants, including assessing the deleterious effects of novel variants in vitro and evaluating their functional impact on the gonad and adrenal glands in vivo. MATERIALS AND METHODS Subjects with NR5A1 variants were identified from 223 Chinese 46, XY DSD patients via next-generation sequencing. In-silico analysis and functional assays were performed to evaluate the transcriptional activity, expression levels and nuclear localization of novel NR5A1 variants. The histological structure of the gonads was evaluated via immunohistochemistry (IHC). RESULTS Patients with NR5A1 gene variants presented with serious conditions, including micropenis, cryptorchidism, azoospermia, and radiological abnormalities of the spleen. Five novel NR5A1 variants were identified, including heterozygous p.Y5*, p.Q42E and p.L359_L363del, as well as copy number variation (CNV) of chr9:127213317-127570245_del and an exon 6 duplication. A total of 63.2% (12/19) of patients harbored additional variants other than NR5A1. Defective transcriptional regulatory activities and abnormal protein expression levels were observed in NR5A1 variants. The reduced levels of DHEA-S and 11-oxygenated steroids indicate a mild impairment in adrenal function among certain patients. The IHC analysis of the testis revealed intact expression levels of SOX9 in Sertoli cells, while significant differences were observed in the expression pattern of CYP17A1 in Leydig cells among patients. The preserved maturation of adult Leydig cells in the patients may trigger spontaneous puberty. CONCLUSIONS Patients with NR5A1 mutations exhibit complex phenotypes. The observed clinical heterogeneity may be attributed to oligogenic mutations, dysregulated Leydig cell function, as well as the impaired ability to modulate the transcription of target genes.
Collapse
Affiliation(s)
- Yue Xu
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xuemeng Liu
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yang Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hui Zhu
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jing Wu
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bing Han
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shiying Ling
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ren Cao
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Haijun Yao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yan Chen
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yu Liu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yamin Rao
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyu Liu
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shuangxia Zhao
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Huaidong Song
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jie Qiao
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
13
|
Hervás-Rivero C, Mejuto-Vázquez N, López-Carbonell D, Altarriba J, Diaz C, Molina A, Rodríguez-Bermúdez R, Piedrafita J, Baro JA, Varona L. Runs of Homozygosity Islands in Autochthonous Spanish Cattle Breeds. Genes (Basel) 2024; 15:1477. [PMID: 39596677 PMCID: PMC11593383 DOI: 10.3390/genes15111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Understanding the genetic architecture of autochthonous European cattle breeds is important for developing effective conservation strategies and sustainable breeding programs. Spanish beef cattle, which trace their origins to ancient migrations from the Near East with later admixture from African populations, exhibit a rich genetic diversity shaped by environmental adaptation and selective breeding. Runs of Homozygosity (ROH) are extended stretches of identical genetic material inherited from both parents. They serve as indicators of inbreeding and selection signatures within populations. ROH islands, or regions of the genome where ROH segments are highly concentrated across individuals within a breed, indicate genomic regions under selective pressure. METHODS This study explores the distribution of ROH islands across seven Spanish beef cattle breeds (Asturiana de los Valles, Avileña-Negra Ibérica, Bruna dels Pirineus, Morucha, Retinta, Pirenaica, and Rubia Gallega). By analyzing high-density SNP data, we characterized ROH patterns and identified genomic regions with high levels of homozygosity, which may indicate selection pressures or common ancestry. RESULTS Our findings revealed breed-specific ROH patterns as well as shared ROH islands, underscoring genetic relationships and differentiation among the breeds. Notably, Morucha displayed the highest number of ROH, while Asturiana de los Valles had the fewest. FROH values, which indicate genomic inbreeding, varied among the breeds, with Morucha and Retinta being associated with higher values. We identified 57 ROH islands, with shared regions among populations that suggest common ancestral selection pressures. Key genes within these regions, like MSTN, are associated with muscle growth, body weight, and fertility. CONCLUSIONS This study offers valuable insights for breeding strategies and conservation efforts, highlighting the genetic diversity and historical background of Spanish cattle breeds.
Collapse
Affiliation(s)
- C. Hervás-Rivero
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| | - N. Mejuto-Vázquez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Av. Carvallo Calero, 27002 Lugo, Spain; (N.M.-V.); (R.R.-B.)
| | - D. López-Carbonell
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| | - J. Altarriba
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| | - C. Diaz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain
| | - A. Molina
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - R. Rodríguez-Bermúdez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Av. Carvallo Calero, 27002 Lugo, Spain; (N.M.-V.); (R.R.-B.)
| | - J. Piedrafita
- Departamento de Ciencia Animal y de los Alimentos, Facultat de Veterinaria, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - J. A. Baro
- Departamento de Ciencias Agroforestales, ETS de Ingenierías Agrarias, Universidad de Valladolid, 34004 Palencia, Spain;
| | - L. Varona
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| |
Collapse
|
14
|
Rezaei M, Liang M, Yalcin Z, Martin JH, Kazemi P, Bareke E, Ge ZJ, Fardaei M, Benadiva C, Hemida R, Hassan A, Maher GJ, Abdalla E, Buckett W, Bolze PA, Sandhu I, Duman O, Agrawal S, Qian J, Vallian Broojeni J, Bhati L, Miron P, Allias F, Selim A, Fisher RA, Seckl MJ, Sauthier P, Touitou I, Tan SL, Majewski J, Taketo T, Slim R. Defects in meiosis I contribute to the genesis of androgenetic hydatidiform moles. J Clin Invest 2024; 134:e170669. [PMID: 39545410 PMCID: PMC11563684 DOI: 10.1172/jci170669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
To identify novel genes responsible for recurrent hydatidiform moles (HMs), we performed exome sequencing on 75 unrelated patients who were negative for mutations in the known genes. We identified biallelic deleterious variants in 6 genes, FOXL2, MAJIN, KASH5, SYCP2, MEIOB, and HFM1, in patients with androgenetic HMs, including a familial case of 3 affected members. Five of these genes are essential for meiosis I, and their deficiencies lead to premature ovarian insufficiency. Advanced maternal age is the strongest risk factor for sporadic androgenetic HM, which affects 1 in every 600 pregnancies. We studied Hfm1-/- female mice and found that these mice lost all their oocytes before puberty but retained some at younger ages. Oocytes from Hfm1-/- mice initiated meiotic maturation and extruded the first polar bodies in culture; however, their meiotic spindles were often positioned parallel, instead of perpendicular, to the ooplasmic membrane at telophase I, and some oocytes extruded the entire spindle with all the chromosomes into the polar bodies at metaphase II, a mechanism we previously reported in Mei1-/- oocytes. The occurrence of a common mechanism in two mouse models argues in favor of its plausibility at the origin of androgenetic HM formation in humans.
Collapse
Affiliation(s)
- Maryam Rezaei
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Manqi Liang
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Zeynep Yalcin
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jacinta H. Martin
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Parinaz Kazemi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Zhao-Jia Ge
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Majid Fardaei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Claudio Benadiva
- Center for Advanced Reproductive Services, Farmington, Connecticut, USA
| | - Reda Hemida
- Department of Obstetrics and Gynecology, Mansoura University, Mansoura, Egypt
| | - Adnan Hassan
- Department of Obstetrics and Gynecology, Jordan Hospital, Amman, Jordan
| | - Geoffrey J. Maher
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - William Buckett
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre-Adrien Bolze
- Université Lyon 1, Service de Chirurgie Gynécologique et Ontologique, Obstétrique, Centre Français de Référence des Maladies Trophoblastiques, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre Bénite, France
| | - Iqbaljit Sandhu
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Onur Duman
- Security Research Center, Concordia University, Montreal, Quebec, Canada
| | - Suraksha Agrawal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - JianHua Qian
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Lavi Bhati
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre Miron
- Centre d’Aide Médicale à la Procréation Fertilys, Laval, Quebec, Canada
- Institut National de Recherche Scientifique–Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Fabienne Allias
- Department of Pathology, Hospices Civils de Lyon, Centre, Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Amal Selim
- Department of Medical Biochemistry and Molecular Biology, Mansoura University, Mansoura, Egypt
| | - Rosemary A. Fisher
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Michael J. Seckl
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Philippe Sauthier
- Department of Obstetrics and Gynecology, Gynecologic Oncology Division, Centre Hospitalier de l’Université de Montréal, Réseau des Maladies Trophoblastiques du Québec, Montreal, Quebec, Canada
| | - Isabelle Touitou
- Department of Genetics CHU of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Seang Lin Tan
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
- OriginElle Fertility Clinic and Women’s Health Centre, Montreal, Quebec, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Teruko Taketo
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rima Slim
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Ding L, Deng S, Zhang P, Zhang D, Tian Q. Identification of novel variants and candidate genes in women with 46,XX complete gonadal dysgenesis. Reprod Biol Endocrinol 2024; 22:140. [PMID: 39529088 PMCID: PMC11552300 DOI: 10.1186/s12958-024-01309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND 46,XX complete gonadal dysgenesis (46,XX-CGD) is a rare disorder of sexual development (DSD) characterized by primary amenorrhea and a lack of spontaneous pubertal development in individuals with a 46,XX karyotype despite the presence of female internal and external genitalia due to failure of bilateral ovarian development. The condition is genetically heterogeneous, and in most cases, its etiology is unknown. Determining the genetic cause would provide insights into potential targets for genetic diagnosis and counseling. METHODS To clarify the molecular mechanisms of 46,XX complete gonadal dysgenesis in the population of China, whole-exome sequencing (WES) was performed on DNA samples from patients with 46,XX-CGD. In silico analysis was conducted to predict the pathogenicity of the variants. RESULTS We recruited 20 patients with 46,XX-CGD and identified 8 variants in 6 genes, including three homozygous variants in MCM9, POF1B, and PSMC3IP; compound heterozygous variants in TWNK; and three heterozygous variants in TP63 and INSRR, from 7 patients. These variants included 3 recurrent variants and 5 novel variants. CONCLUSIONS This study identified several novel variants, broadening the variant spectrum of 46,XX-CGD. 46,XX-CGD is a genetically heterogeneous condition, and WES is a powerful tool for determining its genetic etiology. The results of this study will aid researchers and clinicians in genetic counseling and suggest that WES is valuable for detecting 46,XX-CGD, which may lead to early interventions for patients.
