1
|
Liang G, Huang Y, Tang Y, Ga L, Huo C, Ma Y, Zhao Y, Na H, Meng Z. Research Strategy for Short-peptide Fusion Inhibitors Based on 6-HB Core Structure against HIV-1: A Review. Curr Pharm Biotechnol 2025; 26:328-340. [PMID: 38551054 DOI: 10.2174/0113892010297943240325040448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 03/04/2025]
Abstract
Acquired Immune Deficiency Syndrome (AIDS) is a devastating infectious disease caused by the Human Immunodeficiency Virus type 1 (HIV-1). Enfuvirtide (T20) is the first HIV-1 fusion inhibitor for marketing, which plays an important role in AIDS treatment. However, in the clinical application process, T20 has several drawbacks, such as a high level of development of drug resistance, a short half-life in vivo, and rapid renal clearance, which severely limits the clinical application. Therefore, the development of novel fusion inhibitors to address T20 shortcomings has long been the research hotspot. Short peptides have a long half-life through modification and a high barrier to drug resistance, which is expected to solve the current fusion inhibitors dilemma. In this paper, we summarized six emerging R&D strategies for short peptide-based fusion inhibitors against HIV-1. We hope that this review will provide fresh insights into the development of novel fusion inhibitors, as well as ideas for other viral fusion inhibitor discoveries based on the common membrane fusion 6-HB core structure.
Collapse
Affiliation(s)
- Guodong Liang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Yan Huang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Yanbai Tang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Lu Ga
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Caixia Huo
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Yuheng Ma
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Yan Zhao
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Heiya Na
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100039, P.R. China
| |
Collapse
|
2
|
Huang Y, Luo H, Jin Y, Ma Y, Zhao Y, Gao X, Zhao Y, Qi X, Liang G, Ga L, Li G, Yang J. Design of coiled-coil N-peptides against HIV-1 based on a CADD strategy. Org Biomol Chem 2024; 23:157-166. [PMID: 39523986 DOI: 10.1039/d4ob01620c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Human Immunodeficiency Virus (HIV) has continued to endanger human health for decades and has a substantial impact on global health defence. Peptide-based fusion inhibitors, as an integral part of Highly Active Anti-Retroviral Therapy (HAART), are effective in preventing and controlling the AIDS epidemic. Nevertheless, the current market leader, Enfuvirtide, is facing numerous challenges in clinical application. We herein devised a cutting-edge development strategy leveraging SWISS-MODEL and HDOCK, enabling the design of artificial N-peptides. The most active compound, IZNP02QE, surpassed the positive control by demonstrating remarkable nanomolar-level inhibitory activity against HIV-1. Mechanistic investigations unveiled IZNP02QE's ability to disrupt the crucial endogenous 6-helix bundle (6-HB) by forming heteropolymers, underscoring its potential as a novel anti-HIV-1 agent. This work not only pioneers a novel design methodology for N-peptides but also opens up the possibility of a CADD strategy for designing peptide-based fusion inhibitors.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China.
| | - Hui Luo
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China.
- Beijing Institute of Pharmacology and Toxicology, Beijing, P.R. China
| | - Yihui Jin
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China.
| | - Yuheng Ma
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China.
| | - Yan Zhao
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China.
| | - Xin Gao
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China.
| | - Yuting Zhao
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China.
| | - Xiao Qi
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China.
| | - Guodong Liang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China.
- Beijing Institute of Pharmacology and Toxicology, Beijing, P.R. China
| | - Lu Ga
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China.
| | - Gang Li
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China.
| | - Jie Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China.
| |
Collapse
|
3
|
Cheng S, Xu M, Li M, Feng Y, He L, Liu T, Ma L, Li X. Improving Anti-HIV activity and pharmacokinetics of enfuvirtide (T20) by modification with oligomannose. Eur J Med Chem 2024; 269:116299. [PMID: 38479167 DOI: 10.1016/j.ejmech.2024.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
Dendritic cells (DCs) play a pivotal role in controlling HIV-1 infections of CD4+ T cells. DC-SIGN, which is expressed on the surface of DCs, efficiently captures HIV-1 virions by binding to the highly mannosylated membrane protein, gp120, and then the DCs transport the virus to target T cells in lymphoid organs. This study explored the modification of T20, a peptide inhibitor of HIV-1 fusion, by conjugation of the N-terminus with varying sizes of oligomannose, which are DC-SIGN-specific carbohydrates, aiming to create dual-targeting HIV inhibitors. Mechanistic studies indicated the dual-target binding of the conjugates. Antiviral assays demonstrated that N-terminal mannosylation of T20 resulted in increased inhibition of the viral infection of TZM-b1 cells (EC50 = 0.3-0.8 vs. 1.4 nM). Pentamannosylated T20 (M5-T20) exhibited a stronger inhibitory effect on virus entry into DC-SIGN+ 293T cells compared with T20 (67% vs. 50% inhibition at 500 μM). M5-T20 displayed an extended half-life in rats relative to T20 (T1/2: 8.56 vs. 1.64 h, respectively). These conjugates represent a potential new treatment for HIV infections with improved antiviral activity and pharmacokinetics, and this strategy may prove useful in developing dual-target inhibitors for other pathogens that require DC-SIGN involvement for infection.
Collapse
Affiliation(s)
- Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China
| | - Mingyue Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China
| | - Mingli Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China
| | - Yong Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China
| | - Lin He
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Tong Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China
| | - Liying Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China.
| |
Collapse
|
4
|
Hirata K, Takahara A, Suzuki S, Murakami S, Kawaji K, Nishiyama A, Sasano M, Shoji-Ueno M, Usui E, Murayama K, Hayashi H, Oishi S, Kodama EN. Helical peptides with disordered regions for measles viruses provide new generalized insights into fusion inhibitors. iScience 2024; 27:108961. [PMID: 38333694 PMCID: PMC10850769 DOI: 10.1016/j.isci.2024.108961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Despite effective vaccines, measles virus (MeV) outbreaks occur sporadically. Therefore, developing anti-MeV agents remains important for suppressing MeV infections. We previously designed peptide-based MeV fusion inhibitors, M1 and M2, that target MeV class I fusion protein (F protein). Here, we developed a novel fusion inhibitor, MEK35, that exerts potent activity against M1/M2-resistant MeV variants. Comparing MEK35 to M1 derivatives revealed that combining disordered and helical elements was essential for overcoming M1/M2 resistance. Moreover, we propose a three-step antiviral process for peptide-based fusion inhibitors: (i) disordered peptides interact with F protein; (ii) the peptides adopt a partial helical conformation and bind to F protein through hydrophobic interactions; and (iii) subsequent interactions involving the disordered region of the peptides afford a peptide-F protein with a high-affinity peptide-F protein interaction. An M1-resistant substitution blocks the second step. These results should aid the development of novel viral fusion inhibitors targeting class I F protein.
