1
|
Wu XW, Huang YX, Li CJ, Li YF, Wang BB, Zeb MA, Xiao WL, Zheng CB, Li XL. Podocarpane and cleistanthane diterpenoids from Strophioblachia glandulosa: structural elucidation, anti-hypertrophy activity and network pharmacology. Bioorg Chem 2025; 154:108026. [PMID: 39644615 DOI: 10.1016/j.bioorg.2024.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
In the present investigation, fourteen unprecedented podocarpane diterpenoids strophiolosas A-J, L-N and P (1-10, 12-14, 16), two new cleistanthane derivatives strophiolosas Q-R (17-18), two new dibenzopyroan-ones and one new tetralone strophiolosas S-U (19-21), were isolated from the whole plant of Strophioblachia glandulosa. The structures were elucidated via various spectroscopic analysis, quantum chemistry calculations, and X-ray diffraction. Bioactivity test indicated that compounds 5 and 17 possessed promising anti-cardiac hypertrophy effect in vitro (IC50 values of 16.50 and 9.67 μM). Additionally, through network pharmacology prediction, PARP1 may be a potential target of compound 17, mediating its anti-hypertrophic effects through multiple pathways.
Collapse
Affiliation(s)
- Xue-Wen Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource of ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, People's Republic of China
| | - Yong-Xiang Huang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Chao-Jun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource of ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, People's Republic of China
| | - Yan-Fang Li
- Key Laboratory of Medicinal Chemistry for Natural Resource of ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, People's Republic of China
| | - Bin-Bao Wang
- Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Muhammad Aurang Zeb
- Key Laboratory of Medicinal Chemistry for Natural Resource of ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, People's Republic of China
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource of ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, People's Republic of China; Southwest United Graduate School, Kunming 650592, People's Republic of China.
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, People's Republic of China.
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource of ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, People's Republic of China.
| |
Collapse
|
2
|
Sun Y, Shang Q. Research hotspots and trends regarding microRNAs in hypertension: a bibliometric analysis. Clin Exp Hypertens 2024; 46:2304017. [PMID: 38230680 DOI: 10.1080/10641963.2024.2304017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
To investigate the research levels, hotspots, and development trends regarding microRNAs in hypertension, this study conducted a visual analysis of studies on miRNA in hypertension based on the Web of Science core collection database using CiteSpace and VOSviewer analysis software along with literature from 2005-2023 as information data. Using citation frequency, centrality, and starting year as metrics, this study analyzed the research objects. It revealed the main research bodies and hotspots and evaluated the sources of literature and the distribution of knowledge from journals and authors. Finally, the potential research directions for miRNAs in hypertension are discussed. The results showed that the research field is in a period of vigorous development, and scholars worldwide have shown strong interest in this research field. A comprehensive summary and analysis of the current research status and application trends will prove beneficial for the advancement of this field.
Collapse
Affiliation(s)
- Yu Sun
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingxin Shang
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Du J, Shui H, Chen R, Dong Y, Xiao C, Hu Y, Wong NK. Neuraminidase-1 (NEU1): Biological Roles and Therapeutic Relevance in Human Disease. Curr Issues Mol Biol 2024; 46:8031-8052. [PMID: 39194692 DOI: 10.3390/cimb46080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Neuraminidases catalyze the desialylation of cell-surface glycoconjugates and play crucial roles in the development and function of tissues and organs. In both physiological and pathophysiological contexts, neuraminidases mediate diverse biological activities via the catalytic hydrolysis of terminal neuraminic, or sialic acid residues in glycolipid and glycoprotein substrates. The selective modulation of neuraminidase activity constitutes a promising strategy for treating a broad spectrum of human pathologies, including sialidosis and galactosialidosis, neurodegenerative disorders, cancer, cardiovascular diseases, diabetes, and pulmonary disorders. Structurally distinct as a large family of mammalian proteins, neuraminidases (NEU1 through NEU4) possess dissimilar yet overlapping profiles of tissue expression, cellular/subcellular localization, and substrate specificity. NEU1 is well characterized for its lysosomal catabolic functions, with ubiquitous and abundant expression across such tissues as the kidney, pancreas, skeletal muscle, liver, lungs, placenta, and brain. NEU1 also exhibits a broad substrate range on the cell surface, where it plays hitherto underappreciated roles in modulating the structure and function of cellular receptors, providing a basis for it to be a potential drug target in various human diseases. This review seeks to summarize the recent progress in the research on NEU1-associated diseases and highlight the mechanistic implications of NEU1 in disease pathogenesis. An improved understanding of NEU1-associated diseases should help accelerate translational initiatives to develop novel or better therapeutics.
Collapse
Affiliation(s)
- Jingxia Du
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Hanqi Shui
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Rongjun Chen
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yibo Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengyao Xiao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
4
|
Xu Q, Jia R, Yang F, Hu P, Li X, Ge S, Jiang S, Chan J, Zhai W, Chen L. Identification of two miRNAs regulating cardiomyocyte proliferation in an Antarctic icefish. iScience 2024; 27:110128. [PMID: 38939105 PMCID: PMC11209021 DOI: 10.1016/j.isci.2024.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/18/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The hemoglobinless Antarctic icefish develop large hearts to compensate for reduced oxygen-carrying capacity, which serves as a naturally occurred model to explore the factors regulating cardiogenesis. Through miRNAome and microRNAome comparisons between an icefish (Chionodraco hamatus) and two red-blooded notothenioids, we discovered significant upregulation of factors in the BMP signaling pathways and altered expression of many miRNAs, including downregulation of 14 miRNAs in the icefish heart. Through knocking down of these miRNAs, we identified two of them, miR-458-3p and miR-144-5p, involved in enlarged heart development. The two miRNAs were found to regulate cardiomyocyte proliferation by targeting bone morphogenetic protein-2 (bmp2). We further validated that activation of the miRNA-bmp2 signaling in the fish heart could be triggered by hypoxic exposure. Our study suggested that a few miRNAs play important roles in the hypoxia-induced cardiac remodeling of the icefish which shed new light on the mechanisms regulating cardiomyocyte proliferation in heart.
Collapse
Affiliation(s)
- Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China
| | - Ruonan Jia
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Fei Yang
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Peng Hu
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Xue Li
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Saiya Ge
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Jiulin Chan
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Wanying Zhai
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Cheng T, Liu C, Wang Y, Li G, Feng L, Zhang S, Qi B, Cui J, Guo L, Cao L, Wang Y, Qi Z, Yang L. A novel histone deacetylase inhibitor Se-SAHA attenuates isoproterenol-induced heart failure via antioxidative stress and autophagy inhibition. Toxicol Appl Pharmacol 2024; 487:116957. [PMID: 38735590 DOI: 10.1016/j.taap.2024.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Heart failure is associated with histone deacetylase (HDAC) regulation of gene expression, the inhibition of which is thought to be beneficial for heart failure therapy. Here, we explored the cardioprotective effects and underlying mechanism of a novel selenium-containing HDAC inhibitor, Se-SAHA, on isoproterenol (ISO)-induced heart failure. We found that pretreatment with Se-SAHA attenuated ISO-induced cardiac hypertrophy and fibrosis in neonatal rat ventricular myocytes (NRVMs). Se-SAHA significantly attenuated the generation of ISO-induced reactive oxygen species (ROS) and restored the expression levels of superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) in vitro. Furthermore, Se-SAHA pretreatment prevented the accumulation of autophagosomes. Se-SAHA reversed the high expression of HDAC1 and HDAC6 induced by ISO incubation. However, after the addition of the HDAC agonist, the effect of Se-SAHA on blocking autophagy was inhibited. Using ISO-induced mouse models, cardiac ventricular contractile dysfunction, hypertrophy, and fibrosis was reduced treated by Se-SAHA. In addition, Se-SAHA inhibited HDAC1 and HDAC6 overexpression in ISO-treated mice. Se-SAHA treatment significantly increased the activity of SOD2 and improved the ability to eliminate free radicals. Se-SAHA hindered the excessive levels of the microtubule-associated protein 1 light chain 3 (LC3)-II and Beclin-1 in heart failure mice. Collectively, our results indicate that Se-SAHA exerts cardio-protection against ISO-induced heart failure via antioxidative stress and autophagy inhibition.
Collapse
Affiliation(s)
- Tianwei Cheng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Chang Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yufei Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Guangru Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shengzheng Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bing Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jianlin Cui
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Lihong Guo
- Institute of Digestive Disease, Shengli Oilfield Central Hospital, Dongying 257000, China
| | - Lei Cao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin 300122, China
| | - Yanming Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China; Institute of Digestive Disease, Shengli Oilfield Central Hospital, Dongying 257000, China; Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300122, China.
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300122, China.
| |
Collapse
|
6
|
Captur G, Doykov I, Chung SC, Field E, Barnes A, Zhang E, Heenan I, Norrish G, Moon JC, Elliott PM, Heywood WE, Mills K, Kaski JP. Novel Multiplexed Plasma Biomarker Panel Has Diagnostic and Prognostic Potential in Children With Hypertrophic Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004448. [PMID: 38847081 PMCID: PMC11188636 DOI: 10.1161/circgen.123.004448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is defined clinically by pathological left ventricular hypertrophy. We have previously developed a plasma proteomics biomarker panel that correlates with clinical markers of disease severity and sudden cardiac death risk in adult patients with HCM. The aim of this study was to investigate the utility of adult biomarkers and perform new discoveries in proteomics for childhood-onset HCM. METHODS Fifty-nine protein biomarkers were identified from an exploratory plasma proteomics screen in children with HCM and augmented into our existing multiplexed targeted liquid chromatography-tandem/mass spectrometry-based assay. The association of these biomarkers with clinical phenotypes and outcomes was prospectively tested in plasma collected from 148 children with HCM and 50 healthy controls. Machine learning techniques were used to develop novel pediatric plasma proteomic biomarker panels. RESULTS Four previously identified adult HCM markers (aldolase fructose-bisphosphate A, complement C3a, talin-1, and thrombospondin 1) and 3 new markers (glycogen phosphorylase B, lipoprotein a and profilin 1) were elevated in pediatric HCM. Using supervised machine learning applied to training (n=137) and validation cohorts (n=61), this 7-biomarker panel differentiated HCM from healthy controls with an area under the curve of 1.0 in the training data set (sensitivity 100% [95% CI, 95-100]; specificity 100% [95% CI, 96-100]) and 0.82 in the validation data set (sensitivity 75% [95% CI, 59-86]; specificity 88% [95% CI, 75-94]). Reduced circulating levels of 4 other peptides (apolipoprotein L1, complement 5b, immunoglobulin heavy constant epsilon, and serum amyloid A4) found in children with high sudden cardiac death risk provided complete separation from the low and intermediate risk groups and predicted mortality and adverse arrhythmic outcomes (hazard ratio, 2.04 [95% CI, 1.0-4.2]; P=0.044). CONCLUSIONS In children, a 7-biomarker proteomics panel can distinguish HCM from controls with high sensitivity and specificity, and another 4-biomarker panel identifies those at high risk of adverse arrhythmic outcomes, including sudden cardiac death.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL MRC Unit for Lifelong Health & Ageing, UCL, London, United Kingdom (G.C.)
- UCL Institute of Cardiovascular Science, UCL, London, United Kingdom (G.C., J.C.M., P.M.E.)
- The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, UCL, London, United Kingdom (G.C.)
| | - Ivan Doykov
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
| | - Sheng-Chia Chung
- UCL Institute of Health Informatics Research, Division of Infection and Immunity, London, United Kingdom (S.-C.C.)
| | - Ella Field
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - Annabelle Barnes
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - Enpei Zhang
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
- UCL Medical School, University College London, London, United Kingdom (E.Z.)
| | - Imogen Heenan
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - Gabrielle Norrish
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| | - James C. Moon
- Barts Heart Centre, the Cardiovascular Magnetic Resonance Unit, London, United Kingdom (J.C.M.)
| | - Perry M. Elliott
- Barts Heart Centre, the Inherited Cardiovascular Diseases Unit, St Bartholomew’s Hospital, London, United Kingdom (P.M.E.)
| | - Wendy E. Heywood
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health, London, United Kingdom (I.D., E.Z., W.E.H., K.M.)
| | - Juan Pablo Kaski
- Centre for Paediatric Inherited & Rare Cardiovascular Disease, Institute of Cardiovascular Science, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (E.F., A.B., I.H., G.N., J.P.K.)
| |
Collapse
|
7
|
Kanda K, Iwata H. Tris(2-chloroethyl) phosphate (TCEP) exposure inhibits the epithelial-mesenchymal transition (EMT), mesoderm differentiation, and cardiovascular development in early chicken embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171242. [PMID: 38417504 DOI: 10.1016/j.scitotenv.2024.171242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Tris(2-chloroethyl) phosphate (TCEP) is an organophosphorus flame retardant used worldwide and has been detected in the tissues and eggs of wild birds. Our previous study reported that exposure to TCEP induced developmental delay and cardiovascular dysfunction with attenuated heart rate and vasculogenesis in early chicken embryos. This study aimed to investigate the molecular mechanisms underlying the cardiovascular effects of TCEP on chicken embryos using cardiac transcriptome analysis and to examine whether TCEP exposure affects epithelial-mesenchymal transition (EMT) and mesoderm differentiation during gastrulation. Transcriptome analysis revealed that TCEP exposure decreased the expression of cardiac conduction-related genes and transcription factors on day 5 of incubation. In extraembryonic blood vessels, the expression levels of genes related to fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) were significantly reduced by TCEP exposure and vasculogenesis was suppressed. TCEP exposure also attenuated Snail family transcriptional repressor 2 (SNAI2) and T-box transcription factor T (TBXT) signaling in the chicken primitive streak, indicating that TCEP inhibits EMT and mesoderm differentiation during gastrulation at the early developmental stage. These effects on EMT and mesoderm differentiation may be related to subsequent phenotypic defects, including suppression of heart development and blood vessel formation.