Collapse
Affiliation(s)
- Leilei Ding
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Shan Deng
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Pan Zhang
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Duoduo Zhang
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Qinjie Tian
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
- Center for Rare Diseases Research, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| |
Collapse
|
16
|
Chen J, He Z, Xu W, Kang Y, Zhu F, Tang H, Wang J, Zhong F. Human umbilical cord mesenchymal stem cells restore chemotherapy-induced premature ovarian failure by inhibiting ferroptosis in vitro ovarian culture system. Reprod Biol Endocrinol 2024; 22:137. [PMID: 39511578 PMCID: PMC11542367 DOI: 10.1186/s12958-024-01310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have shown potential in repairing chemotherapy-induced premature ovarian failure (POF). However, challenges such as stem cell loss and immune phagocytosis post-transplantation hinder their application. Due to easy and safe handling, in vitro ovarian culture is widely available for drug screening, pathophysiological research, and in vitro fertilization. MSCs could exhibit therapeutic capacity for ovarian injury, and avoid stem cell loss and immune phagocytosis in vitro tissue culture system. Therefore, this study utilizes an in vitro ovarian culture system to investigate the reparative potential of human umbilical cord mesenchymal stem cells (hUCMSCs) and their mechanism. METHODS In this study, a chemotherapy-induced POF model was established by introducing cisplatin in vitro ovarian culture system. The reparative effects of hUCMSCs on damaged ovarian tissue were validated through Transwell chambers. Tissue histology examination, immunohistochemical staining, Western blotting, and RT-PCR were employed to evaluate the expression effects of hUCMSCs on ferroptosis and fibrosis-related genes during the process of repairing cisplatin-induced POF. RESULTS Cisplatin was found to activate ovarian follicles in vitro POF model. Transcriptomic sequencing analysis revealed that cisplatin could activate genes associated with ferroptosis. hUCMSCs alleviated cisplatin-induced POF by suppressing the expression of ferroptosis. Moreover, inhibiting ferroptosis by hUCMSCs also ameliorated ovarian hormone levels and reduced the expression of fibrosis-related factors α-SMA and COL-I in the ovaries. CONCLUSIONS This study confirms that cisplatin-induced ovarian damage via ferroptosis in vitro POF model, and hUCMSCs repair ovarian injury by inhibiting the ferroptosis pathway and suppressing fibrosis. This research contributes to evaluating the effectiveness of hUCMSCs in treating chemotherapy-induced POF by inhibiting ferroptosis in an in vitro ovarian culture system and provides a potential therapeutic strategy for chemotherapy-induced POF.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Zhuoying He
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Wenjuan Xu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Yumiao Kang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Fengyu Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Suzhou, Anhui Province, 234011, China.
| | - Jianye Wang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China.
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China.
| |
Collapse
|
17
|
Gurpinar Tosun B, Guran T. Rare forms of congenital adrenal hyperplasia. Clin Endocrinol (Oxf) 2024; 101:371-385. [PMID: 38126084 DOI: 10.1111/cen.15009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders due to pathogenic variants in genes encoding enzymes and cofactors involved in adrenal steroidogenesis. Although 21-hydroxylase, 11β-hydroxylase, 3β-hydroxysteroid dehydrogenase type 2, 17α-hydroxylase/17,20-lyase, P450 oxidoreductase, steroidogenic acute regulatory protein, cholesterol side-chain cleavage enzyme deficiencies are considered within the definition of CAH, the term 'CAH' is often used to refer to '21-hydroxylase deficiency (21OHD)' since 21OHD accounts for approximately 95% of CAH in most populations. The prevalence of the rare forms of CAH varies according to ethnicity and geographical location. In most cases, the biochemical fingerprint of impaired steroidogenesis points to the specific subtypes of CAH, and genetic testing is usually required to confirm the diagnosis. Despite there are significant variations in clinical characteristics and management, most data about the rare CAH forms are extrapolated from 21OHD. This review article aims to collate the currently available data about the diagnosis and the management of rare forms of CAH.
Collapse
Affiliation(s)
- Busra Gurpinar Tosun
- Department of Paediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tulay Guran
- Department of Paediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
18
|
Federici S, Rossetti R, Moleri S, Munari EV, Frixou M, Bonomi M, Persani L. Primary ovarian insufficiency: update on clinical and genetic findings. Front Endocrinol (Lausanne) 2024; 15:1464803. [PMID: 39391877 PMCID: PMC11466302 DOI: 10.3389/fendo.2024.1464803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Primary ovarian insufficiency (POI) is a disorder of insufficient ovarian follicle function before the age of 40 years with an estimated prevalence of 3.7% worldwide. Its relevance is emerging due to the increasing number of women desiring conception late or beyond the third decade of their lives. POI clinical presentation is extremely heterogeneous with a possible exordium as primary amenorrhea due to ovarian dysgenesis or with a secondary amenorrhea due to different congenital or acquired abnormalities. POI significantly impacts non only on the fertility prospect of the affected women but also on their general, psychological, sexual quality of life, and, furthermore, on their long-term bone, cardiovascular, and cognitive health. In several cases the underlying cause of POI remains unknown and, thus, these forms are still classified as idiopathic. However, we now know the age of menopause is an inheritable trait and POI has a strong genetic background. This is confirmed by the existence of several candidate genes, experimental and natural models. The most common genetic contributors to POI are the X chromosome-linked defects. Moreover, the variable expressivity of POI defect suggests it can be considered as a multifactorial or oligogenic defect. Here, we present an updated review on clinical findings and on the principal X-linked and autosomal genes involved in syndromic and non-syndromic forms of POI. We also provide current information on the management of the premature hypoestrogenic state as well as on fertility preservation in subjects at risk of POI.
Collapse
Affiliation(s)
- Silvia Federici
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Raffaella Rossetti
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Moleri
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisabetta V. Munari
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Frixou
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
19
|
Rui X, Zhang X, Jia X, Han J, Wang C, Cao Q, Zhong O, Ding J, Zhao C, Zhang J, Ling X, Li H, Ma X, Meng Q, Huo R. Variants in NLRP2 and ZFP36L2, non-core components of the human subcortical maternal complex, cause female infertility with embryonic development arrest. Mol Hum Reprod 2024; 30:gaae031. [PMID: 39178021 DOI: 10.1093/molehr/gaae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
The subcortical maternal complex (SCMC), which is vital in oocyte maturation and embryogenesis, consists of core proteins (NLRP5, TLE6, OOEP), non-core proteins (PADI6, KHDC3L, NLRP2, NLRP7), and other unknown proteins that are encoded by maternal effect genes. Some variants of SCMC genes have been linked to female infertility characterized by embryonic development arrest. However, so far, the candidate non-core SCMC components associated with embryonic development need further exploration and the pathogenic variants that have been identified are still limited. In this study, we discovered two novel variants [p.(Ala131Val) and p.(Met326Val)] of NLRP2 in patients with primary infertility displaying embryonic development arrest from large families. In vitro studies using 293T cells and mouse oocytes, respectively, showed that these variants significantly decreased protein expression and caused the phenotype of embryonic development arrest. Additionally, we combined the 'DevOmics' database with the whole exome sequence data of our cohort and screened out a new candidate non-core SCMC gene ZFP36L2. Its variants [p.(Ala241Pro) and p.(Pro291dup)] were found to be responsible for embryonic development arrest. Co-immunoprecipitation experiments in 293T cells, used to demonstrate the interaction between proteins, verified that ZFP36L2 is one of the human SCMC components, and microinjection of ZFP36L2 complementary RNA variants into mouse oocytes affected embryonic development. Furthermore, the ZFP36L2 variants were associated with disrupted stability of its target mRNAs, which resulted in aberrant H3K4me3 and H3K9me3 levels. These disruptions decreased oocyte quality and further developmental potential. Overall, this is the first report of ZFP36L2 as a non-core component of the human SCMC and we found four novel pathogenic variants in the NLRP2 and ZFP36L2 genes in 4 of 161 patients that caused human embryonic development arrest. These findings contribute to the genetic diagnosis of female infertility and provide new insights into the physiological function of SCMC in female reproduction.
Collapse
Affiliation(s)
- Ximan Rui
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiaolan Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xinru Jia
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jian Han
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Congjing Wang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Qiqi Cao
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Ou Zhong
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jie Ding
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Chun Zhao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Junqiang Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hong Li
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingxia Meng
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Ran Huo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Innovation Center of Suzhou, Nanjing Medical University, Suzhou, China
| |
Collapse
|
20
|
You X, Zhang Z, Xu Y, Yang B, Huang S, Zou Y, Zhao F, Feng C, Lao H, Yuan H, Liu Y, Wu M. Exploring the correlation between homocysteine, red blood cell folate and MTHFRC677T genotypes with female infertility. Biomark Med 2024; 18:749-758. [PMID: 39254332 PMCID: PMC11457617 DOI: 10.1080/17520363.2024.2394386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Aim: To investigate the association between serum homocysteine (HCY) levels, red blood cell folate (RCF) levels, methylenetetrahydrofolate reductase (MTHFR) gene polymorphism and infertility.Materials & methods: Serum HCY and RCF levels and C677T polymorphism of MTHFR gene were analyzed in 149 infertile patients and 223 women of normal reproductive age with healthy childbirth history.Results: The HCY level of MTHFR C677T TT genotype infertility patients was higher than that of women of normal reproductive age, while the RCF level was not significantly different between the two groups.Conclusion: Serum HCY levels increased in infertility patients, and the MTHFR C677T TT genotype in childbearing-aged women are associated with a higher risk of infertility. The results showed that HCY level and MTHFR C677T genotype were closely related to infertility.
