1
|
Zhuang W, Zhang W, Xie L, Wang L, Li Y, Wang Z, Zhang A, Qiu H, Feng J, Zhang B, Hu Y. Generation and Characterization of SORT1-Targeted Antibody-Drug Conjugate for the Treatment of SORT1-Positive Breast Tumor. Int J Mol Sci 2023; 24:17631. [PMID: 38139459 PMCID: PMC10743877 DOI: 10.3390/ijms242417631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Antibody-drug conjugates (ADCs) have greatly improved the outcomes of advanced breast tumors. However, the treatment of breast tumors with existing ADCs is still hindered by many issues, such as tumor antigen heterogeneity and drug resistance. Therefore, ADCs against new targets would provide options for the treatment of these challenges. Sortilin-1 (SORT1) may be a promising target for ADC as it is upregulated in breast cancer. To evaluate the possibility of SORT1 as an ADC target, a humanized antibody_8D302 with high affinity against SORT1 was generated. Additionally, 8D302 was conjugated with MMAE and DXd to generate two ADCs_8D302-MMAE and 8D302-DXd, respectively. Both 8D302-MMAE and 8D302-DXd showed effective cytotoxicity against SORT1 positive breast tumor cell lines and induced bystander killing. Consequently, 8D302-MMAE showed relatively better anti-tumor activity than 8D302-DXd both in vitro and in vivo, but 8D302-DXd had superior safety profile and pharmacokinetics profile over 8D302-MMAE. Furthermore, SORT1 induced faster internalization and lysosomal trafficking of antibodies and had a higher turnover compared with HER2. Also, 8D302-DXd exhibited superior cell cytotoxicity and tumor suppression over trastuzumab-DXd, a HER2-targeted ADC. We hypothesize that the high turnover of SORT1 enables SORT1-targeted ADC to be a powerful agent for the treatment of SORT1-positive breast tumor.
Collapse
Affiliation(s)
- Weiliang Zhuang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (W.Z.); (L.W.)
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China; (W.Z.); (L.X.); (Y.L.); (Z.W.); (A.Z.); (H.Q.); (J.F.)
| | - Wei Zhang
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China; (W.Z.); (L.X.); (Y.L.); (Z.W.); (A.Z.); (H.Q.); (J.F.)
| | - Liping Xie
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China; (W.Z.); (L.X.); (Y.L.); (Z.W.); (A.Z.); (H.Q.); (J.F.)
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (W.Z.); (L.W.)
| | - Yuan Li
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China; (W.Z.); (L.X.); (Y.L.); (Z.W.); (A.Z.); (H.Q.); (J.F.)
| | - Ziyu Wang
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China; (W.Z.); (L.X.); (Y.L.); (Z.W.); (A.Z.); (H.Q.); (J.F.)
| | - Ao Zhang
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China; (W.Z.); (L.X.); (Y.L.); (Z.W.); (A.Z.); (H.Q.); (J.F.)
| | - Haitao Qiu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China; (W.Z.); (L.X.); (Y.L.); (Z.W.); (A.Z.); (H.Q.); (J.F.)
| | - Jun Feng
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China; (W.Z.); (L.X.); (Y.L.); (Z.W.); (A.Z.); (H.Q.); (J.F.)
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (W.Z.); (L.W.)
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China; (W.Z.); (L.X.); (Y.L.); (Z.W.); (A.Z.); (H.Q.); (J.F.)
| |
Collapse
|
2
|
Zhuang W, Zhang W, Wang L, Xie L, Feng J, Zhang B, Hu Y. Generation of a Novel SORT1×HER2 Bispecific Antibody-Drug Conjugate Targeting HER2-Low-Expression Tumor. Int J Mol Sci 2023; 24:16056. [PMID: 38003245 PMCID: PMC10671096 DOI: 10.3390/ijms242216056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is considered an ideal antibody-drug conjugate (ADC) target because the gene is overexpressed in many tumors compared to normal tissues. Multiple anti-HER2 ADCs conjugated with different toxic payloads bring benefits to patients with high HER2 expression. However, HER2-targeted ADC technology needs further optimization to improve its effect for the treatment of patients with low HER2 expression. We hypothesized that bispecific antibody-drug conjugate (bsADC) targeting HER2 and Sortilin-1 (SORT1) would overcome this limitation. SORT1 is a suitable target for pairing with HER2 to generate a bispecific antibody (BsAb) since the gene is co-expressed with HER2 in tumors and possesses rapid internalization. We developed a BsAb (bsSORT1×HER2) that exhibited strong binding and internalization activity on HER2-low-expression tumor cells and facilitated higher HER2 degradation. The bsSORT1×HER2 was further conjugated with DXd to generate a bsADC (bsSORT1×HER2-DXd) that showed strong cytotoxicity on HER2-low-expression tumor cells and antitumor efficacy in an MDA-MB-231 xenograft mice model. These results demonstrated that employment of a SORT1×HER2-targeted bsADC may be promising to improve the antitumor efficacy of HER2-targeted ADC for the treatment of tumors with low HER2 expression.
Collapse
Affiliation(s)
- Weiliang Zhuang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Wei Zhang
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liping Xie
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Jun Feng
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| |
Collapse
|
3
|
Milyutina YP, Arutjunyan AV, Korenevsky AV, Selkov SA, Kogan IY. Neurotrophins: are they involved in immune tolerance in pregnancy? Am J Reprod Immunol 2023; 89:e13694. [PMID: 36792972 DOI: 10.1111/aji.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
In this review, an attempt was made to substantiate the possibility for neurotrophins to be involved in the development of immune tolerance based on data accumulated on neurotrophin content and receptor expression in the trophoblast and immune cells, in particular, in natural killer cells. Numerous research results are reviewed to show that the expression and localization of neurotrophins along with their high-affinity tyrosine kinase receptors and low-affinity p75NTR receptor in the mother-placenta-fetus system indicate the important role of neurotrophins as binding molecules in regulating the crosstalk between the nervous, endocrine, and immune systems in pregnancy. An imbalance between these systems can occur with tumor growth and pathological processes observed in pregnancy complications and fetal development anomalies.
Collapse
Affiliation(s)
- Yulia P Milyutina
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - Alexander V Arutjunyan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Andrey V Korenevsky
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Sergey A Selkov
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Igor Yu Kogan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| |
Collapse
|
4
|
Lin W, Aluicio-Sarduy E, Houson HA, Barnhart TE, Tekin V, Jeffery JJ, Weichmann AM, Barrett KE, Lapi SE, Engle JW. Theranostic cobalt-55/58m for neurotensin receptor-mediated radiotherapy in vivo: A pilot study with dosimetry. Nucl Med Biol 2023; 118-119:108329. [PMID: 36805869 PMCID: PMC10121947 DOI: 10.1016/j.nucmedbio.2023.108329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Neurotensin receptor 1 (NTSR1) can stimulate tumor proliferation through neurotensin (NTS) activation and are overexpressed by a variety of cancers. The high binding affinity of NTS/NTSR1 makes radiolabeled NTS derivatives interesting for cancer diagnosis and staging. Internalization of NTS/NTSR1 also suggests therapeutic application with high LET alpha particles and low energy electrons. We investigated the therapeutic efficacy of [58mCo]Co-NOTA-NT-20.3 in vivo using murine models xenografted with NTSR1-positive HT29 human colorectal adenocarcinoma cells, and utilized [55Co]Co-NOTA-NT-20.3 for dosimetry. METHODS Targeting properties and cytotoxicity of [55/58mCo]Co-NOTA-NT-20.3 were assessed with HT29 cells. Female nude mice were xenografted with HT29 tumors and administered [55Co or 58mCo]Co-NOTA-NT-20.3 to evaluate pharmacokinetics or for therapy, respectively. Dosimetry calculations followed the Medical Internal Radiation Dose (MIRD) formalism and human absorbed dose rate per unit activity were obtained from OpenDose. The pilot therapy study consisted of two groups (each N = 3) receiving 110 ± 15 MBq and 26 ± 6 MBq [58mCo]Co-NOTA-NT-20.3 one week after tumor inoculation, and control (N = 3). Tumor sizes and masses were measured twice a week after therapy. Complete blood count and kidney histology were also performed to assess toxicity. RESULTS HPLC measured radiochemical purity of [55,58mCo]Co-NOTA-NT-20.3 > 99 %. Labeled compounds retained NTS targeting properties. [58mCo]Co-NOTA-NT-20.3 exhibited cytotoxicity for HT29 cells and was >15× more potent than [58mCo]CoCl2. Xenografted tumors responded modestly to administered doses, but mice showed no signs of radiotoxicity. Absorbed dose to tumor and kidney with 110 MBq [58mCo]Co-NOTA-NT-20.3 were 0.6 Gy and 0.8 Gy, respectively, and other organs received less than half of the absorbed dose to tumor. Off-target radiation dose from cobalt-58g was small but reduces the therapeutic window. CONCLUSION The enhanced in vitro cytotoxicity and high tumor-to-background led us to investigate the therapeutic efficacy of [58mCo]Co-NOTA-NT-20.3 in vivo. Although we were unable to induce tumor response commensurate with [177Lu]Lu-NT127 (NLys-Lys-Pro-Tyr-Tle-Leu) studies involving similar time-integrated activity, the absence of observed toxicity may constitute an opportunity for targeting vectors with improved uptake and/or retention to avoid the aftereffects of other high-LET radioactive emissions. Future studies with higher uptake, activity and/or multiple dosing regimens are warranted. The theranostic approach employed in this work was crucial for dosimetry analysis.