Collapse
Affiliation(s)
- Kazushige Hirata
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Aoi Takahara
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satoshi Suzuki
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Shumei Murakami
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kumi Kawaji
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Akie Nishiyama
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Mina Sasano
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Mariko Shoji-Ueno
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Emiko Usui
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hironori Hayashi
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, 1, Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Eiichi N. Kodama
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Infectious Diseases, Graduate School of Medicine and Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
5
|
Suzuki S, Kuroda M, Aoki K, Kawaji K, Hiramatsu Y, Sasano M, Nishiyama A, Murayama K, Kodama EN, Oishi S, Hayashi H. Helix-based screening with structure prediction using artificial intelligence has potential for the rapid development of peptide inhibitors targeting class I viral fusion. RSC Chem Biol 2024; 5:131-140. [PMID: 38333196 PMCID: PMC10849125 DOI: 10.1039/d3cb00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/04/2023] [Indexed: 02/10/2024] Open
Abstract
The rapid development of drugs against emerging and re-emerging viruses is required to prevent future pandemics. However, inhibitors usually take a long time to optimize. Here, to improve the optimization step, we used two heptad repeats (HR) in the spike protein (S protein) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a model and established a screening system for peptide-based inhibitors containing an α-helix region (SPICA). SPICA can be used to identify critical amino acid regions and evaluate the inhibitory effects of peptides as decoys. We further employed an artificial intelligence structure-prediction system (AlphaFold2) for the rapid analysis of structure-activity relationships. Here, we identified that critical amino acid regions, DVDLGD (amino acids 1163-1168 in the S protein), IQKEIDRLNE (1179-1188), and NLNESLIDL (1192-1200), played a pivotal role in SARS-CoV-2 fusion. Peptides containing these critical amino acid regions efficiently blocked viral replication. We also demonstrated that AlphaFold2 could successfully predict structures similar to the reported crystal and cryo-electron microscopy structures of the post-fusion form of the SARS-CoV-2 S protein. Notably, the predicted structures of the HR1 region and the peptide-based fusion inhibitors corresponded well with the antiviral effects of each fusion inhibitor. Thus, the combination of SPICA and AlphaFold2 is a powerful tool to design viral fusion inhibitors using only the amino-acid sequence of the fusion protein.
Collapse
Affiliation(s)
- Satoshi Suzuki
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Mio Kuroda
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University 1, Misasagi-Shichono-cho, Yamashina-ku Kyoto 607-8412 Japan
| | - Keisuke Aoki
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University 1, Misasagi-Shichono-cho, Yamashina-ku Kyoto 607-8412 Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Kumi Kawaji
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Yoshiki Hiramatsu
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Mina Sasano
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Akie Nishiyama
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Eiichi N Kodama
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
- Department of Infectious Disease, Graduate School of Medicine and Tohoku Medical Megabank Organization, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Shinya Oishi
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University 1, Misasagi-Shichono-cho, Yamashina-ku Kyoto 607-8412 Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Hironori Hayashi
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| |
Collapse
|
6
|
Luo H, Zhao Y, Ma Y, Liang G, Ga L, Meng Z. Design of Artificial C-Peptides as Potential Anti-HIV-1 Inhibitors Based on 6-HB Formation Mechanism. Protein Pept Lett 2024; 31:447-457. [PMID: 38910421 DOI: 10.2174/0109298665312274240530060233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The six-helix bundle (6-HB) is a core structure formed during the membrane fusion process of viruses with the Class I envelope proteins. Peptide inhibitors, including the marketed Enfuvirtide, blocking the membrane fusion to exert inhibitory activity were designed based on the heptads repeat interactions in 6-HB. However, the drawbacks of Enfuvirtide, such as drug resistance and short half-life in vivo, have been confirmed in clinical applications. Therefore, novel design strategies are pivotal in the development of next-generation peptide-based fusion inhibitors. OBJECTIVE The de novo design of α-helical peptides against MERS-CoV and IAVs has successfully expedited the development of fusion inhibitors. The reported sequences were completely nonhomologous with natural peptides, which can provide some inspirations for the antiviral design against other pathogenic viruses with class I fusion proteins. Here, we design a series of artificial C-peptides based on the similar mechanism of 6-HB formation and general rules of heptads repeat interaction. METHODS The inhibitory activity of peptides against HIV-1 was assessed by HIV-1 Env-mediated cell-cell fusion assays. Interaction between artificial C-peptides and target peptides was evaluated by circular dichroism, polyacrylamide gel electrophoresis, size-exclusion chromatography, and sedimentation velocity analysis. Molecular docking studies were performed by using Schrödinger molecular modelling software. RESULTS The best-performing artificial C-peptide, 1SR, was highly active against HIV-1 env-mediated cell-cell fusion. 1SR binds to the gp41 NHR region, assembling polymer to prevent endogenous 6-HB formation. CONCLUSION We have found an artificial C-lipopeptide lead compound with inhibitory activity against HIV-1. Also, this paper enriched both N- and C-teminal heptads repeat interaction rules in 6-HB and provided an effective idea for next-generation peptide-based fusion inhibitors against HIV-1.
Collapse
Affiliation(s)
- Hui Luo
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Yan Zhao
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Yuheng Ma
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Guodong Liang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Lu Ga
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, P.R. China
| |
Collapse
|
7
|
Wang C, Xia S, Wang X, Li Y, Wang H, Xiang R, Jiang Q, Lan Q, Liang R, Li Q, Huo S, Lu L, Wang Q, Yu F, Liu K, Jiang S. Supercoiling Structure-Based Design of a Trimeric Coiled-Coil Peptide with High Potency against HIV-1 and Human β-Coronavirus Infection. J Med Chem 2022; 65:2809-2819. [PMID: 33929200 PMCID: PMC8117781 DOI: 10.1021/acs.jmedchem.1c00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Hexameric structure formation through packing of three C-terminal helices and an N-terminal trimeric coiled-coil core has been proposed as a general mechanism of class I enveloped virus entry. In this process, the C-terminal helical repeat (HR2) region of viral membrane fusion proteins becomes transiently exposed and accessible to N-terminal helical repeat (HR1) trimer-based fusion inhibitors. Herein, we describe a mimetic of the HIV-1 gp41 HR1 trimer, N3G, as a promising therapeutic against HIV-1 infection. Surprisingly, we found that in addition to protection against HIV-1 infection, N3G was also highly effective in inhibiting infection of human β-coronaviruses, including MERS-CoV, HCoV-OC43, and SARS-CoV-2, possibly by binding the HR2 region in the spike protein of β-coronaviruses to block their hexameric structure formation. These studies demonstrate the potential utility of anti-HIV-1 HR1 peptides in inhibiting human β-coronavirus infection. Moreover, this strategy could be extended to the design of broad-spectrum antivirals based on the supercoiling structure of peptides.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Toxicology and Medical
Countermeasures, Beijing Institute of Pharmacology and
Toxicology, 27 Tai-Ping Road, Beijing 100850,
China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
| | - Xinling Wang
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
| | - Yue Li
- State Key Laboratory of Toxicology and Medical