Collapse
Affiliation(s)
- Kazuki Kanda
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
8
|
Coşkun F, Yalçın E, Çavuşoğlu K. Metronidazole promotes oxidative stress and DNA fragmentation-mediated myocardial injury in albino mice. CHEMOSPHERE 2024; 352:141382. [PMID: 38331262 DOI: 10.1016/j.chemosphere.2024.141382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
The purpose of the present study was to investigate the cardiotoxic effects of Metronidazole (Mtz) in albino mice. The mice were divided into four experimental groups: Gp.I (control group): saline, Gp.II:125 mg/kg b.w Mtz, Gp.III:250 mg/kg b.w, Gp.IV:500 mg/kg b.w Mtz. Heart weight ratio, markers of cardiac injury, markers of oxidative stress, histopathological examinations, DNA fragmentation and spectral analysis were used to determine cardiotoxicity. Administration of 125-500 mg/kg Mtz caused an increase in heart weight and a decrease in body weight. Administration of 500 mg/kg Mtz increased heart weight by 35.5% and decreased body weight by 21.9% compared with control. Mtz-treated mice showed a significant increase in cardiac injury biomarkers and serious alterations in cardiac oxidative stress markers. Histopathological changes of cardiac tissues observed in mice treated with Mtz include myocardial hypertrophy, fibrosis, myocarditis, separation of the muscle fibers, congestion-narrowing in vessels, necrosis, myocardium-vacuolation, myocytolysis, myocyte degeneration, nuclear aggregation, cytoplasmic fragmentation and prevalent nuclei. Mtz treatment already resulted in a significant decrease in the percentage of head DNA and an increase in the percentage of tail DNA. The most striking tail formation among the Mtz-treated groups was observed in the group receiving 500 mg/kg Mtz. In the presence of Mtz, there was a hypochromic shift in the absorption spectrum of DNA, and the potential DNA-Mtz interaction was found to occur in the intercalation mode. These results show that Mtz used against anaerobic bacteria and protozoa in gastrointestinal infections can cause severe cardiotoxic findings in albino mice and cause fragmentation in DNA.
Collapse
Affiliation(s)
- Fatmanur Coşkun
- Department of Biology, Institute of Science, Giresun University, Giresun, Turkiye.
| | - Emine Yalçın
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkiye.
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkiye.
| |
Collapse
|
9
|
Suzuki S, Tanaka S, Kametani Y, Umeda A, Nishinaka K, Egawa K, Okada Y, Obana M, Fujio Y. Runx1 is upregulated by STAT3 and promotes proliferation of neonatal rat cardiomyocytes. Physiol Rep 2023; 11:e15872. [PMID: 38040660 PMCID: PMC10691971 DOI: 10.14814/phy2.15872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
Though it is well known that mammalian cardiomyocytes exit cell cycle soon after birth, the mechanisms that regulate proliferation remain to be fully elucidated. Recent studies reported that cardiomyocytes undergo dedifferentiation before proliferation, indicating the importance of dedifferentiation in cardiomyocyte proliferation. Since Runx1 is expressed in dedifferentiated cardiomyocytes, Runx1 is widely used as a dedifferentiation marker of cardiomyocytes; however, little is known about the role of Runx1 in the proliferation of cardiomyocytes. The purpose of this study was to clarify the functional significance of Runx1 in cardiomyocyte proliferation. qRT-PCR analysis and immunoblot analysis demonstrated that Runx1 expression was upregulated in neonatal rat cardiomyocytes when cultured in the presence of FBS. Similarly, STAT3 was activated in the presence of FBS. Interestingly, knockdown of STAT3 significantly decreased Runx1 expression, indicating Runx1 is regulated by STAT3. We next investigated the effect of Runx1 on proliferation. Immunofluorescence microscopic analysis using an anti-Ki-67 antibody revealed that knockdown of Runx1 decreased the ratio of proliferating cardiomyocytes. Conversely, Runx1 overexpression using adenovirus vector induced cardiomyocyte proliferation in the absence of FBS. Finally, RNA-sequencing analysis revealed that Runx1 overexpression induced upregulation of cardiac fetal genes and downregulation of genes associated with fatty acid oxidation. Collectively, Runx1 is regulated by STAT3 and induces cardiomyocyte proliferation by juvenilizing cardiomyocytes.
Collapse
Affiliation(s)
- Shota Suzuki
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Yusuke Kametani
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Ayaka Umeda
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Kosuke Nishinaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Kaho Egawa
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Yoshiaki Okada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
- Center for Infectious Disease Education and Research (CiDER)Osaka UniversitySuita CityOsakaJapan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
- Center for Infectious Disease Education and Research (CiDER)Osaka UniversitySuita CityOsakaJapan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI)Osaka UniversitySuita CityOsakaJapan
- Global Center for Medical Engineering and Informatics (MEI)Osaka UniversitySuita CityOsakaJapan
- Radioisotope Research Center, Institute for Radiation SciencesOsaka UniversitySuita CityOsakaJapan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
- Center for Infectious Disease Education and Research (CiDER)Osaka UniversitySuita CityOsakaJapan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI)Osaka UniversitySuita CityOsakaJapan
| |
Collapse
|
10
|
Alammari AH, Gerges SH, Isse FA, El-Kadi AOS. 6-Formylindolo[3,2-b]carbazole Protects Against Angiotensin II-Induced Cellular Hypertrophy through the Induction of Cytochrome P450 1A1 and Its Associated 19(S)-HETE Metabolite In Vitro. Drug Metab Dispos 2023; 51:833-843. [PMID: 37185150 DOI: 10.1124/dmd.123.001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a multifunctional receptor that regulates cytochrome P450 1A1 (CYP1A1), an arachidonic acid (AA) metabolizing enzyme producing 19-hydroxyeicosatetraenoic acid (HETE). 6-formylindolo[3,2-b]carbazole (FICZ) demonstrates great affinity toward the AhR. Recently, we have shown that 19(S)-HETE is preferentially cardioprotective. This study investigates the role of FICZ on AhR and cytochrome P450 (CYP) 1A1-mediated AA metabolism and whether it attenuates angiotensin (Ang) II-induced cardiac hypertrophy. Adult human ventricular cardiomyocytes cell line treated with FICZ in the presence and absence of Ang II 10 μM. Protein levels of AhR and CYPs were determined by Western blot analysis and the mRNA expression of cardiac hypertrophic markers and CYPs were determined by real-time polymerase chain reaction. CYP1A1 enzyme activity and proteasomal degradation were determined by 7-ethoxyresorufin O-deethylase and proteasome 20S activity assays, respectively. Liquid chromatography tandem mass spectrometry was used to measure AA metabolites. Our results show that Ang II-induced cardiac hypertrophy modulates AA metabolites in an enantioselective manner, and that FICZ activates AhR in a time-dependent manner, inhibits AhR proteasomal degradation, induces CYP1A1, increases the concentration of 19(S)-HETE, and attenuates Ang II-induced cardiac hypertrophy by inhibiting the hypertrophic markers and decreasing cell surface area through midchain-HETE-dependent mechanism. In conclusion, the results demonstrate the ability of FICZ to protect against Ang II-induced cardiac hypertrophy by increasing the concentration of 19(S)-HETE through AhR regulated enzyme induction and inhibition of midchain-HETEs metabolites. SIGNIFICANCE STATEMENT: This study shows that 6-formylindolo[3,2-b]carbazole attenuate angiotensin II-induced cellular hypertrophy. The novel findings of our investigation are in characterizing the aryl hydrocarbon receptor involvement and the enantioselective differences in arachidonic acid metabolism in cardiac hypertrophy, which opens a new pathway to tackle and eventually treat heart failure.
Collapse
Affiliation(s)
- Ahmad H Alammari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Nguyen BY, Zhou F, Binder P, Liu W, Hille SS, Luo X, Zi M, Zhang H, Adamson A, Ahmed FZ, Butterworth S, Cartwright EJ, Müller OJ, Guan K, Fitzgerald EM, Wang X. Prolylcarboxypeptidase Alleviates Hypertensive Cardiac Remodeling by Regulating Myocardial Tissue Angiotensin II. J Am Heart Assoc 2023; 12:e028298. [PMID: 37318028 PMCID: PMC10356030 DOI: 10.1161/jaha.122.028298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
Background Prolonged activation of angiotensin II is the main mediator that contributes to the development of heart diseases, so converting angiotensin II into angiotensin 1-7 has emerged as a new strategy to attenuate detrimental effects of angiotensin II. Prolylcarboxypeptidase is a lysosomal pro-X carboxypeptidase that is able to cleave angiotensin II at a preferential acidic pH optimum. However, insufficient attention has been given to the cardioprotective functions of prolylcarboxylpeptidase. Methods and Results We established a CRISPR/CRISPR-associated protein 9-mediated global prolylcarboxylpeptidase-knockout and adeno-associated virus serotype 9-mediated cardiac prolylcarboxylpeptidase overexpression mouse models, which were challenged with the angiotensin II infusion (2 mg/kg per day) for 4 weeks, aiming to investigate the cardioprotective effect of prolylcarboxylpeptidase against hypertensive cardiac hypertrophy. Prolylcarboxylpeptidase expression was upregulated after 2 weeks of angiotensin II infusion and then became downregulated afterward in wild-type mouse myocardium, suggesting its compensatory function against angiotensin II stress. Moreover, angiotensin II-treated prolylcarboxylpeptidase-knockout mice showed aggravated cardiac remodeling and dampened cardiac contractility independent of hypertension. We also found that prolylcarboxylpeptidase localizes in cardiomyocyte lysosomes, and loss of prolylcarboxylpeptidase led to excessive angiotensin II levels in myocardial tissue. Further screening demonstrated that hypertrophic prolylcarboxylpeptidase-knockout hearts showed upregulated extracellular signal-regulated kinases 1/2 and downregulated protein kinase B activities. Importantly, adeno-associated virus serotype 9-mediated restoration of prolylcarboxylpeptidase expression in prolylcarboxylpeptidase-knockout hearts alleviated angiotensin II-induced hypertrophy, fibrosis, and cell death. Interestingly, the combination of adeno-associated virus serotype 9-mediated prolylcarboxylpeptidase overexpression and an antihypertensive drug, losartan, likely conferred more effective protection than a single treatment protocol to mitigate angiotensin II-induced cardiac dysfunction. Conclusions Our data demonstrate that prolylcarboxylpeptidase protects the heart from angiotensin II-induced hypertrophic remodeling by controlling myocardial angiotensin II levels.
Collapse
Affiliation(s)
- Binh Y. Nguyen
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUnited Kingdom
| | - Fangchao Zhou
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUnited Kingdom
| | - Pablo Binder
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUnited Kingdom
| | - Wei Liu
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUnited Kingdom
| | - Susanne S. Hille
- Department of Internal Medicine IIIUniversity of KielKielGermany
| | - Xiaojing Luo
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav CarusTechnische Universitaet DresdenDresdenGermany
| | - Min Zi
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUnited Kingdom
| | - Hongyuan Zhang
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUnited Kingdom
| | - Antony Adamson
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUnited Kingdom
| | - Fozia Z. Ahmed
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUnited Kingdom
| | - Sam Butterworth
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUnited Kingdom
| | | | - Oliver J. Müller
- Department of Internal Medicine IIIUniversity of KielKielGermany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav CarusTechnische Universitaet DresdenDresdenGermany
| | | | - Xin Wang
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUnited Kingdom
| |
Collapse
|
12
|
Ouyang X, Bakshi S, Benavides GA, Sun Z, Hernandez‐Moreno G, Collins HE, Kane MS, Litovsky S, Young ME, Chatham JC, Darley‐Usmar V, Wende AR, Zhang J. Cardiomyocyte ZKSCAN3 regulates remodeling following pressure-overload. Physiol Rep 2023; 11:e15686. [PMID: 37144628 PMCID: PMC10161215 DOI: 10.14814/phy2.15686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 05/06/2023] Open
Abstract
Autophagy is important for protein and organelle quality control. Growing evidence demonstrates that autophagy is tightly controlled by transcriptional mechanisms, including repression by zinc finger containing KRAB and SCAN domains 3 (ZKSCAN3). We hypothesize that cardiomyocyte-specific ZKSCAN3 knockout (Z3K) disrupts autophagy activation and repression balance and exacerbates cardiac pressure-overload-induced remodeling following transverse aortic constriction (TAC). Indeed, Z3K mice had an enhanced mortality compared to control (Con) mice following TAC. Z3K-TAC mice that survived exhibited a lower body weight compared to Z3K-Sham. Although both Con and Z3K mice exhibited cardiac hypertrophy after TAC, Z3K mice exhibited TAC-induced increase of left ventricular posterior wall thickness at end diastole (LVPWd). Conversely, Con-TAC mice exhibited decreases in PWT%, fractional shortening (FS%), and ejection fraction (EF%). Autophagy genes (Tfeb, Lc3b, and Ctsd) were decreased by the loss of ZKSCAN3. TAC suppressed Zkscan3, Tfeb, Lc3b, and Ctsd in Con mice, but not in Z3K. The Myh6/Myh7 ratio, which is related to cardiac remodeling, was decreased by the loss of ZKSCAN3. Although Ppargc1a mRNA and citrate synthase activities were decreased by TAC in both genotypes, mitochondrial electron transport chain activity did not change. Bi-variant analyses show that while in Con-Sham, the levels of autophagy and cardiac remodeling mRNAs form a strong correlation network, such was disrupted in Con-TAC, Z3K-Sham, and Z3K-TAC. Ppargc1a also forms different links in Con-sham, Con-TAC, Z3K-Sham, and Z3K-TAC. We conclude that ZKSCAN3 in cardiomyocytes reprograms autophagy and cardiac remodeling gene transcription, and their relationships with mitochondrial activities in response to TAC-induced pressure overload.
