1
|
Du ZW, Li YS, Jiang XC, Gao JQ. Nanoparticles Designed Based on the Blood-Brain Barrier for the Treatment of Cerebral Ischemia-Reperfusion Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410404. [PMID: 40042407 DOI: 10.1002/smll.202410404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/11/2025] [Indexed: 05/13/2025]
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) is currently considered a significant factor affecting the prognosis of ischemic stroke. The blood-brain barrier (BBB) plays multiple roles in the treatment ofCI/RI. BBB leakage allows bloodborne toxins to exacerbate the stroke pathology. Yet as the physiological barrier that separates the blood from the brain, BBB also poses a significant obstacle to therapeutic drug delivery. Therefore, it is essential to consider both crossing and repairing the BBB in the process of the treatment of CI/RI. Leveraging the exceptional benefits of nanoparticles (NPs) for BBB penetration and targeted repair, numerous NPs are developed as promising drug delivery platforms. Considering the complex role of the BBB in CI/RI, this review delves into the strategies for designing NPs to cross the BBB, focusing on peptide-modified NPs, cell-mediated NPs, cell membrane-derived NPs, and BBB-modulating NPs. Additionally, it summarizes design strategies of NPs targeting endothelial cells (ECs), astrocytes, and those aimed at regulating the microenvironment to repair the BBB. On this basis, it reveals the prospects and challenges of NPs designed around the BBB in CI/RI treatment. And it highlights the need to combine BBB permeability promotion and BBB repair in nanoparticle strategies designed based on the BBB to achieve more effective treatment.
Collapse
Affiliation(s)
- Zhi-Wei Du
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yao-Sheng Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xin-Chi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian-Qing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
2
|
Chen W, Huang J, Guo Y, Wang X, Lin Z, Wei R, Chen J, Wu X. Nanocrystals for Intravenous Drug Delivery: Composition Development, Preparation Methods and Applications in Oncology. AAPS PharmSciTech 2025; 26:66. [PMID: 39979757 DOI: 10.1208/s12249-025-03064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Intravenous routes of drug delivery are widely used in clinical practice due to the advantages of fast onset of action and avoidance of first-pass effect. Still, it is difficult to develop poorly water-soluble drugs for intravenous administration. In recent years, the application of nanocrystal technology has become more and more widespread, mainly involving reducing the particle size to the nanoparticle size range and improving its physicochemical properties to enhance the bioavailability of drugs. Intravenous nanocrystals (INCs) can show unique advantages in the vasculature, with their high drug loading capacity, low toxicity, and overcoming low solubility, which makes them a new solution in tumor therapy. In addition, INCs are mainly suspended in aqueous/oil phase media, which makes them easy to inject. Therefore, INCs may serve as a novel strategy to address poor water solubility, low bioavailability, and associated toxicity. This review contains the compositional development of INCs, and preparation methods, and provides some insights into their application in oncology.
Collapse
Affiliation(s)
- Wanjiao Chen
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Jingyi Huang
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Yankun Guo
- Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Xinyv Wang
- Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Zhizhe Lin
- Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Ruting Wei
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Jianming Chen
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
- Shanghai Wei Er Lab, Shanghai, 201707, China.
| | - Xin Wu
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
- Shanghai Wei Er Lab, Shanghai, 201707, China.
| |
Collapse
|
3
|
Liu Y, Wu H, Liang G. Combined Strategies for Nanodrugs Noninvasively Overcoming the Blood-Brain Barrier and Actively Targeting Glioma Lesions. Biomater Res 2025; 29:0133. [PMID: 39911305 PMCID: PMC11794768 DOI: 10.34133/bmr.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
Drugs for tumor treatment face various challenges, including poor solubility, poor stability, short blood half-life, nontargeting ability, and strong toxic side effects. Fortunately, nanodrug delivery systems provide excellent solution to these problems. However, nanodrugs for glioma treatment also face some key challenges including overcoming the blood-brain barrier (BBB) and, specifically, accumulation in glioma lesions. In this review, we systematically summarize the advantages and disadvantages of combined strategies for nanodrugs noninvasively overcoming BBB and actively targeting glioma lesions to achieve effective glioma therapy. Common noninvasive strategies for nanodrugs overcoming the BBB include bypassing the BBB via the nose-to-brain route, opening the tight junction of the BBB by focused ultrasound with microbubbles, and transendothelial cell transport by intact cell loading, ligand decoration, or cell membrane camouflage of nanodrugs. Actively targeting glioma lesions after overcoming the BBB is another key factor helping nanodrugs accurately treat in situ gliomas. This aim can also be achieved by loading nanodrugs into intact cells and modifying ligand or cell membrane fragments on the surface of nanodrugs. Targeting decorated nanodrugs can guarantee precise glioma killing and avoid side effects on normal brain tissues that contribute to the specific recognition of glioma lesions. Furthermore, the challenges and prospects of nanodrugs in clinical glioma treatment are discussed.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan Province 471000, China
| | - Haigang Wu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Gaofeng Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan Province 471000, China
| |
Collapse
|
4
|
Sun B, Li R, Ji N, Liu H, Wang H, Chen C, Bai L, Su J, Chen J. Brain-targeting drug delivery systems: The state of the art in treatment of glioblastoma. Mater Today Bio 2025; 30:101443. [PMID: 39866779 PMCID: PMC11759563 DOI: 10.1016/j.mtbio.2025.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Glioblastoma (GBM) is the most prevalent primary malignant brain tumor, characterized by a high mortality rate and a poor prognosis. The blood-brain barrier (BBB) and the blood-tumor barrier (BTB) present significant obstacles to the efficacy of tumor-targeted pharmacotherapy, thereby impeding the therapeutic potential of numerous candidate drugs. Targeting delivery of adequate doses of drug across the BBB to treat GBM has become a prominent research area in recent years. This emphasis has driven the exploration and evaluation of diverse technologies for GBM pharmacotherapy, with some already undergoing clinical trials. This review provides a thorough overview of recent advancements and challenges in targeted drug delivery for GBM treatment. It specifically emphasizes systemic drug administration strategies to assess their potential and limitations in GBM treatment. Furthermore, this review highlights promising future research directions in the development of intelligent drug delivery systems aimed at overcoming current challenges and enhancing therapeutic efficacy against GBM. These advancements not only support foundational research on targeted drug delivery systems for GBM but also offer methodological approaches for future clinical applications.
Collapse
Affiliation(s)
- Bo Sun
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Rong Li
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ning Ji
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Hongxiang Wang
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chao Chen
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Trauma Orthopedics Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
5
|
Quan Z, Wang S, Xie H, Zhang J, Duan R, Li M, Zhang J. ROS Regulation in CNS Disorder Therapy: Unveiling the Dual Roles of Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410031. [PMID: 39676433 DOI: 10.1002/smll.202410031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/01/2024] [Indexed: 12/17/2024]
Abstract
The treatment of brain diseases has always been the focus of attention. Due to the presence of the blood-brain barrier (BBB), most small molecule drugs are difficult to reach the brain, leading to undesirable therapeutic outcomes. Recently, nanomedicines that can cross the BBB and precisely target lesion sites have emerged as thrilling tools to enhance the early diagnosis and treat various intractable brain disorders. Extensive research has shown that reactive oxygen species (ROS) play a crucial role in the occurrence and progression of brain diseases, including brain tumors and neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, stroke, or traumatic brain injury, making ROS a potential therapeutic target. In this review, on the structure and function of BBB as well as the mechanisms are first elaborated through which nanomedicine traverses it. Then, recent studies on ROS production are summarized through photodynamic therapy (PDT), chemodynamic therapy (CDT), and sonodynamic therapy (SDT) for treating brain tumors, and ROS depletion for treating NDDs. This provides valuable guidance for the future design of ROS-targeted nanomedicines for brain disease treatment. The ongoing challenges and future perspectives in developing nanomedicine-based ROS management for brain diseases are also discussed and outlined.
Collapse
Affiliation(s)
- Zhengyang Quan
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Sa Wang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huanhuan Xie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiayi Zhang
- International department, Beijing 101 Middle School, Beijing, 100091, P. R. China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Menglin Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jinfeng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
6
|
Jin M, Wu H, Jin W, Zeng B, Liu Y, Wang N, Wang S, Chen L, Gao Z, Huang W. Transferrin Protein Corona-Targeted Codelivery of Tirapazamine and IR820 Facilitates Efficient PDT-Induced Hypoxic Chemotherapy on 4T1 Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1892-1910. [PMID: 39699197 DOI: 10.1021/acsami.4c15045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Protein corona (PC) formation confers novel biological properties to the original nanomaterial, impeding its uptake and targeting efficacy in cells and tissues. Although many studies discussing PC formation have focused on inert proteins that may inhibit the function of nanomaterials, some functional plasma proteins with intrinsic targeting capabilities can also be adsorbed to the surface of nanomaterials, with active ligand properties to improve the targeting ability. In this approach, nanomaterials are surface-engineered to promote the adsorption of specific functional plasma proteins that are directly targeted to transport nanomaterials to the target site. In this study, T10 peptide-modified liposomes were employed to construct an in situ transferrin (Tf) PC-mediated liposome carrying a hypoxia-sensitive chemotherapy drug (tirapazamine, TPZ) and a photosensitizer (indocyanine green, IR820). The water-soluble drug TPZ was encapsulated in mesoporous silica nanoparticles (MSNs) and coated with IR820 (IR)-loaded liposome. Lipid-coated MSNs can inhibit aggregation in the body and significantly reduce the rapid release of water-soluble drugs, resulting in improved system stability and sustained release. Upon entering the in vivo circulation, T10 bound specifically to Tf in plasma to form an in situ Tf liposome-PC complex with enhanced targeting efficacy compared to traditional ligand-modified active-targeting strategies. However, large-sized PC particles faced challenges in penetrating deep into tumor tissues. IR could kill tumors through photodynamic therapy (PDT) and elicit complementary antitumor effects with the hypoxia-sensitive drug TPZ. This study demonstrates the novel design of in situ PC-mediated multifunctional liposomes for hypoxia-activated chemotherapy combined with PDT, a promising approach to cancer therapy.