Collapse
Affiliation(s)
- Xueyun You
- Department of Medical Genetics, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention & Control, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Zhaozhen Zhang
- Department of Medical Genetics, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention & Control, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Yonghua Xu
- Department of Medical Genetics, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention & Control, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Bicheng Yang
- Department of Medical Genetics, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention & Control, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Shuhui Huang
- Department of Medical Genetics, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention & Control, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Yongyi Zou
- Department of Medical Genetics, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention & Control, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Feng Zhao
- Department of Medical Genetics, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention & Control, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Chuanxin Feng
- Department of Medical Genetics, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention & Control, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Haorui Lao
- Jiujiang University, Jiujiang, Jiangxi, China
| | - Huizhen Yuan
- Department of Medical Genetics, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention & Control, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Yanqiu Liu
- Department of Medical Genetics, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention & Control, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Min Wu
- Fuzhou Linchuan District First People's Hospital clinical laboratory, Fuzhou, Jiangxi,China
| |
Collapse
|
21
|
Wu J, Tan S, Feng Z, Zhao H, Yu C, Yang Y, Zhong B, Zheng W, Yu H, Li H. Whole-genome de novo sequencing reveals genomic variants associated with differences of sex development in SRY negative pigs. Biol Sex Differ 2024; 15:68. [PMID: 39223676 PMCID: PMC11367908 DOI: 10.1186/s13293-024-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Differences of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. In more than 50% of human DSD cases, a molecular diagnosis is not available. In intensively farmed pig populations, the incidence of XX DSD pigs is relatively high, leading to economic losses for pig breeders. Interestingly, in the majority of 38, XX DSD pigs, gonads still develop into testis-like structures or ovotestes despite the absence of the testis-determining gene (SRY). However, the current understanding of the molecular background of XX DSD pigs remains limited. METHODS Anatomical and histological characteristics of XX DSD pigs were analysed using necropsy and HE staining. We employed whole-genome sequencing (WGS) with 10× Genomics technology and used de novo assembly methodology to study normal female and XX DSD pigs. Finally, the identified variants were validated in 32 XX DSD pigs, and the expression levels of the candidate variants in the gonads of XX DSD pigs were further examined. RESULTS XX DSD pigs are characterised by the intersex reproductive organs and the absence of germ cells in the seminiferous tubules of the gonads. We identified 4,950 single-nucleotide polymorphisms (SNPs) from non-synonymous mutations in XX DSD pigs. Cohort validation results highlighted two specific SNPs, "c.218T > C" in the "Interferon-induced transmembrane protein 1 gene (IFITM1)" and "c.1043C > G" in the "Newborn ovary homeobox gene (NOBOX)", which were found exclusively in XX DSD pigs. Moreover, we verified 14 candidate structural variants (SVs) from 1,474 SVs, identifying a 70 bp deletion fragment in intron 5 of the WW domain-containing oxidoreductase gene (WWOX) in 62.5% of XX DSD pigs. The expression levels of these three candidate genes in the gonads of XX DSD pigs were significantly different from those of normal female pigs. CONCLUSION The nucleotide changes of IFITM1 (c.218T > C), NOBOX (c.1043 C > G), and a 70 bp deletion fragment of the WWOX were the most dominant variants among XX DSD pigs. This study provides a theoretical basis for better understanding the molecular background of XX DSD pigs. DSD are conditions affecting development of the gonads or genitalia. These disorders can happen in many different types of animals, including pigs, goats, dogs, and people. In people, DSD happens in about 0.02-0.13% of births, and in pigs, the rate is between 0.08% and 0.75%. Pigs have a common type of DSD where the animal has female chromosomes (38, XX) but no SRY gene, which is usually found on the Y chromosome in males. XX DSD pigs may look like both males and females on the outside and have testis-like or ovotestis (a mix of ovary and testis) gonads inside. XX DSD pigs often lead to not being able to have piglets, slower growth, lower chance of survival, and poorer meat quality. Here, we used a method called whole-genome de novo sequencing to look for variants in the DNA of XX DSD pigs. We then checked these differences in a larger group of pigs. Our results reveal the nucleotide changes in IFITM1 (c.218T > C), NOBOX (c.1043 C > G), and a 70 bp deletion fragment in intron 5 of the WWOX, all linked to XX DSD pigs. The expression levels of these three genes were also different in the gonads of XX DSD pigs compared to normal female pigs. These variants are expected to serve as valuable molecular markers for XX DSD pigs. Because pigs are a lot like humans in their genes, physiology, and body structure, this research could help us learn more about what causes DSD in people.
Collapse
Affiliation(s)
- Jinhua Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Shuwen Tan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Congying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Yin Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Bingzhou Zhong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Wenxiao Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China.
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China.
| |
Collapse
|
22
|
Talibova G, Bilmez Y, Tire B, Ozturk S. The DNA double-strand break repair proteins γH2AX, RAD51, BRCA1, RPA70, KU80, and XRCC4 exhibit follicle-specific expression differences in the postnatal mouse ovaries from early to older ages. J Assist Reprod Genet 2024; 41:2419-2439. [PMID: 39023827 PMCID: PMC11405603 DOI: 10.1007/s10815-024-03189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
PURPOSE Ovarian aging is closely related to a decrease in follicular reserve and oocyte quality. The precise molecular mechanisms underlying these reductions have yet to be fully elucidated. Herein, we examine spatiotemporal distribution of key proteins responsible for DNA double-strand break (DSB) repair in ovaries from early to older ages. Functional studies have shown that the γH2AX, RAD51, BRCA1, and RPA70 proteins play indispensable roles in HR-based repair pathway, while the KU80 and XRCC4 proteins are essential for successfully operating cNHEJ pathway. METHODS Female Balb/C mice were divided into five groups as follows: Prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). The expression of DSB repair proteins, cellular senescence (β-GAL) and apoptosis (cCASP3) markers was evaluated in the ovaries using immunohistochemistry. RESULT β-GAL and cCASP3 levels progressively increased from prepuberty to aged groups (P < 0.05). Notably, γH2AX levels varied in preantral and antral follicles among the groups (P < 0.05). In aged groups, RAD51, BRCA1, KU80, and XRCC4 levels increased (P < 0.05), while RPA70 levels decreased (P < 0.05) compared to the other groups. CONCLUSIONS The observed alterations were primarily attributed to altered expression in oocytes and granulosa cells of the follicles and other ovarian cells. As a result, the findings indicate that these DSB repair proteins may play a role in the repair processes and even other related cellular events in ovarian cells from early to older ages.
Collapse
Affiliation(s)
- Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
23
|
Kanatsu-Shinohara M, Morimoto H, Liu T, Tamura M, Shinohara T. Sendai virus-mediated RNA delivery restores fertility to congenital and chemotherapy-induced infertile female mice. PNAS NEXUS 2024; 3:pgae375. [PMID: 39262851 PMCID: PMC11388103 DOI: 10.1093/pnasnexus/pgae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Current infertility treatment strategies focus on mature gametes, leaving a significant proportion of cases with gamete progenitors that stopped complete differentiation. On the other hand, recent advancements in next-generation sequencing have identified many candidate genes that may promote maturation of germ cells. Although gene therapy has shown success in mice, concerns about the integration of DNA vectors into oocytes hinder clinical applications. Here, we present the restoration of fertility in female mice through Sendai virus (SeV)-mediated RNA delivery. Ovaries lacking Kitl expression exhibit only primordial follicles due to impaired signaling to oocytes expressing the KIT tyrosine kinase. Despite SeVs being immunogenic and larger than the blood-follicle barrier, the administration of Kitl-expressing SeVs reinitiated oogenesis in genetically infertile mice that have only primordial follicles, resulting in the birth of normal offspring through natural mating. This virus also effectively addressed iatrogenic infertility induced by busulfan, a widely used cancer chemotherapy agent. Offspring born through SeV administration and natural mating displayed normal genomic imprinting patterns and fertility. Since SeVs pose no genotoxicity risk, the successful restoration of fertility by SeVs represents a promising approach for treating congenital infertility with somatic cell defects and protecting fertility of cancer patients who may become infertile due to loss of oocytes during cancer therapy.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
- AMED-CREST, AMED, 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tianjiao Liu
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
24
|
Lee JY, Kim YR, Ko EJ, Ryu CS, Kwack K, Na ED, Shin JE, Kim JH, Ahn EH, Kim NK. Association of Polymorphisms in FSHR, ESR1, and BMP15 with Primary Ovarian Insufficiency and Meta-Analysis. Diagnostics (Basel) 2024; 14:1889. [PMID: 39272677 PMCID: PMC11393966 DOI: 10.3390/diagnostics14171889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Primary ovarian insufficiency (POI) can lead to menstrual disturbance, resulting in ovarian dysfunction before age 40. Prevalence of POI is usually less than 1%; however, ethnicity or population characteristics may affect prevalence. POI is a heterogeneous disease that results from abnormalities in immunological and hormonal factors. Genetic factors can also contribute to POI. Here, we examine FSHR, ESR1, and BMP15 polymorphisms in patients with POI, and controls. We examined a hormonal gene that is important for pregnancy, follicle-stimulating hormone receptor (FSHR), as well as estrogen receptor 1 (ESR1), and associated it with FSHR expression, ovulation rate, and bone morphogenetic protein 15 (BMP15). We examined 139 Korean patients under age 40 with POI, and 350 Korean control participants without POI. Genotyping was performed by a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and TaqMan assays. Each identified genotype was subjected to statistical analysis to determine the odds ratios (ORs) and 95% confidence intervals (CIs). In combination genotype analyses, FSHR rs6165 A > G combined with ESR1 rs9340799 A > G, AG/GG (OR: 5.693; 95% CI: 1.088-29.792), as well as FSHR rs6166 A > G combined with ESR1 rs9340799 C > T, AG/GG (OR: 5.940; 95% CI: 1.134-31.131), were significantly associated with POI prevalence. Furthermore, an FSHR rs6165 A > G and BMP rs17003221 C > T, AG/CC combination was associated with POI prevalence (OR: 1.874; 95% CI: (1.059-3.316; p-value: 0.031)). In meta-analysis, FSHR rs6165 AA vs. AG + GG is associated with POI (p = 0.0013), and ESR1 rs2234693 AA vs. AG + GG is also associated with POI (p = 0.0101). Here, we compared the genotypes of FSHR, ESR1, and BMP15 in patients with POI, and controls. We found significant differences in genotype combinations between polymorphisms in FSHR and other genes. Through meta-analysis, we found that ESR1 rs9340799 and rs2234693 are associated with POI prevalence, and that BMP15 rs17003221 increases POI risk. These findings help to improve POI diagnosis in Korean women.