Collapse
Affiliation(s)
- Xiaosen Ouyang
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Sayan Bakshi
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Gloria A. Benavides
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Zhihuan Sun
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Gerardo Hernandez‐Moreno
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Present address:
Department of Materials Science and Engineering, Laboratory for Polymers & Healthcare Materials/DevicesThe University of Alabama at Birmingham (UAB)BirminghamALUSA
| | - Helen E. Collins
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Present address:
Division of Environmental Medicine, Center for Cardiometabolic ScienceThe University of LouisvilleLouisvilleKYUSA
| | - Mariame S. Kane
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Present address:
Birmingham VA Health Care System (BVACS)ALUSA
| | - Silvio Litovsky
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Martin E. Young
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - John C. Chatham
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Victor Darley‐Usmar
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Adam R. Wende
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jianhua Zhang
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Birmingham VA Medical CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
13
|
Sasikumar S, Yuvraj S, Veilumuthu P, Godwin Christopher JS, Anandkumar P, Nagarajan T, Sureshkumar S, Selvam GS. Ascorbic acid attenuates cadmium-induced myocardial hypertrophy and cardiomyocyte injury through Nrf2 signaling pathways comparable to resveratrol. 3 Biotech 2023; 13:108. [PMID: 36875963 PMCID: PMC9978049 DOI: 10.1007/s13205-023-03527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Chronic cadmium (Cd) exposure severely affects the structural integrity of the heart, leading to cardiovascular disease. This study investigates the protective role of ascorbic acid (AA) and resveratrol (Res) in cellular defense against Cd-induced cardiomyocyte damage and myocardial hypertrophy in H9c2 cardiomyocytes. Experimental results showed that AA and Res treatment significantly increased cell viability, reduced ROS production, attenuated lipid peroxidation, and increased antioxidant enzyme activity in Cd-induced H9c2 cells. AA and Res decreased the mitochondrial membrane permeability and protected the cells from Cd induced cardiomyocyte damage. This also suppressed the pathological hypertrophic response triggered by Cd, which increased the cell size of cardiomyocytes. Gene expression studies revealed that cells treated with AA and Res decreased the expression of hypertrophic genes ANP (two-fold), BNP (one-fold) and β- MHC (two-fold) compared to Cd exposed cells. AA and Res promoted the nuclear translocation of Nrf2 and increased the expression of antioxidant genes (HO-1, NQO1, SOD and CAT) during Cd mediated myocardial hypertrophy. This study proves that AA and Res play a significant role in improving Nrf2 signaling, thereby reversing stress-induced injury, and facilitating the regression of myocardial hypertrophy.
Collapse
Affiliation(s)
- Sundaresan Sasikumar
- Department of Biochemistry, Molecular Cardiology Unit, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021 India
| | - Subramani Yuvraj
- Department of Biochemistry, Molecular Cardiology Unit, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021 India
| | | | | | | | | | - Selvaraj Sureshkumar
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu India
| | - Govindan Sadasivam Selvam
- Department of Biochemistry, Molecular Cardiology Unit, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021 India
| |
Collapse
|
14
|
Rahmani S, Naraki K, Roohbakhsh A, Hayes AW, Karimi G. The protective effects of rutin on the liver, kidneys, and heart by counteracting organ toxicity caused by synthetic and natural compounds. Food Sci Nutr 2023; 11:39-56. [PMID: 36655104 PMCID: PMC9834893 DOI: 10.1002/fsn3.3041] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 01/21/2023] Open
Abstract
Rutin is a flavonoid present in many plant species. Because of its antioxidant, anti-inflammatory, and antiapoptotic properties, rutin is of interest for its potential protective effects against toxic agents. The hepatoprotective, renoprotective, and cardioprotective effects of rutin are reviewed. The antioxidant effects of rutin are elicited by enhancing antioxidant enzymes such as GST, GGT, CAT, GPx, SOD, and GR, activating the Nrf2/HO-1 pathway, elevating GSH content, and the reduction in MDA. The anti-inflammatory effects of rutin are mediated by the inhibition of IL-1β, IL-6, TGF-β1, COX-2, iNOS, TLR4, and XO. Rutin exerted its antiapoptotic effects by inhibition of free radicals, caspase-3/-7/-9, hsp70, HMGB1, and p53, and the elevation of the antiapoptotic protein Bcl-2. Rutin has potential therapeutic effectiveness against several toxicants, and its beneficial effects are more than likely mediated by its antioxidant, anti-inflammatory, and/or antiapoptotic property.
Collapse
Affiliation(s)
- Sohrab Rahmani
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Karim Naraki
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
| | - A. Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public HealthUniversity of South FloridaTampaFloridaUSA
- Institute for Integrative ToxicologyMichigan State UniversityEast LansingMichiganUSA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
15
|
Can Blebbistatin block the hypertrophy status in the zebrafish exvivo cardiac model? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166471. [PMID: 35750268 DOI: 10.1016/j.bbadis.2022.166471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022]
Abstract
Ex-vivo simple models are powered tools to study cardiac hypertrophy. It is possible to control the activation of critical genes and thus test the effects of drug therapies before the in vivo tests. A zebrafish cardiac hypertrophy developed by 500 μM phenylephrine (PE) treatment in ex vivo culture has been demonstrated to activate the essential expression of the embryonal genes. These genes are the same as those described in several previous pieces of research on hypertrophic pathology in humans. The efficacy of the chemical drug Blebbistatin (BL) on hypertrophy induced ex vivo cultured hearts is studied in this research. BL can inhibit the myosins and the calcium wave in counteracting the hypertrophy status caused by PE. Samples treated with PE, BL and PE simultaneously, or pre/post-treatment with BL, have been analysed for the embryonal gene activation concerning the hypertrophy status. The qRTPCR has shown an inhibitory effect of BL treatments on the microRNAs downregulation with the consequent low expression of essential embryonal genes. In particular, BL seems to be effective in blocking the hyperplasia of the epicardium but less effective in myocardium hypertrophy. The model can make it possible to obtain knowledge on the transduction pathways activated by BL and investigate the potential use of this drug in treating cardiac hypertrophy in humans.
Collapse
|
16
|
González A, Richards AM, de Boer RA, Thum T, Arfsten H, Hülsmann M, Falcao-Pires I, Díez J, Foo RSY, Chan MY, Aimo A, Anene-Nzelu CG, Abdelhamid M, Adamopoulos S, Anker SD, Belenkov Y, Ben Gal T, Cohen-Solal A, Böhm M, Chioncel O, Delgado V, Emdin M, Jankowska EA, Gustafsson F, Hill L, Jaarsma T, Januzzi JL, Jhund PS, Lopatin Y, Lund LH, Metra M, Milicic D, Moura B, Mueller C, Mullens W, Núñez J, Piepoli MF, Rakisheva A, Ristić AD, Rossignol P, Savarese G, Tocchetti CG, Van Linthout S, Volterrani M, Seferovic P, Rosano G, Coats AJS, Bayés-Genís A. Cardiac remodelling - Part 1: From cells and tissues to circulating biomarkers. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2022; 24:927-943. [PMID: 35334137 DOI: 10.1002/ejhf.2493] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiac remodelling refers to changes in left ventricular structure and function over time, with a progressive deterioration that may lead to heart failure (HF) development (adverse remodelling) or vice versa a recovery (reverse remodelling) in response to HF treatment. Adverse remodelling predicts a worse outcome, whilst reverse remodelling predicts a better prognosis. The geometry, systolic and diastolic function and electric activity of the left ventricle are affected, as well as the left atrium and on the long term even right heart chambers. At a cellular and molecular level, remodelling involves all components of cardiac tissue: cardiomyocytes, fibroblasts, endothelial cells and leucocytes. The molecular, cellular and histological signatures of remodelling may differ according to the cause and severity of cardiac damage, and clearly to the global trend toward worsening or recovery. These processes cannot be routinely evaluated through endomyocardial biopsies, but may be reflected by circulating levels of several biomarkers. Different classes of biomarkers (e.g. proteins, non-coding RNAs, metabolites and/or epigenetic modifications) and several biomarkers of each class might inform on some aspects on HF development, progression and long-term outcomes, but most have failed to enter clinical practice. This may be due to the biological complexity of remodelling, so that no single biomarker could provide great insight on remodelling when assessed alone. Another possible reason is a still incomplete understanding of the role of biomarkers in the pathophysiology of cardiac remodelling. Such role will be investigated in the first part of this review paper on biomarkers of cardiac remodelling.
Collapse
Affiliation(s)
- Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - A Mark Richards
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Dunedin, New Zealand
| | - Rudolf A de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) and Rebirth Center for Translational Regenerative Therapies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Henrike Arfsten
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Martin Hülsmann
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Inês Falcao-Pires
- Department od Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Departments of Cardiology and Cardiac Surgery, and Nephrology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Roger S Y Foo
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Mark Y Chan
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Chukwuemeka G Anene-Nzelu
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
- Montreal Heart Institute, Montreal, Canada
| | | | - Stamatis Adamopoulos
- 2nd Department of Cardiovascular Medicine, Onassis Cardiac Surgery Center, Athens, Greece
| | - Stefan D Anker
- Department of Cardiology (CVK), and Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | | | - Tuvia Ben Gal
- Cardiology Department, Rabin Medical Center, Beilinson, Israel
| | | | - Michael Böhm
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Saarland University, Homburg/Saar, Germany
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu' Bucharest, University of Medicine Carol Davila, Bucharest, Romania
| | - Victoria Delgado
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ewa A Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Finn Gustafsson
- Rigshospitalet-Copenhagen University Hospital, Heart Centre, Department of Cardiology, Copenhagen, Denmark
| | | | | | - James L Januzzi
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA, USA
| | - Pardeep S Jhund
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | - Yuri Lopatin
- Volgograd State Medical University, Volgograd, Russia
| | - Lars H Lund
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Metra
- Cardiology, ASST Spedali Civili; Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Davor Milicic
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Brenda Moura
- Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiology Department, Porto Armed Forces Hospital, Portugal
| | | | | | - Julio Núñez
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Hospital Clínico Universitario de Valencia, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Massimo F Piepoli
- Cardiology Division, Castelsangiovanni Hospital, Castelsangiovanni, Italy
| | - Amina Rakisheva
- Scientific Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| | - Arsen D Ristić
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Patrick Rossignol
- Université de Lorraine, Centre d'Investigations Cliniques- Plurithématique 1433, and Inserm U1116, CHRU Nancy, F-CRIN INI-CRCT, Nancy, France
| | - Gianluigi Savarese
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Carlo G Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Sophie Van Linthout
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | | | - Petar Seferovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Giuseppe Rosano
- St. George's Hospitals, NHS Trust, University of London, London, UK
| | | | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Scherba JC, Halushka MK, Andersen ND, Maleszewski JJ, Landstrom AP, Bursac N, Glass C. BRG1 is a biomarker of hypertrophic cardiomyopathy in human heart specimens. Sci Rep 2022; 12:7996. [PMID: 35581268 PMCID: PMC9114001 DOI: 10.1038/s41598-022-11829-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disease of the sarcomere that causes otherwise unexplained cardiac hypertrophy and is associated with sudden death. While previous studies showed the role of the epigenetic modifier Brg1 in mouse models of HCM, additional work is needed to identify its role in humans. We tested the hypothesis that BRG1 expression is increased in periods of cardiac remodeling during fetal growth and in development of HCM. We employed immunohistochemical staining to evaluate protein expression of BRG1 in 796 human cardiac specimens (81 from patients with HCM) and describe elevated BRG1 expression in human fetal hearts in early development. In addition, we not only demonstrate increased expression of BRG1 in HCM, but we also show that other diseases that lead to heart failure have similar BRG1 expression to healthy controls. Inhibition of BRG1 in human induced pluripotent stem cell-derived cardiomyocytes significantly decreases MYH7 and increases MYH6, suggesting a regulatory role for BRG1 in the pathological imbalance of the two myosin heavy chain isoforms in human HCM. These data are the first demonstration of BRG1 as a specific biomarker for human HCM and provide foundation for future studies of epigenetics in human cardiac disease.