Collapse
Affiliation(s)
- Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Wenyu Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Dermatology, Yanbian University Hospital, Yanji 133000, China
| | - Bowen Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nuoya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuangqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
7
|
Jiang T, Zhan Y, Ding J, Song Z, Zhang Y, Li J, Su T. Biomimetic Cell Membrane-Coated Nanoparticles for Cancer Theranostics. ChemMedChem 2024; 19:e202400410. [PMID: 39264862 DOI: 10.1002/cmdc.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Indexed: 09/14/2024]
Abstract
Nanoparticles can enhance drugs accumulating at the tumor site and hold tremendous promise for achieving effective tumor treatment. However, due to the complexity of cancer heterogeneity and suppressive tumor microenvironment, the delivery of traditional nanoparticles has poor infiltration and off-target effects, making it difficult to control the drug release rate and causing off-target toxicity. In recent years, cell membrane-coated biomimetic nanoparticles have been developed, which have both the natural characteristics of biomembranes and the physical characteristics of traditional nanoparticles, thus improving the homologous targeting ability of nanoparticles to tumor cells and better biocompatibility. In this paper, we reviewed the application of single cell membrane and hybrid cell membrane-coated biomimetic nanoparticles in the integration for tumor diagnosis and treatment. We talked about the preparation methods of cell membrane-coated nanoparticles, the targeting mechanisms, and the effects of imaging and therapeutic outcomes of different cell membrane-coated biomimetic nanoparticles in detail. Finally, we discussed the existing problems and prospects of cell membrane-coated biomimetic nanomaterials.
Collapse
Affiliation(s)
- Tiantian Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yiduo Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jiayao Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Zheming Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Ting Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
8
|
Ara N, Hafeez A, Kushwaha SP. Repurposing simvastatin in cancer treatment: an updated review on pharmacological and nanotechnological aspects. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7377-7393. [PMID: 38748226 DOI: 10.1007/s00210-024-03151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/06/2024] [Indexed: 10/04/2024]
Abstract
Management of cancer is challenging due to non-targeting and high side effect issues. Drug repurposing is an innovative method for employing medications for other disease therapy in addition to their original use. Simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor, is a lipid-lowering drug that is being studied for the treatment of cancer in various in vitro and in vivo models. Nanotechnology offers a potential platform for incorporation of drugs with enhanced pharmaceutical (solubility, release characteristics, stability, etc.) and biological characteristics (targeting, pharmacokinetic, pharmacodynamic). Utilizing a variety of resources such as Scopus, Springer, Web of Science, Elsevier, Bentham Science, Taylor & Francis, and PubMed, a thorough literature search was carried out by looking through electronic records published between 2003 and 2024. The keywords used were simvastatin, drug repurposing, anti-cancer simvastatin, pharmaceutical properties of simvastatin, simvastatin nanoformulations, simvastatin patents, clinical trials, etc. Numerous articles were looked for, filtered, checked out, and incorporated. Pure simvastatin has been researched as a repurposed medication for the treatment of cancer in several in vitro and in vivo models, such as carcinoma of the lung, colon, liver, prostate, breast, and skin. Simvastatin also incorporated into different nanocarriers (nanosuspensions, microparticles/nanoparticles, liposomes, and nanostructured lipid carriers) and showed improvement in solubility, bioavailability, drug loading, release kinetics, and targeting. Clinical trial and patent reports suggest potential of simvastatin in cancer therapy. The preclinical studies of pure simvastatin in in vitro and in vivo models showed the potential for its ability to inhibit cancer cell growth and further incorporation into nanoformulations strengthened its preclinical and pharmaceutical characteristics.
Collapse
Affiliation(s)
- Nargis Ara
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| | - Shom Prakash Kushwaha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
9
|
Sun C, Li S, Ding J. Biomaterials-Boosted Immunotherapy for Osteosarcoma. Adv Healthc Mater 2024; 13:e2400864. [PMID: 38771618 DOI: 10.1002/adhm.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that emanates from mesenchymal cells, commonly found in the epiphyseal end of long bones. The highly recurrent and metastatic nature of OS poses significant challenges to the efficacy of treatment and negatively affects patient prognosis. Currently, available clinical treatment strategies primarily focus on maximizing tumor resection and reducing localized symptoms rather than the complete eradication of malignant tumor cells to achieve ideal outcomes. The biomaterials-boosted immunotherapy for OS is characterized by high effectiveness and a favorable safety profile. This therapeutic approach manipulates the tumor microenvironments at the cellular and molecular levels to impede tumor progression. This review delves into the mechanisms underlying the treatment of OS, emphasizing biomaterials-enhanced tumor immunity. Moreover, it summarizes the immune cell phenotype and tumor microenvironment regulation, along with the ability of immune checkpoint blockade to activate the autoimmune system. Gaining a profound comprehension of biomaterials-boosted OS immunotherapy is imperative to explore more efficacious immunotherapy protocols and treatment options in this setting.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Shuqiang Li
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
10
|
Wang Y, Xu Y, Song J, Liu X, Liu S, Yang N, Wang L, Liu Y, Zhao Y, Zhou W, Zhang Y. Tumor Cell-Targeting and Tumor Microenvironment-Responsive Nanoplatforms for the Multimodal Imaging-Guided Photodynamic/Photothermal/Chemodynamic Treatment of Cervical Cancer. Int J Nanomedicine 2024; 19:5837-5858. [PMID: 38887692 PMCID: PMC11182360 DOI: 10.2147/ijn.s466042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Purpose Phototherapy, known for its high selectivity, few side effects, strong controllability, and synergistic enhancement of combined treatments, is widely used in treating diseases like cervical cancer. Methods In this study, hollow mesoporous manganese dioxide was used as a carrier to construct positively charged, poly(allylamine hydrochloride)-modified nanoparticles (NPs). The NP was efficiently loaded with the photosensitizer indocyanine green (ICG) via the addition of hydrogen phosphate ions to produce a counterion aggregation effect. HeLa cell membrane encapsulation was performed to achieve the final M-HMnO2@ICG NP. In this structure, the HMnO2 carrier responsively degrades to release ICG in the tumor microenvironment, self-generates O2 for sensitization to ICG-mediated photodynamic therapy (PDT), and consumes GSH to expand the oxidative stress therapeutic effect [chemodynamic therapy (CDT) + PDT]. The ICG accumulated in tumor tissues exerts a synergistic PDT/photothermal therapy (PTT) effect through single laser irradiation, improving efficiency and reducing side effects. The cell membrane encapsulation increases nanomedicine accumulation in tumor tissues and confers an immune evasion ability. In addition, high local temperatures induced by PTT can enhance CDT. These properties of the NP enable full achievement of PTT/PDT/CDT and targeted effects. Results Mn2+ can serve as a magnetic resonance imaging agent to guide therapy, and ICG can be used for photothermal and fluorescence imaging. After its intravenous injection, M-HMnO2@ICG accumulated effectively at mouse tumor sites; the optimal timing of in-vivo laser treatment could be verified by near-infrared fluorescence, magnetic resonance, and photothermal imaging. The M-HMnO2@ICG NPs had the best antitumor effects among treatment groups under near-infrared light conditions, and showed good biocompatibility. Conclusion In this study, we designed a nano-biomimetic delivery system that improves hypoxia, responds to the tumor microenvironment, and efficiently loads ICG. It provides a new economical and convenient strategy for synergistic phototherapy and CDT for cervical cancer.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yiyan Xu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Jiayu Song
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Xueting Liu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Sijia Liu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Nan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Le Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yujie Liu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yiwei Zhao
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, People’s Republic of China
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, 410219, People’s Republic of China
| | - Yunyan Zhang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| |
Collapse
|
11
|
Hao W, Sun N, Fan Y, Chen M, Liu Q, Yang M, Yang Y, Gao C. Targeted Ferroptosis-Immunotherapy Synergy: Enhanced Antiglioma Efficacy with Hybrid Nanovesicles Comprising NK Cell-Derived Exosomes and RSL3-Loaded Liposomes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28193-28208. [PMID: 38776411 PMCID: PMC11164066 DOI: 10.1021/acsami.4c04604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Ferroptosis therapy and immunotherapy have been widely used in cancer treatment. However, nonselective induction of ferroptosis in tumors is prone to immunosuppression, limiting the therapeutic effect of ferroptosis cancer treatment. To address this issue, this study reports a customized hybrid nanovesicle composed of NK cell-derived extracellular versicles and RSL3-loaded liposomes (hNRVs), aiming to establish a positive cycle between ferroptosis therapy and immunotherapy. Thanks to the enhanced permeability and retention effect and the tumor homing characteristics of NK exosomes, our data indicate that hNRVs can actively accumulate in tumors and enhance cellular uptake. FASL, IFN-γ, and RSL3 are released into the tumor microenvironment, where FASL derived from NK cells effectively lyses tumor cells. RSL3 downregulates the expression of GPX4 in the tumor, leading to the accumulation of LPO and ROS, and promotes ferroptosis in tumor cells. The accumulation of IFN-γ and TNF-α stimulates the maturation of dendritic cells and effectively induces the inactivation of GPX4, promoting lipid peroxidation, making them sensitive to ferroptosis and indirectly promoting the occurrence of ferroptosis. This study highlights the role of the customized hNRV platform in enhancing the effectiveness of synergistic treatment with selective delivery of ferroptosis inducers and immune activation against glioma without causing additional side effects on healthy organs.
Collapse
Affiliation(s)
- Wenyan Hao
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Nan Sun
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Yueyue Fan
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Mengyu Chen
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Qianqian Liu
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Meiyan Yang
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Yang
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunsheng Gao
- State Key Laboratory
of Toxicology
and Medical Countermeasures, Beijing Institute
of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
12
|
Liao W, Lu Z, Wang C, Zhu X, Yang Y, Zhou Y, Gong P. Application and advances of biomimetic membrane materials in central nervous system disorders. J Nanobiotechnology 2024; 22:280. [PMID: 38783302 PMCID: PMC11112845 DOI: 10.1186/s12951-024-02548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Central nervous system (CNS) diseases encompass spinal cord injuries, brain tumors, neurodegenerative diseases, and ischemic strokes. Recently, there has been a growing global recognition of CNS disorders as a leading cause of disability and death in humans and the second most common cause of death worldwide. The global burdens and treatment challenges posed by CNS disorders are particularly significant in the context of a rapidly expanding global population and aging demographics. The blood-brain barrier (BBB) presents a challenge for effective drug delivery in CNS disorders, as conventional drugs often have limited penetration into the brain. Advances in biomimetic membrane nanomaterials technology have shown promise in enhancing drug delivery for various CNS disorders, leveraging properties such as natural biological surfaces, high biocompatibility and biosafety. This review discusses recent developments in biomimetic membrane materials, summarizes the types and preparation methods of these materials, analyzes their applications in treating CNS injuries, and provides insights into the future prospects and limitations of biomimetic membrane materials.