Collapse
Affiliation(s)
- Jeong Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - KyuBum Kwack
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Eun Duc Na
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Ji Eun Shin
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
25
|
Cui X, Jing X. Stem cell-based therapeutic potential in female ovarian aging and infertility. J Ovarian Res 2024; 17:171. [PMID: 39182123 PMCID: PMC11344413 DOI: 10.1186/s13048-024-01492-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
Premature ovarian insufficiency (POI) is defined as onset of menopause characterized by amenorrhea, hypergonadotropism, and hypoestrogenism, before the age of 40 years. The POI is increasing, which seriously affects the quality of patients' life. Due to its diversity of pathogenic factors, complex pathogenesis and limited treatment methods, the search for finding effective treatment of POI has become a hotspot. Stem cells are characterized by the ability of self-renewal and differentiation and play an important role in the regeneration of injured tissues, which is therapy is expected to be used in the treatment of POI. The aim of this review is to summarize the pathogenic mechanisms and the research progress of POI treatment with stem cells from different sources.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, The affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Shanxi Maternal and Child Health Hospital, Taiyuan, 030001, China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Provincial People's Hospital, Taiyuan, 030001, China.
| |
Collapse
|
26
|
He X, Chen W, Zhou X, Hu G, Wei J, Liu Y, Cai L, Zhang Z, Chen T. The Therapeutic Potential of Lactobacillus crispatus for Chronic Endometritis: A Comprehensive Clinical Trial and Experimental Investigation. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10349-6. [PMID: 39172215 DOI: 10.1007/s12602-024-10349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Chronic endometritis (CE) is common in patients with infertility, and it is challenging to treat with antibiotics as bacteria often acquire resistance to the antibiotics, which leads to frequent recurrence of the condition. Probiotics, especially Lactobacillus species, are known for their usefulness in treating reproductive infections. This study evaluated Lactobacillus crispatus chen 01 (L. crispatus chen 01) isolated from healthy women who were 22-30 years old and married with children. In vitro experiments showed that L. crispatus chen 01 inhibited pathogens and reduced inflammation in CE mice by downregulating inflammatory proteins (TLR, MyD88, and p65/p-p65; L + Abx vs M, P < 0.01), improving histopathological features, and inhibiting bacterial growth. It also regulated endometrial processes, such as enhancing embryo implantation (BMP2 and Wnt4, L + Abx vs M, P < 0.01) via the Wnt/β-catenin pathway, leading to increased pregnancy rates (L + Abx vs M, 100% vs 0%) in mice. In clinical trials, L. crispatus chen 01 improved progesterone levels (P = 0.0038), pregnancy rates (C vs Abx + L. c, 76.19% vs 87.18%), and pathological changes in CE patients. The findings from this study identify the administration of L. crispatus chen 01 as a promising intervention for CE that could improve pregnancy rates.
Collapse
Affiliation(s)
- Xia He
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Obstetrics & Gynecology, the Ninth Hospital in Nanchang and The Affiliated Hospital of Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Weijun Chen
- Department of Reproductive Medicine, the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330001, Jiangxi, China
| | - Xiaoni Zhou
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Gang Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yan Liu
- Department of Reproductive Medicine, the People's Hospital of Ganzhou, Ganzhou, 341099, Jiangxi, China
| | - Liping Cai
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Zhi Zhang
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Tingtao Chen
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330036, Jiangxi, China.
| |
Collapse
|
27
|
Zhang F, Liu Q, Gong P, Wang Y, Shi C, Zhu L, Zhao J, Yao W, Luo J. Genome-wide association study provided insights into the polled phenotype and polled intersex syndrome (PIS) in goats. BMC Genomics 2024; 25:661. [PMID: 38956513 PMCID: PMC11218382 DOI: 10.1186/s12864-024-10568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Breeding polled goats is a welfare-friendly approach for horn removal in comparison to invasive methods. To gain a comprehensive understanding of the genetic basis underlying polledness in goats, we conducted whole-genome sequencing of 106 Xinong Saanen dairy goats, including 33 horned individuals, 70 polled individuals, and 3 polled intersexuality syndrome (PIS) individuals. METHODS The present study employed a genome-wide association study (GWAS) and linkage disequilibrium (LD) analysis to precisely map the genetic locus underlying the polled phenotype in goats. RESULTS The analysis conducted in our study revealed a total of 320 genome-wide significant single nucleotide polymorphisms (SNPs) associated with the horned/polled phenotype in goats. These SNPs exhibited two distinct peaks on chromosome 1, spanning from 128,817,052 to 133,005,441 bp and from 150,336,143 to 150,808,639 bp. The present study identified three genome-wide significant SNPs, namely Chr1:129789816, Chr1:129791507, and Chr1:129791577, as potential markers of PIS-affected goats. The results of our LD analysis suggested a potential association between MRPS22 and infertile intersex individuals, as well as a potential association between ERG and the polled trait in goats. CONCLUSION We have successfully identified three marker SNPs closely linked to PIS, as well as several candidate genes associated with the polled trait in goats. These results may contribute to the development of SNP chips for early prediction of PIS in goats, thereby facilitating breeding programs aimed at producing fertile herds with polled traits.
Collapse
Affiliation(s)
- Fuhong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Qingqing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumchi, 830000, P. R. China
| | - Yaling Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Chenbo Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Lu Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Jianqing Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Weiwei Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Jun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
| |
Collapse
|
28
|
Tang X, Li H, Wang Y, Zeng L, Long L, Qu Y, Yang H, Zhang X, Li Y, Yu Y, Zhou Q, Luo M. Chronic Fluoride Exposure Induces Ovarian Dysfunction and Potential Association with Premature Ovarian Failure in Female Rats. Biol Trace Elem Res 2024; 202:3225-3236. [PMID: 37828391 DOI: 10.1007/s12011-023-03914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Chronic fluorosis has been widely investigated for its adverse effects on skeletal and neurological health; however, its impact on reproductive health, especially in females, remains underexplored. In this study, female Sprague-Dawley rats were exposed to different fluoride concentrations (0.75, 50, and 100 mg/L) in their drinking water for six months. Dental fluorosis and increased urinary fluoride content were observed in fluoride-exposed rats, reflecting fluoride accumulation and exposure levels. Chronic fluorosis resulted in reduced ovary organ coefficient, indicating harmful effects on ovarian tissue. Additionally, the number of ovarian primordial and primary/secondary follicles decreased, while the number of atresia follicles increased. Furthermore, chronic fluorosis led to disrupted estrous cycles. Hormonal analysis revealed altered secretion of estrogen, progesterone, anti-Müllerian hormone, luteinizing hormone, follicular stimulating hormone, and inhibin B in response to fluoride exposure. Ultrastructural observation of ovarian granulosa cells showed evidence of apoptosis, which was further confirmed by flow cytometry. Caspase-3 activity was increased, and ATP levels were decreased, suggesting mitochondrial impairment and apoptosis induction. The mRNA and protein expression of BMP15 and GDF9, essential regulators of ovarian function, significantly decreased with increasing fluoride concentration. Furthermore, gene expression analysis identified a panel of premature ovarian failure-related genes that were downregulated in fluoride-exposed rat ovaries. These findings suggest that chronic fluoride exposure may contribute to ovarian dysfunction and possibly the pathogenesis of premature ovarian failure. Understanding the toxicological effects of chronic fluoride exposure on ovarian function is essential for identifying potential environmental risk factors affecting female reproductive health.
Collapse
Affiliation(s)
- Xiaoke Tang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Hongjuan Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yali Wang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guizhou Traditional Chinese Medicine University, Guiyang, China
| | - Ling Long
- Department of Obstetrics and Gynecology, Tongliang District People's Hospital, Chongqing, China
| | - Yajun Qu
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaolin Zhang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yanmin Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yanni Yu
- Department of Pathology, Guizhou Medical University, Guiyang, China
| | - Qi Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guizhou Traditional Chinese Medicine University, Guiyang, China.
| | - Man Luo
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China.
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
29
|
Ma X, Ying F, Li Z, Bai L, Wang M, Zhu D, Liu D, Wen J, Zhao G, Liu R. New insights into the genetic loci related to egg weight and age at first egg traits in broiler breeder. Poult Sci 2024; 103:103613. [PMID: 38492250 PMCID: PMC10959720 DOI: 10.1016/j.psj.2024.103613] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Egg weight (EW) and age at first egg (AFE) are economically important traits in breeder chicken production. The genetic basis of these traits, however, is far from understood, especially for broiler breeders. In this study, genetic parameter estimation, genome-wide association analysis, meta-analysis, and selective sweep analysis were carried out to identify genetic loci associated with EW and AFE in 6,842 broiler breeders. The study found that the heritability of EW ranged from 0.42 to 0.44, while the heritability of AFE was estimated at 0.33 in the maternal line. Meta-analysis and selective sweep analysis identified two colocalized regions on GGA4 that significantly influenced EW at 32 wk (EW32W) and at 43 wk (EW43W) with both paternal and maternal lines. The genes AR, YIPF6, and STARD8 were located within the significant region (GGA4: 366.86-575.50 kb), potentially affecting EW through the regulation of follicle development, cell proliferation, and lipid transfer etc. The promising genes LCORL and NCAPG were positioned within the significant region (GGA4:75.35-75.42 Mb), potentially influencing EW through pleiotropic effects on growth and development. Additionally, 3 significant regions were associated with AFE on chromosomes GGA7, GGA19, and GGA27. All of these factors affected the AFE by influencing ovarian development. In our study, the genomic information from both paternal and maternal lines was used to identify genetic regions associated with EW and AFE. Two genomic regions and eight genes were identified as the most likely candidates affecting EW and AFE. These findings contribute to a better understanding of the genetic basis of egg production traits in broiler breeders and provide new insights into future technology development.