Collapse
Affiliation(s)
- Wilson Lin
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States.
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
| | - Hailey A Houson
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave South, Birmingham, AL 35294, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
| | - Volkan Tekin
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave South, Birmingham, AL 35294, United States
| | - Justin J Jeffery
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, United States
| | - Ashley M Weichmann
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, United States
| | - Kendall E Barrett
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave South, Birmingham, AL 35294, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States; Department of Radiology, University of Wisconsin, 600 Highland Ave., Madison, WI 53792, United States
| |
Collapse
|
5
|
Mitok KA, Keller MP, Attie AD. Sorting through the extensive and confusing roles of sortilin in metabolic disease. J Lipid Res 2022; 63:100243. [PMID: 35724703 PMCID: PMC9356209 DOI: 10.1016/j.jlr.2022.100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023] Open
Abstract
Sortilin is a post-Golgi trafficking receptor homologous to the yeast vacuolar protein sorting receptor 10 (VPS10). The VPS10 motif on sortilin is a 10-bladed β-propeller structure capable of binding more than 50 proteins, covering a wide range of biological functions including lipid and lipoprotein metabolism, neuronal growth and death, inflammation, and lysosomal degradation. Sortilin has a complex cellular trafficking itinerary, where it functions as a receptor in the trans-Golgi network, endosomes, secretory vesicles, multivesicular bodies, and at the cell surface. In addition, sortilin is associated with hypercholesterolemia, Alzheimer's disease, prion diseases, Parkinson's disease, and inflammation syndromes. The 1p13.3 locus containing SORT1, the gene encoding sortilin, carries the strongest association with LDL-C of all loci in human genome-wide association studies. However, the mechanism by which sortilin influences LDL-C is unclear. Here, we review the role sortilin plays in cardiovascular and metabolic diseases and describe in detail the large and often contradictory literature on the role of sortilin in the regulation of LDL-C levels.
Collapse
Affiliation(s)
- Kelly A Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Characterisation of the Expression of Neurotensin and Its Receptors in Human Colorectal Cancer and Its Clinical Implications. Biomolecules 2020; 10:biom10081145. [PMID: 32764278 PMCID: PMC7464404 DOI: 10.3390/biom10081145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 01/22/2023] Open
Abstract
Introduction: Colorectal Cancer (CRC) accounts for 9% of cancer deaths globally. Hormonal pathways play important roles in some cancers. This study investigated the association of CRC expression of neurotensin (NTS), NTS receptors 1 and 3 (NTSR1 and NTSR3) and clinical outcomes. Methods: A prospective cohort study which quantifies the protein expression of NTS, NTSR1 and NTSR3 in human CRCs using immunohistochemistry. Expression levels were then compared with clinico-pathological outcome including histological grade, overall survival (OS) and disease-free survival (DFS). Results: Sixty-four patients were enrolled with median follow-up of 44.0 months. There was significantly higher expression of NTS in cancer tissue in CRC with higher T stages (p < 0.01), N stages (p = 0.03), and AJCC clinical stages (p = 0.04). There was significantly higher expression of NTS, NTSR1 and NTSR3 in cancer tissue compared to surrounding normal epithelium (median H-score 163.5 vs 97.3, p < 0.01). There was significantly shorter DFS in individuals with CRC with high levels of NTS compared to lower levels of NTS (35.8 months 95% CI 28.7–42.8 months vs 46.4 months 95% CI 42.2–50.5 months, respectively, p = 0.02). Above median NTS expression in cancer tissue was a significant risk factor for disease recurrence (HR 4.10, 95% CI 1.14–14.7, p = 0.03). Discussion: The expression of NTS and its receptors has the potential to be utilised as a predictive and prognostic marker in colorectal cancer for postoperative selection for adjuvant therapy and identify individuals for novel therapies targeting the neurotensinergic pathways. Conclusions: High NTS expression appears to be associated with more advanced CRC and worse DFS.
Collapse
|
7
|
Abstract
Previously, we revealed that neurotensin (NTS) derived from the oviduct and uterus can function during fertilization. However, little is known about NTS
actions on the pre-implantation embryo after fertilization. Here, we found that pro-Nts mRNA is expressed in the oviduct and uterus during when
preimplantation embryos develop and an increase in mRNA level in the uterus is induced by human chorionic gonadotropin (hCG) treatment. Expression of mRNA for
two NTS receptors, Ntr1 and Ntr3, was found throughout these stages, whereas Ntr2 mRNA was not detected,
suggesting that NTS signaling occurred through NTR1 and NTR3. Supplementation of 1, 10, 100 or 1000 nM NTS to embryo culture medium after fertilization showed
that 100 nM NTS significantly improved the blastocyst formation. In comparison, the total number of cells and inner cell mass ratio of blastocysts was not
significant different between the 0 nM and 100 nM NTS treatment groups. These results indicate that NTS has a positive effect upon preimplantation embryo
development in vitro.
Collapse
Affiliation(s)
- Yuki Hiradate
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-8572, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-8572, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-8572, Japan
| |
Collapse
|
8
|
Dao T, Salahuddin S, Charfi C, Sicard AA, Jenabian MA, Annabi B. Pharmacological targeting of neurotensin response by diet-derived EGCG in macrophage-differentiated HL-60 promyelocytic leukemia cells. PHARMANUTRITION 2020; 12:100191. [DOI: 10.1016/j.phanu.2020.100191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Löw K, Hardes K, Fedeli C, Seidah NG, Constam DB, Pasquato A, Steinmetzer T, Roulin A, Kunz S. A novel cell-based sensor detecting the activity of individual basic proprotein convertases. FEBS J 2019; 286:4597-4620. [PMID: 31276291 DOI: 10.1111/febs.14979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/13/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
The basic proprotein convertases (PCs) furin, PC1/3, PC2, PC5/6, PACE4, PC4, and PC7 are promising drug targets for human diseases. However, developing selective inhibitors remains challenging due to overlapping substrate recognition motifs and limited structural information. Classical drug screening approaches for basic PC inhibitors involve homogeneous biochemical assays using soluble recombinant enzymes combined with fluorogenic substrate peptides that may not accurately recapitulate the complex cellular context of the basic PC-substrate interaction. Herein we report basic PC sensor (BPCS), a novel cell-based molecular sensor that allows rapid screening of candidate inhibitors and their selectivity toward individual basic PCs within mammalian cells. BPCS consists of Gaussia luciferase linked to a sortilin-1 membrane anchor via a cleavage motif that allows efficient release of luciferase specifically if individual basic PCs are provided in the same membrane. Screening of selected candidate peptidomimetic inhibitors revealed that BPCS can readily distinguish between general and selective PC inhibitors in a high-throughput screening format. The robust and cost-effective assay format of BPCS makes it suitable to identify novel specific small-molecule inhibitors against basic PCs for therapeutic application. Its cell-based nature will allow screening for drug targets in addition to the catalytically active mature enzyme, including maturation, transport, and cellular factors that modulate the enzyme's activity. This broadened 'target range' will enhance the likelihood to identify novel small-molecule compounds that inhibit basic PCs in a direct or indirect manner and represents a conceptual advantage.