Collapse
Affiliation(s)
- Weiquan Liao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Zhichao Lu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Chenxing Wang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Xingjia Zhu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong, Jiangsu, 226001, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Peipei Gong
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China.
- Jiangsu Medical Innovation Center, Neurological Disease Diagnosis and Treatment Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
13
|
Rajoriya V, Gupta R, Vengurlekar S, Surendra Singh U. Nanostructured lipid carriers (NLCs): A promising candidate for lung cancer targeting. Int J Pharm 2024; 655:123986. [PMID: 38493842 DOI: 10.1016/j.ijpharm.2024.123986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Lung cancer stands as the foremost health issue and the principal reason for mortality worldwide. It is projected that India will see over 1.73 million new cases and more than 880,000 deaths related to cancer, with lung cancer being a significant contributor. The efficiency of existing chemotherapy procedures is not optimal because of less soluble nature and short half-life of anticancer substances. More precipitated toxicity and non-existence of targeting propensity can lead to severe side effects, non-compliance, and inconvenience for patients. Nonetheless, the domain of nanomedicine has undergone a revolution in the past few years with the advent of novel drug delivery mechanisms that tackle the drawbacks of conventional approaches. Diverse nanoparticle-based drug delivery methods, including liposomes, nanoparticles, nanostructured lipid carrier and solid lipid nanoparticle that encapsulated chemotherapy drugs, are currently employed for efficient lung cancer therapy. NLCs, recognized as the second-generation lipid nanocarriers, are a focused drug delivery mechanism that has garnered significant interest owing to their multitude of advantages such as increased stability, minimal toxicity, prolonged shelf life, superior encapsulation capability, and biocompatible nature. This review focuses on the NLCs carrier system, discussing its preparation methods, types, characterization, applications, and future prospects in lung cancer treatment.
Collapse
Affiliation(s)
- Vaibhav Rajoriya
- University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India.
| | - Ravikant Gupta
- Faculty, University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| | - Sudha Vengurlekar
- Faculty, University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| | - Upama Surendra Singh
- University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| |
Collapse
|
14
|
Pournajaf S, Afsordeh N, Pourgholami MH. In vivo C6 glioma models: an update and a guide toward a more effective preclinical evaluation of potential anti-glioblastoma drugs. Rev Neurosci 2024; 35:183-195. [PMID: 37651618 DOI: 10.1515/revneuro-2023-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Glioblastoma multiform (GBM) is the most common primary brain tumor with a poor prognosis and few therapeutic choices. In vivo, tumor models are useful for enhancing knowledge of underlying GBM pathology and developing more effective therapies/agents at the preclinical level, as they recapitulate human brain tumors. The C6 glioma cell line has been one of the most widely used cell lines in neuro-oncology research as they produce tumors that share the most similarities with human GBM regarding genetic, invasion, and expansion profiles and characteristics. This review provides an overview of the distinctive features and the different animal models produced by the C6 cell line. We also highlight specific applications of various C6 in vivo models according to the purpose of the study and offer some technical notes for more convenient/repeatable modeling. This work also includes novel findings discovered in our laboratory, which would further enhance the feasibility of the model in preclinical GBM investigations.
Collapse
Affiliation(s)
- Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Nastaran Afsordeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | | |
Collapse
|
15
|
Lu Y, Fan L, Wang J, Hu M, Wei B, Shi P, Li J, Feng J, Zheng Y. Cancer Cell Membrane-Based Materials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306540. [PMID: 37814370 DOI: 10.1002/smll.202306540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The nanodelivery system provides a novel direction for disease diagnosis and treatment; however, its delivery effectiveness is restricted by the short biological half-life and inadequate tumor targeting. The immune evasion properties and homologous targeting capabilities of natural cell membranes, particularly those of cancer cell membranes (CCM), have gained significant interest. The integration of CCM and nanoparticles has resulted in the emergence of CCM-based nanoplatforms (CCM-NPs), which have gained significant attention due to their unique properties. CCM-NPs not only prolong the blood circulation time of core nanoparticles, but also direct them for homologous tumor targeting. Herein, the history and development of CCM-NPs as well as how these platforms have been used for biomedical applications are discussed. The application of CCM-NPs for cancer therapy will be described in detail. Translational efforts are currently under way and further research to address key areas of need will ultimately be required to facilitate the successful clinical adoption of CCM-NPs.
Collapse
Affiliation(s)
- Yongping Lu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
- Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Linming Fan
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jun Wang
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Mingxiang Hu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Baogang Wei
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Ping Shi
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Jinyan Feng
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Yu Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
16
|
Vikram, Kumar S, Ali J, Baboota S. Potential of Nanocarrier-Associated Approaches for Better Therapeutic Intervention in the Management of Glioblastoma. Assay Drug Dev Technol 2024; 22:73-85. [PMID: 38193798 DOI: 10.1089/adt.2023.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Glioblastoma, commonly known as glioblastoma multiforme (GBM), is one of the deadliest and most invasive types of brain cancer. Two factors account for the majority of the treatment limitations for GBM. First, the presence of the blood-brain barrier (BBB) renders malignancy treatment ineffective, leading to recurrence without full recovery. Second, several adverse effects are associated with the drugs used in conventional GBM treatment. Recent studies have developed nanocarrier systems, such as liposomes, polymeric micelles, dendrimers, nanosuspensions, nanoemulsions, nanostructured lipid carriers, solid lipid nanocarriers, metal particles, and silica nanoparticles, which allow drug-loaded formulations to penetrate the BBB more effectively. This has opened up new possibilities for overcoming therapy issues. Extensive and methodical searches of databases such as PubMed, Science Direct, Google Scholar, and others were conducted to gather relevant literature for this work, using precise keyword combinations such as "GBM," "brain tumor," and "nanocarriers." This review provides deep insights into the administration of drugs using nanocarriers for the management of GBM and explores new advancements in nanotechnology. It also highlights how scientific developments can be explained in connection with hopeful findings about the potential of nanocarriers for the future successful management of GBM.
Collapse
Affiliation(s)
- Vikram
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
17
|
Ling D, Jia X, Wang K, Yan Q, Yuan B, Du L, Li M, Jin Y. Cancer cell membrane-coated bacterial ghosts for highly efficient paclitaxel delivery against metastatic lung cancer. Acta Pharm Sin B 2024; 14:365-377. [PMID: 38261850 PMCID: PMC10792973 DOI: 10.1016/j.apsb.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/02/2023] [Accepted: 07/15/2023] [Indexed: 01/25/2024] Open
Abstract
Chemotherapy is one of the major approaches for the treatment of metastatic lung cancer, although it is limited by the low tumor delivery efficacy of anticancer drugs. Bacterial therapy is emerging for cancer treatment due to its high immune stimulation effect; however, excessively generated immunogenicity will cause serious inflammatory response syndrome. Here, we prepared cancer cell membrane-coated liposomal paclitaxel-loaded bacterial ghosts (LP@BG@CCM) by layer-by-layer encapsulation for the treatment of metastatic lung cancer. The preparation processes were simple, only involving film formation, electroporation, and pore extrusion. LP@BG@CCM owned much higher 4T1 cancer cell toxicity than LP@BG due to its faster fusion with cancer cells. In the 4T1 breast cancer metastatic lung cancer mouse models, the remarkably higher lung targeting of intravenously injected LP@BG@CCM was observed with the almost normalized lung appearance, the reduced lung weight, the clear lung tissue structure, and the enhanced cancer cell apoptosis compared to its precursors. Moreover, several major immune factors were improved after administration of LP@BG@CCM, including the CD4+/CD8a+ T cells in the spleen and the TNF-α, IFN-γ, and IL-4 in the lung. LP@BG@CCM exhibits the optimal synergistic chemo-immunotherapy, which is a promising medication for the treatment of metastatic lung cancer.
Collapse
Affiliation(s)
- Dandan Ling
- Anhui Medical University, Hefei 230032, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xueli Jia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ke Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Qiucheng Yan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bochuan Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Miao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiguang Jin
- Anhui Medical University, Hefei 230032, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
18
|
Wang W, Yang C, Xue L, Wang Y. Key Challenges, Influencing Factors, and Future Perspectives of Nanosuspensions in Enhancing Brain Drug Delivery. Curr Pharm Des 2024; 30:2524-2537. [PMID: 38988170 DOI: 10.2174/0113816128317347240625105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Many brain diseases pose serious challenges to human life. Alzheimer's Disease (AD) and Parkinson's Disease (PD) are common neurodegenerative diseases that seriously threaten human health. Glioma is a common malignant tumor. However, drugs cannot cross physiological and pathological barriers and most therapeutic drugs cannot enter the brain because of the presence of the Blood-brain Barrier (BBB) and Bloodbrain Tumor Barrier (BBTB). How to enable drugs to penetrate the BBB to enter the brain, reduce systemic toxicity, and penetrate BBTB to exert therapeutic effects has become a challenge. Nanosuspension can successfully formulate drugs that are difficult to dissolve in water and oil by using surfactants as stabilizers, which is suitable for the brain target delivery of class II and IV drugs in the Biopharmaceutical Classification System (BCS). In nanosuspension drug delivery systems, the physical properties of nanostructures have a great impact on the accumulation of drugs at the target site, such as the brain. Optimizing the physical parameters of the nanosuspension can improve the efficiency of brain drug delivery and disease treatment. Therefore, the key challenges, influencing factors, and future perspectives of nanosuspension in enhancing brain drug delivery are summarized and reviewed here. This article aims to provide a better understanding of nanosuspension formulation technology used for brain delivery and strategies used to overcome various physiological barriers.