Collapse
Affiliation(s)
- Xiaochun Ma
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fan Ying
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan 528515, China
| | - Zhengda Li
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Bai
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengjie Wang
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dan Zhu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan 528515, China
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan 528515, China
| | - Jie Wen
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guiping Zhao
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ranran Liu
- State Key Laboratory of Animal Biotech Breeding; State Key Laboratory of Animal Nutrition and Feeding; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
30
|
Allouch A, Al-Barazenji T, Al-Shafai M, Abdallah AM. The landscape of genetic variations in non-syndromic primary ovarian insufficiency in the MENA region: a systematic review. Front Endocrinol (Lausanne) 2024; 14:1289333. [PMID: 38737775 PMCID: PMC11082268 DOI: 10.3389/fendo.2023.1289333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/01/2023] [Indexed: 05/14/2024] Open
Abstract
Introduction Premature ovarian insufficiency (POI) is a primary cause of infertility with variable clinical manifestations. POI is a multifactorial disease with both environmental and known genetic etiologies, but data on the genetic variations associated with POI in the Middle East and North Africa (MENA) region are scarce. The aim of this study was to systematically review all known genetic causes of POI in the MENA region. Methods The PubMed, Science Direct, ProQuest, and Embase databases were searched from inception to December 2022 for all reports of genetic variants associated with POI in the MENA region. Clinical and genetic data were collected from eligible articles, and ClinVar and PubMed (dbSNP) were searched for variants. Results Of 1,803 studies, 25 met the inclusion criteria. Fifteen studies were case-control studies and ten were case reports representing 1,080 non-syndromic POI patients in total. Seventy-nine variants in 25 genes associated with POI were reported in ten MENA countries. Of the 79 variants, 46 were rare and 33 were common variants. Of the 46 rare variants, 19 were pathogenic or likely pathogenic according to ACMG classification guidelines and ClinVar. No clear phenotype-genotype association was observed. Male family members carrying pathogenic variants also had infertility problems. Discussion To our best knowledge, this is the first systematic review of the genetic variants associated with POI in the MENA region. Further functional studies are needed to assess the disease-causing molecular mechanisms of these variants. Knowledge of the genetic basis of POI in the Middle East could facilitate early detection of the condition and thus early implementation of therapeutic interventions, paving the way for precision medicine options in specific populations.
Collapse
Affiliation(s)
- Asma Allouch
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Tara Al-Barazenji
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
31
|
Wu J, Feng S, Luo Y, Ning Y, Qiu P, Lin Y, Ma F, Zhuo Y. Transcriptomic profile of premature ovarian insufficiency with RNA-sequencing. Front Cell Dev Biol 2024; 12:1370772. [PMID: 38655066 PMCID: PMC11035783 DOI: 10.3389/fcell.2024.1370772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction This study aimed to explore the transcriptomic profile of premature ovarian insufficiency (POI) by investigating alterations in gene expression. Methods A total of sixty-one women, comprising 31 individuals with POI in the POI group and 30 healthy women in the control group (HC group), aged between 24 and 40 years, were recruited for this study. The transcriptomic profiles of peripheral blood samples from all study subjects were analyzed using RNA-sequencing. Results The results revealed 39 differentially expressed genes in individuals with POI compared to healthy controls, with 10 upregulated and 29 downregulated genes. Correlation analysis highlighted the relationship between the expression of SLC25A39, CNIH3, and PDZK1IP1 and hormone levels. Additionally, an effective classification model was developed using SLC25A39, CNIH3, PDZK1IP1, SHISA4, and LOC389834. Functional enrichment analysis demonstrated the involvement of these differentially expressed genes in the "haptoglobin-hemoglobin complex," while KEGG pathway analysis indicated their participation in the "Proteoglycans in cancer" pathway. Conclusion The identified genes could play a crucial role in characterizing the genetic foundation of POI, potentially serving as valuable biomarkers for enhancing disease classification accuracy.
Collapse
Affiliation(s)
- Jiaman Wu
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiyu Feng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Luo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Ning
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pingping Qiu
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yanting Lin
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Fei Ma
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Zhuo
- Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
32
|
Chesnokov MS, Mamedova AR, Zhivotovsky B, Kopeina GS. A matter of new life and cell death: programmed cell death in the mammalian ovary. J Biomed Sci 2024; 31:31. [PMID: 38509545 PMCID: PMC10956231 DOI: 10.1186/s12929-024-01017-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The mammalian ovary is a unique organ that displays a distinctive feature of cyclic changes throughout the entire reproductive period. The estrous/menstrual cycles are associated with drastic functional and morphological rearrangements of ovarian tissue, including follicular development and degeneration, and the formation and subsequent atrophy of the corpus luteum. The flawless execution of these reiterative processes is impossible without the involvement of programmed cell death (PCD). MAIN TEXT PCD is crucial for efficient and careful clearance of excessive, depleted, or obsolete ovarian structures for ovarian cycling. Moreover, PCD facilitates selection of high-quality oocytes and formation of the ovarian reserve during embryonic and juvenile development. Disruption of PCD regulation can heavily impact the ovarian functions and is associated with various pathologies, from a moderate decrease in fertility to severe hormonal disturbance, complete loss of reproductive function, and tumorigenesis. This comprehensive review aims to provide updated information on the role of PCD in various processes occurring in normal and pathologic ovaries. Three major events of PCD in the ovary-progenitor germ cell depletion, follicular atresia, and corpus luteum degradation-are described, alongside the detailed information on molecular regulation of these processes, highlighting the contribution of apoptosis, autophagy, necroptosis, and ferroptosis. Ultimately, the current knowledge of PCD aberrations associated with pathologies, such as polycystic ovarian syndrome, premature ovarian insufficiency, and tumors of ovarian origin, is outlined. CONCLUSION PCD is an essential element in ovarian development, functions and pathologies. A thorough understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of the ovary and the female reproductive system in general.
Collapse
Affiliation(s)
- Mikhail S Chesnokov
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Aygun R Mamedova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
33
|
Huang J, Ruan Y, Xiao M, Dai L, Jiang C, Li J, Xu J, Chen X, Xu H. Association between polymorphisms in NOBOX and litter size traits in Xiangsu pigs. Front Vet Sci 2024; 11:1359312. [PMID: 38523712 PMCID: PMC10959092 DOI: 10.3389/fvets.2024.1359312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
The newborn ovary homeobox gene (NOBOX) regulates ovarian and early oocyte development, and thus plays an essential role in reproduction. In this study, the mRNA expression level and single nucleotide polymorphism (SNP) of NOBOX in various tissues of Xiangsu pigs were studied to explore the relationship between its polymorphism and litter size traits. Also, bioinformatics was used to evaluate the effects of missense substitutions on protein structure and function. The results revealed that NOBOX is preferentially expressed in the ovary. Six mutations were detected in the NOBOX sequence, including g.1624 T>C, g.1858 G>A, g.2770 G>A, g.2821 A>G, g.5659 A>G, and g.6025 T>A, of which g.1858 G>A was a missense mutation. However, only g.1858 G>A, g.5659 A>G, and g.6025 T>A were significantly associated with litter size traits (p < 0.05). Further prediction of the effect of the missense mutation g.1858 G>A on protein function revealed that p.V82M is a non-conservative mutation that significantly reduces protein stability and thus alters protein function. Overall, these findings suggest that NOBOX polymorphism is closely related to the litter size of Xiangsu pigs, which may provide new insights into pig breeding.
Collapse
Affiliation(s)
- Jiajin Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Meimei Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Lingang Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Chuanmei Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jifeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
34
|
Li P, Dou Q, Zhang D, Xiang Y, Tan L. Melatonin regulates autophagy in granulosa cells from patients with premature ovarian insufficiency via activating Foxo3a. Aging (Albany NY) 2024; 16:844-856. [PMID: 38206302 PMCID: PMC10817365 DOI: 10.18632/aging.205424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Premature ovarian insufficiency (POI) is a diverse form of female infertility characterized by a decline in ovarian function before the age of 40. Melatonin (MT) is a potential clinical treatment for restoring or safeguarding ovarian function in POI. However, the specific therapeutic mechanism underlying this effect remains unclear. To address this, we conducted experiments using human granulosa cells (GCs) from both POI and normal patients. We examined the expression levels of autophagy-related genes and proteins in GCs through qRT-PCR and western blot analysis. Autophagy flux was monitored in GCs infected with GFP-LC3-adenovirus, and the regulatory function of MT in autophagy was investigated. Additionally, we employed pharmacological intervention of autophagy using 3-Methyladenine (3-MA) and RNA interference of Forkhead box O-3A (FOXO3A) to elucidate the mechanism of MT in the autophagy process. Compared to GCs from normal patients, GCs from POI patients exhibited irregular morphology, decreased proliferation, increased apoptosis, and elevated ROS levels. The expression of autophagy-related genes was downregulated in POI GCs, resulting in reduced autophagic activity. Furthermore, MT levels were decreased in POI GCs, but exogenous MT effectively activated autophagy. Mechanistically, melatonin treatment downregulated FOXO3A expression and induced phosphorylation in POI GCs. Importantly, silencing FOXO3A abolished the protective effect of melatonin on GCs. These findings indicate that autophagy is downregulated in POI GCs, accompanied by a deficiency in MT. Moreover, we demonstrated that supplementing MT can rescue autophagy levels and enhance GC viability through the activation of FOXO3A signaling. Thus, MT-FOXO3A may serve as a potential therapeutic target for POI treatment.