Collapse
Affiliation(s)
- Karin Löw
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Kornelia Hardes
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Germany
| | - Chiara Fedeli
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, (Affiliated to the University of Montreal), Canada
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Switzerland
| | - Antonella Pasquato
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland
| | - Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Germany
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland
| |
Collapse
|
10
|
Richner M, Pallesen LT, Ulrichsen M, Poulsen ET, Holm TH, Login H, Castonguay A, Lorenzo LE, Gonçalves NP, Andersen OM, Lykke-Hartmann K, Enghild JJ, Rønn LCB, Malik IJ, De Koninck Y, Bjerrum OJ, Vægter CB, Nykjær A. Sortilin gates neurotensin and BDNF signaling to control peripheral neuropathic pain. SCIENCE ADVANCES 2019; 5:eaav9946. [PMID: 31223654 PMCID: PMC6584543 DOI: 10.1126/sciadv.aav9946] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/14/2019] [Indexed: 05/10/2023]
Abstract
Neuropathic pain is a major incurable clinical problem resulting from peripheral nerve trauma or disease. A central mechanism is the reduced expression of the potassium chloride cotransporter 2 (KCC2) in dorsal horn neurons induced by brain-derived neurotrophic factor (BDNF), causing neuronal disinhibition within spinal nociceptive pathways. Here, we demonstrate how neurotensin receptor 2 (NTSR2) signaling impairs BDNF-induced spinal KCC2 down-regulation, showing how these two pathways converge to control the abnormal sensory response following peripheral nerve injury. We establish how sortilin regulates this convergence by scavenging neurotensin from binding to NTSR2, thus modulating its inhibitory effect on BDNF-mediated mechanical allodynia. Using sortilin-deficient mice or receptor inhibition by antibodies or a small-molecule antagonist, we lastly demonstrate that we are able to fully block BDNF-induced pain and alleviate injury-induced neuropathic pain, validating sortilin as a clinically relevant target.
Collapse
Affiliation(s)
- Mette Richner
- The Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Denmark
| | - Lone T. Pallesen
- The Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Denmark
| | - Maj Ulrichsen
- The Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Denmark
| | - Ebbe T. Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Thomas H. Holm
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Denmark
| | - Hande Login
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Denmark
| | - Annie Castonguay
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Louis-Etienne Lorenzo
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Nádia P. Gonçalves
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Denmark
| | - Olav M. Andersen
- The Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Denmark
| | - Karin Lykke-Hartmann
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Denmark
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Lars C. B. Rønn
- Neurodegeneration Disease Biology Unit, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Ibrahim J. Malik
- Neurodegeneration Disease Biology Unit, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Ole J. Bjerrum
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Christian B. Vægter
- The Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Denmark
- Corresponding author.
| | - Anders Nykjær
- The Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Denmark
- The Danish National Research Foundation Center, PROMEMO, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Talbot H, Saada S, Naves T, Gallet PF, Fauchais AL, Jauberteau MO. Regulatory Roles of Sortilin and SorLA in Immune-Related Processes. Front Pharmacol 2019; 9:1507. [PMID: 30666202 PMCID: PMC6330335 DOI: 10.3389/fphar.2018.01507] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/10/2018] [Indexed: 12/25/2022] Open
Abstract
Sortilin, also known as Neurotensin Receptor-3, and the sorting-related receptor with type-A repeats (SorLA) are both members of the Vps10p domain receptor family. Initially identified in CNS cells, they are expressed in various other cell types where they exert multiple functions. Although mostly studied for its involvement in Alzheimer’s disease, SorLA has recently been shown to be implicated in immune response by regulating IL-6-mediated signaling, as well as driving monocyte migration. Sortilin has been shown to act as a receptor, as a co-receptor and as an intra- and extracellular trafficking regulator. In the last two decades, deregulation of sortilin has been demonstrated to be involved in many human pathophysiologies, including neurodegenerative disorders (Alzheimer and Parkinson diseases), type 2 diabetes and obesity, cancer, and cardiovascular pathologies such as atherosclerosis. Several studies highlighted different functions of sortilin in the immune system, notably in microglia, pro-inflammatory cytokine regulation, phagosome fusion and pathogen clearance. In this review, we will analyze the multiple roles of sortilin and SorLA in the human immune system and how their deregulation may be involved in disease development.
Collapse
Affiliation(s)
- Hugo Talbot
- Faculty of Medicine, University of Limoges, Limoges, France
| | - Sofiane Saada
- Faculty of Medicine, University of Limoges, Limoges, France
| | - Thomas Naves
- Faculty of Medicine, University of Limoges, Limoges, France
| | | | - Anne-Laure Fauchais
- Faculty of Medicine, University of Limoges, Limoges, France.,Department of Internal Medicine, University Hospital Limoges Dupuytren Hospital, Limoges, France
| | - Marie-Odile Jauberteau
- Faculty of Medicine, University of Limoges, Limoges, France.,Department of Immunology, University Hospital Limoges Dupuytren Hospital, Limoges, France
| |
Collapse
|
12
|
Andersson CH, Hansson O, Minthon L, Andreasen N, Blennow K, Zetterberg H, Skoog I, Wallin A, Nilsson S, Kettunen P. A Genetic Variant of the Sortilin 1 Gene is Associated with Reduced Risk of Alzheimer's Disease. J Alzheimers Dis 2018; 53:1353-63. [PMID: 27392867 PMCID: PMC5147507 DOI: 10.3233/jad-160319] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder represented by the accumulation of intracellular tau protein and extracellular deposits of amyloid-β (Aβ) in the brain. The gene sortilin 1 (SORT1) has previously been associated with cardiovascular disease in gene association studies. It has also been proposed to be involved in AD pathogenesis through facilitating Aβ clearance by binding apoE/Aβ complexes prior to cellular uptake. However, the neuropathological role of SORT1 in AD is not fully understood. To evaluate the associations between gene variants of SORT1 and risk of AD, we performed genetic analyses in a Swedish case-control cohort. Ten single nucleotide polymorphisms (SNPs), covering the whole SORT1 gene, were selected and genotyped in 620 AD patients and 1107 controls. The SNP rs17646665, located in a non-coding region of the SORT1 gene, remained significantly associated with decreased risk of AD after multiple testing (pc = 0.0061). In addition, other SNPs were found to be nominally associated with risk of AD, as well as altered cognitive function and the CSF biomarker Aβ42, but these associations did not survive correction for multiple testing. The fact that SORT1 has been strongly associated with risk of cardiovascular disease is intriguing as cardiovascular disease is also regarded as a risk factor for AD. Finally, increased knowledge about SORT1 function has a potential to increase our understanding of APOE, the strongest risk factor for AD.
Collapse
Affiliation(s)
- Carl-Henrik Andersson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Lennart Minthon
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niels Andreasen
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Ingmar Skoog
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Wallin
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Sweden
| | - Petronella Kettunen
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Leloup N, Lössl P, Meijer DH, Brennich M, Heck AJR, Thies-Weesie DME, Janssen BJC. Low pH-induced conformational change and dimerization of sortilin triggers endocytosed ligand release. Nat Commun 2017; 8:1708. [PMID: 29167428 PMCID: PMC5700061 DOI: 10.1038/s41467-017-01485-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022] Open
Abstract
Low pH-induced ligand release and receptor recycling are important steps for endocytosis. The transmembrane protein sortilin, a β-propeller containing endocytosis receptor, internalizes a diverse set of ligands with roles in cell differentiation and homeostasis. The molecular mechanisms of pH-mediated ligand release and sortilin recycling are unresolved. Here we present crystal structures that show the sortilin luminal segment (s-sortilin) undergoes a conformational change and dimerizes at low pH. The conformational change, within all three sortilin luminal domains, provides an altered surface and the dimers sterically shield a large interface while bringing the two s-sortilin C-termini into close proximity. Biophysical and cell-based assays show that members of two different ligand families, (pro)neurotrophins and neurotensin, preferentially bind the sortilin monomer. This indicates that sortilin dimerization and conformational change discharges ligands and triggers recycling. More generally, this work may reveal a double mechanism for low pH-induced ligand release by endocytosis receptors. Sortilin is an endocytosis receptor with a luminal β-propeller domain. Here the authors present the structures of the β-propeller domain at neutral and acidic pH, which reveal that sortilin dimerises and undergoes conformational changes at low pH and further propose a model for low pH-induced ligand release by endocytosis receptors.