Collapse
Affiliation(s)
- Jacob C Scherba
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Nicholas D Andersen
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andrew P Landstrom
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Carolyn Glass
- Department of Pathology, Duke University Medical Center, 217AM Davison Bldg, 40 Duke Medicine Circle, Box 3712 DUHS, Durham, NC, 27710, USA.
| |
Collapse
|
18
|
Al-Ansari DE, Al-Badr M, Zakaria ZZ, Mohamed NA, Nasrallah GK, Yalcin HC, Abou-Saleh H. Evaluation of Metal-Organic Framework MIL-89 nanoparticles toxicity on embryonic zebrafish development. Toxicol Rep 2022; 9:951-960. [PMID: 35875258 PMCID: PMC9301604 DOI: 10.1016/j.toxrep.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 12/03/2022] Open
Abstract
Metal-Organic Framework MIL-89 nanoparticles garnered remarkable attention for their widespread use in technological applications. However, the impact of these nanomaterials on human and environmental health is still limited, and concerns regarding the potential risk of exposure during manipulation is constantly rising. Therefore, the extensive use of nanomaterials in the medical field necessitates a comprehensive assessment of their safety and interaction with different tissues of the body system. In this study, we evaluated the systemic toxicity of nanoMIL-89 using Zebrafish embryos as a model system to determine the acute developmental effect. Zebrafish embryos were exposed to a range of nanoMIL-89 concentrations (1 - 300 µM) at 4 h post-fertilization (hpf) for up to 120 hpf. The viability and hatching rate were evaluated at 24-72 hpf, whereas the cardiac function was assessed at 72 and 96 hpf, and the neurodevelopment and hepatic steatosis at 120 hpf. Our study shows that nanoMIL-89 exerted no developmental toxicity on zebrafish embryos at low concentrations (1-10 µM). However, the hatching time and heart development were affected at high concentrations of nanoMIL-89 (> 30 µM). Our findings add novel information into the available data about the in vivo toxicity of nanoMIL-89 and demonstrate its innocuity and safe use in biological, environmental, and medical applications.
Collapse
Affiliation(s)
- Dana E. Al-Ansari
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mashael Al-Badr
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Zain Z. Zakaria
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Gheyath K. Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha, Qatar
| | | | - Haissam Abou-Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
19
|
Hassoun R, Erdmann C, Schmitt S, Fujita-Becker S, Mügge A, Schröder RR, Geyer M, Borbor M, Jaquet K, Hamdani N, Mannherz HG. Functional Characterization of Cardiac Actin Mutants Causing Hypertrophic (p.A295S) and Dilated Cardiomyopathy (p.R312H and p.E361G). Int J Mol Sci 2022; 23:ijms23084465. [PMID: 35457283 PMCID: PMC9024677 DOI: 10.3390/ijms23084465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Human wild type (wt) cardiac α-actin and its mutants p.A295S or p.R312H and p.E361G correlated with hypertrophic or dilated cardiomyopathy, respectively, were expressed by using the baculovirus/Sf21 insect cell system. The c-actin variants inhibited DNase I, indicating maintenance of their native state. Electron microscopy showed the formation of normal appearing actin filaments though they showed mutant specific differences in length and straightness correlating with their polymerization rates. TRITC-phalloidin staining showed that p.A295S and p.R312H exhibited reduced and the p.E361G mutant increased lengths of their formed filaments. Decoration of c-actins with cardiac tropomyosin (cTm) and troponin (cTn) conveyed Ca2+-sensitivity of the myosin-S1 ATPase stimulation, which was higher for the HCM p.A295S mutant and lower for the DCM p.R312H and p.E361G mutants than for wt c-actin. The lower Ca2+-sensitivity of myosin-S1 stimulation by both DCM actin mutants was corrected by the addition of levosimendan. Ca2+-dependency of the movement of pyrene-labeled cTm along polymerized c-actin variants decorated with cTn corresponded to the relations observed for the myosin-S1 ATPase stimulation though shifted to lower Ca2+-concentrations. The N-terminal C0C2 domain of cardiac myosin-binding protein-C increased the Ca2+-sensitivity of the pyrene-cTM movement of bovine, recombinant wt, p.A295S, and p.E361G c-actins, but not of the p.R312H mutant, suggesting decreased affinity to cTm.
Collapse
Affiliation(s)
- Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
| | - Constanze Erdmann
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, D-44780 Bochum, Germany;
| | - Sebastian Schmitt
- Institute of Structural Biology, University of Bonn, D-53127 Bonn, Germany; (S.S.); (M.G.)
| | - Setsuko Fujita-Becker
- Cryoelectron Microscopy, BioQuant, Medical Faculty, University of Heidelberg, D-69120 Heidelberg, Germany; (S.F.-B.); (R.R.S.)
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
| | - Rasmus R. Schröder
- Cryoelectron Microscopy, BioQuant, Medical Faculty, University of Heidelberg, D-69120 Heidelberg, Germany; (S.F.-B.); (R.R.S.)
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, D-53127 Bonn, Germany; (S.S.); (M.G.)
| | - Mina Borbor
- Department of Neurology, University Hospital Essen, D-45147 Essen, Germany;
| | - Kornelia Jaquet
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
- Correspondence: (N.H.); (H.G.M.); Tel.: +49-234-32-29412 (N.H.); Fax: +49-234-32-14040 (N.H.); +49-234-32-14474 (H.G.M.)
| | - Hans Georg Mannherz
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, D-44780 Bochum, Germany;
- Correspondence: (N.H.); (H.G.M.); Tel.: +49-234-32-29412 (N.H.); Fax: +49-234-32-14040 (N.H.); +49-234-32-14474 (H.G.M.)
| |
Collapse
|
20
|
Lohanathan BP, Rathinasamy B, Huang C, Viswanadha VP. Neferine attenuates doxorubicin‐induced fibrosis and hypertrophy in H9c2 cells. J Biochem Mol Toxicol 2022; 36:e23054. [DOI: 10.1002/jbt.23054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/05/2022] [Accepted: 03/04/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Bharathi Priya Lohanathan
- Department of Biotechnology, Translational Research Laboratory Bharathiar University Coimbatore Tamil Nadu India
| | - Baskaran Rathinasamy
- Department of Bioinformatics and Medical Engineering Asia University Taichung Taiwan
| | - Chih‐Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation Tzu Chi University of Science and Technology Hualien Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation Tzu Chi University of Science and Technology Hualien Taiwan
- Department of Medical Research, China Medical University Hospital China Medical University Taichung Taiwan
- Department of Medical Laboratory Science and Biotechnology Asia University Taichung Taiwan
| | - Vijaya Padma Viswanadha
- Department of Biotechnology, Translational Research Laboratory Bharathiar University Coimbatore Tamil Nadu India
| |
Collapse
|
21
|
Pathophysiology of heart failure and an overview of therapies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Mariano TB, de Souza Castilho AC, de Almeida Sabela AKD, de Oliveira AC, Cury SS, Aguiar AF, Dias RDJD, Cicogna AC, Okoshi K, Junior LAJ, Carvalho RF, Pacagnelli FL. Preventive training does not interfere with mRNA-encoding myosin and collagen expression during pulmonary arterial hypertension. PLoS One 2021; 16:e0244768. [PMID: 34495964 PMCID: PMC8425576 DOI: 10.1371/journal.pone.0244768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
To gain insight on the impact of preventive exercise during pulmonary arterial hypertension (PAH), we evaluated the gene expression of myosins and gene-encoding proteins associated with the extracellular matrix remodeling of right hypertrophied ventricles. We used 32 male Wistar rats, separated in four groups: Sedentary Control (S, n = 8); Control with Training (T, n = 8); Sedentary with Pulmonary Arterial Hypertension (SPAH, n = 8); and Pulmonary Arterial Hypertension with Training (TPAH, n = 8). All rats underwent a two-week adaptation period; T and TPAH group rats then proceeded to an eight-week training period on a treadmill. At the beginning of the 11th week, S and T groups received an intraperitoneal injection of saline, and SPAH and TPAH groups received an injection of monocrotaline (60 mg/kg). Rats in the T and TPAH groups then continued with the training protocol until the 13th week. We assessed exercise capacity, echocardiography analysis, Fulton's index, cross-sectional areas of cardiomyocytes, collagen content and types, and fractal dimension (FD). Transcript abundance of myosins and extracellular matrix genes were estimated through reverse transcription-quantitative PCR (RT-qPCR). When compared to the SPAH group, the TPAH group showed increases in functional capacity and pulmonary artery acceleration time/pulmonary ejection time ratio and decreases in Fulton's index and cross-sectional areas of myocyte cells. However, preventive exercise did not induce alterations in col1a1 and myh7 gene expression. Our findings demonstrate that preventive exercise improved functional capacity, reduced cardiac hypertrophy, and attenuated PH development without interfering in mRNA-encoding myosin and collagen expression during PAH.
Collapse
MESH Headings
- Animals
- Male
- Rats, Wistar
- Physical Conditioning, Animal
- Rats
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Collagen/metabolism
- Collagen/genetics
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/metabolism
- Myosins/metabolism
- Myosins/genetics
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/prevention & control
- Monocrotaline
- Gene Expression Regulation
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/prevention & control
Collapse
Affiliation(s)
- Thaoan Bruno Mariano
- Postgraduate Program in Animal Science, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | | | | | - André Casanova de Oliveira
- Postgraduate Program in Animal Science, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP, Botucatu, São Paulo, Brazil
| | - Andreo Fernando Aguiar
- Postgraduate Program in Physical Exercise in Health Promotion, Northern University of Paraná, Londrina, Paraná, Brazil
| | - Raisa de Jesus Dutra Dias
- Department of Physiotherapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, UNESP, Botucatu, São Paulo, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, UNESP, Botucatu, São Paulo, Brazil
| | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP, Botucatu, São Paulo, Brazil
| | - Francis Lopes Pacagnelli
- Postgraduate Program in Animal Science, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
- Department of Physiotherapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
23
|
Wang N, Lu L, Cao QF, Qian S, Ding J, Wang C, Duan H, Shen H, Qi J. Partial inhibition of activin receptor-like kinase 4 alleviates bladder fibrosis caused by bladder outlet obstruction. Exp Cell Res 2021; 406:112724. [PMID: 34237300 DOI: 10.1016/j.yexcr.2021.112724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
The bladder undergoes profound structural alterations after bladder outlet obstruction (BOO), characterized by hypertrophy of the bladder wall and accumulation of extracellular matrix (ECM). Transforming growth factor-β (TGF-β) has been found to promote fibrosis of the bladder induced by partial bladder outlet obstruction (pBOO). Activin receptor-like kinase 4 (ALK4) is a downstream receptor of the TGF-β superfamily. However, the role of the ALK4-Smad2/3 pathway in the pathogenesis of bladder fibrosis caused by pBOO remains unknown. This study focused on learning the role of ALK4 in the process of bladder fibrosis caused by pBOO. The pBOO mice models showed that ALK4 expression was found to upregulate in the wild-type bladder 6 weeks after pBOO compared to control group. Then, mice with heterozygous knockout of the ALK4 gene (ALK4+/-) were generated. Histological analysis and Western blot (WB) results showed significant suppression of collagen expression in the bladders of ALK4+/- mice after pBOO compared with WT mice. WB also showed that ALK4+/- mice demonstrated significant suppression of phosphorylated Smad2/3 (p-Smad2/3) expression in the bladder 6 weeks after pBOO but not of phosphorylated extracellular signal-regulated kinase, c-Jun N-terminal kinase or protein 38 (p-ERK, p-JNK, p-P38) expression. This effect might have occurred through partial inactivation of the Smad2/3 signaling pathway. In vitro, ALK4 overexpression promoted collagen production in cultured BSMCs and activated the Smad2/3 signaling pathway. Taken together, our results demonstrated that ALK4 insufficiency alleviated bladder fibrosis in a mouse model of pBOO partly by suppressing Smad2/3 activity.
Collapse
Affiliation(s)
- Ning Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China; Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lu Lu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Qi Feng Cao
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Subo Qian
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jie Ding
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Chen Wang
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Huangqi Duan
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Haibo Shen
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Jun Qi
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Erdmann C, Hassoun R, Schmitt S, Kikuti C, Houdusse A, Mazur AJ, Mügge A, Hamdani N, Geyer M, Jaquet K, Mannherz HG. Integration of Cardiac Actin Mutants Causing Hypertrophic (p.A295S) and Dilated Cardiomyopathy (p.R312H and p.E361G) into Cellular Structures. Antioxidants (Basel) 2021; 10:antiox10071082. [PMID: 34356314 PMCID: PMC8301065 DOI: 10.3390/antiox10071082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 02/03/2023] Open
Abstract
The human mutant cardiac α-actins p.A295S or p.R312H and p.E361G, correlated with hypertrophic or dilated cardiomyopathy, respectively, were expressed by the baculovirus/Sf21 insect cell system and purified to homogeneity. The purified cardiac actins maintained their native state but showed differences in Ca2+-sensitivity to stimulate the myosin-subfragment1 ATPase. Here we analyzed the interactions of these c-actins with actin-binding and -modifying proteins implicated in cardiomyocyte differentiation. We demonstrate that Arp2/3 complex and the formin mDia3 stimulated the polymerization rate and extent of the c-actins, albeit to different degrees. In addition, we tested the effect of the MICAL-1 monooxygenase, which modifies the supramolecular actin organization during development and adaptive processes. MICAL-1 oxidized these c-actin variants and induced their de-polymerization, albeit at different rates. Transfection experiments using MDCK cells demonstrated the preferable incorporation of wild type and p.A295S c-actins into their microfilament system but of p.R312H and p.E361G actins into the submembranous actin network. Transduction of neonatal rat cardiomyocytes with adenoviral constructs coding HA-tagged c-actin variants showed their incorporation into microfilaments after one day in culture and thereafter into thin filaments of nascent sarcomeric structures at their plus ends (Z-lines) except the p.E361G mutant, which preferentially incorporated at the minus ends.
Collapse
Affiliation(s)
- Constanze Erdmann
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, D-44780 Bochum, Germany;
| | - Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, D-44780 Bochum, Germany; (R.H.); (A.M.); (N.H.); (K.J.)