Collapse
Affiliation(s)
- Pengfen Li
- Department of Reproductive Center of The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China
| | - Qian Dou
- Department of Reproductive Center of The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China
| | - Dan Zhang
- Department of Reproductive Center of The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China
| | - Yungai Xiang
- Department of Reproductive Center of The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China
| | - Li Tan
- Department of Reproductive Center of The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China
| |
Collapse
|
35
|
Vogt EC, Bratland E, Berland S, Berentsen R, Lund A, Björnsdottir S, Husebye E, Øksnes M. Improving diagnostic precision in primary ovarian insufficiency using comprehensive genetic and autoantibody testing. Hum Reprod 2024; 39:177-189. [PMID: 37953503 PMCID: PMC10767963 DOI: 10.1093/humrep/dead233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/31/2023] [Indexed: 11/14/2023] Open
Abstract
STUDY QUESTION Is it possible to find the cause of primary ovarian insufficiency (POI) in more women by extensive screening? SUMMARY ANSWER Adding next generation sequencing techniques including a POI-associated gene panel, extended whole exome sequencing data, as well as specific autoantibody assays to the recommended diagnostic investigations increased the determination of a potential etiological diagnosis of POI from 11% to 41%. WHAT IS KNOWN ALREADY POI affects ∼1% of women. Clinical presentations and pathogenic mechanisms are heterogeneous and include genetic, autoimmune, and environmental factors, but the underlying etiology remains unknown in the majority of cases. STUDY DESIGN, SIZE, DURATION Prospective cross-sectional study of 100 women with newly diagnosed POI of unknown cause consecutively referred to Haukeland University Hospital, Bergen, Norway, January 2019 to December 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS In addition to standard recommended diagnostic investigations including screening for chromosomal anomalies and premutations in the fragile X mental retardation 1 gene (FMR1) we used whole exome sequencing, including targeted analysis of 103 ovarian-related genes, and assays of autoantibodies against steroid cell antigens. MAIN RESULTS AND THE ROLE OF CHANCE We identified chromosomal aberrations in 8%, FMR1 premutations in 3%, genetic variants related to POI in 16%, and autoimmune POI in 3%. Furthermore in 11% we identified POI associated genetic Variants of unknown signifcance (VUS). A homozygous pathogenic variant in the ZSWIM7 gene (NM_001042697.2) was found in two women, corroborating this as a novel cause of monogenic POI. No associations between phenotypes and genotypes were found. LIMITATIONS, REASONS FOR CAUTION Use of candidate genetic and autoimmune markers limit the possibility to discover new markers. To further investigate the genetic variants, family studies would have been useful. We found a relatively high proportion of genetic variants in women from Africa and lack of genetic diversity in the genomic databases can impact diagnostic accuracy. WIDER IMPLICATIONS OF THE FINDINGS Since no specific clinical or biochemical markers predicted the underlying cause of POI discussion of which tests should be part of diagnostic screening in clinical practice remains open. New technology has altered the availability and effectiveness of genetic testing, and cost-effectiveness analyses are required to aid sustainable diagnostics. STUDY FUNDING/COMPETING INTEREST(S) The study was supported by grants and fellowships from Stiftelsen Kristian Gerhard Jebsen, the Novonordisk Foundation, the Norwegian Research Council, University of Bergen, and the Regional Health Authorities of Western Norway. The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER NCT04082169.
Collapse
Affiliation(s)
- Elinor Chelsom Vogt
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ragnhild Berentsen
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Agnethe Lund
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Sigridur Björnsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Eystein Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marianne Øksnes
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
36
|
Ren S, Zhang F, Shang L, Yang X, Pan Y, Zhang X, Wu Y. Rare variants in GPR3 in POI patients: a case series with review of literature. J Ovarian Res 2023; 16:210. [PMID: 37919810 PMCID: PMC10623876 DOI: 10.1186/s13048-023-01282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/12/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a highly heterogeneous disease, and up to 25% of the cases can be explained by genetic causes. G protein-coupled receptor 3 (GPR3) plays an important role in oocyte arrest, and Gpr3-deficient mice exhibited POI-like phenotypes. CASE PRESENTATION We identified two heterozygous missense variants of GPR3: NM_005281: c.C973T (p.R325C) and c.G772A (p.A258T) in two sporadic Han Chinese POI cases through whole exome sequencing and genetic analysis. The two patients were diagnosed as POI in their late 20s, presenting elevated serum levels of follicle stimulating hormone and secondary amenorrhea. Both variants are very rare in the population databases of ExAC, gnomAD and PGG.Han. The affected amino acids are conserved across species and the mutated amino acids are predicted deleterious with bioinformatics prediction tools and the protein three-dimensional structure analysis. CONCLUSIONS It is the first report of rare GPR3 variants associated with POI women, providing an important piece of evidence for GPR3 as a candidate gene which should be screened in POI. This finding suggested the necessity of including GPR3 in etiology study and genetic counseling of POI patients.
Collapse
Affiliation(s)
- Shuting Ren
- Obstetrics and Gynecology Hospital, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Lingyue Shang
- Obstetrics and Gynecology Hospital, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Xi Yang
- Obstetrics and Gynecology Hospital, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Yuncheng Pan
- Obstetrics and Gynecology Hospital, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Xiaojin Zhang
- Obstetrics and Gynecology Hospital, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| | - Yanhua Wu
- Obstetrics and Gynecology Hospital, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
37
|
Piau TB, de Queiroz Rodrigues A, Paulini F. Insulin-like growth factor (IGF) performance in ovarian function and applications in reproductive biotechnologies. Growth Horm IGF Res 2023; 72-73:101561. [PMID: 38070331 DOI: 10.1016/j.ghir.2023.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
The role of the insulin-like growth factor (IGF) system has attracted close attention. The activity of IGF binding proteins (IGFBPs) within the ovary has not been fully elucidated to date. These proteins bind to IGF with an equal, or greater, affinity than to the IGF1 receptor, thus being in the main position to regulate IGF signalling, in addition to extending the half-life of IGFs within the bloodstream and promoting IGF storage in specific tissue niches. IGF1 has an important part in cell proliferation, differentiation and apoptosis. Considering the importance of IGFs in oocyte maturation, this review sought to elucidate aspects including: IGF production mechanisms; constituent members of their family and their respective functions; the role that these factors play during folliculogenesis, together with their functions during oocyte maturation and apoptosis, and their performance during luteal development. This review also explores the role of IGFs in biotechnological applications, focusing specifically on animal genetic gain.
Collapse
Affiliation(s)
- Tathyana Benetis Piau
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Aline de Queiroz Rodrigues
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Fernanda Paulini
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
38
|
Shelling AN, Ahmed Nasef N. The Role of Lifestyle and Dietary Factors in the Development of Premature Ovarian Insufficiency. Antioxidants (Basel) 2023; 12:1601. [PMID: 37627595 PMCID: PMC10451748 DOI: 10.3390/antiox12081601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a condition that arises from dysfunction or early depletion of the ovarian follicle pool accompanied by an earlier-than-normal loss of fertility in young women. Oxidative stress has been suggested as an important factor in the decline of fertility in women and POI. In this review, we discuss the mechanisms of oxidative stress implicated in ovarian ageing and dysfunction in relation to POI, in particular mitochondrial dysfunction, apoptosis and inflammation. Genetic defects, autoimmunity and chemotherapy, are some of the reviewed hallmarks of POI that can lead to increased oxidative stress. Additionally, we highlight lifestyle factors, including diet, low energy availability and BMI, that can increase the risk of POI. The final section of this review discusses dietary factors associated with POI, including consumption of oily fish, mitochondria nutrient therapy, melatonin, dairy and vitamins that can be targeted as potential interventions, especially for at-risk women and in combination with personalised nutrition. Understanding the impact of lifestyle and its implications for POI and oxidative stress holds great promise in reducing the burden of this condition.
Collapse
Affiliation(s)
- Andrew N. Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand;
- Centre for Cancer Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Noha Ahmed Nasef
- Riddet Research Institute, Massey University, Palmerston North 4474, New Zealand
- School of Food and Advanced Technology, College of Science, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
39
|
Ding X, Gong X, Fan Y, Cao J, Zhao J, Zhang Y, Wang X, Meng K. DNA double-strand break genetic variants in patients with premature ovarian insufficiency. J Ovarian Res 2023; 16:135. [PMID: 37430352 DOI: 10.1186/s13048-023-01221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a clinically heterogeneous disease that may seriously affect the physical and mental health of women of reproductive age. POI primarily manifests as ovarian function decline and endocrine disorders in women prior to age 40 and is an established cause of female infertility. It is crucial to elucidate the causative factors of POI, not only to expand the understanding of ovarian physiology, but also to provide genetic counselling and fertility guidance to affected patients. Factors leading to POI are multifaceted with genetic factors accounting for 7% to 30%. In recent years, an increasing number of DNA damage-repair-related genes have been linked with the occurrence of POI. Among them, DNA double-strand breaks (DSBs), one of the most damaging to DNA, and its main repair methods including homologous recombination (HR) and non-homologous end joining (NHEJ) are of particular interest. Numerous genes are known to be involved in the regulation of programmed DSB formation and damage repair. The abnormal expression of several genes have been shown to trigger defects in the overall repair pathway and induce POI and other diseases. This review summarises the DSB-related genes that may contribute to the development of POI and their potential regulatory mechanisms, which will help to further establish role of DSB in the pathogenesis of POI and provide theoretical guidance for the study of the pathogenesis and clinical treatment of this disease.
Collapse
Affiliation(s)
- Xuechun Ding
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaowei Gong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yingying Fan
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Jinghe Cao
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Jingyu Zhao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China.
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China.
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
40
|
Wu X, Zhang H, Long H, Zhang D, Yang X, Liu D, E G. Genome-Wide Selection Signal Analysis to Investigate Wide Genomic Heredity Divergence between Eurasian Wild Boar and Domestic Pig. Animals (Basel) 2023; 13:2158. [PMID: 37443955 DOI: 10.3390/ani13132158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
As important livestock species, pigs provide essential meat resources for humans, so understanding the genetic evolution behind their domestic history could help with the genetic improvement of domestic pigs. This study aimed to investigate the evolution of convergence and divergence under selection in European and Asian domestic pigs by using public genome-wide data. A total of 164 and 108 candidate genes (CDGs) were obtained from the Asian group (wild boar vs. domestic pig) and the European group (wild boar vs. domestic pig), respectively, by taking the top 5% of intersected windows of a pairwise fixation index (FST) and a cross population extended haplotype homozygosity test (XPEHH). GO and KEGG annotated results indicated that most CDGs were related to reproduction and immunity in the Asian group. Conversely, rich CDGs were enriched in muscle development and digestion in the European group. Eight CDGs were subjected to parallel selection of Eurasian domestic pigs from local wild boars during domestication. These CDGs were mainly involved in olfactory transduction, metabolic pathways, and progesterone-mediated oocyte maturation. Moreover, 36 and 18 haplotypes of INPP5B and TRAK2 were identified in this study, respectively. In brief, this study did not only improve the understanding of the genetic evolution of domestication in pigs, but also provides valuable CDGs for future breeding and genetic improvement of pigs.
