1
|
Fregno I, Pérez-Carmona N, Rudinskiy M, Soldà T, Bergmann TJ, Ruano A, Delgado A, Cubero E, Bellotto M, García-Collazo AM, Molinari M. Allosteric Modulation of GCase Enhances Lysosomal Activity and Reduces ER Stress in GCase-Related Disorders. Int J Mol Sci 2025; 26:4392. [PMID: 40362629 PMCID: PMC12072338 DOI: 10.3390/ijms26094392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Variants in the GBA1 gene, encoding the lysosomal enzyme glucosylceramidase beta 1 (GCase), are linked to Parkinson's disease (PD) and Gaucher disease (GD). Heterozygous variants increase PD risk, while homozygous variants lead to GD, a lysosomal storage disorder. Some GBA1 variants impair GCase maturation in the endoplasmic reticulum, blocking lysosomal transport and causing glucosylceramide accumulation, which disrupts lysosomal function. This study explores therapeutic strategies to address these dysfunctions. Using Site-directed Enzyme Enhancement Therapy (SEE-Tx®), two structurally targeted allosteric regulators (STARs), GT-02287 and GT-02329, were developed and tested in GD patient-derived fibroblasts with relevant GCase variants. Treatment with GT-02287 and GT-02329 improved the folding of mutant GCase, protected the GCaseLeu444Pro variant from degradation, and facilitated the delivery of active GCase to lysosomes. This enhanced lysosomal function and reduced cellular stress. These findings validate the STARs' mechanism of action and highlight their therapeutic potential for GCase-related disorders, including GD, PD, and Dementia with Lewy Bodies.
Collapse
Affiliation(s)
- Ilaria Fregno
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland; (I.F.); (T.S.); (T.J.B.)
| | - Natalia Pérez-Carmona
- Gain Therapeutics, Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain; (N.P.-C.); (A.R.); (A.D.); (E.C.)
| | - Mikhail Rudinskiy
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland; (I.F.); (T.S.); (T.J.B.)
- Department of Biology, Swiss Federal Institute of Technology; CH-8093 Zurich, Switzerland
| | - Tatiana Soldà
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland; (I.F.); (T.S.); (T.J.B.)
| | - Timothy J. Bergmann
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland; (I.F.); (T.S.); (T.J.B.)
| | - Ana Ruano
- Gain Therapeutics, Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain; (N.P.-C.); (A.R.); (A.D.); (E.C.)
| | - Aida Delgado
- Gain Therapeutics, Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain; (N.P.-C.); (A.R.); (A.D.); (E.C.)
| | - Elena Cubero
- Gain Therapeutics, Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain; (N.P.-C.); (A.R.); (A.D.); (E.C.)
| | | | - Ana María García-Collazo
- Gain Therapeutics, Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain; (N.P.-C.); (A.R.); (A.D.); (E.C.)
| | - Maurizio Molinari
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland; (I.F.); (T.S.); (T.J.B.)
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Vera SP, Lian E, Elia MWJ, Saar A, Sharon HB, Moshe P, Mia H. The modifying effect of mutant LRRK2 on mutant GBA1-associated Parkinson disease. Hum Mol Genet 2025:ddaf062. [PMID: 40315377 DOI: 10.1093/hmg/ddaf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 05/04/2025] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease. While most cases are sporadic, in ~ 5%-10% of PD patients the disease is caused by mutations in several genes, among them GBA1 (glucocerebrosidase beta 1) and LRRK2 (leucine-rich repeat kinase 2), both prevalent among the Ashkenazi Jewish population. LRRK2-associated PD tends to be milder than GBA1-associated PD. Several recent clinical studies have suggested that carriers of both GBA1 and LRRK2 mutations develop milder PD compared to that observed among GBA1 carriers. These findings strongly suggested an interplay between the two genes in the development and progression of PD. In the present study Drosophila was employed as a model to investigate the impact of mutations in the LRRK2 gene on mutant GBA1-associated PD. Our results strongly indicated that flies expressing both mutant genes exhibited milder parkinsonian signs compared to the disease developed in flies expressing only a GBA1 mutation. This was corroborated by a decrease in the ER stress response, increase in the number of dopaminergic cells, elevated levels of tyrosine hydroxylase, reduced neuroinflammation, improved locomotion and extended survival. Furthermore, a significant decrease in the steady-state levels of mutant GBA1-encoded GCase was observed in the presence of mutant LRRK2, strongly implying a role for mutant LRRK2 in degradation of mutant GCase.
Collapse
Affiliation(s)
- Serebryany-Piavsky Vera
- Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Egulsky Lian
- Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Manoim-Wolkovitz Julia Elia
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Anis Saar
- Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 52620, Israel
| | - Hassin-Baer Sharon
- Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 52620, Israel
| | - Parnas Moshe
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Horowitz Mia
- Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Levanon St., Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Williams D, Glasstetter LM, Jong TT, Chen T, Kapoor A, Zhu S, Zhu Y, Calvo R, Gehrlein A, Wong K, Hogan AN, Vocadlo DJ, Jagasia R, Marugan JJ, Sidransky E, Henderson MJ, Chen Y. High-throughput screening for small-molecule stabilizers of misfolded glucocerebrosidase in Gaucher disease and Parkinson's disease. Proc Natl Acad Sci U S A 2024; 121:e2406009121. [PMID: 39388267 PMCID: PMC11494340 DOI: 10.1073/pnas.2406009121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease, PD); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small proluminescent HiBiT peptide reporter tag, enabling quantitation of protein stabilization in cells while faithfully maintaining target biology. TALEN-based gene editing allowed for stable integration of a single HiBiT-GBA1 transgene into an intragenic safe-harbor locus in GBA1-knockout H4 (neuroglioma) cells. This GD cell model was amenable to lead discovery via titration-based quantitative high-throughput screening and lead optimization via structure-activity relationships. A primary screen of 10,779 compounds from the NCATS bioactive collections identified 140 stabilizers of HiBiT-GCase-L444P, including both pharmacological chaperones (ambroxol and noninhibitory chaperone NCGC326) and proteostasis regulators (panobinostat, trans-ISRIB, and pladienolide B). Two complementary high-content imaging-based assays were deployed to triage hits: The fluorescence-quenched substrate LysoFix-GBA captured functional lysosomal GCase activity, while an immunofluorescence assay featuring antibody hGCase-1/23 directly visualized GCase lysosomal translocation. NCGC326 was active in both secondary assays and completely reversed pathological glucosylsphingosine accumulation. Finally, we tested the concept of combination therapy by demonstrating synergistic actions of NCGC326 with proteostasis regulators in enhancing GCase-L444P levels. Looking forward, these physiologically relevant assays can facilitate the identification, pharmacological validation, and medicinal chemistry optimization of small molecules targeting GCase, ultimately leading to a viable therapeutic for GD and PD.
Collapse
Affiliation(s)
- Darian Williams
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Logan M. Glasstetter
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Tiffany T. Jong
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Tiffany Chen
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Abhijeet Kapoor
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Sha Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Yanping Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Raul Calvo
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Alexandra Gehrlein
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070Basel, Switzerland
| | - Kimberly Wong
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Andrew N. Hogan
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - David J. Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070Basel, Switzerland
| | - Juan J. Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Ellen Sidransky
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Mark J. Henderson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Yu Chen
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| |
Collapse
|
4
|
Goker-Alpan O, Ivanova MM. Neuronopathic Gaucher disease: Rare in the West, common in the East. J Inherit Metab Dis 2024; 47:917-934. [PMID: 38768609 DOI: 10.1002/jimd.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Gaucher disease (GD) stands as one of the most prevalent lysosomal disorders, yet neuronopathic GD (nGD) is an uncommon subset characterized by a wide array of clinical manifestations that complicate diagnosis, particularly when neurological symptoms are understated. nGD may manifest as the acute neuronopathic type, or GD type 2 (GD2), either prenatally or within the first weeks to months of life, whereas GD type 3 (GD3) symptoms may emerge at any point during childhood or occasionally in adolescence. The clinical presentation encompasses severe systemic involvement to mild visceral disease, often coupled with a spectrum of progressive neurological signs and symptoms such as cognitive impairment, ataxia, seizures, myoclonus, varying degrees of brainstem dysfunction presenting with stridor, apneic episodes, and/or impaired swallowing. This manuscript aims to provide a comprehensive review of the incidence, distinctive presentations, and diverse clinical phenotypes of nGD across various countries and regions. It will explore the natural history of the neurodegenerative process in GD, shedding light on its various manifestations during infancy and childhood, and offer insights into the diagnostic journey, the challenges faced in the clinical management, and current and investigative therapeutic approaches for GD's neurological variants.
Collapse
Affiliation(s)
- Ozlem Goker-Alpan
- Lysosomal and Rare Disorder Research and Treatment Center, Fairfax, Virginia, USA
| | - Margarita M Ivanova
- Lysosomal and Rare Disorder Research and Treatment Center, Fairfax, Virginia, USA
| |
Collapse
|
5
|
Dobert JP, Bub S, Mächtel R, Januliene D, Steger L, Regensburger M, Wilfling S, Chen J, Dejung M, Plötz S, Hehr U, Moeller A, Arnold P, Zunke F. Activation and Purification of ß-Glucocerebrosidase by Exploiting its Transporter LIMP-2 - Implications for Novel Treatment Strategies in Gaucher's and Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401641. [PMID: 38666485 PMCID: PMC11220700 DOI: 10.1002/advs.202401641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Indexed: 07/04/2024]
Abstract
Genetic variants of GBA1 can cause the lysosomal storage disorder Gaucher disease and are among the highest genetic risk factors for Parkinson's disease (PD). GBA1 encodes the lysosomal enzyme beta-glucocerebrosidase (GCase), which orchestrates the degradation of glucosylceramide (GluCer) in the lysosome. Recent studies have shown that GluCer accelerates α-synuclein aggregation, exposing GCase deficiency as a major risk factor in PD pathology and as a promising target for treatment. This study investigates the interaction of GCase and three disease-associated variants (p.E326K, p.N370S, p.L444P) with their transporter, the lysosomal integral membrane protein 2 (LIMP-2). Overexpression of LIMP-2 in HEK 293T cells boosts lysosomal abundance of wt, E326K, and N370S GCase and increases/rescues enzymatic activity of the wt and E326K variant. Using a novel purification approach, co-purification of untagged wt, E326K, and N370S GCase in complex with His-tagged LIMP-2 from cell supernatant of HEK 293F cells is achieved, confirming functional binding and trafficking for these variants. Furthermore, a single helix in the LIMP-2 ectodomain is exploited to design a lysosome-targeted peptide that enhances lysosomal GCase activity in PD patient-derived and control fibroblasts. These findings reveal LIMP-2 as an allosteric activator of GCase, suggesting a possible therapeutic potential of targeting this interaction.