Collapse
Affiliation(s)
- Wenlu Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chongzhao Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Linying Xue
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yancai Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
19
|
Nguyen-Thi PT, Nguyen TT, Phan HL, Ho TT, Vo TV, Vo GV. Cell membrane-based nanomaterials for therapeutics of neurodegenerative diseases. Neurochem Int 2023; 170:105612. [PMID: 37714337 DOI: 10.1016/j.neuint.2023.105612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/20/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Central nervous system (CNS) diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), glioblastoma (GBM), and peripheral nerve injury have been documented as incurable diseases, which lead to serious impacts on human health especially prevalent in the aging population worldwide. Most of the treatment strategies fail due to low efficacy, toxicity, and poor brain penetration. Recently, advancements in nanotechnology have helped alleviate the challenges associated with the application of cell membrane-based nanomaterials against CNS diseases. In the following review, the existing types of cell membrane-based nanomaterials systems which have improved therapeutic efficacy for CNS diseases would be described. A summary of recent progress in the incorporation of nanomaterials in cell membrane-based production, separation, and analysis will be provided. Addition to, challenges relate to large-scale manufacturing of cell membrane-based nanomaterials and future clinical trial of such platforms will be discussed.
Collapse
Affiliation(s)
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Viet Nam.
| | - Hoang Long Phan
- Faculty of Pharmacy, Van Lang University, Ho Chi Minh City, 700000, Viet Nam
| | - Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Viet Nam.
| | - Toi Van Vo
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City, Viet Nam; Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University -Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam; Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000, Viet Nam; Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam
| |
Collapse
|
20
|
Zhang X, Hu S, Huang L, Chen X, Wang X, Fu YN, Sun H, Li G, Wang X. Advance Progress in Assembly Mechanisms of Carrier-Free Nanodrugs for Cancer Treatment. Molecules 2023; 28:7065. [PMID: 37894544 PMCID: PMC10608994 DOI: 10.3390/molecules28207065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nanocarriers have been widely studied and applied in the field of cancer treatment. However, conventional nanocarriers still suffer from complicated preparation processes, low drug loading, and potential toxicity of carriers themselves. To tackle the hindrance, carrier-free nanodrugs with biological activity have received increasing attention in cancer therapy. Extensive efforts have been made to exploit new self-assembly methods and mechanisms to expand the scope of carrier-free nanodrugs with enhanced therapeutic performance. In this review, we summarize the advanced progress and applications of carrier-free nanodrugs based on different types of assembly mechanisms and strategies, which involved noncovalent interactions, a combination of covalent bonds and noncovalent interactions, and metal ions-coordinated self-assembly. These carrier-free nanodrugs are introduced in detail according to their assembly and antitumor applications. Finally, the prospects and existing challenges of carrier-free nanodrugs in future development and clinical application are discussed. We hope that this comprehensive review will provide new insights into the rational design of more effective carrier-free nanodrug systems and advancing clinical cancer and other diseases (e.g., bacterial infections) infection treatment.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuyang Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lifei Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiyue Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ya-nan Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Sun
- Department of Hepatology, Tongliao Infectious Disease Hospital, Tongliao 028000, China
- Department of Interventional Ultrasound, PLA Medical College & Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Li W, Cheng J, He F, Zhang P, Zhang N, Wang J, Song Q, Hou Y, Gan Z. Cell membrane-based nanomaterials for theranostics of central nervous system diseases. J Nanobiotechnology 2023; 21:276. [PMID: 37596631 PMCID: PMC10439658 DOI: 10.1186/s12951-023-02004-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 08/20/2023] Open
Abstract
Central nervous system (CNS) diseases have been widely acknowledged as one of the major healthy concerns globally, which lead to serious impacts on human health. There will be about 135 million CNS diseases cases worldwide by mid-century, and CNS diseases will become the second leading cause of death after the cardiovascular disease by 2040. Most CNS diseases lack of effective diagnostic and therapeutic strategies with one of the reasons that the biological barrier extremely hampers the delivery of theranostic agents. In recent years, nanotechnology-based drug delivery is a quite promising way for CNS diseases due to excellent properties. Among them, cell membrane-based nanomaterials with natural bio-surface, high biocompatibility and biosafety, are of great significance in both the diagnosis and treatment of different CNS diseases. In this review, the state of art of the fabrication of cell membranes-based nanomaterials is introduced. The characteristics of different CNS diseases, and the application of cell membranes-based nanomaterials in the theranostics are summarized. In addition, the future prospects and limitations of cell membrane nanotechnology are anticipated. Through summarizing the state of art of the fabrication, giving examples of CNS diseases, and highlighting the applications in theranostics, the current review provides designing methods and ideas for subsequent cell membrane nanomaterials.
Collapse
Affiliation(s)
- Wenyue Li
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junwei Cheng
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fangfei He
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peisen Zhang
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ni Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Jian Wang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.
| | - Qiliang Song
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China.
| | - Yi Hou
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Gan
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
22
|
Wu H, Zhang T, Li N, Gao J. Cell membrane-based biomimetic vehicles for effective central nervous system target delivery: Insights and challenges. J Control Release 2023; 360:169-184. [PMID: 37343724 DOI: 10.1016/j.jconrel.2023.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Central nervous system (CNS) disorders, including brain tumor, ischemic stroke, Alzheimer's disease, and Parkinson's disease, threaten human health. And the existence of the blood-brain barrier (BBB) hinders the delivery of drugs and the design of drug targeting delivery vehicles. Over the past decades, great interest has been given to cell membrane-based biomimetic vehicles since the rise of targeting drug delivery systems and biomimetic nanotechnology. Cell membranes are regarded as natural multifunction biomaterials, and provide potential for targeting delivery design and modification. Cell membrane-based biomimetic vehicles appear timely with the participation of cell membranes and nanoparticles, and raises new lights for BBB recognition and transport, and effective therapy with its biological multifunction and high biocompatibility. This review summarizes existing challenges in CNS target delivery and recent advances of different kinds of cell membrane-based biomimetic vehicles for effective CNS target delivery, and deliberates the BBB targeting mechanism. It also discusses the challenges and possibility of clinical translation, and presents new insights for development.
Collapse
Affiliation(s)
- Honghui Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, PR China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Ni Li
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315041, Zhejiang, PR China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, PR China; Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315041, Zhejiang, PR China.
| |
Collapse
|
23
|
Xia Q, Shen J, Ding H, Liu S, Li F, Li F, Feng N. Intravenous nanocrystals: fabrication, solidification, in vivo fate, and applications for cancer therapy. Expert Opin Drug Deliv 2023; 20:1467-1488. [PMID: 37814582 DOI: 10.1080/17425247.2023.2268512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Intravenous nanocrystals (INCs) have shown intrinsic advantages in antitumor applications, particularly their properties of high drug loading, low toxicity, and controllable size. Therefore, it has a very bright application prospect as a drug delivery system. AREAS COVERED The ideal formulation design principles, fabrication, solidification, in vivo fate of INCs, the applications in drug delivery system (DDS) and the novel applications are covered in this review. EXPERT OPINION It is vital to select a suitable formulation and fabrication method to produce a stable and sterile INCs. Besides, the type of stabilizers and physical characteristics can also influence the in vivo fate of INCs, which is worthy of further studying. Based on wide researches about applications of INCs in cancer, biomimetic INCs are concerned increasingly for its favorable compatibility. The output of these studies suggested that INCs-based drug delivery could be a novel strategy for addressing the delivery of the drug that faces solubility, bioavailability, and toxicity problems.
Collapse
Affiliation(s)
- Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siyi Liu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Fengqian Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Li Y, Liu Y, Xu J, Chen D, Wu T, Cao Y. Macrophage-Cancer Hybrid Membrane-Camouflaged Nanoplatforms for HIF-1α Gene Silencing-Enhanced Sonodynamic Therapy of Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37338326 DOI: 10.1021/acsami.3c03001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Fabrication of ingenious nanomedicines to penetrate the blood-brain barrier (BBB) and blood-brain-tumor barrier (BBTB) for efficient glioblastoma (GBM) therapy remains a big challenge. In this work, macrophage-cancer hybrid membrane-camouflaged nanoplatforms were fabricated for target gene silencing-enhanced sonodynamic therapy (SDT) of GBM. The J774.A.1 macrophage cell membrane and the U87 glioblastoma cell membrane were fused to create a hybrid biomembrane (JUM) with good BBB penetration and glioblastoma targeting capability for camouflaging. The ZIF-8 nanoparticles were synthesized for indocyanine green (ICG) and HIF-1α siRNA encapsulation (ICG-siRNA@ZIF-8, ISZ) with a high loading efficiency. After accumulation in the tumor sites, the pH sensitivity of the nanoplatform enabled release of ICG and HIF-1α siRNA in the tumor cells. Then, the expression of HIF-1α could be efficiently inhibited by the released HIF-1α siRNA to increase the SDT efficiency under hypoxic conditions. In vitro and in vivo experiments revealed that ISZ@JUM showed good BBB penetration and brain tumor-targeting capability and could achieve effective gene silencing-enhanced SDT, demonstrating great promise for clinical applications.
Collapse
Affiliation(s)
- Yunxia Li
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Ying Liu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Jiaqing Xu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Dandan Chen
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Tingting Wu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yu Cao
- College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
25
|
Shi D, Wu F, Huang L, Li Y, Ke S, Li J, Hou Z, Fan Z. Bioengineered nanogenerator with sustainable reactive oxygen species storm for self-reinforcing sono-chemodynamic oncotherapy. J Colloid Interface Sci 2023; 646:649-662. [PMID: 37220698 DOI: 10.1016/j.jcis.2023.05.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/25/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023]
Abstract
Oxidative stress-based antitumor modalities derived from reactive oxygen species (ROS) storms have attracted increasing attention. Nevertheless, low delivery efficiency, poor selectivity, hypoxia and overexpressed glutathione (GSH) have severely restricted the sustainable generation of the ROS storm in tumor cells. Herein, we design a bioengineered nanogenerator by coordination-driven co-assembly of sonosensitizer indocyanine green (ICG), Fenton-like agent copper ion (CuⅡ) and mitochondrial respiratory inhibitor metformin (MET), which is then camouflaged by a cancer cytomembrane to induce a sustainable intracellular ROS storm for on-demand self-reinforcing sono-chemodynamic oncotherapy. Such a nanogenerator with a core-shell structure, suitable diameter and outstanding stability can efficiently accumulate in tumor regions and then internalize into tumor cells through the camouflaging and homologous targeting strategy of the cancer cytomembrane. The nanogenerator shows an exceptional instability under the triple stimulations of acidic lysosomes, overexpressed GSH and ultrasound (US) radiation, thereby resulting in the rapid disassembly and burst drug release. Interestingly, the released MET significantly enhances the sonodynamic therapy (SDT) efficacy of the released ICG by inhibiting mitochondrial respiration and meanwhile the released CuⅡ obviously reduces ROS elimination by downregulating overexpressed GSH for self-amplifying and self-protecting the intracellular ROS storm. Moreover, such a nanogenerator almost completely achieves the tumor ablation in vivo in a single therapy cycle. Taken together, our bioengineered nanogenerator with a sustainable ROS storm can provide a promising strategy for ROS storm-based oncotherapy.
