1
|
Su Q, Zhang J, Lin W, Zhang JF, Newton AC, Mehta S, Yang J, Zhang J. Sensitive fluorescent biosensor reveals differential subcellular regulation of PKC. Nat Chem Biol 2025; 21:501-511. [PMID: 39394268 DOI: 10.1038/s41589-024-01758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
The protein kinase C (PKC) family of serine and threonine kinases, consisting of three distinctly regulated subfamilies, has been established as critical for various cellular functions. However, how PKC enzymes are regulated at different subcellular locations, particularly at emerging signaling hubs, is unclear. Here we present a sensitive excitation ratiometric C kinase activity reporter (ExRai-CKAR2) that enables the detection of minute changes (equivalent to 0.2% of maximum stimulation) in subcellular PKC activity. Using ExRai-CKAR2 with an enhanced diacylglycerol (DAG) biosensor, we uncover that G-protein-coupled receptor stimulation triggers sustained PKC activity at the endoplasmic reticulum and lysosomes, differentially mediated by Ca2+-sensitive conventional PKC and DAG-sensitive novel PKC, respectively. The high sensitivity of ExRai-CKAR2, targeted to either the cytosol or partitioning defective complexes, further enabled us to detect previously inaccessible endogenous atypical PKC activity in three-dimensional organoids. Taken together, ExRai-CKAR2 is a powerful tool for interrogating PKC regulation in response to physiological stimuli.
Collapse
Affiliation(s)
- Qi Su
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jing Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin-Fan Zhang
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Su Q, Zhang J, Lin W, Zhang JF, Newton AC, Mehta S, Yang J, Zhang J. Sensitive Fluorescent Biosensor Reveals Differential Subcellular Regulation of PKC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587373. [PMID: 38586003 PMCID: PMC10996667 DOI: 10.1101/2024.03.29.587373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The protein kinase C (PKC) family of serine/threonine kinases, which consist of three distinctly regulated subfamilies, have long been established as critical for a variety of cellular functions. However, how PKC enzymes are regulated at different subcellular locations, particularly at emerging signaling hubs such as the ER, lysosome, and Par signaling complexes, is unclear. Here, we present a sensitive Excitation Ratiometric (ExRai) C Kinase Activity Reporter (ExRai-CKAR2) that enables the detection of minute changes in subcellular PKC activity. Using ExRai-CKAR2 in conjunction with an enhanced diacylglycerol (DAG) biosensor capable of detecting intracellular DAG dynamics, we uncover the differential regulation of PKC isoforms at distinct subcellular locations. We find that G-protein coupled receptor (GPCR) stimulation triggers sustained PKC activity at the ER and lysosomes, primarily mediated by Ca2+ sensitive conventional PKC (cPKC) and novel PKC (nPKC), respectively, with nPKC showing high basal activity due to elevated basal DAG levels on lysosome membranes. The high sensitivity of ExRai-CKAR2, targeted to either the cytosol or Par-complexes, further enabled us to detect previously inaccessible endogenous atypical PKC (aPKC) activity in 3D organoids. Taken together, ExRai-CKAR2 is a powerful tool for interrogating PKC regulation in response to physiological stimuli.
Collapse
Affiliation(s)
- Qi Su
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jing Zhang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Wei Lin
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jin-Fan Zhang
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Alexandra C Newton
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Wei Y, Meng M, Tian Z, Xie F, Yin Q, Dai C, Wang J, Zhang Q, Liu Y, Liu C, Yan F, Jiang F, Guo X. Pharmacological preconditioning with the cellular stress inducer thapsigargin protects against experimental sepsis. Pharmacol Res 2018; 141:114-122. [PMID: 30579975 DOI: 10.1016/j.phrs.2018.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
Previous studies have shown that pretreatment with thapsigargin (TG), a cellular stress inducer, produced potent protective actions against various pathologic injuries. So far there is no information on the effects of TG on the development of bacterial sepsis. Using lipopolysaccharides- and cecal ligation/puncture-induced sepsis models in mice, we demonstrated that preconditioning with a single bolus administration of TG conferred significant improvements in survival. The beneficial effects of TG were not mediated by ER stress induction or changes in Toll-like receptor 4 signaling. In vivo and in cultured macrophages, we identified that TG reduced the protein production of pro-inflammatory cytokines, but exhibited no significant effects on steady state levels of their transcriptions. Direct measurement on the fraction of polysome-bound mRNAs revealed that TG reduced the translational efficiency of pro-inflammatory cytokines in macrophages. Moreover, we provided evidence suggesting that repression of the mTOR (the mammalian target of rapamycin) signaling pathway, but not activation of the PERK (protein kinase R-like endoplasmic reticulum kinase)-eIF2α (eukaryotic initiation factor 2α) pathway, might be involved in mediating the TG effects on cytokine production. In summary, our results support that pharmacological preconditioning with TG may represent a novel strategy to prevent sepsis-induced mortality and organ injuries.