Collapse
Affiliation(s)
- Jan Philipp Dobert
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Simon Bub
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Rebecca Mächtel
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Dovile Januliene
- Department of Structural BiologyOsnabrueck University49076OsnabrueckGermany
| | - Lisa Steger
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Martin Regensburger
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
- Deutsches Zentrum Immuntherapie (DZI)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | | | - Jia‐Xuan Chen
- Institute of Molecular Biology (IMB)55128MainzGermany
| | - Mario Dejung
- Institute of Molecular Biology (IMB)55128MainzGermany
| | - Sonja Plötz
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Ute Hehr
- Center for Human Genetics Regensburg93059RegensburgGermany
| | - Arne Moeller
- Department of Structural BiologyOsnabrueck University49076OsnabrueckGermany
| | - Philipp Arnold
- Institute of AnatomyFunctional and Clinical AnatomyFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Friederike Zunke
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| |
Collapse
|
6
|
Skrahin A, Horowitz M, Istaiti M, Skrahina V, Lukas J, Yahalom G, Cohen ME, Revel-Vilk S, Goker-Alpan O, Becker-Cohen M, Hassin-Baer S, Svenningsson P, Rolfs A, Zimran A. GBA1-Associated Parkinson's Disease Is a Distinct Entity. Int J Mol Sci 2024; 25:7102. [PMID: 39000225 PMCID: PMC11241486 DOI: 10.3390/ijms25137102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
GBA1-associated Parkinson's disease (GBA1-PD) is increasingly recognized as a distinct entity within the spectrum of parkinsonian disorders. This review explores the unique pathophysiological features, clinical progression, and genetic underpinnings that differentiate GBA1-PD from idiopathic Parkinson's disease (iPD). GBA1-PD typically presents with earlier onset and more rapid progression, with a poor response to standard PD medications. It is marked by pronounced cognitive impairment and a higher burden of non-motor symptoms compared to iPD. Additionally, patients with GBA1-PD often exhibit a broader distribution of Lewy bodies within the brain, accentuating neurodegenerative processes. The pathogenesis of GBA1-PD is closely associated with mutations in the GBA1 gene, which encodes the lysosomal enzyme beta-glucocerebrosidase (GCase). In this review, we discuss two mechanisms by which GBA1 mutations contribute to disease development: 'haploinsufficiency,' where a single functional gene copy fails to produce a sufficient amount of GCase, and 'gain of function,' where the mutated GCase acquires harmful properties that directly impact cellular mechanisms for alpha-synuclein degradation, leading to alpha-synuclein aggregation and neuronal cell damage. Continued research is advancing our understanding of how these mechanisms contribute to the development and progression of GBA1-PD, with the 'gain of function' mechanism appearing to be the most plausible. This review also explores the implications of GBA1 mutations for therapeutic strategies, highlighting the need for early diagnosis and targeted interventions. Currently, small molecular chaperones have shown the most promising clinical results compared to other agents. This synthesis of clinical, pathological, and molecular aspects underscores the assertion that GBA1-PD is a distinct clinical and pathobiological PD phenotype, necessitating specific management and research approaches to better understand and treat this debilitating condition.
Collapse
Affiliation(s)
- Aliaksandr Skrahin
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
| | - Mia Horowitz
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, 6997801 Ramat Aviv, Israel
| | - Majdolen Istaiti
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
| | | | - Jan Lukas
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Gilad Yahalom
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Mikhal E. Cohen
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Shoshana Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA 22030, USA
| | | | - Sharon Hassin-Baer
- Movement Disorders Institute, Department of Neurology, Chaim Sheba Medical Center, 5262101 Tel-Hashomer, Israel
- Department of Neurology and Neurosurgery, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel-Aviv, Israel
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Basal and Clinical Neuroscience, King’s College London, London SE5 9RT, UK
| | - Arndt Rolfs
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Medical Faculty, University of Rostock, 18055 Rostock, Germany
| | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
7
|
Pornsukjantra T, Saikachain N, Sutjarit N, Khongkrapan A, Tubsuwan A, Bhukhai K, Tim-Aroon T, Anurathapan U, Hongeng S, Asavapanumas N. An increase in ER stress and unfolded protein response in iPSCs-derived neuronal cells from neuronopathic Gaucher disease patients. Sci Rep 2024; 14:9177. [PMID: 38649404 PMCID: PMC11035702 DOI: 10.1038/s41598-024-59834-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Gaucher disease (GD) is a lysosomal storage disorder caused by a mutation in the GBA1 gene, responsible for encoding the enzyme Glucocerebrosidase (GCase). Although neuronal death and neuroinflammation have been observed in the brains of individuals with neuronopathic Gaucher disease (nGD), the exact mechanism underlying neurodegeneration in nGD remains unclear. In this study, we used two induced pluripotent stem cells (iPSCs)-derived neuronal cell lines acquired from two type-3 GD patients (GD3-1 and GD3-2) to investigate the mechanisms underlying nGD by biochemical analyses. These iPSCs-derived neuronal cells from GD3-1 and GD3-2 exhibit an impairment in endoplasmic reticulum (ER) calcium homeostasis and an increase in unfolded protein response markers (BiP and CHOP), indicating the presence of ER stress in nGD. A significant increase in the BAX/BCL-2 ratio and an increase in Annexin V-positive cells demonstrate a notable increase in apoptotic cell death in GD iPSCs-derived neurons, suggesting downstream signaling after an increase in the unfolded protein response. Our study involves the establishment of iPSCs-derived neuronal models for GD and proposes a possible mechanism underlying nGD. This mechanism involves the activation of ER stress and the unfolded protein response, ultimately leading to apoptotic cell death in neurons.
Collapse
Affiliation(s)
- Tanapat Pornsukjantra
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nongluk Saikachain
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
| | - Nareerat Sutjarit
- Graduate Program in Nutrition, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Arthaporn Khongkrapan
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Alisa Tubsuwan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Thipwimol Tim-Aroon
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nithi Asavapanumas
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand.
| |
Collapse
|
8
|
Williams D, Glasstetter LM, Jong TT, Kapoor A, Zhu S, Zhu Y, Gehrlein A, Vocadlo DJ, Jagasia R, Marugan JJ, Sidransky E, Henderson MJ, Chen Y. Development of quantitative high-throughput screening assays to identify, validate, and optimize small-molecule stabilizers of misfolded β-glucocerebrosidase with therapeutic potential for Gaucher disease and Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586364. [PMID: 38712038 PMCID: PMC11071283 DOI: 10.1101/2024.03.22.586364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small pro-luminescent HiBiT peptide reporter tag, enabling quantitation of protein stabilization in cells while faithfully maintaining target biology. TALEN-based gene editing allowed for stable integration of a single HiBiT-GBA1 transgene into an intragenic safe-harbor locus in GBA1-knockout H4 (neuroglioma) cells. This GD cell model was amenable to lead discovery via titration-based quantitative high-throughput screening and lead optimization via structure-activity relationships. A primary screen of 10,779 compounds from the NCATS bioactive collections identified 140 stabilizers of HiBiT-GCase-L444P, including both pharmacological chaperones (ambroxol and non-inhibitory chaperone NCGC326) and proteostasis regulators (panobinostat, trans-ISRIB, and pladienolide B). Two complementary high-content imaging-based assays were deployed to triage hits: the fluorescence-quenched substrate LysoFix-GBA captured functional lysosomal GCase activity, while an immunofluorescence assay featuring antibody hGCase-1/23 provided direct visualization of GCase lysosomal translocation. NCGC326 was active in both secondary assays and completely reversed pathological glucosylsphingosine accumulation. Finally, we tested the concept of combination therapy, by demonstrating synergistic actions of NCGC326 with proteostasis regulators in enhancing GCase-L444P levels. Looking forward, these physiologically-relevant assays can facilitate the identification, pharmacological validation, and medicinal chemistry optimization of new chemical matter targeting GCase, ultimately leading to a viable therapeutic for two protein-misfolding diseases.