Collapse
Affiliation(s)
- Dao Shi
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; College of Materials, Xiamen University, Xiamen 361005, China
| | - Feng Wu
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Lingling Huang
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Ying Li
- Xiamen Key Laboratory of Traditional Chinese Bio-engineering, Xiamen Medical College, Xiamen 361021, China
| | - Sunkui Ke
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, China.
| | - Jinyao Li
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Zhenqing Hou
- College of Materials, Xiamen University, Xiamen 361005, China.
| | - Zhongxiong Fan
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
26
|
Li H, Qiao W, Shen Y, Xu H, Fan Y, Liu Y, Lan Y, Gong Y, Chen F, Feng S. Biomimetic Boron Nitride Nanoparticles for Targeted Drug Delivery and Enhanced Antitumor Activity. Pharmaceutics 2023; 15:pharmaceutics15041269. [PMID: 37111754 PMCID: PMC10145272 DOI: 10.3390/pharmaceutics15041269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Boron nitride nanomaterials are being increasingly recognized as vehicles for cancer drug delivery that increase drug loading and control drug release because of their excellent physicochemical properties and biocompatibility. However, these nanoparticles are often cleared rapidly by the immune system and have poor tumor targeting effects. As a result, biomimetic nanotechnology has emerged to address these challenges in recent times. Cell-derived biomimetic carriers have the characteristics of good biocompatibility, long circulation time, and strong targeting ability. Here, we report a biomimetic nanoplatform (CM@BN/DOX) prepared by encapsulating boron nitride nanoparticles (BN) and doxorubicin (DOX) together using cancer cell membrane (CCM) for targeted drug delivery and tumor therapy. The CM@BN/DOX nanoparticles (NPs) were able to target cancer cells of the same type on its own initiative through homologous targeting of cancer cell membranes. This led to a remarkable increase in cellular uptake. In vitro simulation of an acidic tumor microenvironment could effectively promote drug release from CM@BN/DOX. Furthermore, the CM@BN/DOX complex exhibited an excellent inhibitory effect against homotypic cancer cells. These findings suggest that CM@BN/DOX are promising in targeted drug delivery and potentially personalized therapy against their homologous tumor.
Collapse
Affiliation(s)
- Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Wei Qiao
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yizhe Shen
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Huashan Xu
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yuan Fan
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yuxiang Liu
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yadi Lan
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yan Gong
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shini Feng
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| |
Collapse
|
27
|
Huang X, Shi S, Wang H, Zhao T, Wang Y, Huang S, Su Y, Zhao C, Yang M. Advances in antibody-based drugs and their delivery through the blood-brain barrier for targeted therapy and immunotherapy of gliomas. Int Immunopharmacol 2023; 117:109990. [PMID: 37012874 DOI: 10.1016/j.intimp.2023.109990] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Gliomas are highly invasive and are the most common type of primary malignant brain tumor. The routine treatments for glioma include surgical resection, radiotherapy, and chemotherapy. However, glioma recurrence and patient survival remain unsatisfactory after employing these traditional treatment approaches. With the rapid development of molecular immunology, significant breakthroughs have been made in targeted glioma therapy and immunotherapy. Antibody-based therapy has excellent advantages in treating gliomas due to its high specificity and sensitivity. This article reviewed various targeted antibody drugs for gliomas, including anti-glioma surface marker antibodies, anti-angiogenesis antibodies, and anti-immunosuppressive signal antibodies. Notably, many antibodies have been validated clinically, such as bevacizumab, cetuximab, panitumumab, and anti-PD-1 antibodies. These antibodies can improve the targeting of glioma therapy, enhance anti-tumor immunity, reduce the proliferation and invasion of glioma, and thus prolong the survival time of patients. However, the existence of the blood-brain barrier (BBB) has caused significant difficulties in drug delivery for gliomas. Therefore, this paper also summarized drug delivery methods through the BBB, including receptor-mediated transportation, nano-based carriers, and some physical and chemical methods for drug delivery. With these exciting advancements, more antibody-based therapies will likely enter clinical practice and allow more successful control of malignant gliomas.
Collapse
Affiliation(s)
- Xin Huang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Shuyou Shi
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Hongrui Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Tiesuo Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yibo Wang
- The College of Clinical College, Jilin University, Changchun, China
| | - Sihua Huang
- The College of Clinical College, Jilin University, Changchun, China
| | - Yingying Su
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Chunyan Zhao
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| | - Ming Yang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
28
|
Taylor J, Sharp A, Rannard SP, Arrowsmith S, McDonald TO. Nanomedicine strategies to improve therapeutic agents for the prevention and treatment of preterm birth and future directions. NANOSCALE ADVANCES 2023; 5:1870-1889. [PMID: 36998665 PMCID: PMC10044983 DOI: 10.1039/d2na00834c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/27/2023] [Indexed: 06/19/2023]
Abstract
The World Health Organisation (WHO) estimates 15 million babies worldwide are born preterm each year, with 1 million infant mortalities and long-term morbidity in survivors. Whilst the past 40 years have provided some understanding in the causes of preterm birth, along with development of a range of therapeutic options, notably prophylactic use of progesterone or uterine contraction suppressants (tocolytics), the number of preterm births continues to rise. Existing therapeutics used to control uterine contractions are restricted in their clinical use due to pharmacological drawbacks such as poor potency, transfer of drugs to the fetus across the placenta and maternal side effects from activity in other maternal systems. This review focuses on addressing the urgent need for the development of alternative therapeutic systems with improved efficacy and safety for the treatment of preterm birth. We discuss the application of nanomedicine as a viable opportunity to engineer pre-existing tocolytic agents and progestogens into nanoformulations, to improve their efficacy and address current drawbacks to their use. We review different nanomedicines including liposomes, lipid-based carriers, polymers and nanosuspensions highlighting where possible, where these technologies have already been exploited e.g. liposomes, and their significance in improving the properties of pre-existing therapeutic agents within the field of obstetrics. We also highlight where active pharmaceutical agents (APIs) with tocolytic properties have been used for other clinical indications and how these could inform the design of future therapeutics or be repurposed to diversify their application such as for use in preterm birth. Finally we outline and discuss the future challenges.
Collapse
Affiliation(s)
- Jessica Taylor
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Andrew Sharp
- Harris-Wellbeing Preterm Birth Research Centre, Department of Women's and Children's Health, Liverpool Women's Hospital, University of Liverpool Crown Street Liverpool L8 7SS UK
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool Liverpool L7 3NY UK
| | - Sarah Arrowsmith
- Department of Life Sciences, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
- Department of Materials, Henry Royce Institute, The University of Manchester Manchester M13 9PL UK
| |
Collapse
|
29
|
Li B, Yang T, Liu J, Yu X, Li X, Qin F, Zheng J, Liang J, Zeng Y, Zhou Z, Liu L, Zhang B, Yao W, Feng Z, Zeng G, Zhou Q, Chen L. Genetically engineered PD-1 displaying nanovesicles for synergistic checkpoint blockades and chemo-metabolic therapy against non-small cell lung cancer. Acta Biomater 2023; 161:184-200. [PMID: 36893957 DOI: 10.1016/j.actbio.2023.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
Non-small cell lung cancer (NSCLC) remains the most frequently diagnosed lung cancer and the leading cause of cancer-related mortality worldwide. PD-1/PD-L1 axis inhibitors have changed the treatment paradigm for various cancer types, including NSCLC. However, success of these inhibitors in lung cancer clinic is severely limited by their inability to inhibit the PD-1/PD-L1 signaling axis due to heavy glycosylation and heterogeneity expression of PD-L1 in NSCLC tumor tissue. Taking advantage of the facts that tumor cell derived nanovesicles could efficiently accumulate in the homotypic tumor sites due to their innate targeting abilities and that specific and high affinity existed between PD-1 and PD-L1, we developed NSCLC targeting biomimetic nanovesicles (NV) cargos from genetically engineered NSCLC cell lines that overexpressed PD-1 (P-NV). We showed that P-NVs efficiently bound NSCLC cells in vitro and targeted tumor nodules in vivo. We further loaded P-NVs with 2-deoxy-D-glucose (2-DG) and doxorubicin (DOX), and found that these drugs co-loaded P-NVs efficiently shrank lung cancers in mouse models for both allograft and autochthonous tumor. Mechanistically, drug-loaded P-NVs efficiently caused cytotoxicity to tumor cells and simultaneously activated anti-tumor immunity function of tumor-infiltrating T cells. Our data therefore strongly argue that 2-DG and DOX co-loaded, PD-1-displaying nanovesicles is a highly promising therapy for treatment of NSCLC in clinic. STATEMENT OF SIGNIFICANCE: Lung cancer cells overexpressing PD-1 are developed for preparing nanoparticles (P-NV). PD-1s displayed on NVs enhance their homologous targeting abilities to tumor cells expressing PD-L1s. Chemotherapeutics such as DOX and 2-DG, are packaged in such nanovesicles (PDG-NV). These nanovesicles efficiently delivered chemotherapeutics to tumor nodules specifically. The synergy between DOX and 2-DG is observed in inhibiting lung cancer cells in vitro and in vivo. Importantly, 2-DG causes deglycosylation and downregulation of PD-L1 on tumor cells while PD-1 displayed on nanovesicles' membrane blocks PD-L1 on tumor cells. 2-DG loaded nanoparticles thus activate anti-tumor activities of T cells in the tumor microenvironment. Our work thus highlights the promising antitumor activity of PDG-NVs, which warrants further clinical evaluation.