Collapse
Affiliation(s)
- Nadia Leloup
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Philip Lössl
- Biomolecular Mass Spectrometry & Proteomics and Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Dimphna H Meijer
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Martha Brennich
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, 38000, France
| | - Albert J R Heck
- Biomolecular Mass Spectrometry & Proteomics and Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Dominique M E Thies-Weesie
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Bert J C Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Besserer-Offroy É, Brouillette RL, Lavenus S, Froehlich U, Brumwell A, Murza A, Longpré JM, Marsault É, Grandbois M, Sarret P, Leduc R. The signaling signature of the neurotensin type 1 receptor with endogenous ligands. Eur J Pharmacol 2017; 805:1-13. [DOI: 10.1016/j.ejphar.2017.03.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/17/2022]
|
15
|
Qiu S, Pellino G, Fiorentino F, Rasheed S, Darzi A, Tekkis P, Kontovounisios C. A Review of the Role of Neurotensin and Its Receptors in Colorectal Cancer. Gastroenterol Res Pract 2017; 2017:6456257. [PMID: 28316623 PMCID: PMC5339424 DOI: 10.1155/2017/6456257] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/24/2017] [Indexed: 12/25/2022] Open
Abstract
Neurotensin (NTS) is a physiologically occurring hormone which affects the function of the gastrointestinal (GI) tract. In recent years, NTS, acting through its cellular receptors (NTSR), has been implicated in the carcinogenesis of several cancers. In colorectal cancer (CRC), a significant body of evidence, from in vitro and in vivo studies, is available which elucidates the molecular biology of NTS/NTSR signalling and the resultant growth of CRC cells. There is growing clinical data from human studies which corroborate the role NTS/NTSR plays in the development of human CRC. Furthermore, blockade and modulation of the NTS/NTSR signalling pathways appears to reduce CRC growth in cell cultures and animal studies. Lastly, NTS/NTSR also shows potential of being utilised as a diagnostic biomarker for cancers as well as targets for functional imaging. We summarise the existing evidence and understanding of the role of NTS and its receptors in CRC.
Collapse
Affiliation(s)
- Shengyang Qiu
- Department of Surgery and Cancer, Imperial College London, Chelsea & Westminster Hospital Campus, London, UK
| | - Gianluca Pellino
- Department of Colorectal Surgery, The Royal Marsden Hospital, Chelsea, London, UK
| | - Francesca Fiorentino
- Department of Surgery and Cancer, Imperial College London, Chelsea & Westminster Hospital Campus, London, UK
| | - Shahnawaz Rasheed
- Department of Colorectal Surgery, The Royal Marsden Hospital, Chelsea, London, UK
| | - Ara Darzi
- Department of Colorectal Surgery, The Royal Marsden Hospital, Chelsea, London, UK
| | - Paris Tekkis
- Department of Surgery and Cancer, Imperial College London, Chelsea & Westminster Hospital Campus, London, UK
- Department of Colorectal Surgery, The Royal Marsden Hospital, Chelsea, London, UK
| | - Christos Kontovounisios
- Department of Surgery and Cancer, Imperial College London, Chelsea & Westminster Hospital Campus, London, UK
- Department of Colorectal Surgery, The Royal Marsden Hospital, Chelsea, London, UK
| |
Collapse
|
16
|
Ghaemimanesh F, Bayat AA, Babaei S, Ahmadian G, Zarnani AH, Behmanesh M, Jeddi-Tehrani M, Rabbani H. Production and Characterization of a Novel Monoclonal Antibody Against Human Sortilin. Monoclon Antib Immunodiagn Immunother 2016; 34:390-5. [PMID: 26683178 DOI: 10.1089/mab.2015.0042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sortilin, as a member of Vps10p-domain sorting receptor family, is overexpressed in a number of malignancies, including ovarian carcinoma. Antibodies against sortilin may contribute to further clarification of sortilin functional activities in signal transduction, intracellular sorting of proteins, and endocytosis. The aim of this study was to produce a monoclonal antibody against a synthetic peptide derived from extracellular N-terminal region of sortilin to be used as a tool for investigating sortilin characteristics in ovarian carcinoma. A synthetic peptide derived from the last 50 amino acids of extracellular domain of sortilin protein was selected and conjugated to keyhole limpet hemocyanin and used to immunize mice. The anti-sortilin monoclonal antibody (MAb), clone 2D8, was purified from supernatant of final hybridoma clone using peptide-affinity chromatography column. Reactivity of antibody with the immunizing peptide was assessed in ELISA. Furthermore, flow cytometry and Western blot analyses were used to investigate the reactivity of antibody with its target in a panel of ovarian carcinoma cell lines or tissues. MAb 2D8 was able to recognize the coated immunizing peptide in ELISA and detect its protein target, sortilin, in flow cytometry and Western blot analyses. The achieved data suggest that the developed monoclonal antibody may be applicable as a research tool for detection of sortilin protein in Western blot as well as flow cytometry tests.
Collapse
Affiliation(s)
- Fatemeh Ghaemimanesh
- 1 Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University , Tehran, Iran .,2 Monoclonal Antibody Research Center; Nanobiotechnology Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| | - Ali Ahmad Bayat
- 2 Monoclonal Antibody Research Center; Nanobiotechnology Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| | - Sepideh Babaei
- 2 Monoclonal Antibody Research Center; Nanobiotechnology Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| | - Gholamreza Ahmadian
- 3 Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran, Iran
| | - Amir-Hassan Zarnani
- 4 Immunology Research Center, Iran University of Medical Sciences , Tehran, Iran
| | - Mehrdad Behmanesh
- 1 Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University , Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- 2 Monoclonal Antibody Research Center; Nanobiotechnology Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| | - Hodjattallah Rabbani
- 2 Monoclonal Antibody Research Center; Nanobiotechnology Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| |
Collapse
|
17
|
Schmidt V, Willnow TE. Protein sorting gone wrong – VPS10P domain receptors in cardiovascular and metabolic diseases. Atherosclerosis 2016; 245:194-9. [DOI: 10.1016/j.atherosclerosis.2015.11.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/04/2015] [Accepted: 11/23/2015] [Indexed: 01/02/2023]
|
18
|
Maschke M, Grohmann J, Nierhaus C, Lieb M, Metzler-Nolte N. Peptide Bioconjugates of Electron-Poor Metallocenes: Synthesis, Characterization, and Anti-Proliferative Activity. Chembiochem 2015; 16:1333-42. [DOI: 10.1002/cbic.201500060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 12/16/2022]
|
19
|
The potential of neurotensin secreted from neuroendocrine tumor cells to promote gelsolin-mediated invasiveness of prostate adenocarcinoma cells. J Transl Med 2015; 95:283-95. [PMID: 25581609 DOI: 10.1038/labinvest.2014.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 01/11/2023] Open
Abstract
Neuroendocrine (NE) cells in prostate cancer have been shown to be associated with the progression of prostate cancer. However, little is known about the molecular basis of this association. We have previously demonstrated that NE cells promote metastasis of a human prostate cancer cell line (LNCaP) with overexpression of the gelsolin gene. The purpose of this study was to investigate the interactions between NE cells and LNCaP cells and the involvement of gelsolin in contributing to the invasive potential of LNCaP cells. In addition, we examined whether neurotensin induced gelsolin-mediated invasion. We used the NE cell line NE-CS that was established from the prostate of the LPB-Tag 12T-10 transgenic mouse. Small interfering RNA (siRNA) targeting gelsolin or not targeting it was transfected into LNCaP cells. Cell invasion was assessed by Matrigel invasion assay. The supernatant of NE-CS cells and neurotensin induced the transformation of LNCaP cells. Neurotensin was observed in the supernatant of NE-CS cells but not in LNCaP cells. The siRNA targeting of gelsolin resulted in inhibition of invasion of LNCaP cells in the culture medium with neurotensin added, and in the supernatant of NE-CS cells with epidermal growth factor. The invasive potential of LNCaP cells enhanced by neurotensin or the supernatant of NE-CS cells through neurotensin receptor 1 (NTSR1) was blocked by a phospholipase Cγ inhibitor and an intracellular calcium chelator, with concomitant gelsolin suppression. This study indicates that NE cells and neurotensin induce gelsolin-mediated invasion of LNCaP cells through NTSR1 activation.