Collapse
Affiliation(s)
- Darian Williams
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Logan M. Glasstetter
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tiffany T. Jong
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Abhijeet Kapoor
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Sha Zhu
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Yanping Zhu
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Alexandra Gehrlein
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - David J. Vocadlo
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Juan J. Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Ellen Sidransky
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mark J. Henderson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Yu Chen
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
9
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
10
|
Muromachi K, Nakano R, Fujita-Yoshigaki J, Sugiya H, Tani-Ishii N. BMP-1-induced GBA1 nuclear accumulation provokes CCN2 mRNA expression via importin-β-mediated nucleocytoplasmic pathway. J Cell Commun Signal 2023:10.1007/s12079-023-00740-3. [DOI: 10.1007/s12079-023-00740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
|
11
|
Senkevich K, Rudakou U, Gan-Or Z. Genetic mechanism vs genetic subtypes: The example of GBA. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:155-170. [PMID: 36803808 DOI: 10.1016/b978-0-323-85555-6.00016-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Genetic variants in GBA, encoding the lysosomal enzyme glucocerebrosidase (GCase), are common risk factors for Parkinson's disease (PD). Genotype-phenotype studies have demonstrated that different types of GBA variants have differential effects on the phenotype. Variants could be classified as mild or severe depending on the type of Gaucher disease they cause in the biallelic state. It was shown that severe GBA variants, as compared to mild variants, are associated with higher risk of PD, earlier age at onset, and faster progression of motor and nonmotor symptoms. The observed difference in phenotype might be caused by a diversity of cellular mechanisms related to the particular variants. The lysosomal function of GCase is thought to play a significant role in the development of GBA-associated PD, and other mechanisms such as endoplasmic reticulum retention, mitochondrial dysfunction, and neuroinflammation have also been suggested. Moreover, genetic modifiers such as LRRK2, TMEM175, SNCA, and CTSB can either affect GCase activity or modulate risk and age at onset of GBA-associated PD. To achieve ideal outcomes with precision medicine, therapies will have to be tailored to individuals with specific variants, potentially in combination with known modifiers.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Uladzislau Rudakou
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
12
|
Smith LJ, Bolsinger MM, Chau KY, Gegg ME, Schapira AHV. The GBA variant E326K is associated with alpha-synuclein aggregation and lipid droplet accumulation in human cell lines. Hum Mol Genet 2023; 32:773-789. [PMID: 36130205 PMCID: PMC9941838 DOI: 10.1093/hmg/ddac233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/14/2022] Open
Abstract
Sequence variants or mutations in the GBA gene are numerically the most important risk factor for Parkinson disease (PD). The GBA gene encodes for the lysosomal hydrolase enzyme, glucocerebrosidase (GCase). GBA mutations often reduce GCase activity and lead to the impairment of the autophagy-lysosomal pathway, which is important in the turnover of alpha-synuclein, accumulation of which is a key pathological hallmark of PD. Although the E326K variant is one of the most common GBA variants associated with PD, there is limited understanding of its biochemical effects. We have characterized homozygous and heterozygous E326K variants in human fibroblasts. We found that E326K variants did not cause a significant loss of GCase protein or activity, endoplasmic reticulum (ER) retention or ER stress, in contrast to the L444P GBA mutation. This was confirmed in human dopaminergic SH-SY5Y neuroblastoma cell lines overexpressing GCase with either E326K or L444P protein. Despite no loss of the GCase activity, a significant increase in insoluble alpha-synuclein aggregates in E326K and L444P mutants was observed. Notably, SH-SY5Y overexpressing E326K demonstrated a significant increase in the lipid droplet number under basal conditions, which was exacerbated following treatment with the fatty acid oleic acid. Similarly, a significant increase in lipid droplet formation following lipid loading was observed in heterozygous and homozygous E326K fibroblasts. In conclusion, the work presented here demonstrates that the E326K mutation behaves differently to the common loss of function GBA mutations; however, lipid dyshomeostasis and alpha-synuclein pathology are still evident.
Collapse
Affiliation(s)
- Laura J Smith
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Magdalena M Bolsinger
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Division of Medicine, Friedrich-Alexander University Erlangen-Nurnberg, Schloßplatz 4, 91054 Erlangen, Germany
| | - Kai-Yin Chau
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Matthew E Gegg
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
13
|
Subbotina TN, Abramov VG, Shaleva AA, Vereschagina SV, Pokhabov DV. [Analysis of GBA mutations in patients with Parkinson's disease in the Krasnoyarsk region]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:103-108. [PMID: 37084373 DOI: 10.17116/jnevro2023123041103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
OBJECTIVE To analyze mutations and polymorphisms in exons 2, 7, 8, 9, 10 and 11 of the glucocerebrosidase (GBA) gene in patients of the Krasnoyarsk region diagnosed with Parkinson's disease (PD). MATERIAL AND METHODS Seventy-five patients with sporadic and familial forms of PD were examined. Genomic DNA was isolated from the whole blood of patients. The above mentioned exons of GBA were analyzed using Sanger sequencing. RESULTS Various changes in the DNA structure of GBA were detected in 11 patients, thus, the overall frequency of variants was 14.7%, and the frequency of pathologically significant mutations (p.L444P, p.D409H, p.H255Q) was 5.3%. CONCLUSION The frequencies of variants in GBA, one of the most common high-risk factors for PD, in patients of the Krasnoyarsk region turned out to be quite high and comparable to that in patients in other populations of the world. Thus, screening for GBA mutations is relevant for PD patients living in the Krasnoyarsk region as part of genetic counseling at present, and in the future it may be necessary for personalized treatment.
Collapse
Affiliation(s)
- T N Subbotina
- Siberian federal university, Krasnoyarsk, Russia
- Federal Siberian Research and Clinical Center, Krasnoyarsk, Russia
| | - V G Abramov
- Federal Siberian Research and Clinical Center, Krasnoyarsk, Russia
| | - A A Shaleva
- Siberian federal university, Krasnoyarsk, Russia
- Federal Siberian Research and Clinical Center, Krasnoyarsk, Russia
| | - S V Vereschagina
- Federal Siberian Research and Clinical Center, Krasnoyarsk, Russia
| | - D V Pokhabov
- Federal Siberian Research and Clinical Center, Krasnoyarsk, Russia
- Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| |
Collapse
|
14
|
Lysosomal functions and dysfunctions: Molecular and cellular mechanisms underlying Gaucher disease and its association with Parkinson disease. Adv Drug Deliv Rev 2022; 187:114402. [DOI: 10.1016/j.addr.2022.114402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023]
|
15
|
Abe T, Kuwahara T. Targeting of Lysosomal Pathway Genes for Parkinson's Disease Modification: Insights From Cellular and Animal Models. Front Neurol 2021; 12:681369. [PMID: 34194386 PMCID: PMC8236816 DOI: 10.3389/fneur.2021.681369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
Previous genetic studies on hereditary Parkinson's disease (PD) have identified a set of pathogenic gene mutations that have strong impacts on the pathogenicity of PD. In addition, genome-wide association studies (GWAS) targeted to sporadic PD have nominated an increasing number of genetic variants that influence PD susceptibility. Although the clinical and pathological characteristics in hereditary PD are not identical to those in sporadic PD, α-synuclein, and LRRK2 are definitely associated with both types of PD, with LRRK2 mutations being the most frequent cause of autosomal-dominant PD. On the other hand, a significant portion of risk genes identified from GWAS have been associated with lysosomal functions, pointing to a critical role of lysosomes in PD pathogenesis. Experimental studies have suggested that the maintenance or upregulation of lysosomal activity may protect against neuronal dysfunction or degeneration. Here we focus on the roles of representative PD gene products that are implicated in lysosomal pathway, namely LRRK2, VPS35, ATP13A2, and glucocerebrosidase, and provide an overview of their disease-associated functions as well as their cooperative actions in the pathogenesis of PD, based on the evidence from cellular and animal models. We also discuss future perspectives of targeting lysosomal activation as a possible strategy to treat neurodegeneration.
Collapse
Affiliation(s)
- Tetsuro Abe
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Behl T, Kaur G, Fratila O, Buhas C, Judea-Pusta CT, Negrut N, Bustea C, Bungau S. Cross-talks among GBA mutations, glucocerebrosidase, and α-synuclein in GBA-associated Parkinson's disease and their targeted therapeutic approaches: a comprehensive review. Transl Neurodegener 2021; 10:4. [PMID: 33446243 PMCID: PMC7809876 DOI: 10.1186/s40035-020-00226-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
Current therapies for Parkinson's disease (PD) are palliative, of which the levodopa/carbidopa therapy remains the primary choice but is unable to modulate the progression of neurodegeneration. Due to the complication of such a multifactorial disorder and significant limitations of the therapy, numerous genetic approaches have been proved effective in finding out genes and mechanisms implicated in this disease. Following the observation of a higher frequency of PD in Gaucher's disease (GD), a lysosomal storage condition, mutations of glycosylceramidase beta (GBA) encoding glucocerebrosidase (GCase) have been shown to be involved and have been explored in the context of PD. GBA mutations are the most common genetic risk factor of PD. Various studies have revealed the relationships between PD and GBA gene mutations, facilitating a better understanding of this disorder. Various hypotheses delineate that the pathological mutations of GBA minimize the enzymatic activity of GCase, which affects the proliferation and clearance of α-synuclein; this affects the lysosomal homeostasis, exacerbating the endoplasmic reticulum stress or encouraging the mitochondrial dysfunction. Identification of the pathological mechanisms underlying the GBA-associated parkinsonism (GBA + PD) advances our understanding of PD. This review based on current literature aims to elucidate various genetic and clinical characteristics correlated with GBA mutations and to identify the numerous pathological processes underlying GBA + PD. We also delineate the therapeutic strategies to interfere with the mutant GCase function for further improvement of the related α-synuclein-GCase crosstalks. Moreover, the various therapeutic approaches such as gene therapy, chaperone proteins, and histone deacetylase inhibitors for the treatment of GBA + PD are discussed.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Gagandeep Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Camelia Buhas
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Bihor County, Romania
| | - Claudia Teodora Judea-Pusta
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Bihor County, Romania
| | - Nicoleta Negrut
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
17
|
Behl T, Kaur G, Fratila O, Buhas C, Judea-Pusta CT, Negrut N, Bustea C, Bungau S. Cross-talks among GBA mutations, glucocerebrosidase, and α-synuclein in GBA-associated Parkinson’s disease and their targeted therapeutic approaches: a comprehensive review. Transl Neurodegener 2021. [DOI: https://doi.org/10.1186/s40035-020-00226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AbstractCurrent therapies for Parkinson’s disease (PD) are palliative, of which the levodopa/carbidopa therapy remains the primary choice but is unable to modulate the progression of neurodegeneration. Due to the complication of such a multifactorial disorder and significant limitations of the therapy, numerous genetic approaches have been proved effective in finding out genes and mechanisms implicated in this disease. Following the observation of a higher frequency of PD in Gaucher’s disease (GD), a lysosomal storage condition, mutations of glycosylceramidase beta (GBA) encoding glucocerebrosidase (GCase) have been shown to be involved and have been explored in the context of PD. GBA mutations are the most common genetic risk factor of PD. Various studies have revealed the relationships between PD and GBA gene mutations, facilitating a better understanding of this disorder. Various hypotheses delineate that the pathological mutations of GBA minimize the enzymatic activity of GCase, which affects the proliferation and clearance of α-synuclein; this affects the lysosomal homeostasis, exacerbating the endoplasmic reticulum stress or encouraging the mitochondrial dysfunction. Identification of the pathological mechanisms underlying the GBA-associated parkinsonism (GBA + PD) advances our understanding of PD. This review based on current literature aims to elucidate various genetic and clinical characteristics correlated with GBA mutations and to identify the numerous pathological processes underlying GBA + PD. We also delineate the therapeutic strategies to interfere with the mutant GCase function for further improvement of the related α-synuclein–GCase crosstalks. Moreover, the various therapeutic approaches such as gene therapy, chaperone proteins, and histone deacetylase inhibitors for the treatment of GBA + PD are discussed.