Countermeasures, Beijing Institute of Pharmacology and
Toxicology, 27 Tai-Ping Road, Beijing 100850,
China
| | - Huan Wang
- State Key Laboratory of Toxicology and Medical
Countermeasures, Beijing Institute of Pharmacology and
Toxicology, 27 Tai-Ping Road, Beijing 100850,
China
| | - Rong Xiang
- Hebei Center for Wildlife Health, College of Life
Sciences, Hebei Agricultural University, Baoding 071001,
China
| | - Qinwen Jiang
- Key Laboratory of Structure-based Drug Design &
Discovery of the Ministry of Education, Shenyang Pharmaceutical
University, Shenyang 110016, China
| | - Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
| | - Ruiying Liang
- Hebei Center for Wildlife Health, College of Life
Sciences, Hebei Agricultural University, Baoding 071001,
China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical
Countermeasures, Beijing Institute of Pharmacology and
Toxicology, 27 Tai-Ping Road, Beijing 100850,
China
| | - Shanshan Huo
- Hebei Center for Wildlife Health, College of Life
Sciences, Hebei Agricultural University, Baoding 071001,
China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
| | - Fei Yu
- Hebei Center for Wildlife Health, College of Life
Sciences, Hebei Agricultural University, Baoding 071001,
China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical
Countermeasures, Beijing Institute of Pharmacology and
Toxicology, 27 Tai-Ping Road, Beijing 100850,
China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
- Lindsley F. Kimball Research Institute,
New York Blood Center, New York, New York 10065,
United States
| |
Collapse
|
8
|
Huhmann S, Nyakatura EK, Rohrhofer A, Moschner J, Schmidt B, Eichler J, Roth C, Koksch B. Systematic Evaluation of Fluorination as Modification for Peptide-Based Fusion Inhibitors against HIV-1 Infection. Chembiochem 2021; 22:3443-3451. [PMID: 34605595 PMCID: PMC9297971 DOI: 10.1002/cbic.202100417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/04/2021] [Indexed: 01/01/2023]
Abstract
With the emergence of novel viruses, the development of new antivirals is more urgent than ever. A key step in human immunodeficiency virus type 1 (HIV-1) infection is six-helix bundle formation within the envelope protein subunit gp41. Selective disruption of bundle formation by peptides has been shown to be effective; however, these drugs, exemplified by T20, are prone to rapid clearance from the patient. The incorporation of non-natural amino acids is known to improve these pharmacokinetic properties. Here, we evaluate a peptide inhibitor in which a critical Ile residue is replaced by fluorinated analogues. We characterized the influence of the fluorinated analogues on the biophysical properties of the peptide. Furthermore, we show that the fluorinated peptides can block HIV-1 infection of target cells at nanomolar levels. These findings demonstrate that fluorinated amino acids are appropriate tools for the development of novel peptide therapeutics.
Collapse
Affiliation(s)
- Susanne Huhmann
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
| | - Elisabeth K. Nyakatura
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
- Antibody Engineering Tri-Institutional Therapeutics Discovery Institute417 East 68th Street, 19 Floor North, P: 646-888-2003New YorkNY 10021USA
| | - Anette Rohrhofer
- Institute of Clinical Microbiology and HygieneRegensburg University HospitalFranz-Josef-Strauß-Allee 1193053RegensburgGermany
| | - Johann Moschner
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and HygieneRegensburg University HospitalFranz-Josef-Strauß-Allee 1193053RegensburgGermany
| | - Jutta Eichler
- Friedrich-Alexander-Universität Erlangen-NürnbergDepartment Chemie und PharmazieNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Christian Roth
- Max Planck Institute of Colloids and InterfacesBiomolecular SystemsArnimallee 2214195BerlinGermany
| | - Beate Koksch
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
| |
Collapse
|
9
|
|
10
|
Three kinds of treatment with Homoharringtonine, Hydroxychloroquine or shRNA and their combination against coronavirus PEDV in vitro. Virol J 2020; 17:71. [PMID: 32493436 PMCID: PMC7267768 DOI: 10.1186/s12985-020-01342-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/20/2020] [Indexed: 01/20/2023] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV) of the family Coronaviridae has caused substantial economic losses in the swine husbandry industry. There’s currently no specific drug available for treatment of coronaviruses or PEDV. Method In the current study, we use coronavirus PEDV as a model to study antiviral agents. Briefly, a fusion inhibitor tHR2, recombinant lentivirus-delivered shRNAs targeted to conserved M and N sequences, homoharringtonine (HHT), and hydroxychloroquine (HCQ) were surveyed for their antiviral effects. Results Treatment with HCQ at 50 μM and HHT at 150 nM reduced virus titer in TCID50 by 30 and 3.5 fold respectively, and the combination reduced virus titer in TCID50 by 200 fold. Conclusion Our report demonstrates that the combination of HHT and HCQ exhibited higher antiviral activity than either HHT or HCQ exhibited. The information may contribute to the development of antiviral strategies effective in controlling PEDV infection.
Collapse
|
11
|
Maeda K, Das D, Kobayakawa T, Tamamura H, Takeuchi H. Discovery and Development of Anti-HIV Therapeutic Agents: Progress Towards Improved HIV Medication. Curr Top Med Chem 2019; 19:1621-1649. [PMID: 31424371 PMCID: PMC7132033 DOI: 10.2174/1568026619666190712204603] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023]
Abstract
The history of the human immunodeficiency virus (HIV)/AIDS therapy, which spans over 30 years, is one of the most dramatic stories of science and medicine leading to the treatment of a disease. Since the advent of the first AIDS drug, AZT or zidovudine, a number of agents acting on different drug targets, such as HIV enzymes (e.g. reverse transcriptase, protease, and integrase) and host cell factors critical for HIV infection (e.g. CD4 and CCR5), have been added to our armamentarium to combat HIV/AIDS. In this review article, we first discuss the history of the development of anti-HIV drugs, during which several problems such as drug-induced side effects and the emergence of drug-resistant viruses became apparent and had to be overcome. Nowadays, the success of Combination Antiretroviral Therapy (cART), combined with recently-developed powerful but nonetheless less toxic drugs has transformed HIV/AIDS from an inevitably fatal disease into a manageable chronic infection. However, even with such potent cART, it is impossible to eradicate HIV because none of the currently available HIV drugs are effective in eliminating occult “dormant” HIV cell reservoirs. A number of novel unique treatment approaches that should drastically improve the quality of life (QOL) of patients or might actually be able to eliminate HIV altogether have also been discussed later in the review.
Collapse
Affiliation(s)
- Kenji Maeda
- National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo 162-8655, Japan
| | - Debananda Das
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health (NCI/NIH), Bethesda, MD, United States
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
12
|
Bolarinwa O, Zhang M, Mulry E, Lu M, Cai J. Sulfono-γ-AA modified peptides that inhibit HIV-1 fusion. Org Biomol Chem 2018; 16:7878-7882. [PMID: 30306175 PMCID: PMC6209519 DOI: 10.1039/c8ob02159g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The utilization of bioactive peptides in the development of highly selective and potent pharmacological agents for the disruption of protein-protein interactions is appealing for drug discovery. It is known that HIV-1 entry into a host cell is through a fusion process that is mediated by the trimeric viral glycoprotein gp120/41, which is derived from gp160 through proteolytic processing. Peptides derived from the HIV gp41 C-terminus have proven to be potent in inhibiting the fusion process. These peptides bind tightly to the hydrophobic pocket on the gp-41 N-terminus, which was previously identified as a potential inhibitor binding site. In this study, we introduce modified 23-residue C-peptides, 3 and 4, bearing a sulfono-γ-AA residue substitution and hydrocarbon stapling, respectively, which were developed for HIV-1 gp-41 N-terminus binding. Intriguingly, both 3 and 4 were capable of inhibiting envelope-mediated membrane fusion in cell-cell fusion assays at nanomolar potency. Our study reveals that sulfono-γ-AA modified peptides could be used for the development of more potent anti-HIV agents.