Collapse
Affiliation(s)
- Xinming Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Haoyuan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Haoyuan Long
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| |
Collapse
|
41
|
Yang X, Yang L. Current understanding of the genomic abnormities in premature ovarian failure: chance for early diagnosis and management. Front Med (Lausanne) 2023; 10:1194865. [PMID: 37332766 PMCID: PMC10274511 DOI: 10.3389/fmed.2023.1194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Premature ovarian failure (POF) is an insidious cause of female infertility and a devastating condition for women. POF also has a strong familial and heterogeneous genetic background. Management of POF is complicated by the variable etiology and presentation, which are generally characterized by abnormal hormone levels, gene instability and ovarian dysgenesis. To date, abnormal regulation associated with POF has been found in a small number of genes, including autosomal and sex chromosomal genes in folliculogenesis, granulosa cells, and oocytes. Due to the complex genomic contributions, ascertaining the exact causative mechanisms has been challenging in POF, and many pathogenic genomic characteristics have yet to be elucidated. However, emerging research has provided new insights into genomic variation in POF as well as novel etiological factors, pathogenic mechanisms and therapeutic intervention approaches. Meanwhile, scattered studies of transcriptional regulation revealed that ovarian cell function also depends on specific biomarker gene expression, which can influence protein activities, thus causing POF. In this review, we summarized the latest research and issues related to the genomic basis for POF and focused on insights gained from their biological effects and pathogenic mechanisms in POF. The present integrated studies of genomic variants, gene expression and related protein abnormalities were structured to establish the role of etiological genes associated with POF. In addition, we describe the design of some ongoing clinical trials that may suggest safe, feasible and effective approaches to improve the diagnosis and therapy of POF, such as Filgrastim, goserelin, resveratrol, natural plant antitoxin, Kuntai capsule et al. Understanding the candidate genomic characteristics in POF is beneficial for the early diagnosis of POF and provides appropriate methods for prevention and drug treatment. Additional efforts to clarify the POF genetic background are necessary and are beneficial for researchers and clinicians regarding genetic counseling and clinical practice. Taken together, recent genomic explorations have shown great potential to elucidate POF management in women and are stepping from the bench to the bedside.
Collapse
Affiliation(s)
- Xu Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Rodríguez-Escribà M, Rodríguez-Alonso B, Belur S, Rajkovic A. Sohlh1 loss of function male and female infertility model impacts overall health beyond gonadal dysfunction in mice†. Biol Reprod 2023; 108:619-628. [PMID: 36723967 PMCID: PMC10106844 DOI: 10.1093/biolre/ioad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
Reproductive longevity is associated with health outcomes. Early menopause, loss of ovarian function, and male infertility are linked to shorter lifespan and increased adverse health outcomes. Here we examined the extragonadal effects of whole animal loss of spermatogenesis and oogenesis specific basic helix-loop-helix 1 (Sohlh1) gene in mice, a well-described mouse model of female and male infertility. Sohlh1 encodes a transcription factor that is primarily expressed in the male and female germline and regulates germline differentiation. The Sohlh1 knockout mouse model, just like human individuals with SOHLH1 loss of function, presents with hypergonadotropic hypogonadism and loss of ovarian function in females and impaired spermatogenesis in males, with a seemingly gonad restricted phenotype in both sexes. However, extragonadal phenotyping revealed that Sohlh1 deficiency leads to abnormal immune profiles in the blood and ovarian tissues of female animals, sex-specific alterations of metabolites, and behavior and cognition changes. Altogether, these results show that Sohlh1 deficiency impacts overall health in both male and female mice.
Collapse
Affiliation(s)
| | | | - Shweta Belur
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Aleksandar Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
43
|
Sun L, Lv Z, Chen X, Wang C, Lv P, Yan L, Tian S, Xie X, Yao X, Liu J, Wang Z, Luo H, Cui S, Liu J. SRSF1 regulates primordial follicle formation and number determination during meiotic prophase I. BMC Biol 2023; 21:49. [PMID: 36882745 PMCID: PMC9993595 DOI: 10.1186/s12915-023-01549-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Ovarian folliculogenesis is a tightly regulated process leading to the formation of functional oocytes and involving successive quality control mechanisms that monitor chromosomal DNA integrity and meiotic recombination. A number of factors and mechanisms have been suggested to be involved in folliculogenesis and associated with premature ovarian insufficiency, including abnormal alternative splicing (AS) of pre-mRNAs. Serine/arginine-rich splicing factor 1 (SRSF1; previously SF2/ASF) is a pivotal posttranscriptional regulator of gene expression in various biological processes. However, the physiological roles and mechanism of SRSF1 action in mouse early-stage oocytes remain elusive. Here, we show that SRSF1 is essential for primordial follicle formation and number determination during meiotic prophase I. RESULTS The conditional knockout (cKO) of Srsf1 in mouse oocytes impairs primordial follicle formation and leads to primary ovarian insufficiency (POI). Oocyte-specific genes that regulate primordial follicle formation (e.g., Lhx8, Nobox, Sohlh1, Sohlh2, Figla, Kit, Jag1, and Rac1) are suppressed in newborn Stra8-GFPCre Srsf1Fl/Fl mouse ovaries. However, meiotic defects are the leading cause of abnormal primordial follicle formation. Immunofluorescence analyses suggest that failed synapsis and an inability to undergo recombination result in fewer homologous DNA crossovers (COs) in the Srsf1 cKO mouse ovaries. Moreover, SRSF1 directly binds and regulates the expression of the POI-related genes Six6os1 and Msh5 via AS to implement the meiotic prophase I program. CONCLUSIONS Altogether, our data reveal the critical role of an SRSF1-mediated posttranscriptional regulatory mechanism in the mouse oocyte meiotic prophase I program, providing a framework to elucidate the molecular mechanisms of the posttranscriptional network underlying primordial follicle formation.
Collapse
Affiliation(s)
- Longjie Sun
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Lv
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chaofan Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Pengbo Lv
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu Yan
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuang Tian
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Xie
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaohong Yao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingjing Liu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Haoshu Luo
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jiali Liu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
44
|
Chen M, Jiang H, Zhang C. Selected Genetic Factors Associated with Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:ijms24054423. [PMID: 36901862 PMCID: PMC10002966 DOI: 10.3390/ijms24054423] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is a heterogeneous disease resulting from non-functional ovaries in women before the age of 40. It is characterized by primary amenorrhea or secondary amenorrhea. As regards its etiology, although many POI cases are idiopathic, menopausal age is a heritable trait and genetic factors play an important role in all POI cases with known causes, accounting for approximately 20% to 25% of cases. This paper reviews the selected genetic causes implicated in POI and examines their pathogenic mechanisms to show the crucial role of genetic effects on POI. The genetic factors that can be found in POI cases include chromosomal abnormalities (e.g., X chromosomal aneuploidies, structural X chromosomal abnormalities, X-autosome translocations, and autosomal variations), single gene mutations (e.g., newborn ovary homeobox gene (NOBOX), folliculogenesis specific bHLH transcription factor (FIGLA), follicle-stimulating hormone receptor (FSHR), forkhead box L2 (FOXL2), bone morphogenetic protein 15 (BMP15), etc., as well as defects in mitochondrial functions and non-coding RNAs (small ncRNAs and long ncRNAs). These findings are beneficial for doctors to diagnose idiopathic POI cases and predict the risk of POI in women.
Collapse
Affiliation(s)
- Mengchi Chen
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Haotian Jiang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
45
|
Zhi Y, Wang D, Zhang K, Wang Y, Geng W, Chen B, Li H, Li Z, Tian Y, Kang X, Liu X. Genome-Wide Genetic Structure of Henan Indigenous Chicken Breeds. Animals (Basel) 2023; 13:753. [PMID: 36830540 PMCID: PMC9952073 DOI: 10.3390/ani13040753] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
There are five indigenous chicken breeds in Henan Province, China. These breeds have their own unique phenotypic characteristics in terms of morphology, behavior, skin and feather color, and productive performance, but their genetic basis is not well understood. Therefore, we analyzed the genetic structure, genomic diversity, and migration history of Henan indigenous chicken populations and the selection signals and genes responsible for Henan gamecock unique phenotypes using whole genome resequencing. The results indicate that Henan native chickens clustered most closely with the chicken populations in neighboring provinces. Compared to other breeds, Henan gamecock's inbreeding and selection intensity were more stringent. TreeMix analysis revealed the gene flow from southern chicken breeds into the Zhengyang sanhuang chicken and from the Xichuan black-bone chicken into the Gushi chicken. Selective sweep analysis identified several genes and biological processes/pathways that were related to body size, head control, muscle development, reproduction, and aggression control. Additionally, we confirmed the association between genotypes of SNPs in the strong selective gene LCORL and body size and muscle development in the Gushi-Anka F2 resource population. These findings made it easier to understand the traits of the germplasm and the potential for using the Henan indigenous chicken.