Collapse
|
20
|
Carlo AS, Nykjaer A, Willnow TE. Sorting receptor sortilin-a culprit in cardiovascular and neurological diseases. J Mol Med (Berl) 2014; 92:905-11. [PMID: 24838608 DOI: 10.1007/s00109-014-1152-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/19/2014] [Indexed: 11/30/2022]
Abstract
Sortilin is a sorting receptor that directs target proteins, such as growth factors, signaling receptors, and enzymes, to their destined location in secretory or endocytic compartments of cells. The activity of sortilin is essential for proper function of not only neurons but also non-neuronal cell types, and receptor (dys)function emerges as a major cause of malignancies, including hypercholesterolemia, retinal degeneration, neuronal cell loss in stroke and spinal cord injury, or Alzheimer's disease and other neurodegenerative disorders. In this article, we describe the molecular mechanisms of sortilin action in protein sorting and signaling and how modulation of receptor function may offer novel therapeutic strategies for treatment of common diseases of the cardiovascular and nervous systems.
Collapse
Affiliation(s)
- Anne-Sophie Carlo
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | | | | |
Collapse
|
21
|
Erfani M, Zarrabi Ahrabi N, Shafiei M, Shirmardi SP. A (99m) Tc-tricine-HYNIC-labeled peptide targeting the neurotensin receptor for single-photon imaging in malignant tumors. J Labelled Comp Radiopharm 2014; 57:125-31. [PMID: 24395489 DOI: 10.1002/jlcr.3176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 11/06/2022]
Abstract
In this study, a new neurotensin (NT) analog was labeled with (99m) Tc via HYNIC chelator and tricine as coligand and investigated further. An NT (7-13) analog was prepared, and labeling with (99m) Tc was performed. The internalization rate and biodistribution of radiopeptide were studied in HT-29 cells and nude mice bearing tumor, respectively. Radiolabeling with (99m) Tc was performed at high specific activities (54 MBq/nmol) with an acceptable labeling yield (>95%). In vitro cell line studies showed a specific internalization uptake up to 13.23 ± 0.45% during 4 h which was blocked in the presence of excess cold peptide to 0.83 ± 0.15%. In biodistribution studies, uptake was observed in NT receptor-positive organs so that after 1 h the uptakes in mouse intestine and tumor were 1.23 ± 0.16% ID/g and 1.12 ± 0.11% ID/g, respectively. In animals co-injected with excess cold peptide, reduction uptake in tumor and intestines were 73% (1.10% vs. 0.29% ID/g at 4 h) and 61% (1.22% vs. 0.47% ID/g at 4 h) respectively. Predominant renal excretion pathway with a highest accumulation of activity in bladder was observed for this radiopeptide. This radiolabeled peptide could be a candidate for detection of NT positive tumors.
Collapse
Affiliation(s)
- Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), PO Box: 11365-3486, end of Karegar Ave., Tehran, Iran
| | | | | | | |
Collapse
|
22
|
Lee WC, Almeida S, Prudencio M, Caulfield TR, Zhang YJ, Tay WM, Bauer PO, Chew J, Sasaguri H, Jansen-West KR, Gendron TF, Stetler CT, Finch N, Mackenzie IR, Rademakers R, Gao FB, Petrucelli L. Targeted manipulation of the sortilin-progranulin axis rescues progranulin haploinsufficiency. Hum Mol Genet 2013; 23:1467-78. [PMID: 24163244 PMCID: PMC3929086 DOI: 10.1093/hmg/ddt534] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Progranulin (GRN) mutations causing haploinsufficiency are a major cause of frontotemporal lobar degeneration (FTLD-TDP). Recent discoveries demonstrating sortilin (SORT1) is a neuronal receptor for PGRN endocytosis and a determinant of plasma PGRN levels portend the development of enhancers targeting the SORT1–PGRN axis. We demonstrate the preclinical efficacy of several approaches through which impairing PGRN's interaction with SORT1 restores extracellular PGRN levels. Our report is the first to demonstrate the efficacy of enhancing PGRN levels in iPSC neurons derived from frontotemporal dementia (FTD) patients with PGRN deficiency. We validate a small molecule preferentially increases extracellular PGRN by reducing SORT1 levels in various mammalian cell lines and patient-derived iPSC neurons and lymphocytes. We further demonstrate that SORT1 antagonists and a small-molecule binder of PGRN588–593, residues critical for PGRN–SORT1 binding, inhibit SORT1-mediated PGRN endocytosis. Collectively, our data demonstrate that the SORT1–PGRN axis is a viable target for PGRN-based therapy, particularly in FTD-GRN patients.
Collapse
Affiliation(s)
- Wing C Lee
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ahrabi NZ, Erfani M, Parivar K, Beiki D, Jalilian AR. Preparation and evaluation of a new neurotensin analog labeled with 99mTc for targeted imaging of neurotensin receptor positive tumors. J Radioanal Nucl Chem 2013. [DOI: 10.1007/s10967-013-2795-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Kruger WA, Monteith GR, Poronnik P. NHERF-1 regulation of EGF and neurotensin signalling in HT-29 epithelial cells. Biochem Biophys Res Commun 2013; 432:568-73. [PMID: 23454118 DOI: 10.1016/j.bbrc.2013.02.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 02/07/2023]
Abstract
Neurotensin receptors (NT-R) and the epidermal growth factor receptors (EGF-R) are commonly overexpressed in many epithelial origin tumours. In addition to their role as mitogenic mediators through specific cell signalling, recent studies indicate that the activity/expression of scaffold proteins responsible for the assembly and coordination of the signalling complexes may also have central roles in epithelial transformation. In particular, the "epithelial" PSD-95/Dlg/Zo-1 (PDZ) scaffold/adapter protein, Na(+)/H(+) exchanger regulatory factor isoform one (NHERF-1), has been identified as a potential regulator of cellular transformation. NHERF-1 is a known regulator of EGF-R function and plays numerous roles in G-protein-coupled receptor signalling. Because of the synergistic signalling between these two potent mitogens, we investigated a potential role for NHERF-1 in the molecular mechanism linking the aberrant proliferative phenotype initiated by some G-Protein-coupled receptor activators in the colon adenocarcinoma HT-29 cell line. Knockdown (80%) of endogenous NHERF-1 leads to significant reduction in proliferation rate; an effect that could not be recovered by exogenous application of either NT or EGF. Inhibition of the EGF-R with AG1487 also inhibited proliferation and this effect could not be recovered with NT. Knockdown of NHERF-1 significantly altered the expression of the EGF-R, and almost completely abolished the NT-mediated increases in intracellular free Ca(2+). Knockdown of NHERF-1 also attenuated UTP-mediated purinergic Ca(2+) signalling. Taken together, these data suggest that NHERF-1 plays a more central role in cell proliferation by modulating Gq-mediated signalling pathways.
Collapse
Affiliation(s)
- Wade A Kruger
- Health Innovations Research Institute, School of Medical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | | | | |
Collapse
|
25
|
Willnow TE, Andersen OM. Sorting receptor SORLA – a trafficking path to avoid Alzheimer disease. J Cell Sci 2013; 126:2751-60. [DOI: 10.1242/jcs.125393] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Excessive proteolytic breakdown of the amyloid precursor protein (APP) to neurotoxic amyloid β peptides (Aβ) by secretases in the brain is a molecular cause of Alzheimer disease (AD). According to current concepts, the complex route whereby APP moves between the secretory compartment, the cell surface and endosomes to encounter the various secretases determines its processing fate. However, the molecular mechanisms that control the intracellular trafficking of APP in neurons and their contribution to AD remain poorly understood. Here, we describe the functional elucidation of a new sorting receptor SORLA that emerges as a central regulator of trafficking and processing of APP. SORLA interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network and early endosomes, thereby restricting delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. Defects in SORLA and its interacting adaptors result in transport defects and enhanced amyloidogenic processing of APP, and represent important risk factors for AD in patients. As discussed here, these findings uncovered a unique regulatory pathway for the control of neuronal protein transport, and provide clues as to why defects in this pathway cause neurodegenerative disease.