Collapse
Affiliation(s)
- Olapeju Bolarinwa
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, USA.
| | | | | | | | | |
Collapse
|
13
|
Wang C, Zhao L, Xia S, Zhang T, Cao R, Liang G, Li Y, Meng G, Wang W, Shi W, Zhong W, Jiang S, Liu K. De Novo Design of α-Helical Lipopeptides Targeting Viral Fusion Proteins: A Promising Strategy for Relatively Broad-Spectrum Antiviral Drug Discovery. J Med Chem 2018; 61:8734-8745. [PMID: 30192544 PMCID: PMC7075651 DOI: 10.1021/acs.jmedchem.8b00890] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/19/2022]
Abstract
Class I enveloped viruses share similarities in their apparent use of a hexameric coiled-coil assembly to drive the merging of virus and host cell membranes. Inhibition of coiled coil-mediated interactions using bioactive peptides that replicate an α-helical chain from the viral fusion machinery has significant antiviral potential. Here, we present the construction of a series of lipopeptides composed of a de novo heptad repeat sequence-based α-helical peptide plus a hydrocarbon tail. Promisingly, the constructs adopted stable α-helical conformations and exhibited relatively broad-spectrum antiviral activities against Middle East respiratory syndrome coronavirus (MERS-CoV) and influenza A viruses (IAVs). Together, these findings reveal a new strategy for relatively broad-spectrum antiviral drug discovery by relying on the tunability of the α-helical coiled-coil domains present in all class I fusion proteins and the amphiphilic nature of the individual helices from this multihelix motif.
Collapse
Affiliation(s)
- Chao Wang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Lei Zhao
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shuai Xia
- Key
Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic
Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Tianhong Zhang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Ruiyuan Cao
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Guodong Liang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Yue Li
- Key Laboratory
of Structure-Based Drug Design & Discovery of the Ministry of
Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guangpeng Meng
- Key Laboratory
of Structure-Based Drug Design & Discovery of the Ministry of
Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weicong Wang
- Department
of Clinical Trial Center, China National Clinical Research Center
for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Weiguo Shi
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Wu Zhong
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shibo Jiang
- Key
Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic
Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, Shanghai 200032, China
- Lindsley
F. Kimball Research Institute, New York
Blood Center, New York, New York 10065, United
States
| | - Keliang Liu
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| |
Collapse
|
14
|
Guo Y, Fu L, Fan X, Shi X. Stapled SC34EK fusion inhibitors with high potency against HIV-1 and improved protease resistance. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Yao H, Wynendaele E, Xu X, Kosgei A, De Spiegeleer B. Circular dichroism in functional quality evaluation of medicines. J Pharm Biomed Anal 2018; 147:50-64. [DOI: 10.1016/j.jpba.2017.08.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 12/31/2022]
|
16
|
Mavioso ICVC, de Andrade VCR, Palace Carvalho AJ, Martins do Canto AMT. Molecular dynamics simulations of T-2410 and T-2429 HIV fusion inhibitors interacting with model membranes: Insight into peptide behavior, structure and dynamics. Biophys Chem 2017; 228:69-80. [PMID: 28711675 DOI: 10.1016/j.bpc.2017.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 11/17/2022]
Abstract
T-2410 and T-2429 are HIV fusion inhibitor peptides (FI) designed to present a higher efficiency even against HIV strains that developed resistance against other FIs. Similar peptides were shown to interact with model membranes both in the liquid disordered phase and in the liquid ordered state. Those results indicated that such interaction is important to function and could be correlated with their effectiveness. Extensive molecular dynamics simulations were carried out to investigate the interactions between both T-2410 and T-2429 with bilayers of pure 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and a mixture of POPC/cholesterol (Chol) (1:1). It was observed that both peptides interact strongly with both membrane systems, especially with the POPC/Chol systems, where these peptides show the highest number of H-bonds observed so far. T-2410 and T-2429 showed higher extent of interaction with bilayers when compared to T-20 or T-1249 in previous studies. This is most notable in POPC/Chol membranes where, although able to form H-bonds with Chol, they do so to a lesser extent than T-1249 does, the latter being the only FI peptide so far that was observed to form H-bonds with Chol. This behavior suggests that interaction of FI peptides with rigid Chol rich membranes may not be as dependent from peptide/Chol H-bond formation as previous results of T-1249 behavior led to believe. As in other similar peptides, the higher ability to interact with membranes shown by T-2410 and T2429 is probably correlated with its higher inhibitory efficiency.
Collapse
Affiliation(s)
- I C V C Mavioso
- Departamento de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - V C R de Andrade
- Departamento de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - A J Palace Carvalho
- Departamento de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; Centro de Química de Évora, IIFA, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - A M T Martins do Canto
- Departamento de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; Centro de Química de Évora, IIFA, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal.
| |
Collapse
|
17
|
Cao P, Dou G, Cheng Y, Che J. The improved efficacy of Sifuvirtide compared with enfuvirtide might be related to its selectivity for the rigid biomembrane, as determined through surface plasmon resonance. PLoS One 2017; 12:e0171567. [PMID: 28207776 PMCID: PMC5312942 DOI: 10.1371/journal.pone.0171567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/22/2017] [Indexed: 11/19/2022] Open
Abstract
Most mechanistic studies on human immunodeficiency virus (HIV) peptide fusion inhibitors have focused on the interactions between fusion inhibitors and viral envelope proteins. However, the interactions of fusion inhibitors with viral membranes are also essential for the efficacy of these drugs. Here, we utilized surface plasmon resonance (SPR) technology to study the interactions between the HIV fusion inhibitor peptides sifuvirtide and enfuvirtide and biomembrane models. Sifuvirtide presented selectivity toward biomembrane models composed of saturated dipalmitoylphosphatidylcholine (DPPC) (32-fold higher compared with unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine [POPC]) and sphingomyelin (SM) (31-fold higher compared with POPC), which are rigid compositions enriched in the HIV viral membrane. In contrast, enfuvirtide showed no significant selectively toward these rigid membrane models. Furthermore, the bindings of sifuvirtide and enfuvirtide to SM bilayers were markedly higher than those to monolayers (14-fold and 23-fold, respectively), indicating that the inner leaflet influences the binding of these drugs to SM bilayers. No obvious differences were noted in the bindings of either peptide to the other mono- and bilayer models tested, illustrating that both peptides interact with these membranes through surface-binding. The bindings of the inhibitor peptides to biomembranes were found to be driven predominantly by hydrophobic interactions rather than electrostatic interactions, as determined by comparing their affinities to those of positively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (EPC) to zwitterionic membrane models. The improved efficiency of sifuvirtide relative to enfuvirtide might be related to its ability to adsorb on rigid lipidic areas, such as the viral envelope and lipid rafts, which results in an increased sifuvirtide concentration at the fusion site.