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Sebastian Schmitt
- Institute of Structural Biology, University of Bonn, D-53127 Bonn, Germany; (S.S.); (M.G.)
| | - Carlos Kikuti
- Institut Curie, Structural Motility Team, F-75005 Paris, France; (C.K.); (A.H.)
| | - Anne Houdusse
- Institut Curie, Structural Motility Team, F-75005 Paris, France; (C.K.); (A.H.)
| | - Antonina J. Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Pl-50-383 Wroclaw, Poland;
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, D-44780 Bochum, Germany; (R.H.); (A.M.); (N.H.); (K.J.)
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, D-44780 Bochum, Germany; (R.H.); (A.M.); (N.H.); (K.J.)
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, D-53127 Bonn, Germany; (S.S.); (M.G.)
| | - Kornelia Jaquet
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, D-44780 Bochum, Germany; (R.H.); (A.M.); (N.H.); (K.J.)
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, D-44780 Bochum, Germany;
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, D-44780 Bochum, Germany; (R.H.); (A.M.); (N.H.); (K.J.)
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, D-44780 Bochum, Germany
- Correspondence: ; Fax: +49-234-3214474
| |
Collapse
|
25
|
Del Campo A, Perez G, Castro PF, Parra V, Verdejo HE. Mitochondrial function, dynamics and quality control in the pathophysiology of HFpEF. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166208. [PMID: 34214606 DOI: 10.1016/j.bbadis.2021.166208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is one of the leading causes of hospitalization for the adult population and a major cause of mortality worldwide. The HF syndrome is characterized by the heart's inability to supply the cardiac output required to meet the body's metabolic requirements or only at the expense of elevated filling pressures. HF without overt impairment of left ventricular ejection fraction (LVEF) was initially labeled as "diastolic HF" until recognizing the coexistence of both systolic and diastolic abnormalities in most cases. Acknowledging these findings, the preferred nomenclature is HF with preserved EF (HFpEF). This syndrome primarily affects the elderly population and is associated with a heterogeneous overlapping of comorbidities that makes its diagnosis challenging. Despite extensive research, there is still no evidence-based therapy for HFpEF, reinforcing the need for a thorough understanding of the pathophysiology underlying its onset and progression. The role of mitochondrial dysfunction in developing the pathophysiological changes that accompany HFpEF onset and progression (low-grade systemic inflammation, oxidative stress, endothelial dysfunction, and myocardial remodeling) has just begun to be acknowledged. This review summarizes our current understanding of the participation of the mitochondrial network in the pathogenesis of HFpEF, with particular emphasis on the signaling pathways involved, which may provide future therapeutic targets.
Collapse
Affiliation(s)
- Andrea Del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo Perez
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Castro
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Universidad de Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile.
| | - Hugo E Verdejo
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile.
| |
Collapse
|
26
|
Chen QQ, Ma G, Liu JF, Cai YY, Zhang JY, Wei TT, Pan A, Jiang S, Xiao Y, Xiao P, Song J, Li P, Zhang L, Qi LW. Neuraminidase 1 is a driver of experimental cardiac hypertrophy. Eur Heart J 2021; 42:3770-3782. [PMID: 34179969 DOI: 10.1093/eurheartj/ehab347] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/31/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
AIMS Despite considerable therapeutic advances, there is still a dearth of evidence on the molecular determinants of cardiac hypertrophy that culminate in heart failure. Neuraminidases are a family of enzymes that catalyze the cleavage of terminal sialic acids from glycoproteins or glycolipids. This study sought to characterize the role of neuraminidases in pathological cardiac hypertrophy and identify pharmacological inhibitors targeting mammalian neuraminidases. METHODS AND RESULTS Neuraminidase 1 (NEU1) was highly expressed in hypertrophic hearts of mice and rats, and this elevation was confirmed in patients with hypertrophic cardiomyopathy (n = 7) compared with healthy controls (n = 7). The increased NEU1 was mainly localized in cardiomyocytes by co-localization with cardiac troponin T. Cardiomyocyte-specific NEU1 deficiency alleviated hypertrophic phenotypes in response to transverse aortic constriction or isoproterenol hydrochloride infusion, while NEU1 overexpression exacerbated the development of cardiac hypertrophy. Mechanistically, co-immunoprecipitation coupled with mass spectrometry, chromatin immunoprecipitation, and luciferase assays demonstrated that NEU1 translocated into the nucleus and interacted with GATA4, leading to Foetal gene (Nppa and Nppb) expression. Virtual screening and experimental validation identified a novel compound C-09 from millions of compounds that showed favourable binding affinity to human NEU1 (KD = 0.38 μM) and effectively prevented the development of cardiac remodelling in cellular and animal models. Interestingly, anti-influenza drugs zanamivir and oseltamivir effectively inhibited mammalian NEU1 and showed new indications of cardio-protection. CONCLUSIONS This work identifies NEU1 as a critical driver of cardiac hypertrophy and inhibition of NEU1 opens up an entirely new field of treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Qian-Qian Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Gaoxiang Ma
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China.,Clinical Metabolomics Center, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Jin-Feng Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yuan-Yuan Cai
- Clinical Metabolomics Center, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Jun-Yuan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ting-Ting Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - An Pan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Shujun Jiang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Pingxi Xiao
- Department of Cardiology, The Sir Run Run Hospital, Nanjing Medical University, No. 109 Longmian Road, Nanjing 211166, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Beijing 100037, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.,Clinical Metabolomics Center, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| |
Collapse
|
27
|
Ziegler R, Häusermann F, Kirchner S, Polonchuk L. Cardiac Safety of Kinase Inhibitors - Improving Understanding and Prediction of Liabilities in Drug Discovery Using Human Stem Cell-Derived Models. Front Cardiovasc Med 2021; 8:639824. [PMID: 34222360 PMCID: PMC8242589 DOI: 10.3389/fcvm.2021.639824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Many small molecule kinase inhibitors (SMKIs) used to fight cancer have been associated with cardiotoxicity in the clinic. Therefore, preventing their failure in clinical development is a priority for preclinical discovery. Our study focused on the integration and concurrent measurement of ATP, apoptosis dynamics and functional cardiac indexes in human stem cell-derived cardiomyocytes (hSC-CMs) to provide further insights into molecular determinants of compromised cardiac function. Ten out of the fourteen tested SMKIs resulted in a biologically relevant decrease in either beating rate or base impedance (cell number index), illustrating cardiotoxicity as one of the major safety liabilities of SMKIs, in particular of those involved in the PI3K–AKT pathway. Pearson's correlation analysis indicated a good correlation between the different read-outs of functional importance. Therefore, measurement of ATP concentrations and apoptosis in vitro could provide important insight into mechanisms of cardiotoxicity. Detailed investigation of the cellular signals facilitated multi-parameter evaluation allowing integrative assessment of cardiomyocyte behavior. The resulting correlation can be used as a tool to highlight changes in cardiac function and potentially to categorize drugs based on their mechanisms of action.
Collapse
Affiliation(s)
- Ricarda Ziegler
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Fabian Häusermann
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stephan Kirchner
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Liudmila Polonchuk
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
28
|
Wu X, Huang L, Liu J. Relationship between oxidative stress and nuclear factor-erythroid-2-related factor 2 signaling in diabetic cardiomyopathy (Review). Exp Ther Med 2021; 22:678. [PMID: 33986843 PMCID: PMC8111863 DOI: 10.3892/etm.2021.10110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is the leading cause of death worldwide, and oxidative stress was discovered to serve an important role in the pathophysiology of the condition. An imbalance between free radicals and antioxidant defenses is known to be associated with cellular dysfunction, leading to the development of various types of cardiac disease. Nuclear factor-erythroid-2-related factor 2 (NRF2) is a transcription factor that controls the basal and inducible expression levels of various antioxidant genes and other cytoprotective phase II detoxifying enzymes, which are ubiquitously expressed in the cardiac system. Kelch-like ECH-associated protein 1 (Keap1) serves as the main intracellular regulator of NRF2. Emerging evidence has revealed that NRF2 is a critical regulator of cardiac homeostasis via the suppression of oxidative stress. The activation of NRF2 was discovered to enhance specific endogenous antioxidant defense factors, one of which is antioxidant response element (ARE), which was subsequently illustrated to detoxify and counteract oxidative stress-associated DCM. The NRF2 signaling pathway is closely associated with the development of various types of cardiac disease, including ischemic heart disease, heart failure, myocardial infarction, atrial fibrillation and myocarditis. Therefore, it is hypothesized that drugs targeting this pathway may be developed to inhibit the activation of NRF2 signaling, thereby preventing the occurrence of DCM and effectively treating the disease.
Collapse
Affiliation(s)
- Xia Wu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Leitao Huang
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, P.R. China
| | - Jichun Liu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
29
|
Ro WB, Kang MH, Song DW, Lee SH, Park HM. Expression Profile of Circulating MicroRNAs in Dogs With Cardiac Hypertrophy: A Pilot Study. Front Vet Sci 2021; 8:652224. [PMID: 33898546 PMCID: PMC8062772 DOI: 10.3389/fvets.2021.652224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 01/19/2023] Open
Abstract
This study aimed to identify the expression profile of circulating microRNAs in dogs with eccentric or concentric cardiac hypertrophy. A total of 291 microRNAs in serum samples of five dogs with myxomatous mitral valve degeneration (MMVD) and five dogs with pulmonic stenosis (PS) were compared with those of five healthy dogs using microarray analysis. Results of microarray analysis revealed up-regulation of cfa-miR-130b [fold change (FC) = 2.13, p = 0.014), down-regulation of cfa-miR-375 (FC = 1.51, p = 0.014), cfa-miR-425 (FC = 2.56, p = 0.045), cfa-miR-30d (FC = 3.02, p = 0.047), cfa-miR-151 (FC = 1.89, p = 0.023), cfa-miR-19b (FC = 3.01, p = 0.008), and cfa-let-7g (FC = 2.53, p = 0.015) in MMVD group which showed eccentric cardiac hypertrophy, up-regulation of cfa-miR-346 (FC = 2.74, p = 0.032), down-regulation of cfa-miR-505 (FC = 1.56, p = 0.016) in PS group which showed concentric cardiac hypertrophy, and down-regulation of cfa-miR-30c (FC = 3.45, p = 0.013 in MMVD group; FC = 3.31, p = 0.014 in PS group) and cfa-let-7b (FC = 11.42, p = 0.049 in MMVD group; FC = 5.88, p = 0.01 in PS group) in both MMVD and PS groups. In addition, the unsupervised hierarchical clustering of differentially expressed microRNAs in each group resulted in complete separation of healthy dogs from dogs with heart diseases. Therefore, eleven microRNAs among 291 microRNAs were identified as differentially expressed circulating microRNAs related to MMVD or PS in dogs. This pilot study demonstrates that the microRNAs identified in this study could be possible candidates for novel biomarker or therapeutic target related to cardiac hypertrophy in dogs.
Collapse
Affiliation(s)
- Woong-Bin Ro
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Min-Hee Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Doo-Won Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Sung-Hun Lee
- Department of Cancer Genome Research, Cancer Research Institute, Clinomics Inc., Seoul, South Korea
| | - Hee-Myung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
30
|
Gutiérrez-Cuevas J, Sandoval-Rodriguez A, Meza-Rios A, Monroy-Ramírez HC, Galicia-Moreno M, García-Bañuelos J, Santos A, Armendariz-Borunda J. Molecular Mechanisms of Obesity-Linked Cardiac Dysfunction: An Up-Date on Current Knowledge. Cells 2021; 10:629. [PMID: 33809061 PMCID: PMC8000147 DOI: 10.3390/cells10030629] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is defined as excessive body fat accumulation, and worldwide obesity has nearly tripled since 1975. Excess of free fatty acids (FFAs) and triglycerides in obese individuals promote ectopic lipid accumulation in the liver, skeletal muscle tissue, and heart, among others, inducing insulin resistance, hypertension, metabolic syndrome, type 2 diabetes (T2D), atherosclerosis, and cardiovascular disease (CVD). These diseases are promoted by visceral white adipocyte tissue (WAT) dysfunction through an increase in pro-inflammatory adipokines, oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and adverse changes in the gut microbiome. In the heart, obesity and T2D induce changes in substrate utilization, tissue metabolism, oxidative stress, and inflammation, leading to myocardial fibrosis and ultimately cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of carbohydrate and lipid metabolism, also improve insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. The purpose of this review is to provide an update on the molecular mechanisms involved in obesity-linked CVD pathophysiology, considering pro-inflammatory cytokines, adipokines, and hormones, as well as the role of oxidative stress, inflammation, and PPARs. In addition, cell lines and animal models, biomarkers, gut microbiota dysbiosis, epigenetic modifications, and current therapeutic treatments in CVD associated with obesity are outlined in this paper.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Alejandra Meza-Rios
- Tecnologico de Monterrey, Campus Guadalajara, Zapopan, School of Medicine and Health Sciences, Jalisco 45201, Mexico; (A.M.-R.); (A.S.)
| | - Hugo Christian Monroy-Ramírez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Marina Galicia-Moreno
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Jesús García-Bañuelos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Arturo Santos
- Tecnologico de Monterrey, Campus Guadalajara, Zapopan, School of Medicine and Health Sciences, Jalisco 45201, Mexico; (A.M.-R.); (A.S.)