Collapse
Affiliation(s)
- Yaping Wei
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Mei Meng
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated, Shandong University, Jinan, Shandong Province, China
| | - Zhenyu Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fubo Xie
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Qihui Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chaochao Dai
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jingjing Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Qunye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chang Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Feng Yan
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Fan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
4
|
Boncoeur É, Bouvet GF, Migneault F, Tardif V, Ferraro P, Radzioch D, de Sanctis JB, Eidelman D, Govindaraju K, Dagenais A, Berthiaume Y. Induction of nitric oxide synthase expression by lipopolysaccharide is mediated by calcium-dependent PKCα-β1 in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2013; 305:L175-84. [PMID: 23686852 DOI: 10.1152/ajplung.00295.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) plays an important role in innate host defense and inflammation. In response to infection, NO is generated by inducible nitric oxide synthase (iNOS), a gene product whose expression is highly modulated by different stimuli, including lipopolysaccharide (LPS) from gram-negative bacteria. We reported recently that LPS from Pseudomonas aeruginosa altered Na⁺ transport in alveolar epithelial cells via a suramin-dependent process, indicating that LPS activated a purinergic response in these cells. To further study this question, in the present work, we tested whether iNOS mRNA and protein expression were modulated in response to LPS in alveolar epithelial cells. We found that LPS induced a 12-fold increase in iNOS mRNA expression via a transcription-dependent process in these cells. iNOS protein, NO, and nitrotyrosine were also significantly elevated in LPS-treated cells. Ca²⁺ chelation and protein kinase C (PKCα-β1) inhibition suppressed iNOS mRNA induction by LPS, implicating Ca²⁺-dependent PKC signaling in this process. LPS evoked a significant increase of extracellular ATP. Because PKC activation is one of the signaling pathways known to mediate purinergic signaling, we evaluated the hypothesis that iNOS induction was ATP dependent. Although high suramin concentration inhibited iNOS mRNA induction, the process was not ATP dependent, since specific purinergic receptor antagonists could not inhibit the process. Altogether, these findings demonstrate that iNOS expression is highly modulated in alveolar epithelial cells by LPS via a Ca²⁺/PKCα-β1 pathway independent of ATP signaling.
Collapse
Affiliation(s)
- Émilie Boncoeur
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CR-CHUM)-Hôtel-Dieu, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Haschemi A, Kosma P, Gille L, Evans C, Burant C, Starkl P, Knapp B, Haas R, Schmid J, Jandl C, Amir S, Lubec G, Park J, Esterbauer H, Bilban M, Brizuela L, Pospisilik J, Otterbein L, Wagner O. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 2012; 15:813-26. [PMID: 22682222 PMCID: PMC3370649 DOI: 10.1016/j.cmet.2012.04.023] [Citation(s) in RCA: 461] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/18/2011] [Accepted: 04/26/2012] [Indexed: 12/17/2022]
Abstract
Immune cells are somewhat unique in that activation responses can alter quantitative phenotypes upwards of 100,000-fold. To date little is known about the metabolic adaptations necessary to mount such dramatic phenotypic shifts. Screening for novel regulators of macrophage activation, we found nonprotein kinases of glucose metabolism among the most enriched classes of candidate immune modulators. We find that one of these, the carbohydrate kinase-like protein CARKL, is rapidly downregulated in vitro and in vivo upon LPS stimulation in both mice and humans. Interestingly, CARKL catalyzes an orphan reaction in the pentose phosphate pathway, refocusing cellular metabolism to a high-redox state upon physiological or artificial downregulation. We find that CARKL-dependent metabolic reprogramming is required for proper M1- and M2-like macrophage polarization and uncover a rate-limiting requirement for appropriate glucose flux in macrophage polarization.