Collapse
|
26
|
Nykjaer A, Willnow TE. Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci 2012; 35:261-70. [DOI: 10.1016/j.tins.2012.01.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/08/2012] [Accepted: 01/10/2012] [Indexed: 11/26/2022]
|
27
|
Bose D, Zimmerman LJ, Pierobon M, Petricoin E, Tozzi F, Parikh A, Fan F, Dallas N, Xia L, Gaur P, Samuel S, Liebler DC, Ellis LM. Chemoresistant colorectal cancer cells and cancer stem cells mediate growth and survival of bystander cells. Br J Cancer 2011; 105:1759-67. [PMID: 22045189 PMCID: PMC3242606 DOI: 10.1038/bjc.2011.449] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/27/2011] [Accepted: 10/04/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recent studies suggest that cancer stem cells (CSCs) mediate chemoresistance, but interestingly, only a small percentage of cells in a resistant tumour are CSCs; this suggests that non-CSCs survive by other means. We hypothesised that chemoresistant colorectal cancer (CRC) cells generate soluble factors that enhance survival of chemonaive tumour cells. METHODS Chemoresistant CRC cells were generated by serial passage in oxaliplatin (Ox cells). Conditioned media (CM) was collected from parental and oxaliplatin-resistant (OxR) cells. CRC cells were treated with CM and growth and survival were assessed. Tumour growth rates were determined in nude mice after cells were treated with CM. Mass spectrometry (MS) identified proteins in CM. Reverse phase protein microarray assays determined signalling effects of CM in parental cells. RESULTS Oxaliplatin-resistant CM increased survival of chemo-naive cells. CSC CM also increased growth of parental cells. Parental and OxR mixed tumours grew larger than tumours composed of parental or OxR cells alone. Mass spectrometry detected unique survival-promoting factors in OxR CM compared with parental CM. Cells treated with OxR CM demonstrated early phosphorylation of EGFR and MEK1, with later upregulation of total Akt .We identified progranulin as a potential mediator of chemoresistance. CONCLUSION Chemoresistant tumour cells and CSCs may promote resistance through soluble factors that mediate survival in otherwise chemosensitive tumour cells.
Collapse
Affiliation(s)
- D Bose
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - L J Zimmerman
- Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - M Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA 22030, USA
| | - E Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA 22030, USA
| | - F Tozzi
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - A Parikh
- Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - F Fan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - N Dallas
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - L Xia
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - P Gaur
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - S Samuel
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - D C Liebler
- Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - L M Ellis
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| |
Collapse
|
28
|
Béraud-Dufour S, Abderrahmani A, Noel J, Brau F, Waeber G, Mazella J, Coppola T. Neurotensin is a regulator of insulin secretion in pancreatic beta-cells. Int J Biochem Cell Biol 2010; 42:1681-8. [DOI: 10.1016/j.biocel.2010.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 06/18/2010] [Accepted: 06/23/2010] [Indexed: 11/29/2022]
|
29
|
Wähe A, Kasmapour B, Schmaderer C, Liebl D, Sandhoff K, Nykjaer A, Griffiths G, Gutierrez MG. Golgi-to-phagosome transport of acid sphingomyelinase and prosaposin is mediated by sortilin. J Cell Sci 2010; 123:2502-11. [PMID: 20571055 DOI: 10.1242/jcs.067686] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sortilin, also known as neurotensin receptor 3 (NTR3), is a transmembrane protein with a dual function. It acts as a receptor for neuromediators and growth factors at the plasma membrane, but it has also been implicated in binding and transport of some lysosomal proteins. However, the role of sortilin during phagosome maturation has not been investigated before. Here, we show that in macrophages, sortilin is mainly localized in the Golgi and transported to latex-bead phagosomes (LBPs). Using live-cell imaging and electron microscopy, we found that sortilin is delivered to LBPs in a manner that depends on its cytoplasmic tail. We also show that sortilin participates in the direct delivery of acid sphingomyelinase (ASM) and prosaposin (PS) to the phagosome, bypassing fusion with lysosomal compartments. Further analysis confirmed that ASM and PS are targeted to the phagosome by sortilin in a Brefeldin-A-sensitive pathway. Analysis of primary macrophages isolated from Sort1(-/-) mice indicated that the delivery of ASM and PS, but not pro-cathepsin D, to LBPs was severely impaired. We propose a pathway mediated by sortilin by which selected lysosomal proteins are transported to the phagosome along a Golgi-dependent route during the maturation of phagosomes.
Collapse
Affiliation(s)
- Anna Wähe
- European Molecular Biology Laboratory, Postfach 102209, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rogers ML, Bailey S, Matusica D, Nicholson I, Muyderman H, Pagadala PC, Neet KE, Zola H, Macardle P, Rush RA. ProNGF mediates death of Natural Killer cells through activation of the p75NTR-sortilin complex. J Neuroimmunol 2010; 226:93-103. [PMID: 20547427 DOI: 10.1016/j.jneuroim.2010.05.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 12/30/2022]
Abstract
The common neurotrophin receptor P75NTR, its co-receptor sortilin and ligand proNGF, have not previously been investigated in Natural Killer (NK) cell function. We found freshly isolated NK cells express sortilin but not significant amounts of P75NTR unless exposed to interleukin-12 (IL-12), or cultured in serum free conditions, suggesting this receptor is sequestered. A second messenger associated with p75NTR, neurotrophin-receptor-interacting-MAGE-homologue (NRAGE) was identified in NK cells. Cleavage resistant proNGF123 killed NK cells in the presence of IL-12 after 20h and without IL-12 in serum free conditions at 48h. This was reduced by blocking sortilin with neurotensin. We conclude that proNGF induced apoptosis of NK cells may have important implications for limiting the innate immune response.
Collapse
Affiliation(s)
- Mary-Louise Rogers
- Department of Human Physiology, School of Medicine, Flinders University, GPO Box 2100 Adelaide 5001, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Swift SL, Burns JE, Maitland NJ. Altered expression of neurotensin receptors is associated with the differentiation state of prostate cancer. Cancer Res 2010; 70:347-56. [PMID: 20048080 DOI: 10.1158/0008-5472.can-09-1252] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In prostate cancer, traditional treatments such as androgen response manipulation often provide only temporary resolution of disease, with emergence of a more aggressive, androgen-independent tumor following initial therapy. To treat recurrent disease, cell surface proteins that are specifically overexpressed on malignant cells may be useful for generating targeted therapeutics. Recent evidence suggests that neurotensin receptors (NTR) are recruited in advanced prostate cancer as an alternative growth pathway in the absence of androgens. In this study, we assessed the potential use of these receptors as targets by analyzing NTR expression patterns in human prostate cell lines and primary prostate tumor cell cultures derived from patient samples. In primary tumor cell cultures, NTR1 was upregulated in cells with a basal phenotype (cytokeratin 1/5/10/14+), whereas NTR2 and NTR3 were upregulated in cells with luminal phenotype (cytokeratin 18+). Similar patterns of NTR expression occurred in benign prostate tissue sections, implicating differentiation state as a basis for the differences observed in tumor cell lines. Our findings support the use of NTRs as tools for therapeutic targeting in prostate cancers composed of both poorly differentiated and/or well-differentiated cells.
Collapse
Affiliation(s)
- Stephanie L Swift
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, United Kingdom
| | | | | |
Collapse
|
32
|
Neurotensin receptor-2 and -3 are crucial for the anti-apoptotic effect of neurotensin on pancreatic β-TC3 cells. Int J Biochem Cell Biol 2009; 41:2398-402. [DOI: 10.1016/j.biocel.2009.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
VPS10P-domain receptors — regulators of neuronal viability and function. Nat Rev Neurosci 2008; 9:899-909. [DOI: 10.1038/nrn2516] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
A stable neurotensin-based radiopharmaceutical for targeted imaging and therapy of neurotensin receptor-positive tumours. Eur J Nucl Med Mol Imaging 2008; 36:37-47. [PMID: 18690434 DOI: 10.1007/s00259-008-0894-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 07/11/2008] [Indexed: 01/02/2023]
|
35
|
Falciani C, Fabbrini M, Pini A, Lozzi L, Lelli B, Pileri S, Brunetti J, Bindi S, Scali S, Bracci L. Synthesis and biological activity of stable branched neurotensin peptides for tumor targeting. Mol Cancer Ther 2007; 6:2441-8. [PMID: 17766836 DOI: 10.1158/1535-7163.mct-07-0164] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Receptors for endogenous regulatory peptides, like the neuropeptide neurotensin, are overexpressed in several human cancers and can be targets for peptide-mediated tumor-selective therapy. Peptides, however, have the main drawback of an extremely short half-life in vivo. We showed that neurotensin and other endogenous peptides, when synthesized as dendrimers, retain biological activity and become resistant to proteolysis. Here, we synthesized the neurotensin functional fragment NT(8-13) in a tetrabranched form linked to different units for tumor therapy or diagnosis. Fluorescent molecules were used to monitor receptor binding and internalization in HT29 human adenocarcinoma cells and receptor binding in HT29 tumor xenografts in nude mice. Linking of chemotherapic molecules like chlorin e6 and methotrexate to dendrimers resulted in a dramatic increase in drug selectivity, uptake of which by target cells became dependent on peptide receptor binding. When nude mice carrying human tumor xenografts were treated with branched NT(8-13)-methotrexate, a 60% reduction in tumor growth was observed with respect to mice treated with the free drug.