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
- Tecnologico de Monterrey, Campus Guadalajara, Zapopan, School of Medicine and Health Sciences, Jalisco 45201, Mexico; (A.M.-R.); (A.S.)
| |
Collapse
|
31
|
Tan Y, Xia F, Li L, Peng X, Liu W, Zhang Y, Fang H, Zeng Z, Chen Z. Novel Insights into the Molecular Features and Regulatory Mechanisms of Mitochondrial Dynamic Disorder in the Pathogenesis of Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6669075. [PMID: 33688392 PMCID: PMC7914101 DOI: 10.1155/2021/6669075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022]
Abstract
Mitochondria maintain mitochondrial homeostasis through continuous fusion and fission, that is, mitochondrial dynamics, which is precisely mediated by mitochondrial fission and fusion proteins, including dynamin-related protein 1 (Drp1), mitofusin 1 and 2 (Mfn1/2), and optic atrophy 1 (OPA1). When the mitochondrial fission and fusion of cardiomyocytes are out of balance, they will cause their own morphology and function disorders, which damage the structure and function of the heart, are involved in the occurrence and progression of cardiovascular disease such as ischemia-reperfusion injury (IRI), septic cardiomyopathy, and diabetic cardiomyopathy. In this paper, we focus on the latest findings regarding the molecular features and regulatory mechanisms of mitochondrial dynamic disorder in cardiovascular pathologies. Finally, we will address how these findings can be applied to improve the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fengfan Xia
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300 Guangdong, China
| | - Lulan Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaojie Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenqian Liu
- Department of Critical Care Medicine, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaoyuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haihong Fang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Ave N, Guangzhou 510515, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
32
|
|
33
|
Martinelli I, Timotin A, Moreno-Corchado P, Marsal D, Kramar S, Loy H, Joffre C, Boal F, Tronchere H, Kunduzova O. Galanin promotes autophagy and alleviates apoptosis in the hypertrophied heart through FoxO1 pathway. Redox Biol 2021; 40:101866. [PMID: 33493902 PMCID: PMC7823211 DOI: 10.1016/j.redox.2021.101866] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy and apoptosis are powerful regulators of multiple facets of cellular metabolism and homeostasis. Here, we uncover that galanin, a pleiotropic peptide, regulates cardiac autophagy and deactivates apoptotic cell death through the Forkhead box protein O1 (FoxO1) pathway. In hypertrophied heart, galanin promotes autophagy and metabolic shift from fatty acid (FA) to glucose oxidation and preserves mitochondrial integrity. In cardiomyoblasts, galanin triggers autophagosome formation and alleviates hypertrophy, apoptotic cell death, and mitochondrial stress. Mechanistically, galanin dictates cell autophagic and anti-apoptotic phenotypes through FoxO1 pathway. Together, these findings uncover a previously unknown role for galanin in the regulation of cardiac autophagy and provide new insights into the molecular mechanisms supporting cell survival in the hypertrophic reprogramming of the heart.
Collapse
Affiliation(s)
- Ilenia Martinelli
- National Institute of Health and Medical Research (INSERM) U1048, 31432, Toulouse, Cedex 4, France; Paul Sabatier University, 31062, Toulouse, Cedex 9, France
| | - Andrei Timotin
- National Institute of Health and Medical Research (INSERM) U1048, 31432, Toulouse, Cedex 4, France; Paul Sabatier University, 31062, Toulouse, Cedex 9, France
| | - Paula Moreno-Corchado
- National Institute of Health and Medical Research (INSERM) U1048, 31432, Toulouse, Cedex 4, France; Paul Sabatier University, 31062, Toulouse, Cedex 9, France
| | - Dimitri Marsal
- National Institute of Health and Medical Research (INSERM) U1048, 31432, Toulouse, Cedex 4, France; Paul Sabatier University, 31062, Toulouse, Cedex 9, France
| | - Solomiia Kramar
- National Institute of Health and Medical Research (INSERM) U1048, 31432, Toulouse, Cedex 4, France; Paul Sabatier University, 31062, Toulouse, Cedex 9, France
| | - Halina Loy
- National Institute of Health and Medical Research (INSERM) U1048, 31432, Toulouse, Cedex 4, France; Paul Sabatier University, 31062, Toulouse, Cedex 9, France
| | - Carine Joffre
- Paul Sabatier University, 31062, Toulouse, Cedex 9, France; Centre de Recherches en Cancérologie de Toulouse (CRCT), 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Frederic Boal
- National Institute of Health and Medical Research (INSERM) U1048, 31432, Toulouse, Cedex 4, France; Paul Sabatier University, 31062, Toulouse, Cedex 9, France
| | - Helene Tronchere
- National Institute of Health and Medical Research (INSERM) U1048, 31432, Toulouse, Cedex 4, France; Paul Sabatier University, 31062, Toulouse, Cedex 9, France
| | - Oksana Kunduzova
- National Institute of Health and Medical Research (INSERM) U1048, 31432, Toulouse, Cedex 4, France; Paul Sabatier University, 31062, Toulouse, Cedex 9, France.
| |
Collapse
|
34
|
Balatskyi VV, Palchevska OL, Bortnichuk L, Gan AM, Myronova A, Macewicz LL, Navrulin VO, Tumanovska LV, Olichwier A, Dobrzyn P, Piven OO. β-Catenin Regulates Cardiac Energy Metabolism in Sedentary and Trained Mice. Life (Basel) 2020; 10:life10120357. [PMID: 33348907 PMCID: PMC7766208 DOI: 10.3390/life10120357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023] Open
Abstract
The role of canonical Wnt signaling in metabolic regulation and development of physiological cardiac hypertrophy remains largely unknown. To explore the function of β-catenin in the regulation of cardiac metabolism and physiological cardiac hypertrophy development, we used mice heterozygous for cardiac-specific β-catenin knockout that were subjected to a swimming training model. β-Catenin haploinsufficient mice subjected to endurance training displayed a decreased β-catenin transcriptional activity, attenuated cardiomyocytes hypertrophic growth, and enhanced activation of AMP-activated protein kinase (AMPK), phosphoinositide-3-kinase-Akt (Pi3K-Akt), and mitogen-activated protein kinase/extracellular signal-regulated kinases 1/2 (MAPK/Erk1/2) signaling pathways compared to trained wild type mice. We further observed an increased level of proteins involved in glucose aerobic metabolism and β-oxidation along with perturbed activity of mitochondrial oxidative phosphorylation complexes (OXPHOS) in trained β-catenin haploinsufficient mice. Taken together, Wnt/β-catenin signaling appears to govern metabolic regulatory programs, sustaining metabolic plasticity in adult hearts during the adaptation to endurance training.
Collapse
Affiliation(s)
- Volodymyr V. Balatskyi
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Oksana L. Palchevska
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, 46-580 Warsaw, Poland
| | - Lina Bortnichuk
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
| | - Ana-Maria Gan
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Anna Myronova
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
| | - Larysa L. Macewicz
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
| | - Viktor O. Navrulin
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Lesya V. Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Street, 01024 Kyiv, Ukraine;
| | - Adam Olichwier
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
- Correspondence: (P.D.); (O.O.P.); Tel.: +48-022-589-24-59 (P.D.); +38-044-526-07-39 (O.O.P.); Fax: +48-022-822-53-42 (P.D.); +38-044-526-07-59 (O.O.P.)
| | - Oksana O. Piven
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
- Correspondence: (P.D.); (O.O.P.); Tel.: +48-022-589-24-59 (P.D.); +38-044-526-07-39 (O.O.P.); Fax: +48-022-822-53-42 (P.D.); +38-044-526-07-59 (O.O.P.)
| |
Collapse
|
35
|
Rüdebusch J, Benkner A, Nath N, Fleuch L, Kaderali L, Grube K, Klingel K, Eckstein G, Meitinger T, Fielitz J, Felix SB. Stimulation of soluble guanylyl cyclase (sGC) by riociguat attenuates heart failure and pathological cardiac remodelling. Br J Pharmacol 2020; 179:2430-2442. [PMID: 33247945 DOI: 10.1111/bph.15333] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/16/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Heart failure is associated with an impaired NO-soluble guanylyl cyclase (sGC)-cGMP pathway and its augmentation is thought to be beneficial for its therapy. We hypothesized that stimulation of sGC by the sGC stimulator riociguat prevents pathological cardiac remodelling and heart failure in response to chronic pressure overload. EXPERIMENTAL APPROACH Transverse aortic constriction or sham surgery was performed in C57BL/6N mice. After 3 weeks of transverse aortic constriction when heart failure was established, animals receive either riociguat or its vehicle for 5 additional weeks. Cardiac function was evaluated weekly by echocardiography. Eight weeks after surgery, histological analyses were performed to evaluate remodelling and the transcriptome of the left ventricles (LVs) was analysed by RNA sequencing. Cell culture experiments were used for mechanistically studies. KEY RESULTS Transverse aortic constriction resulted in a continuous decrease of LV ejection fraction and an increase in LV mass until week 3. Five weeks of riociguat treatment resulted in an improved LV ejection fraction and a decrease in the ratio of left ventricular mass to total body weight (LVM/BW), myocardial fibrosis and myocyte cross-sectional area. RNA sequencing revealed that riociguat reduced the expression of myocardial stress and remodelling genes (e.g. Nppa, Nppb, Myh7 and collagen) and attenuated the activation of biological pathways associated with cardiac hypertrophy and heart failure. Riociguat reversed pathological stress response in cultivated myocytes and fibroblasts. CONCLUSION AND IMPLICATIONS Stimulation of the sGC reverses transverse aortic constriction-induced heart failure and remodelling, which is associated with improved myocardial gene expression.
Collapse
Affiliation(s)
- Julia Rüdebusch
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Alexander Benkner
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Neetika Nath
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Lina Fleuch
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Lars Kaderali
- DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany.,Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Karina Grube
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Gertrud Eckstein
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jens Fielitz
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| |
Collapse
|
36
|
Dai B, Wang F, Nie X, Du H, Zhao Y, Yin Z, Li H, Fan J, Wen Z, Wang DW, Chen C. The Cell Type-Specific Functions of miR-21 in Cardiovascular Diseases. Front Genet 2020; 11:563166. [PMID: 33329700 PMCID: PMC7714932 DOI: 10.3389/fgene.2020.563166] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are one of the prime reasons for disability and death worldwide. Diseases and conditions, such as hypoxia, pressure overload, infection, and hyperglycemia, might initiate cardiac remodeling and dysfunction by inducing hypertrophy or apoptosis in cardiomyocytes and by promoting proliferation in cardiac fibroblasts. In the vascular system, injuries decrease the endothelial nitric oxide levels and affect the phenotype of vascular smooth muscle cells. Understanding the underlying mechanisms will be helpful for the development of a precise therapeutic approach. Various microRNAs are involved in mediating multiple pathological and physiological processes in the heart. A cardiac enriched microRNA, miR-21, which is essential for cardiac homeostasis, has been demonstrated to act as a cell–cell messenger with diverse functions. This review describes the cell type–specific functions of miR-21 in different cardiovascular diseases and its prospects in clinical therapy.
Collapse
Affiliation(s)
- Beibei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Feng Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Hengzhi Du
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yanru Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zhongwei Yin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
37
|
Fluconazole Represses Cytochrome P450 1B1 and Its Associated Arachidonic Acid Metabolites in the Heart and Protects Against Angiotensin II-Induced Cardiac Hypertrophy. J Pharm Sci 2020; 109:2321-2335. [PMID: 32240690 DOI: 10.1016/j.xphs.2020.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
Cytochrome P450 1B1 (CYP1B1) has been reported to have a major role in metabolizing arachidonic acid (AA) into cardiotoxic metabolites, mid-chain hydroxyeicosatetraenoic acids (HETEs). Recently, we have shown that fluconazole decreases the level of mid-chain HETEs in human liver microsomes. Therefore, the objectives of this study were to investigate the effect of fluconazole on CYP1B1 mediated mid-chain HETEs and to explore its potential protective effect against angiotensin II- (Ang II)-induced cellular hypertrophy. To do this, Sprague Dawley rats were injected intraperitoneally with a single dose of fluconazole (20 mg/kg) for 24 h. Also, H9c2 and RL-14 cells were treated with 10 μM Ang II in the presence and absence of 50 μM fluconazole for 24 h. Our results demonstrated that treatment of rats with fluconazole significantly decreased the expression of CYP1B1 enzyme and the level of mid-chain HETEs in the heart. Furthermore, fluconazole was able to attenuate Ang-II-induced cellular hypertrophy as evidenced by a significant down-regulation of hypertrophic markers; β-myosin heavy chain (MHC)/α-MHC and brain natriuretic peptide (BNP) as well as cell surface area. In conclusion, our findings indicate that fluconazole protects against Ang II-induced cellular hypertrophy by repressing CYP1B1 and its associated mid-chain HETEs.