Collapse
|
18
|
Srikanth MP, Feldman RA. Elevated Dkk1 Mediates Downregulation of the Canonical Wnt Pathway and Lysosomal Loss in an iPSC Model of Neuronopathic Gaucher Disease. Biomolecules 2020; 10:E1630. [PMID: 33287247 PMCID: PMC7761665 DOI: 10.3390/biom10121630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Gaucher Disease (GD), which is the most common lysosomal storage disorder, is caused by bi-allelic mutations in GBA1-a gene that encodes the lysosomal hydrolase β-glucocerebrosidase (GCase). The neuronopathic forms of GD (nGD) are characterized by severe neurological abnormalities that arise during gestation or early in infancy. Using GD-induced pluripotent stem cell (iPSC)-derived neuronal progenitor cells (NPCs), we have previously reported that neuronal cells have neurodevelopmental defects associated with the downregulation of canonical Wnt signaling. In this study, we report that GD NPCs display elevated levels of Dkk1, which is a secreted Wnt antagonist that prevents receptor activation. Dkk1 upregulation in mutant NPCs resulted in an increased degradation of β-catenin, and there was a concomitant reduction in lysosomal numbers. Consistent with these results, incubation of the mutant NPCs with recombinant Wnt3a (rWnt3a) was able to outcompete the excess Dkk1, increasing β-catenin levels and rescuing lysosomal numbers. Furthermore, the incubation of WT NPCs with recombinant Dkk1 (rDkk1) phenocopied the mutant phenotype, recapitulating the decrease in β-catenin levels and lysosomal depletion seen in nGD NPCs. This study provides evidence that downregulation of the Wnt/β-catenin pathway in nGD neuronal cells involves the upregulation of Dkk1. As Dkk1 is an extracellular Wnt antagonist, our results suggest that the deleterious effects of Wnt/β-catenin downregulation in nGD may be ameliorated by the prevention of Dkk1 binding to the Wnt co-receptor LRP6, pointing to Dkk1 as a potential therapeutic target for GBA1-associated neurodegeneration.
Collapse
Affiliation(s)
| | - Ricardo A. Feldman
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| |
Collapse
|
19
|
Mohamed FE, Al Sorkhy M, Ghattas MA, Al-Gazali L, Al-Dirbashi O, Al-Jasmi F, Ali BR. The pharmacological chaperone N-n-butyl-deoxygalactonojirimycin enhances β-galactosidase processing and activity in fibroblasts of a patient with infantile GM1-gangliosidosis. Hum Genet 2020; 139:657-673. [PMID: 32219518 DOI: 10.1007/s00439-020-02153-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/19/2020] [Indexed: 02/05/2023]
Abstract
GM1-gangliosidosis, a lysosomal storage disorder, is associated with ~ 161 missense variants in the GLB1 gene. Affected patients present with β-galactosidase (β-Gal) deficiency in lysosomes. Loss of function in ER-retained misfolded enzymes with missense variants is often due to subcellular mislocalization. Deoxygalactonojirimycin (DGJ) and its derivatives are pharmaceutical chaperones that directly bind to mutated β-Gal in the ER promoting its folding and trafficking to lysosomes and thus enhancing its activity. An Emirati child has been diagnosed with infantile GM1-gangliosidosis carrying the reported p.D151Y variant. We show that p.D151Y β-Gal in patient's fibroblasts retained < 1% residual activity due to impaired processing and trafficking. The amino acid substitution significantly affected the enzyme conformation; however, p.D151Y β-Gal was amenable for partial rescue in the presence of glycerol or at reduced temperature where activity was enhanced with ~ 2.3 and 7 folds, respectively. The butyl (NB-DGJ) and nonyl (NN-DGJ) derivatives of DGJ chaperoning function were evaluated by measuring their IC50s and ability to stabilize the wild-type β-Gal against thermal degradation. Although NN-DGJ showed higher affinity to β-Gal, it did not show a significant enhancement in p.D151Y β-Gal activity. However, NB-DGJ promoted p.D151Y β-Gal maturation and enhanced its activity up to ~ 4.5% of control activity within 24 h which was significantly increased to ~ 10% within 6 days. NB-DGJ enhancement effect was sustained over 3 days after washing it out from culture media. We therefore conclude that NB-DGJ might be a promising therapeutic chemical chaperone in infantile GM1 amenable variants and therefore warrants further analysis for its clinical applications.
Collapse
Affiliation(s)
- Fedah E Mohamed
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad Al Sorkhy
- Department of Pharmacology, Al Ain University, Al Ain, United Arab Emirates
| | - Mohammad A Ghattas
- Department of Pharmacology, Al Ain University, Al Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Osama Al-Dirbashi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Genetics and Genomics College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
- Department of Genetics and Genomics College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
20
|
Malik BR, Maddison DC, Smith GA, Peters OM. Autophagic and endo-lysosomal dysfunction in neurodegenerative disease. Mol Brain 2019; 12:100. [PMID: 31783880 PMCID: PMC6884906 DOI: 10.1186/s13041-019-0504-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Due to their post-mitotic state, metabolic demands and often large polarised morphology, the function and survival of neurons is dependent on an efficient cellular waste clearance system both for generation of materials for metabolic processes and removal of toxic components. It is not surprising therefore that deficits in protein clearance can tip the balance between neuronal health and death. Here we discuss how autophagy and lysosome-mediated degradation pathways are disrupted in several neurological disorders. Both genetic and cell biological evidence show the diversity and complexity of vesicular clearance dysregulation in cells, and together may ultimately suggest a unified mechanism for neuronal demise in degenerative conditions. Causative and risk-associated mutations in Alzheimer's disease, Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, Parkinson's disease, Huntington's disease and others have given the field a unique mechanistic insight into protein clearance processes in neurons. Through their broad implication in neurodegenerative diseases, molecules involved in these genetic pathways, in particular those involved in autophagy, are emerging as appealing therapeutic targets for intervention in neurodegeneration.
Collapse
Affiliation(s)
- Bilal R Malik
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Daniel C Maddison
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK
- School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Gaynor A Smith
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK.
- School of Medicine, Cardiff University, Cardiff, Wales, UK.
| | - Owen M Peters
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK.
- School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
21
|
The Link between Gaucher Disease and Parkinson's Disease Sheds Light on Old and Novel Disorders of Sphingolipid Metabolism. Int J Mol Sci 2019; 20:ijms20133304. [PMID: 31284408 PMCID: PMC6651136 DOI: 10.3390/ijms20133304] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 12/23/2022] Open
Abstract
Sphingolipid metabolism starts with the biosynthesis of ceramide, a bioactive lipid and the backbone for the biosynthesis of complex sphingolipids such as sphingomyelin and glycosphingolipids. These are degraded back to ceramide and then to sphingosine, which enters the ceramide–sphingosine-1-phosphate signaling pathway or is further degraded. Several enzymes with multiple catalytic properties and subcellular localizations are thus involved in such metabolism. Hereditary defects of lysosomal hydrolases have been known for several years to be the cause of lysosomal storage diseases such as gangliosidoses, Gaucher disease, Niemann–Pick disease, Krabbe disease, Fabry disease, and Farber disease. More recently, many other inborn errors of sphingolipid metabolism have been recognized, involving enzymes responsible for the biosynthesis of ceramide, sphingomyelin, and glycosphingolipids. Concurrently, epidemiologic and biochemical evidence has established a link between Gaucher disease and Parkinson’s disease, showing that glucocerebrosidase variants predispose individuals to α-synuclein accumulation and neurodegeneration even in the heterozygous status. This appears to be due not only to lysosomal overload of non-degraded glucosylceramide, but to the derangement of vesicle traffic and autophagy, including mitochondrial autophagy, triggered by both sphingolipid intermediates and misfolded proteins. In this review, old and novel disorders of sphingolipid metabolism, in particular those of ganglioside biosynthesis, are evaluated in light of recent investigations of the link between Gaucher disease and Parkinson’s disease, with the aim of better understanding their pathogenic mechanisms and addressing new potential therapeutic strategies.