Collapse
Affiliation(s)
- Bo Li
- MOE Key Laboratory of Glucolipid Metabolic Disorder and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Tong Yang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jin Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xixi Yu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xinying Li
- MOE Key Laboratory of Glucolipid Metabolic Disorder and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fei Qin
- MOE Key Laboratory of Glucolipid Metabolic Disorder and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiefei Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jinxia Liang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Youyan Zeng
- MOE Key Laboratory of Glucolipid Metabolic Disorder and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhenhua Zhou
- MOE Key Laboratory of Glucolipid Metabolic Disorder and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lu Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bin Zhang
- MOE Key Laboratory of Glucolipid Metabolic Disorder and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiwei Yao
- MOE Key Laboratory of Glucolipid Metabolic Disorder and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhuo Feng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guandi Zeng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qian Zhou
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Liang Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
30
|
Cell-Membrane-Coated Nanoparticles for Targeted Drug Delivery to the Brain for the Treatment of Neurological Diseases. Pharmaceutics 2023; 15:pharmaceutics15020621. [PMID: 36839943 PMCID: PMC9960717 DOI: 10.3390/pharmaceutics15020621] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Neurological diseases (NDs) are a significant cause of disability and death in the global population. However, effective treatments still need to be improved for most NDs. In recent years, cell-membrane-coated nanoparticles (CMCNPs) as drug-targeting delivery systems have become a research hotspot. Such a membrane-derived, nano drug-delivery system not only contributes to avoiding immune clearance but also endows nanoparticles (NPs) with various cellular and functional mimicries. This review article first provides an overview of the function and mechanism of single/hybrid cell-membrane-derived NPs. Then, we highlight the application and safety of CMCNPs in NDs. Finally, we discuss the challenges and opportunities in the field.
Collapse
|
31
|
Huang Y, Wu H, Xie N, Zhang X, Zou Z, Deng M, Cheng W, Guo X, Ding S, Guo B. Conductive Antifouling Sensing Coating: A Bionic Design Inspired by Natural Cell Membrane. Adv Healthc Mater 2023; 12:e2202790. [PMID: 36709050 DOI: 10.1002/adhm.202202790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/15/2023] [Indexed: 01/30/2023]
Abstract
Constructing antifouling coatings for biosensing interfaces is a major hurdle in driving their practical application. Inspired by the excellent antifouling properties of natural cell membranes, a conductive biomimetic antifouling interface coating is proposed, which highly mimics the excellent antifouling properties of biofilms while overcoming the low conductivity defects of conventional coatings. Polyethylene glycol-Au gel is selected as the support structure and electron transfer layer, on which phospholipids and ampholytes are applied to construct a hydration layer for antifouling. The coating maintains promisingly low adsorption in biological matrices such as whole blood, serum, and urine, and has been utilized to construct multimodal clinical assay systems that provide favorable concordance with clinical results. Thus, this conductive bio-coating breaks the last barrier of biosensors toward practical applications and possesses extremely significant application value.
Collapse
Affiliation(s)
- Yi Huang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ning Xie
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Xuewen Zhang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Zhenyang Zou
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Meng Deng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
32
|
Allami P, Heidari A, Rezaei N. The role of cell membrane-coated nanoparticles as a novel treatment approach in glioblastoma. Front Mol Biosci 2023; 9:1083645. [PMID: 36660431 PMCID: PMC9846545 DOI: 10.3389/fmolb.2022.1083645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiform (GBM) is the most prevalent and deadliest primary brain malignancy in adults, whose median survival rate does not exceed 15 months after diagnosis. The conventional treatment of GBM, including maximal safe surgery followed by chemotherapy and radiotherapy, usually cannot lead to notable improvements in the disease prognosis and the tumor always recurs. Many GBM characteristics make its treatment challenging. The most important ones are the impermeability of the blood-brain barrier (BBB), preventing chemotherapeutic drugs from reaching in adequate amounts to the tumor site, intratumoral heterogeneity, and roles of glioblastoma stem cells (GSCs). To overcome these barriers, the recently-developed drug-carrying approach using nanoparticles (NPs) may play a significant role. NPs are tiny particles, usually less than 100 nm showing various diagnostic and therapeutic medical applications. In this regard, cell membrane (CM)-coated NPs demonstrated several promising effects in GBM in pre-clinical studies. They benefit from fewer adverse effects due to their specific targeting of tumor cells, biocompatibility because of their CM surfaces, prolonged half-life, easy penetrating of the BBB, and escaping from the immune reaction, making them an attractive option for GBM treatment. To date, CM-coated NPs have been applied to enhance the effectiveness of major therapeutic approaches in GBM treatment, including chemotherapy, immunotherapy, gene therapy, and photo-based therapies. Despite the promising results in pre-clinical studies regarding the effectiveness of CM-coated NPs in GBM, significant barriers like high expenses, complex preparation processes, and unknown long-term effects still hinder its mass production for the clinic. In this regard, the current study aims to provide an overview of different characteristics of CM-coated NPs and comprehensively investigate their application as a novel treatment approach in GBM.
Collapse
Affiliation(s)
- Pantea Allami
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Heidari
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Du J, Sun J, Liu X, Wu Q, Shen W, Gao Y, Liu Y, Wu C. Preparation of C6 cell membrane-coated doxorubicin conjugated manganese dioxide nanoparticles and its targeted therapy application in glioma. Eur J Pharm Sci 2023; 180:106338. [PMID: 36410571 DOI: 10.1016/j.ejps.2022.106338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022]
Abstract
In this study, we prepared a C6 cell membrane-coated doxorubicin conjugated manganese dioxide biomimetic nanomedicine system (MnO2-DOX-C6) for the treatment of glioma. In the glioma microenvironment, manganese dioxide could alleviate tumor hypoxia by promoting the decomposition of hydrogen peroxide (H2O2) to generate oxygen and, through a Fenton-like reaction, increase ROS levels in tumor cells, thus inducing oxidative stress to further kill cancer cells. Doxorubicin and manganese dioxide were connected through a hydrazone bond so that doxorubicin could be released only in the acidic environment of the tumor, which helped to reduce the toxicity and side effects of doxorubicin. Encapsulation of glioma C6 cancer cell membrane in MnO2-DOX-C6 made MnO2-DOX possess the homologous targeting ability and also regulated drug release rate. In vitro release experiments showed that the cumulative release of doxorubicin from MnO2-DOX-C6 at a pH of 5.0 for 48 h was 66.84 ± 3.81%, proving that it had pH sensitivity and a sustained-release effect. Cellular uptake experiments showed that MnO2-DOX-C6 had a good ability to target syngeneic tumor cells. MTT, flow cytometry, Western blot, cell immunofluorescence staining and in vivo antitumor experiments demonstrated that MnO2-DOX-C6 could promote C6 cell apoptosis and inhibit its proliferative ability. These results clearly suggested that MnO2-DOX-C6 may be a promising bionic nanosystem agent for the treatment of glioma.
Collapse
Affiliation(s)
- Jiaqun Du
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China
| | - Junpeng Sun
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China
| | - Xiaobang Liu
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China
| | - Qian Wu
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China
| | - Wenwen Shen
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China
| | - Yu Gao
- Department of Medical Oncology, the First Affiliated Hospital of Jinzhou Medical University, No.2, the Fifth Section of Renmin Street, Guta District, Jinzhou, Liaoning Province 121001, China.
| | - Ying Liu
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
34
|
Zhao P, Tian Y, Lu Y, Zhang J, Tao A, Xiang G, Liu Y. Biomimetic calcium carbonate nanoparticles delivered IL-12 mRNA for targeted glioblastoma sono-immunotherapy by ultrasound-induced necroptosis. J Nanobiotechnology 2022; 20:525. [PMID: 36496387 PMCID: PMC9741778 DOI: 10.1186/s12951-022-01731-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, which owns the characteristics of high recurrence, low survival rate and poor prognosis because of the existence of blood brain barrier (BBB) and complicated brain tumor microenvironment. Currently, immunotherapy has attracted much attention on account of favorable therapeutic effect. In this study, we designed a cRGD-modified cancer cell membrane (CM) coated calcium carbonate nanoparticle to deliver interleukin-12 messenger RNA (IL-12 mRNA@cRGD-CM-CaCO3 NPs). The cRGD-modified CM as the shell can endow the nanoparticles with BBB crossing and tumor homing/homotypic targeting effect in the brain tumor microenvironment. IL-12 mRNA-loaded calcium carbonate nanoparticles as the core allow synergistic immunotherapy of necroptosis-induced immune response and IL-12 mRNA transfection under ultrasound irradiation. The as-prepared biomimetic nanoparticles showed superior target and immunotherapeutic outcomes, suggesting that this biomimetic nanoplatform provides a feasible strategy for promoting BBB-penetrating and antitumor immunity.