Collapse
Affiliation(s)
- Ping Cao
- Laboratory of Hematological Pharmacology, State Key Laboratory of Drug Metabolism, Beijing Institute of Transfusion Medicine, Beijing, People's Republic of China
- Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Guifang Dou
- Laboratory of Hematological Pharmacology, State Key Laboratory of Drug Metabolism, Beijing Institute of Transfusion Medicine, Beijing, People's Republic of China
| | - Yuanguo Cheng
- Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
- * E-mail: (YC); (JC)
| | - Jinjing Che
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
- * E-mail: (YC); (JC)
| |
Collapse
|
18
|
Abstract
Rapidly evolving viral strains leading to epidemics and pandemics necessitates quick diagnostics and treatment to halt the progressive march of the disease. Optical biosensors like surface plasmon resonance (SPR) have emerged in recent times as a most reliable diagnostic device owing to their portability, reproducibility, sensitivity and specificity. SPR analyzes the kinetics of biomolecular interactions in a label-free manner. It has surpassed the conventional virus detection methods in its utility, particularly in medical diagnostics and healthcare. However, the requirement of high-end infrastructure setup and trained manpower are some of the roadblocks in realizing the true potential of SPR. This platform needs further improvisation in terms of simplicity, affordability and portability before it could be utilized in need-based remote areas of under-developed and developing countries with limited infrastructure.
Collapse
|
19
|
Alam M, Kuwata T, Shimura K, Yokoyama M, Ramirez Valdez KP, Tanaka K, Maruta Y, Oishi S, Fujii N, Sato H, Matsuoka M, Matsushita S. Enhanced antibody-mediated neutralization of HIV-1 variants that are resistant to fusion inhibitors. Retrovirology 2016; 13:70. [PMID: 27670680 PMCID: PMC5037607 DOI: 10.1186/s12977-016-0304-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND HIV-1 typically develops resistance to any single antiretroviral agent. Combined anti-retroviral therapy to reduce drug-resistance development is necessary to control HIV-1 infection. Here, to assess the utility of a combination of antibody and fusion inhibitor treatments, we investigated the potency of monoclonal antibodies at neutralizing HIV-1 variants that are resistant to fusion inhibitors. RESULTS Mutations that confer resistance to four fusion inhibitors, enfuvirtide, C34, SC34, and SC34EK, were introduced into the envelope of HIV-1JR-FL, a CCR5-tropic tier 2 strain. Pseudoviruses with these mutations were prepared and used for the assessment of neutralization sensitivity to an array of antibodies. The resulting neutralization data indicate that the potencies of some antibodies, especially of those against the CD4 binding site, V3 loop, and membrane-proximal external region epitopes, were increased by the mutations in gp41 that conferred resistance to the fusion inhibitors. C34-, SC34-, and SC34EK-resistant mutants showed more sensitivity to monoclonal antibodies than enfuvirtide-resistant mutants. An analysis of C34-resistant mutations revealed that the I37K mutation in gp41 HR1 is a key mutation for C34 resistance, low infectivity, neutralization sensitivity, epitope exposure, and slow fusion kinetics. The N126K mutation in the gp41 HR2 domain contributed to C34 resistance and neutralization sensitivity to anti-CD4 binding site antibodies. In the absence of L204I, the effect of N126K was antagonistic to that of I37K. The results of a molecular dynamic simulation of the envelope trimer confirmation suggest that an I37K mutation induces the augmentation of structural fluctuations prominently in the interface between gp41 and gp120. Our observations indicate that the "conformational unmasking" of envelope glycoprotein by an I37K mutation is one of the mechanisms of neutralization sensitivity enhancement. Furthermore, the enhanced neutralization of C34-resistant mutants in vivo was shown by its high rate of neutralization by IgG from HIV patient samples. CONCLUSIONS Mutations in gp41 that confer fusion inhibitor resistance exert enhanced sensitivity to broad neutralizing antibodies (e.g., VRC01 and 10E8) and other conventional antibodies developed in HIV-1 infected patients. Therefore, next-generation fusion inhibitors and monoclonal antibodies could be a potential combination for future regimens of combined antiretroviral therapy.
Collapse
Affiliation(s)
- Muntasir Alam
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Takeo Kuwata
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Kazuya Shimura
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kristel Paola Ramirez Valdez
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Kazuki Tanaka
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Yasuhiro Maruta
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Shuzo Matsushita
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| |
Collapse
|
20
|
Watanabe M, Hashimoto K, Abe Y, Kodama EN, Nabika R, Oishi S, Ohara S, Sato M, Kawasaki Y, Fujii N, Hosoya M. A Novel Peptide Derived from the Fusion Protein Heptad Repeat Inhibits Replication of Subacute Sclerosing Panencephalitis Virus In Vitro and In Vivo. PLoS One 2016; 11:e0162823. [PMID: 27612283 PMCID: PMC5017735 DOI: 10.1371/journal.pone.0162823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/29/2016] [Indexed: 11/23/2022] Open
Abstract
Subacute sclerosing panencephalitis (SSPE) is a persistent, progressive, and fatal degenerative disease resulting from persistent measles virus (MV) infection of the central nervous system. Most drugs used to treat SSPE have been reported to have limited effects. Therefore, novel therapeutic strategies are urgently required. The SSPE virus, a variant MV strain, differs virologically from wild-type MV strain. One characteristic of the SSPE virus is its defective production of cell-free virus, which leaves cell-to-cell infection as the major mechanism of viral dissemination. The fusion protein plays an essential role in this cell-to-cell spread. It contains two critical heptad repeat regions that form a six-helix bundle in the trimer similar to most viral fusion proteins. In the case of human immunodeficiency virus type-1 (HIV-1), a synthetic peptide derived from the heptad repeat region of the fusion protein enfuvirtide inhibits viral replication and is clinically approved as an anti-HIV-1 agent. The heptad repeat regions of HIV-1 are structurally and functionally similar to those of the MV fusion protein. We therefore designed novel peptides derived from the fusion protein heptad repeat region of the MV and examined their effects on the measles and SSPE virus replication in vitro and in vivo. Some of these synthetic novel peptides demonstrated high antiviral activity against both the measles (Edmonston strain) and SSPE (Yamagata-1 strain) viruses at nanomolar concentrations with no cytotoxicity in vitro. In particular, intracranial administration of one of the synthetic peptides increased the survival rate from 0% to 67% in an SSPE virus-infected nude mouse model.