Collapse
|
22
|
Mullin S, Hughes D, Mehta A, Schapira AHV. Neurological effects of glucocerebrosidase gene mutations. Eur J Neurol 2018; 26:388-e29. [PMID: 30315684 PMCID: PMC6492454 DOI: 10.1111/ene.13837] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023]
Abstract
The association between Gaucher disease (GD) and Parkinson disease (PD) has been described for almost two decades. In the biallelic state (homozygous or compound heterozygous) mutations in the glucocerebrosidase gene (GBA) may cause GD, in which glucosylceramide, the sphingolipid substrate of the glucocerebrosidase enzyme (GCase), accumulates in visceral organs leading to a number of clinical phenotypes. In the biallelic or heterozygous state, GBA mutations increase the risk for PD. Mutations of the GBA allele are the most significant genetic risk factor for idiopathic PD, found in 5%–20% of idiopathic PD cases depending on ethnicity. The neurological consequences of GBA mutations are reviewed and the proposition that GBA mutations result in a disparate but connected range of clinically and pathologically related neurological features is discussed. The literature relating to the clinical, biochemical and genetic basis of GBA PD, type 1 GD and neuronopathic GD is considered highlighting commonalities and distinctions between them. The evidence for a unifying disease mechanism is considered.
Collapse
Affiliation(s)
- S Mullin
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK.,Institute of Translational and Stratified Medicine, University of Plymouth School of Medicine, Plymouth, UK
| | - D Hughes
- LSD Unit/Department of Haematology, Institute of Immunity and Transplantation, UCL, London, UK
| | - A Mehta
- LSD Unit/Department of Haematology, Institute of Immunity and Transplantation, UCL, London, UK
| | - A H V Schapira
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
23
|
Tao YX, Conn PM. Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseases. Physiol Rev 2018; 98:697-725. [PMID: 29442594 DOI: 10.1152/physrev.00029.2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
After synthesis, proteins are folded into their native conformations aided by molecular chaperones. Dysfunction in folding caused by genetic mutations in numerous genes causes protein conformational diseases. Membrane proteins are more prone to misfolding due to their more intricate folding than soluble proteins. Misfolded proteins are detected by the cellular quality control systems, especially in the endoplasmic reticulum, and proteins may be retained there for eventual degradation by the ubiquitin-proteasome system or through autophagy. Some misfolded proteins aggregate, leading to pathologies in numerous neurological diseases. In vitro, modulating mutant protein folding by altering molecular chaperone expression can ameliorate some misfolding. Some small molecules known as chemical chaperones also correct mutant protein misfolding in vitro and in vivo. However, due to their lack of specificity, their potential as therapeutics is limited. Another class of compounds, known as pharmacological chaperones (pharmacoperones), binds with high specificity to misfolded proteins, either as enzyme substrates or receptor ligands, leading to decreased folding energy barriers and correction of the misfolding. Because many of the misfolded proteins are misrouted but do not have defects in function per se, pharmacoperones have promising potential in advancing to the clinic as therapeutics, since correcting routing may ameliorate the underlying mechanism of disease. This review will comprehensively summarize this exciting area of research, surveying the literature from in vitro studies in cell lines to transgenic animal models and clinical trials in several protein misfolding diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| | - P Michael Conn
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW GBA mutations are the most common known genetic cause of Parkinson's disease (PD). Its biological pathway may be important in idiopathic PD, since activity of the enzyme encoded by GBA, glucocerebrosidase, is reduced even among PD patients without GBA mutations. This article describes the structure and function of GBA, reviews recent literature on the clinical phenotype of GBA PD, and suggests future directions for research, counseling, and treatment. RECENT FINDINGS Several longitudinal studies have shown that GBA PD has faster motor and cognitive progression than idiopathic PD and that this effect is dose dependent. New evidence suggests that GBA mutations may be important in multiple system atrophy. Further, new interventional studies focusing on GBA PD are described. These studies may increase the interest of PD patients and caregivers in genetic counseling. GBA mutation status may help clinicians estimate PD progression, though mechanisms underlying GBA and synucleinopathy require further understanding.
Collapse
|
25
|
Diagnosis and Management of Gaucher Disease in India – Consensus Guidelines of the Gaucher Disease Task Force of the Society for Indian Academy of Medical Genetics and the Indian Academy of Pediatrics. Indian Pediatr 2018. [DOI: 10.1007/s13312-018-1249-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
Justification
Gaucher disease (GD) is amongst the most frequently occurring lysosomal storage disorder in all ethnicities. The clinical manifestations and natural history of GD is highly heterogeneous with extreme geographic and ethnic variations. The literature on GD has paucity of information and optimal management guidelines for Indian patients.
Process
Gaucher Disease Task Force was formed under the auspices of the Society for Indian Academy of Medical Genetics. Invited experts from various specialties formulated guidelines for the management of patients with GD. A writing committee was formed and the draft guidelines were circulated by email to all members for comments and inputs. The guidelines were finalized in December 2016 at the annual meeting of the Indian Academy of Medical Genetics.
Objectives
These guidelines are intended to serve as a standard framework for treating physicians and the health care systems for optimal management of Gaucher disease in India and to define unique needs of this patient population.
Recommendations
Manifestations of GD are protean and a high index of suspicion is essential for timely diagnosis. Patients frequently experience diagnostic delays during which severe irreversible complications occur. Leucocyte acid β-glucosidase activity is mandatory for establishing the diagnosis of Gaucher disease; molecular testing can help identify patients at risk of neuronopathic disease. Enzyme replacement therapy for type 1 and type 3 Gaucher disease is the standard of care. Best outcomes are achieved by early initiation of therapy before onset of irreversible complications. However, in setting of progressive neurological symptoms such as seizures and or/neuroregression, ERT is not recommended, as it cannot cross the blood brain barrier. The recommendations herein are for diagnosis, for initiation of therapy, therapeutic goals, monitoring and follow up of patients. We highlight that prevention of recurrence of the disease through genetic counseling and prenatal diagnosis is essential in India, due to uniformly severe phenotypes encountered in our population.
Collapse
|
26
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
27
|
Ben Bdira F, Kallemeijn WW, Oussoren SV, Scheij S, Bleijlevens B, Florea BI, van Roomen CPAA, Ottenhoff R, van Kooten MJFM, Walvoort MTC, Witte MD, Boot RG, Ubbink M, Overkleeft HS, Aerts JMFG. Stabilization of Glucocerebrosidase by Active Site Occupancy. ACS Chem Biol 2017; 12:1830-1841. [PMID: 28485919 PMCID: PMC5525105 DOI: 10.1021/acschembio.7b00276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Glucocerebrosidase
(GBA) is a lysosomal β-glucosidase that
degrades glucosylceramide. Its deficiency results in Gaucher disease
(GD). We examined the effects of active site occupancy of GBA on its
structural stability. For this, we made use of cyclophellitol-derived
activity-based probes (ABPs) that bind irreversibly to the catalytic
nucleophile (E340), and for comparison, we used the potent reversible
inhibitor isofagomine. We demonstrate that cyclophellitol ABPs improve
the stability of GBA in vitro, as revealed by thermodynamic
measurements (Tm increase by 21 °C),
and introduce resistance to tryptic digestion. The stabilizing effect
of cell-permeable cyclophellitol ABPs is also observed in intact cultured
cells containing wild-type GBA, N370S GBA (labile in lysosomes), and
L444P GBA (exhibits impaired ER folding): all show marked increases
in lysosomal forms of GBA molecules upon exposure to ABPs. The same
stabilization effect is observed for endogenous GBA in the liver of
wild-type mice injected with cyclophellitol ABPs. Stabilization effects
similar to those observed with ABPs were also noted at high concentrations
of the reversible inhibitor isofagomine. In conclusion, we provide
evidence that the increase in cellular levels of GBA by ABPs and by
the reversible inhibitor is in part caused by their ability to stabilize
GBA folding, which increases the resistance of GBA against breakdown
by lysosomal proteases. These effects are more pronounced in the case
of the amphiphilic ABPs, presumably due to their high lipophilic potential,
which may promote further structural compactness of GBA through hydrophobic
interactions. Our study provides further rationale for the design
of chaperones for GBA to ameliorate Gaucher disease.
Collapse
Affiliation(s)
| | | | | | - Saskia Scheij
- Department
of Medical Biochemistry Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Boris Bleijlevens
- Department
of Medical Biochemistry Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | | | - Cindy P. A. A. van Roomen
- Department
of Medical Biochemistry Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Roelof Ottenhoff
- Department
of Medical Biochemistry Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | | | | | | | | | | | | | - Johannes M. F. G. Aerts
- Department
of Medical Biochemistry Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
28
|
Mohamed FE, Al-Gazali L, Al-Jasmi F, Ali BR. Pharmaceutical Chaperones and Proteostasis Regulators in the Therapy of Lysosomal Storage Disorders: Current Perspective and Future Promises. Front Pharmacol 2017; 8:448. [PMID: 28736525 PMCID: PMC5500627 DOI: 10.3389/fphar.2017.00448] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/22/2017] [Indexed: 02/05/2023] Open
Abstract
Different approaches have been utilized or proposed for the treatment of lysosomal storage disorders (LSDs) including enzyme replacement and hematopoietic stem cell transplant therapies, both aiming to compensate for the enzymatic loss of the underlying mutated lysosomal enzymes. However, these approaches have their own limitations and therefore the vast majority of LSDs are either still untreatable or their treatments are inadequate. Missense mutations affecting enzyme stability, folding and cellular trafficking are common in LSDs resulting often in low protein half-life, premature degradation, aggregation and retention of the mutant proteins in the endoplasmic reticulum. Small molecular weight compounds such as pharmaceutical chaperones (PCs) and proteostasis regulators have been in recent years to be promising approaches for overcoming some of these protein processing defects. These compounds are thought to enhance lysosomal enzyme activity by specific binding to the mutated enzyme or by manipulating components of the proteostasis pathways promoting protein stability, folding and trafficking and thus enhancing and restoring some of the enzymatic activity of the mutated protein in lysosomes. Multiple compounds have already been approved for clinical use to treat multiple LSDs like migalastat in the treatment of Fabry disease and others are currently under research or in clinical trials such as Ambroxol hydrochloride and Pyrimethamine. In this review, we are presenting a general overview of LSDs, their molecular and cellular bases, and focusing on recent advances on targeting and manipulation proteostasis, including the use of PCs and proteostasis regulators, as therapeutic targets for some LSDs. In addition, we present the successes, limitations and future perspectives in this field.