Collapse
|
38
|
Conejeros C, Parra V, Sanchez G, Pedrozo Z, Olmedo I. Miro1 as a novel regulator of hypertrophy in neonatal rat cardiomyocytes. J Mol Cell Cardiol 2020; 141:65-69. [PMID: 32234389 DOI: 10.1016/j.yjmcc.2020.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy is an adaptive response to manage an excessive cardiac workload and maintain normal cardiac function. However, sustained hypertrophy leads to cardiomyopathy, cardiac failure, and death. Adrenergic receptors play a key role in regulating cardiac function under normal and pathological conditions. Mitochondria are responsible for 90% of ATP production in cardiomyocytes. Mitochondrial function is dynamically regulated by fusion and fission processes. Changes in mitochondrial dynamics and metabolism are central issues in cardiac hypertrophy. Stimulating cardiomyocytes with adrenergic agonists generates hypertrophy and increases mitochondrial fission, which in turn is associated with decreased ATP synthesis. Miro1 is a mitochondrial outer membrane protein involved in mitochondrial dynamics and transport in neurons. The objective of this work was to evaluate whether Miro1 regulates cardiomyocyte hypertrophy through changes in mitochondrial dynamics. In neonatal rat ventricular myocytes, we showed that phenylephrine induced cardiomyocyte hypertrophy and increased Miro1 mRNA and protein levels. Moreover, alpha-adrenergic stimulation provoked a mitochondrial fission pattern in the cardiomyocytes. Miro1 knockdown prevented both the cardiomyocyte hypertrophy and mitochondrial fission pattern. Our results suggest that Miro1 participates in phenylephrine-induced cardiomyocyte hypertrophy through mitochondrial fission.
Collapse
Affiliation(s)
- Carolina Conejeros
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile; Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Chile; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Chile
| | - Gina Sanchez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Zully Pedrozo
- Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Chile; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Chile; Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile.
| | - Ivonne Olmedo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile; Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Chile.
| |
Collapse
|
39
|
Shi W, Ma H, Liu T, Yan D, Luo P, Zhai M, Tao J, Huo S, Guo J, Li C, Lin J, Zhang C, Li S, Lv J, Lin L. Inhibition of Interleukin-6/glycoprotein 130 signalling by Bazedoxifene ameliorates cardiac remodelling in pressure overload mice. J Cell Mol Med 2020; 24:4748-4761. [PMID: 32164044 PMCID: PMC7176848 DOI: 10.1111/jcmm.15147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The role of IL-6 signalling in hypertensive heart disease and its sequelae is controversial. Our group demonstrated that Bazedoxifene suppressed IL-6/gp130 signalling in cancer cells but its effect on myocardial pathology induced by pressure overload is still unknown. We explored whether Bazedoxifene could confer benefits in wild-type C57BL/6J mice suffering from transverse aortic constriction (TAC) and the potential mechanisms in H9c2 myoblasts. Mice were randomized into three groups (Sham, TAC, TAC+Bazedoxifene, n = 10). Morphological and histological observations suggested TAC aggravated myocardial remodelling while long-term intake of Bazedoxifene (5 mg/kg, intragastric) attenuated pressure overload-induced pathology. Echocardiographic results indicated Bazedoxifene rescued cardiac function in part. We found Bazedoxifene decreased the mRNA expression of IL-6, MMP2, Col1A1, Col3A1 and periostin in murine hearts after 8-week surgery. By Western blot detection, we found Bazedoxifene exhibited an inhibition of STAT3 activation in mice three hours and 8 weeks after TAC. Acute TAC stress (3 hours) led to down-regulated ratio of LC3-Ⅱ/LC3-Ⅰ, while in mice after long-term (8 weeks) TAC this ratio becomes higher than that in Sham mice. Bazedoxifene inverted the autophagic alteration induced by TAC at both two time-points. In H9c2 myoblasts, Bazedoxifene suppressed the IL-6-induced STAT3 activation. Moreover, IL-6 reduced the ratio of LC3-Ⅱ/LC3-Ⅰ, promoted P62 expression but Bazedoxifene reversed both changes in H9c2 cells. Our data suggested Bazedoxifene inhibited IL-6/gp130 signalling and protected against cardiac remodelling together with function deterioration in TAC mice.
Collapse
Affiliation(s)
- Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Ma
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Division of Cardiology, Department of Internal Medicine, First People's Hospital of Shangqiu, Shangqiu, China
| | - Tianshu Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Luo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maocai Zhai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Tao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Chen H, Zhang Y, Hao Y, Yang S, Liu Y. Effects of Long-Term Calcium Supplementation on Rats Bone Mineral Density and Cardiovascular Based on Metabonomics. J Nutr Sci Vitaminol (Tokyo) 2020; 65:483-490. [PMID: 31902861 DOI: 10.3177/jnsv.65.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Calcium supplements were necessary for those people with low calcium intake and high risk of osteoporosis. Recent cohort studies have shown that long-term calcium supplements may raise the risk of cardiovascular disease, but its mechanism is still unclear. In this study, metabonomics were employed to evaluate the changes of metabolism in rats with long-term calcium supplementation and further seek the potential markers of cardiovascular risk. SD rats were divided into two groups including normal control group (calcium intake, 0.50 g/kg bw) and high calcium supplement group (calcium intake, 2.50 g/kg bw). After 6 mo, the cardiovascular system and bone mineral density were observed. UPLC-MS was used to analyze serum metabonomics in rats. The results showed that the contents of total cholesterol and low-density lipoprotein cholesterol in the high calcium group were significantly higher than those in normal control group (p<0.05). The interventricular septum thickness (IVS), left ventricular mass (LVM), left ventricular posterior wall thickness (LVPW) in the high calcium group were higher than those in normal control group (p<0.05). Serum metabonomics analysis showed that there were persistent changes in many metabolites such as sphingosine and its derivatives (p<0.01) in the comparison between the high calcium group and the normal group. These results indicated that long term calcium supplementation can lead to dyslipidemia in rats, such as the rise of cholesterol and low-density lipoprotein, which might induce myocardial hypertrophy. Long-term calcium supplementation can cause the changes of the amount of sphingosine and its derivatives in the body, which many have potential risk to cardiovascular diseases such as myocardial hypertrophy and atherosclerosis.
Collapse
Affiliation(s)
- Haining Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University
| | - Yan Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University
| | - Yan Hao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University
| | - Shucai Yang
- Department of Anatomy, Basic Medical Science College, Harbin Medical University
| | - Ying Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University
| |
Collapse
|
41
|
Alam MJ, Gupta R, Mahapatra NR, Goswami SK. Catestatin reverses the hypertrophic effects of norepinephrine in H9c2 cardiac myoblasts by modulating the adrenergic signaling. Mol Cell Biochem 2019; 464:205-219. [PMID: 31792650 DOI: 10.1007/s11010-019-03661-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
Catestatin (CST) is a catecholamine release-inhibitory peptide secreted from the adrenergic neurons and the adrenal glands. It regulates the cardiovascular functions and it is associated with cardiovascular diseases. Though its mechanisms of actions are not known, there are evidences of cross-talk between the adrenergic and CST signaling. We hypothesized that CST moderates the adrenergic overdrive and studied its effects on norepinephrine-mediated hypertrophic responses in H9c2 cardiac myoblasts. CST alone regulated the expression of a number of fetal genes that are induced during hypertrophy. When cells were pre-treated CST, it blunted the modulation of those genes by norepinephrine. Norepinephrine (2 µM) treatment also increased cell size and enhanced the level of Troponin T in the sarcomere. These effects were attenuated by the treatment with CST. CST attenuated the immediate generation of ROS and the increase in glutathione peroxidase activity induced by norepinephrine treatment. Expression of fosB and AP-1 promoter-reporter constructs was used as the endpoint readout for the interaction between the CST and adrenergic signals at the gene level. It showed that CST largely attenuates the stimulatory effects of norepinephrine and other mitogenic signals through the modulation of the gene regulatory modules in a characteristic manner. Depending upon the dose, the signaling by CST appears to be disparate, and at 10-25 nM doses, it primarily moderated the signaling by the β1/2-adrenoceptors. This study, for the first time, provides insights into the modulation of adrenergic signaling in the heart by CST.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Fridabad, 121001, India
| | - Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Shyamal K Goswami
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Fridabad, 121001, India.
| |
Collapse
|
42
|
Loonat AA, Martin ED, Sarafraz-Shekary N, Tilgner K, Hertz NT, Levin R, Shokat KM, Burlingame AL, Arabacilar P, Uddin S, Thomas M, Marber MS, Clark JE. p38γ MAPK contributes to left ventricular remodeling after pathologic stress and disinhibits calpain through phosphorylation of calpastatin. FASEB J 2019; 33:13131-13144. [PMID: 31638431 PMCID: PMC6894093 DOI: 10.1096/fj.201701545r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Despite the high and preferential expression of p38γ MAPK in the myocardium, little is known about its function in the heart. The aim of the current study was to elucidate the physiologic and biochemical roles of p38γ in the heart. Expression and subcellular localization of p38 isoforms was determined in mouse hearts. Comparisons of the cardiac function and structure of wild-type and p38γ knockout (KO) mice at baseline and after abdominal aortic banding demonstrated that KO mice developed less ventricular hypertrophy and that contractile function is better preserved. To identify potential substrates of p38γ, we generated an analog-sensitive mutant to affinity tag endogenous myocardial proteins. Among other proteins, this technique identified calpastatin as a direct p38γ substrate. Moreover, phosphorylation of calpastatin by p38γ impaired its ability to inhibit the protease, calpain. We have identified p38γ as an important determinant of the progression of pathologic cardiac hypertrophy after aortic banding in mice. In addition, we have identified calpastatin, among other substrates, as a novel direct target of p38γ that may contribute to the protection observed in p38γKO mice.-Loonat, A. A., Martin, E. D., Sarafraz-Shekary, N., Tilgner, K., Hertz, N. T., Levin, R., Shokat, K. M., Burlingame, A. L., Arabacilar, P., Uddin, S., Thomas, M., Marber, M. S., Clark, J. E. p38γ MAPK contributes to left ventricular remodeling after pathologic stress and disinhibits calpain through phosphorylation of calpastatin.
Collapse
Affiliation(s)
- Aminah A. Loonat
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - E. Denise Martin
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Negin Sarafraz-Shekary
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Katharina Tilgner
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Nicholas T. Hertz
- University of California–San Francisco, San Francisco, California, USA
| | - Rebecca Levin
- University of California–San Francisco, San Francisco, California, USA
| | - Kevan M. Shokat
- University of California–San Francisco, San Francisco, California, USA
| | | | - Pelin Arabacilar
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Shahzan Uddin
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Max Thomas
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Michael S. Marber
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - James E. Clark
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| |
Collapse
|
43
|
Zlabinger K, Spannbauer A, Traxler D, Gugerell A, Lukovic D, Winkler J, Mester-Tonczar J, Podesser B, Gyöngyösi M. MiR-21, MiR-29a, GATA4, and MEF2c Expression Changes in Endothelin-1 and Angiotensin II Cardiac Hypertrophy Stimulated Isl-1 +Sca-1 +c-kit + Porcine Cardiac Progenitor Cells In Vitro. Cells 2019; 8:cells8111416. [PMID: 31717562 PMCID: PMC6912367 DOI: 10.3390/cells8111416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Cost- and time-intensive porcine translational disease models offer great opportunities to test drugs and therapies for pathological cardiac hypertrophy and can be supported by porcine cell culture models that provide further insights into basic disease mechanisms. Cardiac progenitor cells (CPCs) residing in the adult heart have been shown to differentiate in vitro into cardiomyocytes and could contribute to cardiac regeneration. Therefore, it is important to evaluate their changes on the cellular level caused by disease. We successfully isolated Isl1+Sca1+cKit+ porcine CPCs (pCPCs) from pig hearts and stimulated them with endothelin-1 (ET-1) and angiotensin II (Ang II) in vitro. We also performed a cardiac reprogramming transfection and tested the same conditions. Our results show that undifferentiated Isl1+Sca1+cKit+ pCPCs were significantly upregulated in GATA4, MEF2c, and miR-29a gene expressions and in BNP and MCP-1 protein expressions with Ang II stimulation, but they showed no significant changes in miR-29a and MCP-1 when stimulated with ET-1. Differentiated Isl1+Sca1+cKit+ pCPCs exhibited significantly higher levels of MEF2c, GATA4, miR-29a, and miR-21 as well as Cx43 and BNP with Ang II stimulation. pMx-MGT-transfected Isl1+Sca1+cKit+ pCPCs showed significant elevations in MEF2c, GATA4, and BNP expressions when stimulated with ET-1. Our model demonstrates that in vitro stimulation leads to successful Isl1+Sca1+cKit+ pCPC hypertrophy with upregulation of cardiac remodeling associated genes and profibrotic miRNAs and offers great possibilities for further investigations of disease mechanisms and treatment.
Collapse
Affiliation(s)
- Katrin Zlabinger
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
- Correspondence: (K.Z.); (M.G.); Tel.: +43(0)-140-400-48520 (K.Z.)
| | - Andreas Spannbauer
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Denise Traxler
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Alfred Gugerell
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Dominika Lukovic
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Johannes Winkler
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Julia Mester-Tonczar
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Bruno Podesser
- Medical University of Vienna, Department of Biomedical Research, 1090 Vienna, Austria;
| | - Mariann Gyöngyösi
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
- Correspondence: (K.Z.); (M.G.); Tel.: +43(0)-140-400-48520 (K.Z.)
| |
Collapse
|
44
|
Saxena S, Mathur P, Shukla V, Rani V. Differential expression of novel MicroRNAs from developing fetal heart of Gallus gallus domesticus implies a role in cardiac development. Mol Cell Biochem 2019; 462:157-165. [PMID: 31494815 DOI: 10.1007/s11010-019-03618-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/24/2019] [Indexed: 01/26/2023]
Abstract
Heart development is a complex process regulated by multi-layered genetic as well epigenetic regulators many of which are still unknown. Besides their critical role during cardiac development, these molecular regulators emerge as key modulators of cardiovascular pathologies, where fetal cardiac genes' re-expression is witnessed. MicroRNAs have recently emerged as a crucial part of signalling cascade in both development and diseases. We aimed to identify, validate, and perform functional annotation of putative novel miRNAs using chicken as a cardiac development model system. Novel miRNAs were obtained through deep sequencing of small RNAs extracted from chicken embryonic cardiac tissue of different developmental stages. After filtering out real pre-miRNAs, their expression analysis, potential target gene's prediction and functional annotations were performed. Expression analysis revealed that miRNAs were differentially expressed during different developmental stages of chicken heart. The expression of selected putative novel miRNAs was further validated by real-time PCR. Our analysis indicated the presence of novel cardiac miRNAs that might be regulating critical cardiac development events such as cardiac cell growth, differentiation, cardiac action potential generation and signal transduction.