Collapse
Affiliation(s)
- Masahiro Watanabe
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
- * E-mail:
| | - Koichi Hashimoto
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - Yusaku Abe
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - Eiichi N. Kodama
- Division of Emerging Infectious Diseases, Tohoku University School of Medicine, Sendai, Japan
| | - Ryota Nabika
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shinichiro Ohara
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - Masatoki Sato
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - Yukihiko Kawasaki
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
21
|
Miyamoto F, Kawaji K, Oishi S, Fujii N, Kaku M, Kodama EN. Anti-HIV-1 activity determined by β-galactosidase activity in the multinuclear activation of an indicator assay is comparable with that by a conventional focus counting method. Antivir Chem Chemother 2015; 24:77-82. [PMID: 26527820 DOI: 10.1177/2040206615614164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Direct comparison of enzymatic and original blue cell-counting detections with the multinuclear activation of an indicator (MAGI) cells, so far, remains to be performed in parallel. Although inhibitors for reverse transcription solely inhibit the reverse transcription step, those for HIV-1 entry block syncytium formation of HIV-1-infected MAGI cells in addition to the entry (dual inhibition). It raises a concern that reduction of enzymatic activity is artificially influenced by syncytium-blocking activity of inhibitors for entry. METHODS The MAGI cells with a syncytium inducible strain, HIV-1IIIB, were used for anti-HIV activity determination both with conventional counting with X-Gal staining and measurement of chlorophenol red β-d-galactopyranoside conversion with a plate reader. RESULTS Infectivity of HIV-1 in the MAGI cells was highly correlated with both methods. In microscopic observation, small blue cells with single or a couple of nuclei were dominantly observed in the presence of inhibitors for entry, but not in the presence of those for reverse transcription. Actual anti-HIV-1 activities were comparable or moderately sensitive in the chlorophenol red β-d-galactopyranoside method. CONCLUSIONS Antiviral activities of inhibitors for entry obtained from both enzymatic and counting methods appear to be comparable, even in infection of a highly syncytia inducible HIV-1IIIB strain.
Collapse
Affiliation(s)
- Fusako Miyamoto
- Division of Miyagi Community Health Promotion, Tohoku University Graduate School of Medicine and Tohoku Medical Megabank Organization, Sendai, Japan Division of Infection Control and Laboratory Diagnostics, Department of Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kumi Kawaji
- Division of Miyagi Community Health Promotion, Tohoku University Graduate School of Medicine and Tohoku Medical Megabank Organization, Sendai, Japan Division of Infection Control and Laboratory Diagnostics, Department of Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
| | - Mitsuo Kaku
- Division of Infection Control and Laboratory Diagnostics, Department of Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiichi N Kodama
- Division of Miyagi Community Health Promotion, Tohoku University Graduate School of Medicine and Tohoku Medical Megabank Organization, Sendai, Japan Division of Infection Control and Laboratory Diagnostics, Department of Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Shimura K, Miyazato P, Oishi S, Fujii N, Matsuoka M. Impact of HIV-1 infection pathways on susceptibility to antiviral drugs and on virus spread. Virology 2015; 484:364-376. [PMID: 26186575 DOI: 10.1016/j.virol.2015.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/08/2015] [Accepted: 06/26/2015] [Indexed: 11/19/2022]
Abstract
The infection routes of HIV-1 can affect several viral properties, including dissemination, pathogenesis, and immune evasion. In this study, we evaluated the inhibitory activity of a wide variety of anti-HIV drugs, focusing on the impact that different infection pathways have on their efficacy. Compared to cell-free infection, inhibitory activities were reduced in cell-to-cell productive transmission for all drugs tested. We detected weak reporter-expressing target cells after cell-to-cell transmission in the presence of integrase strand transfer inhibitors (INSTIs). Further analysis revealed that this expression was mainly due to unintegrated circular HIV (cHIV) DNAs, consisting of 1-LTR and 2-LTR circles. When in vitro-constructed cHIV DNAs were introduced into cells, the production of infectious and intercellular transmittable virions was observed, suggesting that cHIV DNA could be a source of infectious virus. These results highlight some advantages of the cell-to-cell infection mode for viral expansion, particularly in the presence of anti-retroviral drugs.
Collapse
Affiliation(s)
- Kazuya Shimura
- Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | - Paola Miyazato
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masao Matsuoka
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
D’Hondt M, Bracke N, Taevernier L, Gevaert B, Verbeke F, Wynendaele E, De Spiegeleer B. Related impurities in peptide medicines. J Pharm Biomed Anal 2014; 101:2-30. [DOI: 10.1016/j.jpba.2014.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/05/2014] [Accepted: 06/08/2014] [Indexed: 12/16/2022]
|
24
|
Chong H, Yao X, Qiu Z, Sun J, Qiao Y, Zhang M, Wang M, Cui S, He Y. The M-T hook structure increases the potency of HIV-1 fusion inhibitor sifuvirtide and overcomes drug resistance. J Antimicrob Chemother 2014; 69:2759-2769. [DOI: 10.1093/jac/dku183] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
25
|
A cholesterol tag at the N terminus of the relatively broad-spectrum fusion inhibitory peptide targets an earlier stage of fusion glycoprotein activation and increases the peptide's antiviral potency in vivo. J Virol 2013; 87:9223-32. [PMID: 23804636 DOI: 10.1128/jvi.01153-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In previous work, we designed peptides that showed potent inhibition of Newcastle disease virus (NDV) and infectious bronchitis virus (IBV) infections in chicken embryos. In this study, we demonstrate that peptides modified with cholesterol or 3 U of polyethylene glycol (PEG3) conjugated to the peptides' N termini showed even more promising antiviral activities when tested in animal models. Both cholesterol- and cholesterol-PEG3-tagged peptides were able to protect chicken embryos from infection with different serotypes of NDV and IBV when administered 12 h prior to virus inoculation. In comparison, the untagged peptides required intervention closer to the time of viral inoculation to achieve a similar level of protection. Intramuscular injection of cholesterol-tagged peptide at 1.6 mg/kg 1 day before virus infection and then three times at 3-day intervals after viral inoculation protected 70% of the chickens from NDV infection. We further demonstrate that the cholesterol-tagged peptide has an in vivo half-life greater than that of untagged peptides. It also has the potential to cross the blood-brain barrier to enter the avian central nervous system (CNS). Finally, we show that the cholesterol-tagged peptide could play a role before the viral fusion peptide's insertion into the host cell and thereby target an earlier stage of fusion glycoprotein activation. Our findings are of importance for the further development of antivirals with broad-spectrum protective effects.
Collapse
|
26
|
HIV-1 resistance mechanism to an electrostatically constrained peptide fusion inhibitor that is active against T-20-resistant strains. Antimicrob Agents Chemother 2013; 57:4035-8. [PMID: 23689710 DOI: 10.1128/aac.00237-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
T-20EK is a novel fusion inhibitor designed to have enhanced α-helicity over T-20 (enfuvirtide) through engineered electrostatic interactions between glutamic acid (E) and lysine (K) substitutions. T-20EK efficiently suppresses wild-type and T-20-resistant variants. Here, we selected T-20EK-resistant variants. A combination of L33S and N43K substitutions in gp41 were required for high resistance to T-20EK. While these substitutions also caused resistance to T-20, they did not cause cross-resistance to other known fusion inhibitors.
Collapse
|
27
|
Abstract
The human immunodeficiency virus (HIV) enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.