Collapse
Affiliation(s)
- Fedah E. Mohamed
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates UniversityAl-Ain, United Arab Emirates
| |
Collapse
|
29
|
Kuech EM, Brogden G, Naim HY. Alterations in membrane trafficking and pathophysiological implications in lysosomal storage disorders. Biochimie 2016; 130:152-162. [DOI: 10.1016/j.biochi.2016.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
|
30
|
Horowitz M, Elstein D, Zimran A, Goker-Alpan O. New Directions in Gaucher Disease. Hum Mutat 2016; 37:1121-1136. [DOI: 10.1002/humu.23056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/20/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Mia Horowitz
- Department of Cell Research and Immunology, Faculty of Life Sciences; Tel Aviv University; Ramat Aviv Israel
| | - Deborah Elstein
- Gaucher Clinic; Shaare Zedek Medical Center; Jerusalem Israel
| | - Ari Zimran
- Gaucher Clinic; Shaare Zedek Medical Center; Jerusalem Israel
| | | |
Collapse
|
31
|
Spratley SJ, Hill CH, Viuff AH, Edgar JR, Skjødt K, Deane JE. Molecular Mechanisms of Disease Pathogenesis Differ in Krabbe Disease Variants. Traffic 2016; 17:908-22. [PMID: 27126738 PMCID: PMC4949656 DOI: 10.1111/tra.12404] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 11/30/2022]
Abstract
Krabbe disease is a severe, fatal neurodegenerative disorder caused by defects in the lysosomal enzyme galactocerebrosidase (GALC). The correct targeting of GALC to the lysosome is essential for the degradation of glycosphingolipids including the primary lipid component of myelin. Over 100 different mutations have been identified in GALC that cause Krabbe disease but the mechanisms by which they cause disease remain unclear. We have generated monoclonal antibodies against full-length human GALC and used these to monitor the trafficking and processing of GALC variants in cell-based assays and by immunofluorescence microscopy. Striking differences in the secretion, processing and endosomal targeting of GALC variants allows the classification of these into distinct categories. A subset of GALC variants are not secreted by cells, not proteolytically processed, and remain trapped in the ER; these are likely to cause disease due to protein misfolding and should be targeted for pharmacological chaperone therapies. Other GALC variants can be correctly secreted by cells and cause disease due to catalytic defects in the enzyme active site, inappropriate post-translational modification or a potential inability to bind essential cofactors. The classification of disease pathogenesis presented here provides a molecular framework for appropriate targeting of future Krabbe disease therapies.
Collapse
Affiliation(s)
- Samantha J Spratley
- Cambridge Institute for Medical Research, Department of Pathology, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Chris H Hill
- Cambridge Institute for Medical Research, Department of Pathology, University of Cambridge, Cambridge, CB2 0XY, UK.,Current address: MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Agnete H Viuff
- Department of Chemistry, Aarhus University, Aarhus C, 8000, Denmark
| | - James R Edgar
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Karsten Skjødt
- Department of Cancer and Inflammation, University of Southern Denmark, Odense, 5000, Denmark
| | - Janet E Deane
- Cambridge Institute for Medical Research, Department of Pathology, University of Cambridge, Cambridge, CB2 0XY, UK
| |
Collapse
|
32
|
ERdj3 is an endoplasmic reticulum degradation factor for mutant glucocerebrosidase variants linked to Gaucher's disease. ACTA ACUST UNITED AC 2015; 21:967-76. [PMID: 25126989 DOI: 10.1016/j.chembiol.2014.06.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 01/13/2023]
Abstract
Gaucher's disease (GD) is caused by mutations that compromise β-glucocerebrosidase (GCase) folding in the endoplasmic reticulum (ER), leading to excessive degradation instead of trafficking, which results in insufficient lysosomal function. We hypothesized that ER GCase interacting proteins play critical roles in making quality control decisions, i.e., facilitating ER-associated degradation (ERAD) instead of folding and trafficking. Utilizing GCase immunoprecipitation followed by mass-spectrometry-based proteomics, we identified endogenous HeLa cell GCase protein interactors, including ERdj3, an ER resident Hsp40 not previously established to interact with GCase. Depleting ERdj3 reduced the rate of mutant GCase degradation in patient-derived fibroblasts, while increasing folding, trafficking, and function by directing GCase to the profolding ER calnexin pathway. Inhibiting ERdj3-mediated mutant GCase degradation while simultaneously enhancing calnexin-associated folding, by way of a diltiazem-mediated increase in ER Ca(2+) levels, yields a synergistic rescue of L444P GCase lysosomal function. Our findings suggest a combination therapeutic strategy for ameliorating GD.
Collapse
|
33
|
Enzyme enhancers for the treatment of Fabry and Pompe disease. Mol Ther 2014; 23:456-64. [PMID: 25409744 DOI: 10.1038/mt.2014.224] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 11/07/2014] [Indexed: 12/22/2022] Open
Abstract
Lysosomal storage disorders (LSD) are a group of heterogeneous diseases caused by compromised enzyme function leading to multiple organ failure. Therapeutic approaches involve enzyme replacement (ERT), which is effective for a substantial fraction of patients. However, there are still concerns about a number of issues including tissue penetrance, generation of host antibodies against the therapeutic enzyme, and financial aspects, which render this therapy suboptimal for many cases. Treatment with pharmacological chaperones (PC) was recognized as a possible alternative to ERT, because a great number of mutations do not completely abolish enzyme function, but rather trigger degradation in the endoplasmic reticulum. The theory behind PC is that they can stabilize enzymes with remaining function, avoid degradation and thereby ameliorate disease symptoms. We tested several compounds in order to identify novel small molecules that prevent premature degradation of the mutant lysosomal enzymes α-galactosidase A (for Fabry disease (FD)) and acid α-glucosidase (GAA) (for Pompe disease (PD)). We discovered that the expectorant Ambroxol when used in conjunction with known PC resulted in a significant enhancement of mutant α-galactosidase A and GAA activities. Rosiglitazone was effective on α-galactosidase A either as a monotherapy or when administered in combination with the PC 1-deoxygalactonojirimycin. We therefore propose both drugs as potential enhancers of pharmacological chaperones in FD and PD to improve current treatment strategies.
Collapse
|
34
|
Selective chaperone effect of aminocyclitol derivatives on G202R and other mutant glucocerebrosidases causing Gaucher disease. Int J Biochem Cell Biol 2014; 54:245-54. [DOI: 10.1016/j.biocel.2014.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/04/2014] [Accepted: 07/22/2014] [Indexed: 11/20/2022]
|
35
|
Deng H, Xiu X, Jankovic J. Genetic convergence of Parkinson's disease and lysosomal storage disorders. Mol Neurobiol 2014; 51:1554-68. [PMID: 25099932 DOI: 10.1007/s12035-014-8832-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/23/2014] [Indexed: 01/07/2023]
Abstract
Parkinson's disease is a common progressive neurodegenerative disorder characterized by predominant degeneration of the dopaminergic neurons in the substantia nigra pars compacta and the presence of intracellular inclusions enriched in α-synuclein, resulting in a variety motor and nonmotor symptoms. Lysosomal storage disorders are a group of disorders including Gaucher disease, Niemann-Pick disease, and neuronal ceroid lipofuscinoses caused by the defective activity of lysosomal and nonlysosomal proteins. In addition to an overlap in some clinical features between lysosomal storage disorders and Parkinson's disease, the two disorders may be also linked pathogenically. There is growing support for the notion that mutations in genes causing lysosomal storage disorders including the glucocerebrosidase gene, the sphingomyelin phosphodiesterase 1 gene, and the NPC1 gene may increase risk for developing Parkinson's disease. In this review, we discuss the recent advances in the genetic convergence of Parkinson's disease and lysosomal storage disorders, shedding new light on the understanding of shared pathogenic pathways.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China,
| | | | | |
Collapse
|
36
|
Segatori L. Impairment of homeostasis in lysosomal storage disorders. IUBMB Life 2014; 66:472-7. [PMID: 25044960 DOI: 10.1002/iub.1288] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/23/2014] [Indexed: 12/27/2022]
Abstract
Lysosomal storage disorders (LSDs) are inherited metabolic diseases caused by deficiencies in lysosomal proteins, which result in accumulation of undegraded metabolites and disruption of lysosomal proteostasis. Despite significant progress in the molecular genetics and biochemistry underlying the cellular pathogenesis of LSDs, the mechanisms that link accumulation of storage material to development and progression of these diseases are still unclear. At the crossroad of degradative pathways, lysosomes play a fundamental role in the maintenance of cellular homeostasis. Through a series of examples, this review illustrates how defects in lysosomal biogenesis and function impact a number of cellular pathways that are involved in the pathogenic cascade.
Collapse
Affiliation(s)
- Laura Segatori
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
37
|
Serra-Vinardell J, Díaz L, Casas J, Grinberg D, Vilageliu L, Michelakakis H, Mavridou I, Aerts JMFG, Decroocq C, Compain P, Delgado A. Glucocerebrosidase enhancers for selected Gaucher disease genotypes by modification of α-1-C-substituted imino-D-xylitols (DIXs) by click chemistry. ChemMedChem 2014; 9:1744-54. [PMID: 24976039 DOI: 10.1002/cmdc.201402023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Indexed: 11/08/2022]
Abstract
A series of hybrid analogues was designed by combination of the iminoxylitol scaffold of parent 1C9-DIX with triazolylalkyl side chains. The resulting compounds were considered potential pharmacological chaperones in Gaucher disease. The DIX analogues reported here were synthesized by CuAAC click chemistry from scaffold 1 (α-1-C-propargyl-1,5-dideoxy-1,5-imino-D-xylitol) and screened as imiglucerase inhibitors. A set of selected compounds were tested as β-glucocerebrosidase (GBA1) enhancers in fibroblasts from Gaucher patients bearing different genotypes. A number of these DIX compounds were revealed as potent GBA1 enhancers in genotypes containing the G202R mutation, particularly compound DIX-28 (α-1-C-[(1-(3-trimethylsilyl)propyl)-1H-1,2,3-triazol-4-yl)methyl]-1,5-dideoxy-1,5-imino-D-xylitol), bearing the 3-trimethylsilylpropyl group as a new surrogate of a long alkyl chain, with approximately threefold activity enhancement at 10 nM. Despite their structural similarities with isofagomine and with our previously reported aminocyclitols, the present DIX compounds behaved as non-competitive inhibitors, with the exception of the mixed-type inhibitor DIX-28.