Collapse
Affiliation(s)
- Pengxuan Zhao
- grid.33199.310000 0004 0368 7223Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,grid.33199.310000 0004 0368 7223School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,grid.443397.e0000 0004 0368 7493 School of Pharmacy, Hainan Medical University, Haikou, 571199 China
| | - Yu Tian
- Jiangsu Hengrui Pharmaceuticals Co. Ltd, Lianyungang, China
| | - Yongping Lu
- grid.440773.30000 0000 9342 2456Department of Ultrasound, The Affiliated Hospital of Yunnan University, Kunming, 650021 China
| | - Jun Zhang
- grid.33199.310000 0004 0368 7223Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Anyu Tao
- grid.33199.310000 0004 0368 7223Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Guangya Xiang
- grid.33199.310000 0004 0368 7223School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yani Liu
- grid.33199.310000 0004 0368 7223Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
35
|
Yu H, Wu M, Chen S, Song M, Yue Y. Biomimetic nanoparticles for tumor immunotherapy. Front Bioeng Biotechnol 2022; 10:989881. [PMID: 36440446 PMCID: PMC9682960 DOI: 10.3389/fbioe.2022.989881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/26/2022] [Indexed: 12/11/2023] Open
Abstract
Currently, tumor treatment research still focuses on the cancer cells themselves, but the fact that the immune system plays an important role in inhibiting tumor development cannot be ignored. The activation of the immune system depends on the difference between self and non-self. Unfortunately, cancer is characterized by genetic changes in the host cells that lead to uncontrolled cell proliferation and evade immune surveillance. Cancer immunotherapy aims to coordinate a patient's immune system to target, fight, and destroy cancer cells without destroying the normal cells. Nevertheless, antitumor immunity driven by the autoimmune system alone may be inadequate for treatment. The development of drug delivery systems (DDS) based on nanoparticles can not only promote immunotherapy but also improve the immunosuppressive tumor microenvironment (ITM), which provides promising strategies for cancer treatment. However, conventional nano drug delivery systems (NDDS) are subject to several limitations in clinical transformation, such as immunogenicity and the potential toxicity risks of the carrier materials, premature drug leakage at off-target sites during circulation and drug load content. In order to address these limitations, this paper reviews the trends and progress of biomimetic NDDS and discusses the applications of each biomimetic system in tumor immunotherapy. Furthermore, we review the various combination immunotherapies based on biomimetic NDDS and key considerations for clinical transformation.
Collapse
Affiliation(s)
- Hanqing Yu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Wu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mingming Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yulin Yue
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Wang L, Shi Y, Jiang J, Li C, Zhang H, Zhang X, Jiang T, Wang L, Wang Y, Feng L. Micro-Nanocarriers Based Drug Delivery Technology for Blood-Brain Barrier Crossing and Brain Tumor Targeting Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203678. [PMID: 36103614 DOI: 10.1002/smll.202203678] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The greatest obstacle to using drugs to treat brain tumors is the blood-brain barrier (BBB), making it difficult for conventional drug molecules to enter the brain. Therefore, how to safely and effectively penetrate the BBB to achieve targeted drug delivery to brain tumors has been a challenging research problem. With the intensive research in micro- and nanotechnology in recent years, nano drug-targeted delivery technologies have shown great potential to overcome this challenge, such as inorganic nanocarriers, organic polymer-carriers, liposomes, and biobased carriers, which can be designed in different sizes, shapes, and surface functional groups to enhance their ability to penetrate the BBB and targeted drug delivery for brain tumors. In this review, the composition and overcoming patterns of the BBB are detailed, and then the hot research topics of drug delivery carriers for brain tumors in recent years are summarized, and their mechanisms of action on the BBB and the factors affecting drug delivery are described in detail, and the effectiveness of targeted therapy for brain tumors is evaluated. Finally, the challenges and dilemmas in developing brain tumor drug delivery systems are discussed, which will be promising in the future for targeted drug delivery to brain tumors based on micro-nanocarriers technology.
Collapse
Affiliation(s)
- Luyao Wang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Youyuan Shi
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Jingzhen Jiang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Chan Li
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Hengrui Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Xinhui Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Tao Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yinyan Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
37
|
Yang F, Wang M, Guan X. Exosomes and mimics as novel delivery platform for cancer therapy. Front Pharmacol 2022; 13:1001417. [PMID: 36313380 PMCID: PMC9602403 DOI: 10.3389/fphar.2022.1001417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/30/2022] [Indexed: 11/15/2022] Open
Abstract
Exosomes are nano-sized biological extracellular vesicles transmitting information between cells and constituting a new intercellular communication mode. Exosomes have many advantages as an ideal drug delivery nanocarrier, including good biocompatibility, permeability, low toxicity, and low immunogenicity. Recently, exosomes have been used to deliver chemotherapeutic agents, natural drugs, nucleic acid drugs, and other antitumor drugs to treat many types of tumors. Due to the limited production of exosomes, synthetic exosome-mimics have been developed as an ideal platform for drug delivery. This review summarizes recent advances in the application of exosomes and exosome-mimics delivering therapeutic drugs in treating cancers.
Collapse
Affiliation(s)
- Fuxu Yang
- Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China
- Key Laboratory of Pharmaceutics and Bioengineering, School of Medical Technology, Beihua University, Jilin, China
| | - Mingyue Wang
- Key Laboratory of Pharmaceutics and Bioengineering, School of Medical Technology, Beihua University, Jilin, China
- Center of Reproductive Medicine and Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Xingang Guan
- Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China
- *Correspondence: Xingang Guan,
| |
Collapse
|
38
|
Yang R, Ouyang Z, Guo H, Qu J, Xia J, Shen M, Shi X. Microfluidic synthesis of intelligent nanoclusters of ultrasmall iron oxide nanoparticles with improved tumor microenvironment regulation for dynamic MR imaging-guided tumor photothermo-chemo-chemodynamic therapy. NANO TODAY 2022; 46:101615. [DOI: 10.1016/j.nantod.2022.101615] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
39
|
Wang Y, Sun Y, Geng N, Zheng M, Zou Y, Shi B. A Biomimetic Nanomedicine Targets Orthotopic Glioblastoma by Combinatorial Co‐delivery of Temozolomide and a Methylguanine‐DNA Methyltransferase Inhibitor. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yibin Wang
- Henan‐Macquarie Uni Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicine School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Yajing Sun
- Henan‐Macquarie Uni Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicine School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Nan Geng
- Henan‐Macquarie Uni Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicine School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Meng Zheng
- Henan‐Macquarie Uni Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicine School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Yan Zou
- Henan‐Macquarie Uni Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicine School of Life Sciences Henan University Kaifeng Henan 475004 China
- Macquarie Medical School Faculty of Medicine Health and Human Sciences Macquarie University Sydney NSW 2109 Australia
| | - Bingyang Shi
- Henan‐Macquarie Uni Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicine School of Life Sciences Henan University Kaifeng Henan 475004 China
- Macquarie Medical School Faculty of Medicine Health and Human Sciences Macquarie University Sydney NSW 2109 Australia
| |
Collapse
|
40
|
Cao Y, Yang Y, Feng S, Wan Y. Biomimetic cancer cell-coated albumin nanoparticles for enhanced colloidal stability and homotypic targeting of breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
41
|
Zhang Y, Zhang X, Li H, Liu J, Wei W, Gao J. Membrane-Coated Biomimetic Nanoparticles: A State-of-the-Art Multifunctional Weapon for Tumor Immunotherapy. MEMBRANES 2022; 12:membranes12080738. [PMID: 36005653 PMCID: PMC9412372 DOI: 10.3390/membranes12080738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
The advent of immunotherapy, which improves the immune system’s ability to attack and eliminate tumors, has brought new hope for tumor treatment. However, immunotherapy regimens have seen satisfactory results in only some patients. The development of nanotechnology has remarkably improved the effectiveness of tumor immunotherapy, but its application is limited by its passive immune clearance, poor biocompatibility, systemic immunotoxicity, etc. Therefore, membrane-coated biomimetic nanoparticles have been developed by functional, targeting, and biocompatible cell membrane coating technology. Membrane-coated nanoparticles have the advantages of homologous targeting, prolonged circulation, and the avoidance of immune responses, thus remarkably improving the therapeutic efficacy of tumor immunotherapy. Herein, this review explores the recent advances and future perspectives of cell membrane-coated nanoparticles for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China;
| | - Xinyi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
| | - Haitao Li
- Department of Vascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefangdadao Road, Wuhan 430022, China; (H.L.); (J.L.)
| | - Jianyong Liu
- Department of Vascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefangdadao Road, Wuhan 430022, China; (H.L.); (J.L.)
| | - Wei Wei
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China;
- Correspondence: (W.W.); (J.G.)
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China;
- Correspondence: (W.W.); (J.G.)
| |
Collapse
|
42
|
Lv Y, Wu W, Corpstein CD, Li T, Lu Y. Biological and Intracellular Fates of Drug Nanocrystals through Different Delivery Routes: Recent Development Enabled by Bioimaging and PK Modeling. Adv Drug Deliv Rev 2022; 188:114466. [PMID: 35905948 DOI: 10.1016/j.addr.2022.114466] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 07/22/2022] [Indexed: 12/25/2022]
Abstract
Nanocrystals have contributed to exciting improvements in the delivery of poorly water-soluble drugs. The biological and intracellular fates of nanocrystals are currently under debate. Due to the remarkable commercial success in enhancing oral bioavailability, nanocrystals have originally been regarded as a simple formulation approach to enhance dissolution. However, the latest findings from novel bioimaging tools lead to an expanded view. Intact nanocrystals may offer long-term durability in the body and offer drug delivery capabilities like those of other nano-carriers. This review renews the understanding of the biological fates of nanocrystals administered via oral, intravenous, and parenteral (e.g., dermal, ocular, and pulmonary) routes. The intracellular pathways and dissolution kinetics of nanocrystals are explored. Additionally, the future trends for in vitro and in vivo quantification of nanocrystals, as well as factors impacting the biological and intracellular fates of nanocrystals are discussed. In conclusion, nanocrystals present a promising and underexplored therapeutic opportunity with immense potential.
Collapse
Affiliation(s)
- Yongjiu Lv
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
43
|
Fu Y, He G, Liu Z, Wang J, Li M, Zhang Z, Bao Q, Wen J, Zhu X, Zhang C, Zhang W. DNA Base Pairing-Inspired Supramolecular Nanodrug Camouflaged by Cancer-Cell Membrane for Osteosarcoma Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202337. [PMID: 35780479 DOI: 10.1002/smll.202202337] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Osteosarcoma (OS) is one of the most common bone malignant tumors which mainly develops in adolescents. Although neoadjuvant chemotherapy has improved the prognosis of patients, numerous chemotherapeutic challenges still limit their use. Here, inspired by the Watson-Crick base pairing in nucleic acids, hydrophobic (methotrexate) and hydrophilic (floxuridine) chemo-drugs are mixed and self-assembled into M:F nanoparticles (M:F NPs) through molecular recognition. Then, the obtained NPs are co-extruded with membranes derived from OS cells to form cancer-cell membrane-coated NPs (CCNPs). With protected membranes at the outer layer, CCNPs are highly stable in both physiological and weak acid tumor conditions and possess homologous tumor targeted capability. Furthermore, the proteomic analysis first identifies over 400 proteins reserved in CCNPs, most of them participating in tumor cell targeting and adhesion processes. In vitro studies reveal that CCNPs significantly inhibit the PI3K/AKT/mTOR pathway, which promotes cell apoptosis and cell cycle arrest. More importantly, cell membrane camouflage significantly prolongs the circulation half-life of CCNPs, elevates the drug accumulation at tumor sites, and promotes anti-tumor efficacy in vivo. As a convenient and effective strategy to construct a biomimetic NP with high drug loading ratio, the CCNPs provide new potentials for precise and synergistic antitumor treatment.