Collapse
Affiliation(s)
- Christopher J De Feo
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
28
|
Izumi K, Kawaji K, Miyamoto F, Shimane K, Shimura K, Sakagami Y, Hattori T, Watanabe K, Oishi S, Fujii N, Matsuoka M, Kaku M, Sarafianos SG, Kodama EN. Mechanism of resistance to S138A substituted enfuvirtide and its application to peptide design. Int J Biochem Cell Biol 2013; 45:908-15. [PMID: 23357451 DOI: 10.1016/j.biocel.2013.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/15/2013] [Accepted: 01/20/2013] [Indexed: 11/19/2022]
Abstract
T-20 (enfuvirtide) resistance is caused by the N43D primary resistance mutation at its presumed binding site at the N-terminal heptad repeat (N-HR) of gp41, accompanied by the S138A secondary mutation at the C-terminal HR of gp41 (C-HR). We have discovered that modifying T-20 to include S138A (T-20S138A) allows it to efficiently block wild-type and T20-resistant viruses, by a mechanism that involves improved binding of T-20S138A to the N-HR that contains the N43D primary mutation. To determine how HIV-1 in turn escapes T-20S138A we used a dose escalation method to select T-20S138A-resistant HIV-1 starting with either wild-type (HIV-1WT) or T-20-resistant (HIV-1N43D/S138A) virus. We found that when starting with WT background, I37N and L44M emerged in the N-HR of gp41, and N126K in the C-HR. However, when starting with HIV-1N43D/S138A, L33S and I69L emerged in N-HR, and E137K in C-HR. T-20S138A-resistant recombinant HIV-1 showed cross-resistance to other T-20 derivatives, but not to C34 derivatives, suggesting that T-20S138A suppressed HIV-1 replication by a similar mechanism to T-20. Furthermore, E137K enhanced viral replication kinetics and restored binding affinity with N-HR containing N43D, indicating that it acts as a secondary, compensatory mutation. We therefore introduced E137K into T-20S138A (T-20E137K/S138A) and revealed that T-20E137K/S138A moderately suppressed replication of T-20S138A-resistant HIV-1. T-20E137K/S138A retained activity to HIV-1 without L33S, which seems to be a key mutation for T-20 derivatives. Our data demonstrate that secondary mutations can be consistently used for the design of peptide inhibitors that block replication of HIV resistant to fusion inhibitors.
Collapse
Affiliation(s)
- Kazuki Izumi
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Shogoin Kawaramachi, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Covalent fusion inhibitors targeting HIV-1 gp41 deep pocket. Amino Acids 2012; 44:701-13. [DOI: 10.1007/s00726-012-1394-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/22/2012] [Indexed: 11/26/2022]
|
30
|
Johnson LM, Mortenson DE, Yun HG, Horne WS, Ketas TJ, Lu M, Moore JP, Gellman SH. Enhancement of α-helix mimicry by an α/β-peptide foldamer via incorporation of a dense ionic side-chain array. J Am Chem Soc 2012; 134:7317-20. [PMID: 22524614 DOI: 10.1021/ja302428d] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a new method for preorganization of α/β-peptide helices, based on the use of a dense array of acidic and basic side chains. Previously we have used cyclically constrained β residues to promote α/β-peptide helicity; here we show that an engineered ion pair array can be comparably effective, as indicated by mimicry of the CHR domain of HIV protein gp41. The new design is effective in biochemical and cell-based infectivity assays; however, the resulting α/β-peptide is susceptible to proteolysis. This susceptibility was addressed via introduction of a few cyclic β residues near the cleavage site, to produce the most stable, effective α/β-peptide gp41 CHR analogue identified. Crystal structures of an α- and α/β-peptide (each involved in a gp41-mimetic helix bundle) that contain the dense acid/base residue array manifest disorder in the ionic side chains, but there is little side-chain disorder in analogous α- and α/β-peptide structures with a sparser ionic side-chain array. These observations suggest that dense arrays of complementary acidic and basic residues can provide conformational stabilization via Coulombic attractions that do not require entropically costly ordering of side chains.
Collapse
Affiliation(s)
- Lisa M Johnson
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Chong H, Yao X, Qiu Z, Qin B, Han R, Waltersperger S, Wang M, Cui S, He Y. Discovery of critical residues for viral entry and inhibition through structural Insight of HIV-1 fusion inhibitor CP621-652. J Biol Chem 2012; 287:20281-9. [PMID: 22511760 DOI: 10.1074/jbc.m112.354126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The core structure of HIV-1 gp41 is a stable six-helix bundle (6-HB) folded by its trimeric N- and C-terminal heptad repeats (NHR and CHR). We previously identified that the (621)QIWNNMT(627) motif located at the upstream region of gp41 CHR plays critical roles for the stabilization of the 6-HB core and peptide CP621-652 containing this motif is a potent HIV-1 fusion inhibitor, however, the molecular determinants underlying the stability and anti-HIV activity remained elusive. In this study, we determined the high-resolution crystal structure of CP621-652 complexed by T21. We find that the (621)QIWNNMT(627) motif does not maintain the α-helical conformation. Instead, residues Met(626) and Thr(627) form a unique hook-like structure (denoted as M-T hook), in which Thr(627) redirects the peptide chain to position Met(626) above the left side of the hydrophobic pocket on the NHR trimer. The side chain of Met(626) caps the hydrophobic pocket, stabilizing the interaction between the pocket and the pocket-binding domain. Our mutagenesis studies demonstrate that mutations of the M-T hook residues could completely abolish HIV-1 Env-mediated cell fusion and virus entry, and significantly destabilize the interaction of NHR and CHR peptides and reduce the anti-HIV activity of CP621-652. Our results identify an unusual structural feature that stabilizes the six-helix bundle, providing novel insights into the mechanisms of HIV-1 fusion and inhibition.
Collapse
Affiliation(s)
- Huihui Chong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 9 Dong Dan San Tiao, Beijing 100730, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chong H, Yao X, Zhang C, Cai L, Cui S, Wang Y, He Y. Biophysical property and broad anti-HIV activity of albuvirtide, a 3-maleimimidopropionic acid-modified peptide fusion inhibitor. PLoS One 2012; 7:e32599. [PMID: 22403678 PMCID: PMC3293837 DOI: 10.1371/journal.pone.0032599] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/27/2012] [Indexed: 12/31/2022] Open
Abstract
Albuvirtide (ABT) is a 3-maleimimidopropionic acid (MPA)-modified peptide HIV fusion inhibitor that can irreversibly conjugate to serum albumin. Previous studies demonstrated its in vivo long half-life and potent anti-HIV activity. Here, we focused to characterize its biophysical properties and evaluate its antiviral spectrum. In contrast to T20 (Enfuvirtide, Fuzeon), ABT was able to form a stable α-helical conformation with the target sequence and block the fusion-active six-helix bundle (6-HB) formation in a dominant-negative manner. It efficiently inhibited HIV-1 Env-mediated cell membrane fusion and virus entry. A large panel of 42 HIV-1 pseudoviruses with different genotypes were constructed and used for the antiviral evaluation. The results showed that ABT had potent inhibitory activity against the subtypes A, B and C that predominate the worldwide AIDS epidemics, and subtype B', CRF07_BC and CRF01_AE recombinants that are currently circulating in China. Furthermore, ABT was also highly effective against HIV-1 variants resistant to T20. Taken together, our data indicate that the chemically modified peptide ABT can serve as an ideal HIV-1 fusion inhibitor.