Collapse
Affiliation(s)
- Arvand Haschemi
- Department of Laboratory Medicine, Medical University of Vienna, A-1090, Austria
- Harvard Medical School and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 05215, USA
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, A-1190, Austria
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, A-1210, Austria
| | - Charles R. Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles F. Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Philipp Starkl
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, A-1090, Austria
| | - Bernhard Knapp
- Center for Medical Statistics, Informatics and Intelligent Systems, Department for Biosimulation and Bioinformatics, Medical University of Vienna, A-1090, Austria
| | - Robert Haas
- Department of Laboratory Medicine, Medical University of Vienna, A-1090, Austria
| | - Johannes A. Schmid
- Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090, Austria
| | - Christoph Jandl
- Department of Laboratory Medicine, Medical University of Vienna, A-1090, Austria
| | - Shahzada Amir
- Department of Laboratory Medicine, Medical University of Vienna, A-1090, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, A-1090, Austria
| | - Jaehong Park
- Harvard Institute of Proteomics, Harvard Medical School, Cambridge, MA 02115, USA
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, A-1090, Austria
| | - Martin Bilban
- Department of Laboratory Medicine, Medical University of Vienna, A-1090, Austria
| | - Leonardo Brizuela
- Harvard Institute of Proteomics, Harvard Medical School, Cambridge, MA 02115, USA
| | | | - Leo E. Otterbein
- Harvard Medical School and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 05215, USA
| | - Oswald Wagner
- Department of Laboratory Medicine, Medical University of Vienna, A-1090, Austria
| |
Collapse
|
6
|
Kmonícková E, Melkusová P, Harmatha J, Vokác K, Farghali H, Zídek Z. Inhibitor of sarco-endoplasmic reticulum Ca2+-ATPase thapsigargin stimulates production of nitric oxide and secretion of interferon-gamma. Eur J Pharmacol 2008; 588:85-92. [PMID: 18457829 DOI: 10.1016/j.ejphar.2008.03.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 03/05/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
Thapsigargin is a sesquiterpene lactone of guaianolide type isolated from the Mediterranean plant Thapsia garganica L. It is widely used experimentally as a potent and selective inhibitor of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) leading to rapid elevation of intracellular calcium [Ca2+]i. Several previous reports have shown that thapsigargin interferes with production of nitric oxide (NO) by mouse peritoneal macrophages and mouse macrophage cell lines. The present data confirm that thapsigargin is a modest inducer of NO in mouse macrophages, production of NO being slightly enhanced by lipopolysaccharide. However, thapsigargin on its own very potently induces NO in macrophages of rats under conditions in vitro. The highest effect was observed after the concentration of 0.25 microM thapsigargin, producing approximately 30 microM accumulation of nitrites in supernatants of cells cultured for 24 h. The aim of our experiments was to investigate immune mechanisms implicated in activation of high-output NO biosynthesis. It has been found that thapsigargin dose-dependently induces secretion of interferon-gamma (IFN-gamma) in macrophages of both rats and mice, and also in human peripheral blood mononuclear cells. The IFN-gamma production was rather low in macrophages of mice while relatively very high levels of IFN-gamma were found in cultures of rat macrophages and human peripheral blood mononuclear cells. The concentration of IFN-gamma produced by 5 microM thapsigargin within the interval of 24 h exceeded 3 ng/ml in rat macrophages and approached 2 ng/ml in cultures of human peripheral blood mononuclear cells. The effects are mediated by mitogen-activated protein kinases (MAPKs) such as p38 mitogen-activated protein kinase (p38) and extracellular signal-regulated kinases 1/2 (ERK1/2), and by nuclear transcriptional factor NF-kappaB. In summary, the original findings demonstrate immunostimulatory potential of thapsigargin and warrant more detailed preclinical studies.