Collapse
Affiliation(s)
- Yucheng Fu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Guoyu He
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zhuochao Liu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jun Wang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Meng Li
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zhusheng Zhang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Qiyuan Bao
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Junxiang Wen
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Weibin Zhang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| |
Collapse
|
44
|
Chen G, Liu Y, Shi G, Luo Y, Sai F, Yang A, Zhou Y, Wu Y, Lin L, Li H. Preparation of polydopamine-modified celastrol nanosuspension and its anti-liver cancer activity in vitro. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
45
|
Wang R, Liang Q, Zhang X, Di Z, Wang X, Di L. Tumor-derived exosomes reversing TMZ resistance by synergistic drug delivery for glioma-targeting treatment. Colloids Surf B Biointerfaces 2022; 215:112505. [PMID: 35487070 DOI: 10.1016/j.colsurfb.2022.112505] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/26/2022] [Accepted: 04/12/2022] [Indexed: 01/03/2023]
Abstract
Temozolomide (TMZ), as the first-line chemotherapeutic agent, relies on inducing DNA methylation of O6-guanine for treating glioma. However, the survival time of patients are hardly exceeded 14.5 months, attributing to inevitable drug resistance and systematic toxicity after long-term administration. Herein, reassembly-exosomes (R-EXO) deriving from homologous glioma cells is proposed to carry TMZ and Dihydrotanshinone (DHT) for reversing drug resistance and enhancing lesions-targeted drug delivery, defined as R-EXO-TMZ/DHT (R-EXO-T/D). It is found that R-EXO-T/D share various advantages, including preferable blood-brain barrier (BBB)-penetrating ability with nanomemter size, tumor-homing accumulation with homologous effects, as well as potentiated antitumor activity with overcoming TMZ resistance and triggering immune response. This work develops a new strategy for site-specific drug delivery, showing a promising application of drug compatibility in glioma treatment.
Collapse
Affiliation(s)
- Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China.
| | - Qifan Liang
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Xinru Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Zhenning Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Xiaohong Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| |
Collapse
|
46
|
Zhang Y, Yue X, Yang S, Li X, Cui L, Cui X, Shi Y, Liu Z, Guo X, Li Y. Long circulation and tumor-targeting biomimetic nanoparticles for efficient chemo/photothermal synergistic therapy. J Mater Chem B 2022; 10:5035-5044. [PMID: 35726686 DOI: 10.1039/d2tb00748g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal therapy combined with chemotherapy based on nanomedicine has been considered a promising strategy for improving therapeutic efficacy in a tumor. However, nanomedicine can be easily cleared by the immune system without specific surface engineering modifications, thus affecting the ultimate efficacy. Herein, multifunctional biomimetic nanoparticles (Bio-RBCm@PDA@MSN-DOX) with enhanced long circulation and targeting ability are constructed by coating large pore-sized mesoporous silica (MSN) with polydopamine (PDA) layers in a biotin modified red blood cell membrane (Bio-RBCm) for efficient chemo/photothermal synergistic therapy. It is demonstrated that Bio-RBCm@PDA@MSN-DOX presents high photothermal conversion efficiency (40.17%) and enhanced capability to accelerate the release of the anticancer drug (doxorubicin, DOX), thus showing a good synergistic therapeutic effect in cell experiments. More importantly, with the assistance of the biotin and RBC membrane, Bio-RBCm@PDA@MSN-DOX can successfully evade immune clearance and effectively target transport to HeLa tumor sites, finally accomplishing up to 98.95% tumor inhibition with negligible side effects to normal tissues. This multilayer structure presents a valuable model for future therapeutic applications with safe and effective tumor chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xuanyu Yue
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Shengchao Yang
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xianglong Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lin Cui
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xiaobin Cui
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China. .,State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yongsheng Li
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China. .,Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
47
|
Xu X, Li T, Jin K. Bioinspired and Biomimetic Nanomedicines for Targeted Cancer Therapy. Pharmaceutics 2022; 14:1109. [PMID: 35631695 PMCID: PMC9147382 DOI: 10.3390/pharmaceutics14051109] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Undesirable side effects and multidrug resistance are the major obstacles in conventional chemotherapy towards cancers. Nanomedicines provide alternative strategies for tumor-targeted therapy due to their inherent properties, such as nanoscale size and tunable surface features. However, the applications of nanomedicines are hampered in vivo due to intrinsic disadvantages, such as poor abilities to cross biological barriers and unexpected off-target effects. Fortunately, biomimetic nanomedicines are emerging as promising therapeutics to maximize anti-tumor efficacy with minimal adverse effects due to their good biocompatibility and high accumulation abilities. These bioengineered agents incorporate both the physicochemical properties of diverse functional materials and the advantages of biological materials to achieve desired purposes, such as prolonged circulation time, specific targeting of tumor cells, and immune modulation. Among biological materials, mammalian cells (such as red blood cells, macrophages, monocytes, and neutrophils) and pathogens (such as viruses, bacteria, and fungi) are the functional components most often used to confer synthetic nanoparticles with the complex functionalities necessary for effective nano-biointeractions. In this review, we focus on recent advances in the development of bioinspired and biomimetic nanomedicines (such as mammalian cell-based drug delivery systems and pathogen-based nanoparticles) for targeted cancer therapy. We also discuss the biological influences and limitations of synthetic materials on the therapeutic effects and targeted efficacies of various nanomedicines.
Collapse
Affiliation(s)
- Xiaoqiu Xu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; (X.X.); (T.L.)
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tong Li
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; (X.X.); (T.L.)
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ke Jin
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; (X.X.); (T.L.)
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Rawal SU, Patel BM, Patel MM. New Drug Delivery Systems Developed for Brain Targeting. Drugs 2022; 82:749-792. [PMID: 35596879 DOI: 10.1007/s40265-022-01717-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSF) are two of the most complex and sophisticated concierges that defend the central nervous system (CNS) by numerous mechanisms. While they maintain the neuro-ecological homeostasis through the regulated entry of essential biomolecules, their conservative nature challenges the entry of most of the drugs intended for CNS delivery. Targeted delivery challenges for a diverse spectrum of therapeutic agents/drugs (non-small molecules, small molecules, gene-based therapeutics, protein and peptides, antibodies) are diverse and demand specialized delivery and disease-targeting strategies. This review aims to capture the trends that have shaped the current brain targeting research scenario. This review discusses the physiological, neuropharmacological, and etiological factors that participate in the transportation of various drug delivery cargoes across the BBB/BCSF and influence their therapeutic intracranial concentrations. Recent research works spanning various invasive, minimally invasive, and non-invasive brain- targeting approaches are discussed. While the pre-clinical outcomes from many of these approaches seem promising, further research is warranted to overcome the translational glitches that prevent their clinical use. Non-invasive approaches like intranasal administration, P-glycoprotein (P-gp) inhibition, pro-drugs, and carrier/targeted nanocarrier-aided delivery systems (alone or often in combination) hold positive clinical prospects for brain targeting if explored further in the right direction.
Collapse
Affiliation(s)
- Shruti U Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, Sarkhej-Sanand Circle Off. S.G. Road, Ahmedabad, Gujarat, 382210, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
49
|
Dai J, Chen Z, Wang S, Xia F, Lou X. Erythrocyte membrane-camouflaged nanoparticles as effective and biocompatible platform: Either autologous or allogeneic erythrocyte-derived. Mater Today Bio 2022; 15:100279. [PMID: 35601893 PMCID: PMC9119842 DOI: 10.1016/j.mtbio.2022.100279] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022]
|
50
|
Immortalized Mesenchymal Stem Cells: A Safe Cell Source for Cellular or Cell Membrane-Based Treatment of Glioma. Stem Cells Int 2022; 2022:6430565. [PMID: 35463812 PMCID: PMC9020902 DOI: 10.1155/2022/6430565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/04/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as putative therapeutic tools due to their intrinsic tumor tropism, and anti-tumor and immunoregulatory properties. The limited passage and self-differentiation abilities of MSCs in vitro hinder preclinical studies on them. In this study, we focused on the safety of immortalized mesenchymal stem cells (im-MSCs) and, for the first time, studied the feasibility of im-MSCs as candidates for the treatment of glioma. The im-MSCs were constructed by lentiviral transfection of genes. The proliferative capacity of im-MSCs and the proliferative phenotype of MSCs and MSCs co-cultured with glioma cells (U87) were measured using CCK-8 or EdU assays. After long-term culture, karyotyping of im-MSCs was conducted. The tumorigenicity of engineered MSCs was evaluated using soft agar cloning assays. Next, the engineered cells were injected into the brain of female BALB/c nude mice. Finally, the cell membranes of im-MSCs were labeled with DiO or DiR to detect their ability to be taken up by glioma cells and target in situ gliomas using the IVIS system. Engineered cells retained the immunophenotype of MSC; im-MSCs maintained the ability to differentiate into mesenchymal lineages in vitro; and im-MSCs showed stronger proliferative capacity than unengineered MSCs but without colony formation in soft agar, no tumorigenicity in the brain, and normal chromosomes. MSCs or im-MSCs co-cultured with U87 cells showed enhanced proliferation ability, but did not show malignant characteristics in vitro. Immortalized cells continued to express homing molecules. The cell membranes of im-MSCs were taken up by glioma cells and targeted in situ gliomas in vivo, suggesting that im-MSCs and their plasma membranes can be used as natural drug carriers for targeting gliomas, and providing a safe, adequate, quality-controlled, and continuous source for the treatment of gliomas based on whole-cell or cell membrane carriers.
Collapse
|