Collapse
Affiliation(s)
- Jenny Serra-Vinardell
- Departament de Genètica, Universitat de Barcelona (UB), IBUB; CIBER de Enfermedades Raras (CIBERER), Av. Diagonal 643, 08028, Barcelona (Spain)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Muntau AC, Leandro J, Staudigl M, Mayer F, Gersting SW. Innovative strategies to treat protein misfolding in inborn errors of metabolism: pharmacological chaperones and proteostasis regulators. J Inherit Metab Dis 2014; 37:505-23. [PMID: 24687294 DOI: 10.1007/s10545-014-9701-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
To attain functionality, proteins must fold into their three-dimensional native state. The intracellular balance between protein synthesis, folding, and degradation is constantly challenged by genetic or environmental stress factors. In the last ten years, protein misfolding induced by missense mutations was demonstrated to be the seminal molecular mechanism in a constantly growing number of inborn errors of metabolism. In these cases, loss of protein function results from early degradation of missense-induced misfolded proteins. Increasing knowledge on the proteostasis network and the protein quality control system with distinct mechanisms in different compartments of the cell paved the way for the development of new treatment strategies for conformational diseases using small molecules. These comprise proteostasis regulators that enhance the capacity of the proteostasis network and pharmacological chaperones that specifically bind and rescue misfolded proteins by conformational stabilization. They can be used either alone or in combination, the latter to exploit synergistic effects. Many of these small molecule compounds currently undergo preclinical and clinical pharmaceutical development and two have been approved: saproterin dihydrochloride for the treatment of phenylketonuria and tafamidis for the treatment of transthyretin-related hereditary amyloidosis. Different technologies are exploited for the discovery of new small molecule compounds that belong to the still young class of pharmaceutical products discussed here. These compounds may in the near future improve existing treatment strategies or even offer a first-time treatment to patients suffering from nowadays-untreatable inborn errors of metabolism.
Collapse
Affiliation(s)
- Ania C Muntau
- Department of Molecular Pediatrics, Dr von Hauner Children's Hospital, Ludwig Maximilians University, Lindwurmstrasse 4, 80337, Munich, Germany,
| | | | | | | | | |
Collapse
|
39
|
Babajani G, Kermode AR. Alteration of the proteostasis network of plant cells promotes the post-endoplasmic reticulum trafficking of recombinant mutant (L444P) human β-glucocerebrosidase. PLANT SIGNALING & BEHAVIOR 2014; 9:e28714. [PMID: 24713615 PMCID: PMC4091198 DOI: 10.4161/psb.28714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Gaucher disease is a prevalent lysosomal storage disease characterized by a deficiency in the activity of lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45). One of the most prevalent disease-causing mutations in humans is a L444P missense mutation in the GCase protein, which results in its disrupted folding in the endoplasmic reticulum (ER) and impaired post-ER trafficking. To determine whether the post-ER trafficking of this severely malfolded protein can be restored, we expressed the mutant L444P GCase as a recombinant protein in transgenic tobacco (Nicotiana tabacum L. cv Bright Yellow 2 [BY2]) cells, in which the GCase variant was equipped with a plant signal peptide to allow for secretion upon rescued trafficking out of the ER. The recombinant L444P mutant GCase was retained in the plant endoplasmic reticulum (ER). Kifunensine and Eeyarestatin I, both inhibitors of ER-associated degradation (ERAD), and the proteostasis regulators, celastrol and MG-132, increased the steady-state levels of the mutant protein inside the plant cells and further promoted the post-ER trafficking of L444P GCase, as indicated by endoglycosidase-H sensitivity- and secretion- analyses. Transcript profiling of genes encoding ER-molecular chaperones, ER stress responsive proteins, and cytoplasmic heat shock response proteins, revealed insignificant or only very modest changes in response to the ERAD inhibitors and proteostasis regulators. An exception was the marked response to celastrol which reduced the steady-state levels of cytoplasmic HSP90 transcripts and protein. As Hsp90 participates in the targeting of misfolded proteins to the proteasome pathway, its down-modulation in response to celastrol may partly account for the mechanism of improved homeostasis of L444P GCase mediated by this triterpene.
Collapse
Affiliation(s)
- Gholamreza Babajani
- Department of Biological Sciences; Simon Fraser University; Burnaby, BC Canada
| | - Allison R Kermode
- Department of Biological Sciences; Simon Fraser University; Burnaby, BC Canada
| |
Collapse
|
40
|
Docking and SAR studies of calystegines: binding orientation and influence on pharmacological chaperone effects for Gaucher's disease. Bioorg Med Chem 2014; 22:2435-41. [PMID: 24657053 DOI: 10.1016/j.bmc.2014.02.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 11/21/2022]
Abstract
We report on the identification of the required configuration and binding orientation of nor-tropane alkaloid calystegines against β-glucocerebrosidase. Calystegine B2 is a potent competitive inhibitor of human lysosomal β-glucocerebrosidase with Ki value of 3.3 μM. A molecular docking study revealed that calystegine B2 had a favorable van der Waals interactions (Phe128, Trp179, and Phe246) and the hydrogen bonding (Glu235, Glu340, Asp127, Trp179, Asn234, Trp381 and Asn396) was similar to that of isofagomine. All calystegine isomers bound into the same active site as calystegine B2 and the essential hydrogen bonds formed to Asp127, Glu235 and Glu340 were maintained. However, their binding orientations were obviously different. Calystegine A3 bound to β-glucocerebrosidase with the same orientations as calystegine B2 (Type 1), while calystegine B3 and B4 had different binding orientations (Type 2). It is noteworthy that Type 1 orientated calystegines B2 and A3 effectively stabilized β-glucocerebrosidase, and consequently increased intracellular β-glucocerebrosidase activities in N370S fibroblasts, while Type 2 orientated calystegines B3 and B4 could not keep the enzyme activity. These results clearly indicate that the binding orientations of calystegines are changed by the configuration of the hydroxyl groups on the nor-tropane ring and the suitable binding orientation is a requirement for achieving a strong affinity to β-glucocerebrosidase.
Collapse
|
41
|
Joosten A, Decroocq C, de Sousa J, Schneider JP, Etamé E, Bodlenner A, Butters TD, Compain P. A Systematic Investigation of Iminosugar Click Clusters as Pharmacological Chaperones for the Treatment of Gaucher Disease. Chembiochem 2013; 15:309-19. [DOI: 10.1002/cbic.201300442] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Indexed: 01/08/2023]
|
42
|
Cheng WC, Weng CY, Yun WY, Chang SY, Lin YC, Tsai FJ, Huang FY, Chen YR. Rapid modifications of N-substitution in iminosugars: Development of new β-glucocerebrosidase inhibitors and pharmacological chaperones for Gaucher disease. Bioorg Med Chem 2013; 21:5021-8. [DOI: 10.1016/j.bmc.2013.06.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 12/21/2022]
|
43
|
Tammachote R, Tongkobpetch S, Srichomthong C, Phipatthanananti K, Pungkanon S, Wattanasirichaigoon D, Suphapeetiporn K, Shotelersuk V. A common and two novel GBA mutations in Thai patients with Gaucher disease. J Hum Genet 2013; 58:594-9. [PMID: 23719189 DOI: 10.1038/jhg.2013.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/27/2013] [Accepted: 05/01/2013] [Indexed: 11/09/2022]
Abstract
Gaucher disease (GD) is an autosomal recessive disorder caused by mutations in the glucocerebrosidase (GBA) gene, leading to a deficiency of lysosomal β-glucosidase and accumulation of glycosphingolipids in macrophages. We studied five Thai families with GD (four with GD type 1 and one with GD type 2). Using long-template PCR, PCR using specific primers for the functional gene, direct sequencing of all coding regions of GBA and restriction enzyme digestions, all 10 mutant alleles were successfully identified. The common c.1448T>C (p.L483P or L444P) mutation was identified in 60% of mutant alleles. Of the two patients homozygous for the p.L483P (L444P) mutation, one died from hepatic failure at age 16 years and the other died from sepsis at age 12 years. This p.L483P (L444P) mutation was found in four different haplotypes, suggesting that it was a recurrent mutation, not caused by a founder effect. Two novel mutations, a missense (c.1204T>C, p.Y402H), and a termination codon mutation (c.1609T>C, p.X537A) were found. Studies to determine the molecular pathomechanism of the p.X537A mutation, the first of its kind in this gene, showed that it decreased the amount of protein being expressed and the enzymatic activity, while it was still correctly localized.