Collapse
Affiliation(s)
- Eva Kmonícková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Department of Pharmacology, v.v.i., Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | | | |
Collapse
|
7
|
Bukowska B, Rychlik B, Krokosz A, Michałowicz J. Phenoxyherbicides induce production of free radicals in human erythrocytes: Oxidation of dichlorodihydrofluorescine and dihydrorhodamine 123 by 2,4-D-Na and MCPA-Na. Food Chem Toxicol 2008; 46:359-67. [PMID: 17889420 DOI: 10.1016/j.fct.2007.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 07/04/2007] [Accepted: 08/10/2007] [Indexed: 11/19/2022]
Abstract
Although it is known that phenoxyacetic herbicides significantly affect the oxidative status of human erythrocytes, there is no direct evidence of their ability to induce free radical production. To demonstrate this phenomenon we investigated the effect of two commonly used phenoxyherbicides-sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D-Na) and sodium salt of 4-chloro-2-methylphenoxyacetic acid (MCPA-Na) on oxidation of dihydrorhodamine 123 and H(2)DCFDA as well as on carbonyl group content in cellular proteins. Moreover, haemoglobin denaturation was also measured. The rate of fluorescent probe oxidation was significantly higher for 2,4-D-Na, while both compounds exerted similar effects on protein carbonyl group (an increase in their content) and on denaturation of haemoglobin (no changes were observed). These results and the previous data led us to a conclusion that pro-oxidative action of phenoxyherbicides is strongly dependent on the localization of the substituent in the phenol ring. We also proposed a metabolic reaction chain that explains the mechanism of action of 2,4-D-Na in vivo.
Collapse
Affiliation(s)
- Bozena Bukowska
- Department of Biophysics of Environmental Pollution, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland.
| | | | | | | |
Collapse
|
8
|
Pingle SC, Jajoo S, Mukherjea D, Sniderhan LF, Jhaveri KA, Marcuzzi A, Rybak LP, Maggirwar SB, Ramkumar V. Activation of the adenosine A1 receptor inhibits HIV-1 tat-induced apoptosis by reducing nuclear factor-kappaB activation and inducible nitric-oxide synthase. Mol Pharmacol 2007; 72:856-67. [PMID: 17609415 DOI: 10.1124/mol.106.031427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human immunodeficiency virus dementia (HIV-D) is a nonfocal central nervous system manifestation characterized by cognitive, behavioral, and motor abnormalities. The pathophysiology of neuronal damage in HIV-D includes a direct toxic effect of viral proteins on neuronal cells and an indirect effect caused by the release of inflammatory mediators and neurotoxins by activated macrophages/microglia and astrocytes, culminating into neuronal apoptosis. Previous studies have documented that the nucleoside adenosine mediates neuroprotection by activating adenosine A(1) receptor subtype (A(1)AR) linked to suppression of neuronal excitability. In this study, we show that A(1)AR activation protects against HIV-1 Tat-induced toxicity in primary cultures of rat cerebellar granule neurons and in rat pheochromocytoma (PC12) cell. In PC12 cells, HIV-1 Tat increased [Ca(2+)](i) levels, release of nitric oxide (NO), and expression of inducible nitric-oxide synthase (iNOS) and A(1)AR. Activation of A(1)AR suppressed Tat-mediated increases in [Ca(2+)](i) and NO. Furthermore, A(1)AR agonists inhibited iNOS expression in a nuclear factor-kappaB (NF-kappaB)-dependent manner. It is noteworthy that activation of the A(1)AR or inhibition of NOS protected against Tat-induced apoptosis in PC12 cells and cerebellar granule cells. Moreover, activation of the A(1)AR-inhibited Tat-induced increases in the levels of proapoptotic proteins Bax and caspase-3. Taken together, our results demonstrate that the A(1)AR protects against HIV-1 toxicity by inhibiting NF-kappaB, thereby reducing the expression of iNOS and NO radicals and neuronal apoptosis.