Collapse
Affiliation(s)
- Chiara Falciani
- Department of Molecular Biology, University of Siena, Siena, Italy 53100.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Souazé F, Forgez P. Molecular and cellular regulation of neurotensin receptor under acute and chronic agonist stimulation. Peptides 2006; 27:2493-501. [PMID: 16889873 DOI: 10.1016/j.peptides.2006.04.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 04/13/2006] [Indexed: 12/25/2022]
Abstract
Neurotensin is a tridecapteptide acting mostly in the brain and gastrointestinal tract. NT binds two G protein coupled receptors (GPCR), NTS1 and NTS2, and a single transmembrane domain receptor, NTS3/gp95/sortilin receptor. NTS1 mediates the majority of NT action in neurons and the periphery. Like many other GPCRs, upon agonist stimulation, NTS1 is internalized, endocytosed, and the cells are desensitized. It is tacitly acknowledged that the intensity and the lasting of cellular responses to NT are dependent on free and functional NTS1 at the cell surface. Understanding how NTS1 expression is regulated at the membrane should provide a better comprehension towards its function. This review analyzes and discusses the current cellular and molecular mechanisms affecting the expression of NTS1 at the cellular membrane upon acute and chronic NT stimulation.
Collapse
Affiliation(s)
- Frédérique Souazé
- INSERM U673-UMPC, Hôpital Saint-Antoine, Bâtiment Raoul Kourilsky, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | | |
Collapse
|
37
|
Abstract
Neurotensin exerts its actions in the central nervous system and the periphery through three identified receptors. Two of them, the NTS2 and NTS3, display unusual properties either because of their complex signal transduction mechanisms (NTS2) or because of their structural composition as a non-G-protein-coupled receptor (NTS3). Here, we review the transduction mechanisms, cellular trafficking, and potential physiological roles of these two unconventional receptors.
Collapse
Affiliation(s)
- Jean Mazella
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 6097 du Centre National de la Recherche Scientifique, et de l'Université de Nice Sophia Antipolis, Sophia Antipolis, 06560 Valbonne, France.
| | | |
Collapse
|
38
|
Mazella J, Vincent JP. Internalization and recycling properties of neurotensin receptors. Peptides 2006; 27:2488-92. [PMID: 16901585 DOI: 10.1016/j.peptides.2006.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 02/12/2006] [Indexed: 11/16/2022]
Abstract
The targeting, internalization and recycling of membrane receptors in response to extracellular ligands involve a series of molecular mechanisms which are beginning to be better understood. The receptor-dependent internalization of neurotensin has been widely investigated using endogenous or heterologous receptor expression systems. This review focuses on the general properties of neurotensin sequestration and on the characterization of the receptors involved in this process.
Collapse
Affiliation(s)
- Jean Mazella
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 6097 du Centre National de la Recherche Scientifique, et de l'Université de Nice-Sophia Antipolis, Sophia Antipolis, 06560 Valbonne, France.
| | | |
Collapse
|
39
|
Navarro V, Martin S, Mazella J. Internalization-dependent regulation of HT29 cell proliferation by neurotensin. Peptides 2006; 27:2502-7. [PMID: 16870305 DOI: 10.1016/j.peptides.2006.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 04/13/2006] [Indexed: 11/24/2022]
Abstract
In this study, we have investigated the involvement of the internalization process induced by neurotensin (NT) on MAP kinases Erk1/2 activation, inositol phosphates (IP) accumulation and cell growth in the human colonic cancer cell line HT29. Reversible blocking of NT/neurotensin receptor (NTR) complex endocytosis by hyperosmolar sucrose totally abolished both the phosphorylation of the MAP kinases Erk1/2 and the [3H]-thymidine incorporation induced by the peptide. By contrast, NT-evoked IP formation was not affected by sucrose treatment. These results therefore indicate that NT/NTR complex endocytosis triggers MAP kinase activation and subsequently the growth of HT29 cells. This property could be useful for the development of novel anticancer treatments.
Collapse
Affiliation(s)
- Valérie Navarro
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 6097 du Centre National de la Recherche Scientifique, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | | | | |
Collapse
|
40
|
Younglai EV, Wu Y, Foster WG, Lobb DK, Price TM. Binding of progesterone to cell surfaces of human granulosa-lutein cells. J Steroid Biochem Mol Biol 2006; 101:61-7. [PMID: 16905308 DOI: 10.1016/j.jsbmb.2006.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Progesterone is produced by granulosa cells under the influence of luteinizing hormone. Nuclear progesterone receptors have been found in rat granulosa cells. Human granulosa-lutein cells rapidly respond to progesterone with an increase in intracellular calcium suggesting the existence of a nongenomic mechanism. This study was conducted to determine whether binding of progesterone to granulosa cells could occur at the membrane. Granulosa cells were obtained from an in vitro fertilization program and examined immunohistochemically with an antiserum to membrane progesterone receptors. Approximately 14-70% of freshly harvested or cultured granulosa cells of six patients showed a positive reaction to the antiserum, limited to the cell membrane. Western blot analysis of homogenates of granulosa cells and a granulosa cell tumour confirmed the presence of progesterone receptors A, B and C and low amounts of a putative membrane receptor. These results demonstrate that the plasma membranes of human granulosa cells possess binding components for progesterone which may be involved in its nongenomic mechanism of action.
Collapse
Affiliation(s)
- Edward V Younglai
- Department of Obstetrics & Gynecology, Reproductive Biology Division, McMaster University, Health Sciences Centre, 1200 Main Street West, Hamilton, Ont., Canada L8N 3Z5.
| | | | | | | | | |
Collapse
|
41
|
Nyborg AC, Ladd TB, Zwizinski CW, Lah JJ, Golde TE. Sortilin, SorCS1b, and SorLA Vps10p sorting receptors, are novel gamma-secretase substrates. Mol Neurodegener 2006; 1:3. [PMID: 16930450 PMCID: PMC1513133 DOI: 10.1186/1750-1326-1-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 06/12/2006] [Indexed: 11/30/2022] Open
Abstract
Background The mammalian Vps10p sorting receptor family is a group of 5 type I membrane homologs (Sortilin, SorLA, and SorCS1-3). These receptors bind various cargo proteins via their luminal Vps10p domains and have been shown to mediate a variety of intracellular sorting and trafficking functions. These proteins are highly expressed in the brain. SorLA has been shown to be down regulated in Alzheimer's disease brains, interact with ApoE, and modulate Aβ production. Sortilin has been shown to be part of proNGF mediated death signaling that results from a complex of Sortilin, p75NTR and proNGF. We have investigated and provide evidence for γ-secretase cleavage of this family of proteins. Results We provide evidence that these receptors are substrates for presenilin dependent γ-secretase cleavage. γ-Secretase cleavage of these sorting receptors is inhibited by γ-secretase inhibitors and does not occur in PS1/PS2 knockout cells. Like most γ-secretase substrates, we find that ectodomain shedding precedes γ-secretase cleavage. The ectodomain cleavage is inhibited by a metalloprotease inhibitor and activated by PMA suggesting that it is mediated by an α-secretase like cleavage. Conclusion These data indicate that the α- and γ-secretase cleavages of the mammalian Vps10p sorting receptors occur in a fashion analogous to other known γ-secretase substrates, and could possibly regulate the biological functions of these proteins.