Collapse
Affiliation(s)
- Yihao Zhi
- College of Animal Science and Technologyw, Henan Agricultural University, Zhengzhou 450046, China
| | - Dandan Wang
- College of Animal Science and Technologyw, Henan Agricultural University, Zhengzhou 450046, China
| | - Ke Zhang
- College of Animal Science and Technologyw, Henan Agricultural University, Zhengzhou 450046, China
| | - Yangyang Wang
- College of Animal Science and Technologyw, Henan Agricultural University, Zhengzhou 450046, China
| | - Wanzhuo Geng
- College of Animal Science and Technologyw, Henan Agricultural University, Zhengzhou 450046, China
| | - Botong Chen
- College of Animal Science and Technologyw, Henan Agricultural University, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technologyw, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technologyw, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technologyw, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technologyw, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technologyw, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| |
Collapse
|
46
|
Yu X, Wang N, Wang X, Ren H, Zhang Y, Zhang Y, Qiu Y, Wang H, Wang G, Pei X, Chen P, Ren Y, Ha C, Wang L, Wang H. Oocyte Arrested at Metaphase II Stage were Derived from Human Pluripotent Stem Cells in vitro. Stem Cell Rev Rep 2023; 19:1067-1081. [PMID: 36735215 DOI: 10.1007/s12015-023-10511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023]
Abstract
Initiation of meiosis is the most difficult aspect of inducing competent oocytes differentiation from human stem cells in vitro. Human induced pluripotent stem cells (hiPSCs) and embryonic stem cells (hESCs) were cultured with follicle fluid, cytokines and small molecule to induced oocyte-like cells (OLCs) formation through a three-step induction procedure. Expression of surface markers and differentiation potential of germ cells were analyzed in vitro by flow cytometry, gene expression, immunocytochemistry, western blotting and RNA Sequencing. To induce the differentiation of hiPSCs into OLCs, cells were firstly cultured with a primordial germ cell medium for 10 days. The cells exhibited similar morphological features to primordial germ cells (PGCs), high expressing of germ cell markers and primordial follicle development associated genes. The induced PGCs were then cultured with the primordial follicle-like cell medium for 5 days to form the induced follicle-like structures (iFLs), which retained both primordial oocytes-like cells and granulosa-like cells. In the third step, the detached iFLs were harvested and transferred to the OLC-medium for additional 10 days. The cultured cells developed cumulus-oocyte-complexes (COCs) structures and OLCs with different sizes (50-150 μm diameter) and a zona pellucida. The in vitro matured OLCs had polar bodies and were arrested at metaphase II (MII) stage. Some OLCs were self-activated and spontaneously developed into multiple-cell structures similar to preimplantation embryos, indicating that OLCs were parthenogenetically activated though in vitro fertilization potential of OLCs are yet to be proved. in vitro maturation of OLCs derived from hiPSCs provides a new means to study human germ cell formation and oogenesis.
Collapse
Affiliation(s)
- Xiaoli Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China.
| | - Ning Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xiang Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Hehe Ren
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Yanping Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Yingxin Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Yikai Qiu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Hongyan Wang
- Department of Gynecology, General Hospital of Ningxia Medical University, Ningxia Human Sperm Bank, 750004, Yinchuan, Ningxia, China
| | - Guoping Wang
- Yinchuan Maternal and Child Health Care Hospital, 75004, Yinchuan, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Ping Chen
- Department of Gynecology, General Hospital of Ningxia Medical University, Ningxia Human Sperm Bank, 750004, Yinchuan, Ningxia, China
| | - Yahui Ren
- College of Life Science and Engineering, Henan University of Urban Construction, 467000, Pingdingshan, China
| | - Chunfang Ha
- Department of Gynecology, General Hospital of Ningxia Medical University, Ningxia Human Sperm Bank, 750004, Yinchuan, Ningxia, China
| | - Li Wang
- Department of Gynecology, General Hospital of Ningxia Medical University, Ningxia Human Sperm Bank, 750004, Yinchuan, Ningxia, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
47
|
The Effects of the Follicle-Stimulating Hormone on Human Follicular Fluid-Derived Stromal Cells. Int J Mol Sci 2023; 24:ijms24032450. [PMID: 36768772 PMCID: PMC9916742 DOI: 10.3390/ijms24032450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The prevalence of infertility is getting higher over the years. The increasing age of first-time parents, although economically more desirable, can cause various biological problems from low natural conception rate to poor pregnancy outcomes. The growing demand for assisted reproductive technology procedures worldwide draws medical specialists' and scientists' attention to various elements which could lead to successful conception, such as follicular fluid (FF) and hormones. In this study, we analyzed the effects of exposure to follicle-stimulating hormone (FSH) on FF-derived stromal cells isolated from females admitted for treatment due to infertility, participating in assisted reproductive technologies procedures. We demonstrated that FF stromal cells are positive for mesenchymal stromal cell surface markers (CD90+, CD44+, CD166+) and showed that FSH has no impact on FF stromal cell morphology yet lowers proliferation rate. Using a real-time polymerase chain reaction method, we indicated that the expression of PTGS2 is significantly downregulated in FF sediment cells of patients who did not conceive; furthermore, we showed that FSH can affect the expression of ovarian follicle development and FSH response-related genes differentially depending on the length of exposure and that levels of ovulatory cascade genes differ in conceived and not-conceived patients' FF stromal cells. Using mass spectrometry analysis, we identified 97 proteins secreted by FF stromal cells. The identified proteins are related to stress response, positive regulation of apoptotic cell clearance and embryo implantation.
Collapse
|
48
|
Rudnik-Schöneborn S, Wyrwoll MJ, Tüttelmann F, Toth B, Pinggera GM, Zschocke J. Genetische Diagnostik bei ungewollt kinderlosen Paaren oder wiederholten Fehlgeburten. GYNAKOLOGISCHE ENDOKRINOLOGIE 2023. [DOI: 10.1007/s10304-022-00494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ZusammenfassungEtwa 10–15 % aller Paare sind ungewollt kinderlos, entweder durch das fehlende Eintreten einer Schwangerschaft oder durch rezidivierende Aborte. Nachweisbare Ursachen einer Fertilitätsstörung finden sich gleichermaßen bei Männern und bei Frauen, bei einem Drittel sind beide Partner beteiligt. Bei 5–10 % der weiblichen und 10–20 % der männlichen Patienten sind mit den derzeit etablierten diagnostischen Analysen genetische Ursachen erkennbar. Eine ätiologische Abklärung erlaubt eine fundierte Prognose und manchmal eine spezifische Therapie, sie kann auf ein erhöhtes Risiko des Auftretens kindlicher Erkrankungen hinweisen. Eine spezifische genetische Abklärung ist daher unabhängig von einer gegebenenfalls geplanten reproduktionsmedizinischen Behandlung bei allen Paaren indiziert, die länger als ein Jahr vergeblich versuchen, ein Kind zu bekommen, und bei denen keine andere Erklärung für eine Unfruchtbarkeit nachgewiesen wurde. Die genetische Diagnostik der Unfruchtbarkeit umfasst bei beiden Partnern in der Regel eine klassische Karyotypisierung zum Nachweis einer gegebenenfalls vorliegenden gonosomalen oder balancierten strukturellen Chromosomenveränderung. Dies ist insbesondere beim wiederholten Auftreten von Fehlgeburten bei beiden Partnern indiziert. Abhängig von hormonellen Befunden sollte bei Frauen ein attenuiertes adrenogenitales Syndrom bzw. bei Verdacht auf eine primäre Ovarialinsuffizienz eine FMR1-Prämutation ausgeschlossen werden. Die genetische Diagnostik des Mannes bei Azoospermie oder gegebenenfalls bei schwerer Oligozoospermie umfasst zusätzlich zur Karyotypisierung die Testung auf AZF-Mikrodeletionen (AZF Azoospermiefaktor) sowie in Abhängigkeit von den klinischen Parametern auf pathogene Varianten im CFTR-Gen als mögliche Ursache einer obstruktiven Azoospermie. Sequenzanalysen spezifischer Gene können bei Frauen und Männern mit hypogonadotropem Hypogonadismus oder bei Verdacht auf eine monogene Spermatogenesestörung in Betracht gezogen werden. Gemäß den Leitlinien und nationalen gesetzlichen Grundlagen sollten vor der genetischen Diagnostik sowie beim Nachweis genetischer Ursachen einer Infertilität mögliche Konsequenzen und die Bedeutung für zukünftige Kinder im Rahmen einer genetischen Beratung besprochen werden.
Collapse
|
49
|
Affiliation(s)
- Cynthia A Stuenkel
- From the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla (C.A.S.); Unite de Gynecologie Medicale, Port Royal-Cochin, Universite de Paris Cité, Paris (A.G.)
| | - Anne Gompel
- From the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla (C.A.S.); Unite de Gynecologie Medicale, Port Royal-Cochin, Universite de Paris Cité, Paris (A.G.)
| |
Collapse
|
50
|
He QK, Li YP, Xu ZR, Wei WB, Qiao FX, Sun MX, Liu YC, Chen YZ, Wang HL, Qi ZQ, Liu Y. 3-MCPD exposure enhances ovarian fibrosis and reduces oocyte quality in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120662. [PMID: 36395906 DOI: 10.1016/j.envpol.2022.120662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/29/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
3-monochloro-1,2-propanediol (3-MCPD) is a food contaminant believed to be harmful to human health. Previous studies showed that 3-MCPD exerts toxic effects in multiple tissues, but whether 3-MCPD affects female reproductive function remained unknown. Here, using mouse gastric lavage models, we report that 3-MCPD exposure for four weeks affected body growth, decreased the ovary/body weight ratio, and increased atretic follicle numbers. Expression levels of follicular development-related factors decreased. Further studies found that ovaries from 3-MCPD exposed mice had activated the Transforming Growth Factor-β (TGF-β) signaling pathway and promoted ovarian fibrosis. Increased TNF-α, IL-1 and NF-κB expression also indicated the occurrence of ovarian inflammation. Exposure to 3-MCPD stimulated the caspase pathway and enhanced granulosa cell apoptosis. Consistent with disrupted ovarian homeostasis, 3-MCPD exposure interfered with mitochondrial function, generated more reactive oxygen species, increased ferrous ion and lipid peroxidation levels, and resulted in decreased oocyte development potential. Collectively, these findings indicated that 3-MCPD exposure induced ovarian inflammation and fibrosis, and caused disorders of mitochondrial function and ferrous ion homeostasis in oocytes, which consequently disturbed follicle maturation and reduced oocyte quality.
Collapse
Affiliation(s)
- Quan-Kuo He
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yan-Ping Li
- Research Laboratory of Zhuang & Yao Medicine, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, 530021, China
| | - Zhi-Ran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Wen-Bo Wei
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Feng-Xin Qiao
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ming-Xin Sun
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yue-Cen Liu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yan-Zhu Chen
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Hai-Long Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|