Collapse
Affiliation(s)
- Sharad Saxena
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP, 201307, India
| | - Priyanka Mathur
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP, 201307, India
| | - Vaibhav Shukla
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vibha Rani
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP, 201307, India.
| |
Collapse
|
45
|
Isorhynchophylline enhances Nrf2 and inhibits MAPK pathway in cardiac hypertrophy. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:203-212. [PMID: 31489470 DOI: 10.1007/s00210-019-01716-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022]
Abstract
Isorhynchophylline (IRN) is one of the major tetracyclic oxindole alkaloids found in Uncaria rhynchophylla. Studies have found that IRN has diverse biological activities including antioxidant, anti-apoptosis, and neuroprotection. However, little is known about the effect of IRN on the development of cardiac hypertrophy. In this study, we investigated the change of the cell surface area and nascent protein synthesis of cultured H9c2 cardiomyocytes on exposure to phenylephrine (PE) plus IRN, and thus confirmed that IRN ameliorated cardiomyocyte hypertrophy induced by PE in vitro. Meanwhile, it turns out that IRN is also effective in neonatal rat ventricular myocytes (NRVMs) stimulated with angiotensin II (AngII). We also showed that IRN prevented cardiac dysfunction in mice with pressure overload due to transverse aortic constriction (TAC) and attenuated cardiac hypertrophy and fibrosis. IRN treatment improved the cardiac function assessed by echocardiographic parameters fractional shortening (FS) as well as suppressed the cardiac hypertrophy phenotypes, such as the increasing of ventricular mass/body weight and myocyte cross-sectional area. RT-PCR analysis showed that IRN treatment also alleviated the expression of fetal genes of ANP, BNP, Myh7, and the correlated fibrosis genes including TGF-β1, collagen I, collagen III, and CTGF in vivo. Meanwhile, IRN had anti-oxidative effects on cardiac remodeling with suppressed 4-HNE and MDA. Western blot analysis showed that the Nrf2 nuclear translocation and MAPK pathway were involved in the potential mechanisms of IRN on cardiac hypertrophy inhibition. The results of our study provide further evidence that IRN is a promising drug for the treatment of cardiac hypertrophy.
Collapse
|
46
|
Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Ribeiro AJS, Zabka T, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Adverse Drug-Induced Inotropic Effects in Early Drug Development. Part 1: General Considerations for Development of Novel Testing Platforms. Front Pharmacol 2019; 10:884. [PMID: 31447679 PMCID: PMC6697071 DOI: 10.3389/fphar.2019.00884] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023] Open
Abstract
Drug-induced effects on cardiac contractility can be assessed through the measurement of the maximal rate of pressure increase in the left ventricle (LVdP/dtmax) in conscious animals, and such studies are often conducted at the late stage of preclinical drug development. Detection of such effects earlier in drug research using simpler, in vitro test systems would be a valuable addition to our strategies for identifying the best possible drug development candidates. Thus, testing platforms with reasonably high throughput, and affordable costs would be helpful for early screening purposes. There may also be utility for testing platforms that provide mechanistic information about how a given drug affects cardiac contractility. Finally, there could be in vitro testing platforms that could ultimately contribute to the regulatory safety package of a new drug. The characteristics needed for a successful cell or tissue-based testing platform for cardiac contractility will be dictated by its intended use. In this article, general considerations are presented with the intent of guiding the development of new testing platforms that will find utility in drug research and development. In the following article (part 2), specific aspects of using human-induced stem cell-derived cardiomyocytes for this purpose are addressed.
Collapse
Affiliation(s)
- Brian D Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany.,PreClinical Drug Development Platform (PCDDP), North-West University, Potchefstroom, South Africa
| | - Michael Engwall
- Safety Pharmacology and Animal Research Center, Amgen Research, Thousand Oaks, CA, United States
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - C Michael Foley
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - John Koerner
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Stanley T Parish
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Tanja Zabka
- Department of Safety Assessment, Genentech, South San Francisco, CA, United States
| | - Khuram W Chaudhary
- Global Safety Pharmacology, GlaxoSmithKline plc, Collegeville, PA, United States
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Brian Berridge
- National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
47
|
Cruz Junho CV, Trentin-Sonoda M, Alvim JM, Gaisler-Silva F, Carneiro-Ramos MS. Ca2+/Calmodulin-dependent kinase II delta B is essential for cardiomyocyte hypertrophy and complement gene expression after LPS and HSP60 stimulation in vitro. ACTA ACUST UNITED AC 2019; 52:e8732. [PMID: 31314855 PMCID: PMC6644523 DOI: 10.1590/1414-431x20198732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/21/2019] [Indexed: 12/23/2022]
Abstract
Inflammation plays an important role in the development of cardiovascular diseases (CVDs), suggesting that the immune system is a target of therapeutic interventions used for treating CVDs. This study evaluated mechanisms underlying inflammatory response and cardiomyocyte hypertrophy associated with bacterial lipopolysaccharide (LPS)- or heat shock protein 60 (HSP60)-induced Toll-like receptor (TLR) stimulation and the effect of a small interfering RNA (siRNA) against Ca2+/calmodulin-dependent kinase II delta B (CaMKIIδB) on these outcomes. Our results showed that treatment with HSP60 or LPS (TLR agonists) induced cardiomyocyte hypertrophy and complement system C3 and factor B gene expression. In vitro silencing of CaMKIIδB prevented complement gene transcription and cardiomyocyte hypertrophy associated with TLR 2/4 activation but did not prevent the increase in interleukin-6 and tumor necrosis factor-alfa gene expression in primary cultured cardiomyocytes. Moreover, CaMKIIδB silencing attenuated nuclear factor-kappa B expression. These findings supported the hypothesis that CaMKIIδB acts as a link between inflammation and cardiac hypertrophy. Furthermore, the present study is the first to show that extracellular HSP60 activated complement gene expression through CaMKIIδB. Our results indicated that a stress stimulus induced by LPS or HSP60 treatment promoted cardiomyocyte hypertrophy and initiated an inflammatory response through the complement system. However, CaMKIIδB silencing prevented the cardiomyocyte hypertrophy independent of inflammatory response induced by LPS or HSP60 treatment.
Collapse
Affiliation(s)
- C V Cruz Junho
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brasil
| | - M Trentin-Sonoda
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brasil.,Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - J M Alvim
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brasil.,Laboratorio de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - F Gaisler-Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brasil
| | - M S Carneiro-Ramos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brasil
| |
Collapse
|
48
|
Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol 2019; 16:361-378. [PMID: 30683889 PMCID: PMC6525041 DOI: 10.1038/s41569-019-0155-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intact heart undergoes complex and multiscale remodelling processes in response to altered mechanical cues. Remodelling of the myocardium is regulated by a combination of myocyte and non-myocyte responses to mechanosensitive pathways, which can alter gene expression and therefore function in these cells. Cellular mechanotransduction and its downstream effects on gene expression are initially compensatory mechanisms during adaptations to the altered mechanical environment, but under prolonged and abnormal loading conditions, they can become maladaptive, leading to impaired function and cardiac pathologies. In this Review, we summarize mechanoregulated pathways in cardiac myocytes and fibroblasts that lead to altered gene expression and cell remodelling under physiological and pathophysiological conditions. Developments in systems modelling of the networks that regulate gene expression in response to mechanical stimuli should improve integrative understanding of their roles in vivo and help to discover new combinations of drugs and device therapies targeting mechanosignalling in heart disease.
Collapse
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Philip M Tan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle S Buchholz
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jeffrey H Omens
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
49
|
Ruppert M, Korkmaz-Icöz S, Li S, Brlecic P, Németh BT, Oláh A, Horváth EM, Veres G, Pleger S, Grabe N, Merkely B, Karck M, Radovits T, Szabó G. Comparison of the Reverse-Remodeling Effect of Pharmacological Soluble Guanylate Cyclase Activation With Pressure Unloading in Pathological Myocardial Left Ventricular Hypertrophy. Front Physiol 2019; 9:1869. [PMID: 30670980 PMCID: PMC6331535 DOI: 10.3389/fphys.2018.01869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Pressure unloading induces the regression of left ventricular myocardial hypertrophy (LVH). Recent findings indicate that pharmacological activation of the soluble guanylate cyclase (sGC) – cyclic guanosine monophosphate (cGMP) pathway may also exert reverse-remodeling properties in the myocardium. Therefore, we aimed to investigate the effects of the sGC activator cinaciguat in a rat model of LVH and compare it to the “gold standard” pressure unloading therapy. Methods: Abdominal aortic banding was performed for 6 or 12 weeks. Sham operated animals served as controls. Pressure unloading was induced by removing the aortic constriction after week 6. The animals were treated from week 7 to 12, with 10 mg/kg/day cinaciguat or with placebo p.o., respectively. Cardiac function and morphology were assessed by left ventricular pressure-volume analysis and echocardiography. Additionally, key markers of myocardial hypertrophy, fibrosis, nitro-oxidative stress, apoptosis and cGMP signaling were analyzed. Results: Pressure unloading effectively reversed LVH, decreased collagen accumulation and provided protection against oxidative stress and apoptosis. Regression of LVH was also associated with a full recovery of cardiac function. In contrast, chronic activation of the sGC enzyme by cinaciguat at sustained pressure overload only slightly influenced pre-established hypertrophy. However, it led to increased PKG activity and had a significant impact on interstitial fibrosis, nitro-oxidative stress and apoptosis. Amelioration of the pathological structural alterations prevented the deterioration of LV systolic function (contractility and ejection fraction) and improved myocardial stiffness. Conclusion: Our results indicate that both cinaciguat treatment and pressure unloading evoked anti-remodeling effects and improved LV function, however in a differing manners.
Collapse
Affiliation(s)
- Mihály Ruppert
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Budapest, Hungary.,Laboratory of Experimental Cardiac Surgery, Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Sevil Korkmaz-Icöz
- Laboratory of Experimental Cardiac Surgery, Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Shiliang Li
- Laboratory of Experimental Cardiac Surgery, Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Paige Brlecic
- Laboratory of Experimental Cardiac Surgery, Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Balázs Tamás Németh
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Eszter M Horváth
- Laboratory of Oxidative Stress, Department of Physiology, Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Gábor Veres
- Laboratory of Experimental Cardiac Surgery, Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Sven Pleger
- Laboratory for Molecular and Translational Cardiology, Department of Cardiology, Angiology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Niels Grabe
- Research Group on Epidermal Systems Biology, Hamamatsu Tissue Imaging and Analysis Center, Bioquant, Heidelberg University, Heidelberg, Germany.,National Center for Tumor Diseases, Medical Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Béla Merkely
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Matthias Karck
- Laboratory of Experimental Cardiac Surgery, Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Tamás Radovits
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gábor Szabó
- Laboratory of Experimental Cardiac Surgery, Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
50
|
Jiang H, Zhang C, He W. The Effects of Dracocephalum Heterophyllum Benth Flavonoid on Hypertrophic Cardiomyocytes Induced by Angiotensin II in Rats. Med Sci Monit 2018; 24:6322-6330. [PMID: 30199522 PMCID: PMC6142873 DOI: 10.12659/msm.908912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Dracocephalum heterophyllum Benth flavonoid (DHBF) is a Tibetan and Uighur traditional medicine used to treat various disorders such as hypertension, lung heat, cough, and bronchitis; it has good antioxidant activity. Previous studies have shown that DHBF can reduce blood pressure in renovascular hypertensive rats, improve left ventricular systolic and diastolic function, and improve myocardial contractility. Therefore, we aimed to study the effect of DHBF on cardiomyocyte hypertrophy in cultured cells. Material/Methods Neonatal rat cardiomyocytes were cultured, and hypertrophy was induced by angiotensin II (Ang II), with or without varying concentrations of the DHBF extract. Cell Counting Kit-8 assay was used to assess cell viability, RT-qPCR was used to determine mRNA levels, confocal laser scanning microscopy was used to measure cell surface area and intracellular Ca2+ concentrations ([Ca2+]i), and colorimetric assays were used to assess nitric oxide (NO) levels and nitric oxide synthase (NOS) activity. Results Ang II treatment of cardiomyocytes reduced cell viability to ~75% that of controls. Ang II treatment also increased cell surface area; increased mRNA expression of c-jun, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC); increased [Ca2+]i; and reduced NOS activity and NO production. DHBF treatment could reverse these effects in a concentration-dependent manner. Conclusions These results showed that DHBF can ameliorate cardiomyocyte hypertrophy induced by Ang II, as indicated by the downregulation of cardiac hypertrophy genes (ANP, BNP, and β-MHC) and reduction in cell surface area. The mechanism may be related to NO release and [Ca2+]I regulation.
Collapse
Affiliation(s)
- Hong Jiang
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Chen Zhang
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Wen He
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland).,Changsha First Hospital, Changsha, Hunan, China (mainland)
| |
Collapse
|