Collapse
Affiliation(s)
- Sandeep C Pingle
- Department of Pharmacology, Southern Illinois University School of Medicine, PO Box 19629, Springfield, IL 62794-9629, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cheng C, Liu H, Ge H, Qian J, Qin J, Sun L, Chen M, Yan M, Shen A. Lipopolysaccharide induces expression of SSeCKS in rat lung microvascular endothelial cell. Mol Cell Biochem 2007; 305:1-8. [PMID: 17551670 DOI: 10.1007/s11010-007-9521-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/16/2007] [Indexed: 10/25/2022]
Abstract
Src-suppressed C kinase substrate (SSeCKS) plays a role in membrane-cytoskeletal remodeling to regulate mitogenesis, cell differentiation, and motility. Previous study showed that lipopolysaccharide (LPS) induced a selective and strong expression of SSeCKS in the vascular endothelial cells of lung. Here we show that LPS stimulation elevated expression of SSeCKS mRNA and protein in Rat pulmonary microvascular endothelial cell (RPMVEC). LPS potentiated SSeCKS phosphorylation in a time- and dose-dependent manner, and partly induced translocation of SSeCKS from the cytosol to the membrane after LPS challenge. The PKC inhibitor, Calphostin C, significantly decreased LPS-induced phosphorylation of SSeCKS, inhibited SSeCKS translocation and actin cytoskeleton reorganization after LPS challenge, suggesting that PKC may play a role in LPS-induced SSeCKS translocation and actin rearrangement. We conclude that SSeCKS is located downstream of PKC and that SSeCKS and PKC are both necessary for LPS-induced stress fiber formation.
Collapse
Affiliation(s)
- Chun Cheng
- Institute of Nautical Medicine, Nantong University (former Nantong Medical College), Nantong, 226001, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Canová NK, Kmonícková E, Martínek J, Zídek Z, Farghali H. Thapsigargin, a selective inhibitor of sarco-endoplasmic reticulum Ca2+ -ATPases, modulates nitric oxide production and cell death of primary rat hepatocytes in culture. Cell Biol Toxicol 2007; 23:337-54. [PMID: 17447015 DOI: 10.1007/s10565-007-0185-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 01/21/2007] [Indexed: 12/20/2022]
Abstract
Increased cytosolic calcium ([Ca2+]i) and nitric oxide (NO) are suggested to be associated with apoptosis that is a main feature of many liver diseases and is characterized by biochemical and morphological features. We sought to investigate the events of increase in [Ca2+]i and endoplasmic reticulum (ER) calcium depletion by thapsigargin (TG), a selective inhibitor of sarco-ER-Ca2+ -ATPases, in relation to NO production and apoptotic and necrotic markers of cell death in primary rat hepatocyte culture. Cultured hepatocytes were treated with TG (1 and 5 micromol/L) for 0-24 or 24-48 h. NO production and inducible NO synthase (iNOS) expression were determined as nitrite levels and by iNOS-specific antibody, respectively. Hepatocyte apoptosis was estimated by caspase-3 activity, cytosolic cytochrome c content and DNA fragmentation, and morphologically using Annexin-V/propidium iodide staining. Hepatocyte viability and mitochondrial activity were evaluated by ALT leakage and MTT test. Increasing basal [Ca2+]i by TG, NO production and apoptotic/necrotic parameters were altered in different ways, depending on TG concentration and incubation time. During 0-24 h, TG dose-dependently decreased iNOS-mediated spontaneous NO production and simultaneously enhanced hepatocyte apoptosis. In addition, TG 5 micromol/L produced secondary necrosis. During 24-48 h, TG dose-dependently enhanced basal NO production and rate of necrosis. TG 5 micromol/L further promoted mitochondrial damage as demonstrated by cytochrome c release. A selective iNOS inhibitor, aminoguanidine, suppressed TG-stimulated NO production and ALT leakage from hepatocytes after 24-48 h. Our data suggest that the extent of the [Ca2+]i increase and the modulation of NO production due to TG treatment contribute to hepatocyte apoptotic and/or necrotic events.
Collapse
Affiliation(s)
- N Kutinová Canová
- Institute of Pharmacology, 1st Faculty of Medicine, Charles University, Albertov 4, Prague 2, Czech Republic.
| | | | | | | | | |
Collapse
|