Collapse
Affiliation(s)
- Andrew C Nyborg
- Department of Neuroscience, Mayo Clinic Jacksonville, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Thomas B Ladd
- Department of Neuroscience, Mayo Clinic Jacksonville, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Craig W Zwizinski
- Department of Neuroscience, Mayo Clinic Jacksonville, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - James J Lah
- Department of Neurology, Center for Neurodegenerative Disease, Emory University, Whitehead Biomedical Research Building, 615 Michael Street, Suite 505, Atlanta, GA 30322, USA
| | - Todd E Golde
- Department of Neuroscience, Mayo Clinic Jacksonville, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| |
Collapse
|
42
|
Ni X, Morales CR. The Lysosomal Trafficking of Acid Sphingomyelinase is Mediated by Sortilin and Mannose 6-phosphate Receptor. Traffic 2006; 7:889-902. [PMID: 16787399 DOI: 10.1111/j.1600-0854.2006.00429.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acid sphingomyelinase (ASM), a member of the saposin-like protein (SAPLIP) family, is a lysosomal hydrolase that converts sphingomyelin to ceramide. Deficiency of ASM causes a variant form of Niemann-Pick disease. The mechanism of lysosomal targeting of ASM is poorly known. Previous studies suggest that ASM could use in part the mannose 6-phosphate receptor (M6P-Rc). Sortilin, a type I transmembrane glycoprotein that belongs to a novel family of receptor proteins, presents structural features of receptors involved in lysosomal targeting. In this study we examined the hypothesis that sortilin may be implicated in the trafficking of ASM to the lysosomes. Using a dominant-negative sortilin construct lacking the cytoplasmic tail, which is essential to recruit adaptor proteins and clathrin, we demonstrated that sortilin is also involved in the lysosomal targeting of ASM. Confocal microscopy revealed that truncated sortilin partially inhibited the lysosomal trafficking of ASM in COS-7 cells and abolished the lysosomal targeting of ASM in I-cells. Pulse-chase experiments corroborated that sortilin is involved in normal sorting of newly synthesized ASM. Furthermore, over-expression of truncated sortilin accelerated and enhanced the secretion of ASM from COS-7 cells and I-cells. Co-immunoprecipitation assays confirmed the interaction between sortilin and ASM. In conclusion, ASM uses sortilin as an alternative receptor to be targeted to the lysosomes.
Collapse
Affiliation(s)
- Xiaoyan Ni
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada, H3A 2B2
| | | |
Collapse
|
43
|
Perron A, Sharif N, Gendron L, Lavallée M, Stroh T, Mazella J, Beaudet A. Sustained neurotensin exposure promotes cell surface recruitment of NTS2 receptors. Biochem Biophys Res Commun 2006; 343:799-808. [PMID: 16564027 DOI: 10.1016/j.bbrc.2006.03.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 03/06/2006] [Indexed: 11/22/2022]
Abstract
In this study, we investigated whether persistent agonist stimulation of NTS2 receptors gives rise to down-regulation, in light of reports that their activation induced long-lasting effects. To address this issue, we incubated COS-7 cells expressing the rat NTS2 with neurotensin (NT) for up to 24 h and measured resultant cell surface [125I]-NT binding. We found that NTS2-expressing cells retained the same surface receptor density despite efficient internalization mechanisms. This preservation was neither due to NTS2 neosynthesis nor recycling since it was not blocked by cycloheximide or monensin. However, it appeared to involve translocation of spare receptors from internal stores, as NT induced NTS2 migration from trans-Golgi network to endosome-like structures. This stimulation-induced regulation of cell surface NTS2 receptors was even more striking in rat spinal cord neurons. Taken together, these results suggest that sustained NTS2 activation promotes recruitment of intracellular receptors to the cell surface, thereby preventing functional desensitization.
Collapse
Affiliation(s)
- Amélie Perron
- Montreal Neurological Institute, McGill University, Montreal, Que., Canada H3A 2B4
| | | | | | | | | | | | | |
Collapse
|
44
|
Thankachan S, Rusak B. Juxtacellular recording/labeling analysis of physiological and anatomical characteristics of rat intergeniculate leaflet neurons. J Neurosci 2005; 25:9195-204. [PMID: 16207879 PMCID: PMC6725760 DOI: 10.1523/jneurosci.2672-05.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The thalamic intergeniculate leaflet (IGL) is involved in mediating effects of both photic and nonphotic stimuli on mammalian circadian rhythms. IGL neurons containing neuropeptide Y (NPY) have been implicated in mediating nonphotic effects, but little is known about those involved in photic entrainment. We used juxtacellular recording/labeling in rats to characterize both photic responses and neurochemical phenotypes of neurons in the lateral geniculate area, focusing on the IGL and ventral lateral geniculate (VLG). Single neurons were recorded to characterize photic responsiveness and were labeled with Neurobiotin (Nb); tissue was stained for Nb, NPY, and in some cases for orexin A. Three classes of neurons were identified in the IGL/VLG. Type I neurons lacked NPY and showed sustained activations during retinal illumination and moderate firing rates in darkness. Type II neurons contained large amounts of NPY throughout the soma and showed varied responses to illumination: suppression, complex responses, or no response. Type III neurons had patches of NPY both on the external soma surface and within the soma, apparently representing internalization of NPY. Type III neurons resembled type I cells in their sustained activation by illumination but were virtually silent during the intervening dark period. These neurons appear to receive NPY input, presumably from other IGL cells, which may suppress their activity during darkness. These results demonstrate the presence of several classes of neurons in the IGL defined by their functional and anatomical features and reinforce the role of the IGL/VLG complex in integrating photic and nonphotic inputs to the circadian system.
Collapse
Affiliation(s)
- Stephen Thankachan
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, B3H 4J1, Canada
| | | |
Collapse
|
45
|
Re RN, Cook JL. The intracrine hypothesis: an update. ACTA ACUST UNITED AC 2005; 133:1-9. [PMID: 16226324 DOI: 10.1016/j.regpep.2005.09.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 09/08/2005] [Indexed: 01/17/2023]
Abstract
The intracellular actions of peptide hormones, growth factors, as well as of extracellular-signaling enzymes and DNA-binding proteins, either within target cells or within their cells of synthesis has been called intracrine action. Although these intracrine moieties are structurally diverse, they share certain characteristics of synthesis and function. This has given rise to the development of a theory of intracrine action which permits testable predictions to be made regarding the functioning of these peptides/proteins. Here the intracrine hypothesis is briefly described and then recent experimental findings which bear on predictions made earlier on the basis of the theory are discussed. These findings provide new support for the intracrine hypothesis.
Collapse
Affiliation(s)
- Richard N Re
- Research Division, Ochsner Clinic Foundation, 1516 Jefferson Highway, New Orleans, LA 70121, USA.
| | | |
Collapse
|
46
|
Martin S, Dicou E, Vincent JP, Mazella J. Neurotensin and the neurotensin receptor-3 in microglial cells. J Neurosci Res 2005; 81:322-6. [PMID: 15957186 DOI: 10.1002/jnr.20477] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Microglia motility plays a crucial role in response to lesion or exocytotoxic damage of the cerebral tissue. The neuropeptide neurotensin elicited the migration of the human microglial cell line C13NJ by a mechanism dependent on both phosphatidylinositol-3 kinase (PI3 kinase) and mitogen-activated protein (MAP) kinases pathways. The effect of neurotensin on cell migration was blocked by the neurotensin receptor-3 propeptide, a selective ligand of this receptor. The type I neurotensin receptor-3 was the only known neurotensin receptor expressed in these microglial cells, and its activation led to the phosphorylation of both extracellular signaling-regulated kinases Erk1/2 and Akt. Furthermore, the effect of neurotensin on cell migration was preceded by a profound modification of the F-actin cytoskeleton, particularly by the rapid formation of numerous cell filopodia. Both the motility and the filopodia appearance induced by neurotensin were totally blocked by selective inhibitors of MAP kinases or PI3 kinase pathways. In the murine microglial cell line N11, the neurotensin receptor-3 is also the only neurotensin receptor expressed, and its activation by neurotensin leads to the phosphorylation of both Erk1/2 and Akt. In these cells, neurotensin induces the gene expression of several cytokines/chemokines, including MIP-2, MCP-1, interleukin-1beta and tumor necrosis factor-alpha. This induction is dependent on both protein kinases pathways. We observed that the effect of neurotensin on the cytokine/chemokine expression is also inhibited by the neurotensin receptor-3 propeptide. This is the demonstration that the neurotensin receptor-3 is functional and mediates both the migratory action of neurotensin and its induction of chemokines/cytokines expression.
Collapse
Affiliation(s)
- Stéphane Martin
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 6097 du Centre National de la Recherche Scientifique, Sophia Antipolis, Valbonne, France
| | | | | | | |
Collapse
|