Collapse
Affiliation(s)
- Rachaneekorn Tammachote
- 1] Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand [2] Department of Pediatrics, Center of Excellence for Medical Genetics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang F, Segatori L. Remodeling the proteostasis network to rescue glucocerebrosidase variants by inhibiting ER-associated degradation and enhancing ER folding. PLoS One 2013; 8:e61418. [PMID: 23620750 PMCID: PMC3631227 DOI: 10.1371/journal.pone.0061418] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/12/2013] [Indexed: 11/20/2022] Open
Abstract
Gaucher’s disease (GD) is characterized by loss of lysosomal glucocerebrosidase (GC) activity. Mutations in the gene encoding GC destabilize the protein’s native folding leading to ER-associated degradation (ERAD) of the misfolded enzyme. Enhancing the cellular folding capacity by remodeling the proteostasis network promotes native folding and lysosomal activity of mutated GC variants. However, proteostasis modulators reported so far, including ERAD inhibitors, trigger cellular stress and lead to induction of apoptosis. We show herein that lacidipine, an L-type Ca2+ channel blocker that also inhibits ryanodine receptors on the ER membrane, enhances folding, trafficking and lysosomal activity of the most severely destabilized GC variant achieved via ERAD inhibition in fibroblasts derived from patients with GD. Interestingly, reprogramming the proteostasis network by combining modulation of Ca2+ homeostasis and ERAD inhibition remodels the unfolded protein response and dramatically lowers apoptosis induction typically associated with ERAD inhibition.
Collapse
Affiliation(s)
- Fan Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, United States of America
| | - Laura Segatori
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, United States of America
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Ong DST, Wang YJ, Tan YL, Yates JR, Mu TW, Kelly JW. FKBP10 depletion enhances glucocerebrosidase proteostasis in Gaucher disease fibroblasts. ACTA ACUST UNITED AC 2013; 20:403-15. [PMID: 23434032 DOI: 10.1016/j.chembiol.2012.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/14/2012] [Accepted: 11/21/2012] [Indexed: 12/20/2022]
Abstract
Lysosomal storage diseases (LSDs) are often caused by mutations compromising lysosomal enzyme folding in the endoplasmic reticulum (ER), leading to degradation and loss of function. Mass spectrometry analysis of Gaucher fibroblasts treated with mechanistically distinct molecules that increase LSD enzyme folding, trafficking, and function resulted in the identification of nine commonly downregulated and two jointly upregulated proteins, which we hypothesized would be critical proteostasis network components for ameliorating loss-of-function diseases. LIMP-2 and FK506 binding protein 10 (FKBP10) were validated as such herein. Increased FKBP10 levels accelerated mutant glucocerebrosidase degradation over folding and trafficking, whereas decreased ER FKBP10 concentration led to more LSD enzyme partitioning into the calnexin profolding pathway, enhancing folding and activity to levels thought to ameliorate LSDs. Thus, targeting FKBP10 appears to be a heretofore unrecognized therapeutic strategy to ameliorate LSDs.
Collapse
Affiliation(s)
- Derrick Sek Tong Ong
- Departments of Chemistry and Molecular and Experimental Medicine and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
46
|
Song W, Wang F, Savini M, Ake A, di Ronza A, Sardiello M, Segatori L. TFEB regulates lysosomal proteostasis. Hum Mol Genet 2013; 22:1994-2009. [PMID: 23393155 DOI: 10.1093/hmg/ddt052] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Loss-of-function diseases are often caused by destabilizing mutations that lead to protein misfolding and degradation. Modulating the innate protein homeostasis (proteostasis) capacity may lead to rescue of native folding of the mutated variants, thereby ameliorating the disease phenotype. In lysosomal storage disorders (LSDs), a number of highly prevalent alleles have missense mutations that do not impair the enzyme's catalytic activity but destabilize its native structure, resulting in the degradation of the misfolded protein. Enhancing the cellular folding capacity enables rescuing the native, biologically functional structure of these unstable mutated enzymes. However, proteostasis modulators specific for the lysosomal system are currently unknown. Here, we investigate the role of the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and function, in modulating lysosomal proteostasis in LSDs. We show that TFEB activation results in enhanced folding, trafficking and lysosomal activity of a severely destabilized glucocerebrosidase (GC) variant associated with the development of Gaucher disease (GD), the most common LSD. TFEB specifically induces the expression of GC and of key genes involved in folding and lysosomal trafficking, thereby enhancing both the pool of mutated enzyme and its processing through the secretory pathway. TFEB activation also rescues the activity of a β-hexosaminidase mutant associated with the development of another LSD, Tay-Sachs disease, thus suggesting general applicability of TFEB-mediated proteostasis modulation to rescue destabilizing mutations in LSDs. In summary, our findings identify TFEB as a specific regulator of lysosomal proteostasis and suggest that TFEB may be used as a therapeutic target to rescue enzyme homeostasis in LSDs.
Collapse
Affiliation(s)
- Wensi Song
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Maor G, Filocamo M, Horowitz M. ITCH regulates degradation of mutant glucocerebrosidase: implications to Gaucher disease. Hum Mol Genet 2012; 22:1316-27. [PMID: 23255161 DOI: 10.1093/hmg/dds535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inability to properly degrade unfolded or misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress and unfolded protein response. This is particularly important in cases of diseases in which the mutant proteins undergo ER-associated degradation (ERAD), as in Gaucher disease (GD). GD is a genetic, autosomal recessive disease that results from mutations in the GBA1 gene, encoding the lysosomal enzyme acid β-glucocerebrosidase (GCase). We have shown that mutant GCase variants undergo ERAD, the degree of which is a major determinant of disease severity. Most ERAD substrates undergo polyubiquitination and proteasomal degradation. Therefore, one expects that mutant GCase variants are substrates for several E3 ubiquitin ligases in different cells. We tested the possibility that ITCH, a known E3 ubiquitin ligase, with a pivotal role in proliferation and differentiation of the skin, recognizes mutant GCase variants and mediates their polyubiquitination and degradation. Our results strongly suggest that ITCH interacts with mutant GCase variants and mediates their lysine 48 polyubiquitination and degradation.
Collapse
Affiliation(s)
- Gali Maor
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|
48
|
Babajani G, Tropak MB, Mahuran DJ, Kermode AR. Pharmacological chaperones facilitate the post-ER transport of recombinant N370S mutant β-glucocerebrosidase in plant cells: evidence that N370S is a folding mutant. Mol Genet Metab 2012; 106:323-9. [PMID: 22592100 PMCID: PMC3425598 DOI: 10.1016/j.ymgme.2012.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 12/22/2022]
Abstract
Gaucher disease is a prevalent lysosomal storage disease in which affected individuals inherit mutations in the gene (GBA1) encoding lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45). One of the most prevalent disease-causing mutations in humans is a N370S missense mutation in the GCase protein. As part of a larger endeavor to study the fate of mutant human proteins expressed in plant cells, the N370S mutant protein along with the wild-type- (WT)-GCase, both equipped with a signal peptide, were synthesized in transgenic tobacco BY2 cells, which do not possess lysosomes. The enzymatic activity of plant-recombinant N370S GCase lines was significantly lower (by 81-95%) than that of the WT-GCase lines. In contrast to the WT-GCase protein, which was efficiently secreted from tobacco BY2 cells, and detected in large amounts in the culture medium, only a small proportion of the N370S GCase was secreted. Pharmacological chaperones such as N-(n-nonyl) deoxynojirimycin and ambroxol increased the steady-state mutant protein levels both inside the plant cells and in the culture medium. These findings contradict the assertion that small molecule chaperones increase N370S GCase activity (as assayed in treated patient cell lysates) by stabilizing the enzyme in the lysosome, and suggest that the mutant protein is impaired in its ability to obtain its functional folded conformation, which is a requirement for exiting the lumen of the ER.
Collapse
Affiliation(s)
- Gholamreza Babajani
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC, Canada V5A 1S6
| | | | | | | |
Collapse
|
49
|
Patnaik S, Zheng W, Choi JH, Motabar O, Southall N, Westbroek W, Lea WA, Velayati A, Goldin E, Sidransky E, Leister W, Marugan JJ. Discovery, structure-activity relationship, and biological evaluation of noninhibitory small molecule chaperones of glucocerebrosidase. J Med Chem 2012; 55:5734-48. [PMID: 22646221 PMCID: PMC3400126 DOI: 10.1021/jm300063b] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A major challenge in the field of Gaucher disease has been the development of new therapeutic strategies including molecular chaperones. All previously described chaperones of glucocerebrosidase are enzyme inhibitors, which complicates their clinical development because their chaperone activity must be balanced against the functional inhibition of the enzyme. Using a novel high throughput screening methodology, we identified a chemical series that does not inhibit the enzyme but can still facilitate its translocation to the lysosome as measured by immunostaining of glucocerebrosidase in patient fibroblasts. These compounds provide the basis for the development of a novel approach toward small molecule treatment for patients with Gaucher disease.
Collapse
Affiliation(s)
- Samarjit Patnaik
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD
| | - Wei Zheng
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD
| | - Jae H. Choi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892; USA
| | - Omid Motabar
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892; USA
| | - Noel Southall
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD
| | - Wendy Westbroek
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892; USA
| | - Wendy A. Lea
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD
| | - Arash Velayati
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892; USA
| | - Ehud Goldin
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892; USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892; USA
| | - William Leister
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD
| | - Juan J. Marugan
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD
| |
Collapse
|
50
|
Bendikov-Bar I, Horowitz M. Gaucher disease paradigm: from ERAD to comorbidity. Hum Mutat 2012; 33:1398-407. [PMID: 22623374 DOI: 10.1002/humu.22124] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/16/2012] [Indexed: 01/28/2023]
Abstract
Mutations in the GBA gene, encoding the lysosomal acid beta-glucocerebrosidase (GCase), lead to deficient activity of the enzyme in the lysosomes, to glucosylceramide accumulation and to development of Gaucher disease (GD). More than 280 mutations in the GBA gene have been directly associated with GD. Mutant GCase variants present variable levels of endoplasmic reticulum (ER) retention, due to their inability to correctly fold, and undergo ER-associated degradation (ERAD) in the proteasomes. The degree of ER retention and proteasomal degradation is one of the factors that determine GD severity. In the present review, we discuss ERAD of mutant GCase variants and its possible consequences in GD patients and in carriers of GD mutations.
Collapse
Affiliation(s)
- Inna Bendikov-Bar
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|