Collapse
Affiliation(s)
- Huihui Chong
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Yao
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Zhang
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lifeng Cai
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Sheng Cui
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youchun Wang
- National Institute for the Control of Pharmaceutical and Biological Products, Beijing, China
| | - Yuxian He
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Miyamoto F, Kodama EN. Novel HIV-1 fusion inhibition peptides: designing the next generation of drugs. Antivir Chem Chemother 2012; 22:151-8. [PMID: 22182762 DOI: 10.3851/imp1930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2011] [Indexed: 10/16/2022] Open
Abstract
The development of over 20 antiretroviral drugs has led to efficient and successful suppression of HIV-1 replication. In addition to common viral targets, such as reverse transcriptase and protease, new targets have been recently exploited, including integrase, fusion and cellular CCR5. Hence, combination antiretroviral therapy is continually improved by the development of these new agents, especially for patients infected with drug-resistant HIV-1. In this review, we focused on fusion inhibitory peptides that have been developed since the first HIV-1 fusion inhibitor, enfuvirtide (T-20). T-20, approved for clinical use in 2003, is a polypeptide comprising 36 amino acids derived from the HIV-1 gp41 C-terminal heptad repeat and provides a novel treatment strategy for HIV-1 therapy. T-20 is able to suppress HIV-1 replication, including viruses resistant to reverse transcriptase or protease inhibitors. However, after prolonged T-20-containing treatment regimens, HIV-1 acquires resistance to T-20. Therefore, our laboratory and others have developed novel fusion inhibitors, termed next-generation fusion inhibitors, including electrostatically constrained, mutation introduced, and trimer-form peptides.
Collapse
Affiliation(s)
- Fusako Miyamoto
- Division of Emerging Infectious Diseases, Department of Internal Medicine, Tohoku University School of Medicine, Sendai, Japan
| | | |
Collapse
|
34
|
do Canto AM, Carvalho AP, Ramalho JP, Loura LM. Molecular dynamics simulations of T-20 HIV fusion inhibitor interacting with model membranes. Biophys Chem 2011; 159:275-86. [DOI: 10.1016/j.bpc.2011.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/31/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
|
35
|
Cai L, Pan C, Xu L, Shui Y, Liu K, Jiang S. Interactions between different generation HIV-1 fusion inhibitors and the putative mechanism underlying the synergistic anti-HIV-1 effect resulting from their combination. FASEB J 2011; 26:1018-26. [PMID: 22085645 DOI: 10.1096/fj.11-195289] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We previously reported that the combinatorial use of T20 and T1144, the first and next generations of HIV fusion inhibitors, containing different functional domains resulted in synergistic anti-HIV-1 effect, but this effect diminished when T20 and T1144 were covalently linked together. To elucidate the mechanism underlying this synergistic anti-HIV-1 effect, we studied the interactions between T20 and T1144 either in a mixture state or in a covalently linked state. T20 alone in solution was largely featureless, while T1144 alone was in α-helical trimeric conformation. When mixed in solution, T20 and T1144 showed a loose and transient interaction, with a moderate 10% α-helical content increase, but this interaction was greatly enhanced in the linked state, and T20 and T1144 showed ∼100% α-helical content. These results suggested that the loose and transient interaction between T20 and T1144 may destabilize the T1144 trimer, which makes its otherwise shielded binding sites more accessible to N-terminal heptad repeat (NHR) and increases its associating rate, thus increasing its anti-HIV-1 potency against the temporarily exposed target in NHR and causing the synergistic anti-HIV-1 effect. However, the strong interaction between T20 and T1144 in the covalently linked state may shield their NHR-binding sites, resulting in reduction of the synergistic effect.
Collapse
Affiliation(s)
- Lifeng Cai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
36
|
Bai Y, Ling Y, Shi W, Cai L, Jia Q, Jiang S, Liu K. Heteromeric Assembled Polypeptidic Artificial Hydrolases with a Six-Helical Bundle Scaffold. Chembiochem 2011; 12:2647-58. [DOI: 10.1002/cbic.201100311] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Indexed: 11/05/2022]
|
37
|
Hashimoto C, Tanaka T, Narumi T, Nomura W, Tamamura H. The successes and failures of HIV drug discovery. Expert Opin Drug Discov 2011; 6:1067-90. [DOI: 10.1517/17460441.2011.611129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Chang CC, Cheng SF, Lin CH, Chen SSL, Chang DK. Stability of gp41 hairpin and helix bundle assembly probed by combined stacking and circular dichroic approaches. J Struct Biol 2011; 175:406-14. [DOI: 10.1016/j.jsb.2011.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/17/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
|
39
|
Izumi K, Watanabe K, Oishi S, Fujii N, Matsuoka M, Sarafianos SG, Kodama EN. Potent anti-HIV-1 activity of N-HR-derived peptides including a deep pocket-forming region without antagonistic effects on T-20. Antivir Chem Chemother 2011; 22:51-5. [PMID: 21860071 DOI: 10.3851/imp1836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Enfuvirtide (T-20), a C-terminal heptad repeat (C-HR)-derived peptide of HIV-1 glycoprotein, gp41, effectively suppresses HIV-1 replication through a putative mechanism that involves it acting as a decoy and binding to the N-terminal heptad repeat (N-HR) of the virus. In this study, we address whether the anti-HIV-1 activity of T-20 is antagonized by a variety of N-HR-derived peptides. METHODS Multinuclear activation of galactosidase indicator assays were used to evaluate T-20 activity in the presence of N-HR-derived peptides. The gp41-derived peptides were chemically synthesized. RESULTS We demonstrate additive anti-HIV activity when T-20 is used in combination with N-HR-derived peptides that do not have a putative binding region for the tryptophan-rich domain in T-20. The presence of a deep pocket-forming region in the N-HR-derived peptides enhanced their anti-HIV-1 activity, but had little effect on the activity of T-20. CONCLUSIONS These results indicate that T-20-based antiviral therapies can be combined with N-HR-derived peptides.
Collapse
Affiliation(s)
- Kazuki Izumi
- Laboratory of Virus Control, Institute for Virus Research, Department of Bioorganic Medical Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Leung MYK, Cohen FS. Increasing hydrophobicity of residues in an anti-HIV-1 Env peptide synergistically improves potency. Biophys J 2011; 100:1960-8. [PMID: 21504732 DOI: 10.1016/j.bpj.2011.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 02/04/2023] Open
Abstract
T-20/Fuzeon/Enfuvirtide (ENF), a peptide inhibitor of HIV-1 infection, targets the grooves created by heptad repeat 2 (HR2) of Env's coiled-coil, but mutants resistant to ENF emerge. In this study, ENF-resistant mutants--V38A, N43D, N43D/S138A, Q40H/L45M--were combined with modified inhibitory peptides to identify what we believe to be novel ways to improve peptide efficacy. V38A did not substantially reduce infectivity, but was relatively resistant to inhibitory peptides. N43D was more resistant to inhibitory peptides than wild-type, but infectivity was reduced. The additional mutation S138A (N43D/S138A) increased infectivity and further reduced peptide inhibitory potency. It is concluded that S138A increased binding of HR2/ENF into grooves and that S138A compensated for electrostatic repulsion between N43D and HR2. The six-helix bundle structure indicated that E148A should increase hydrophobic interactions between the coiled-coil and peptide. Importantly, the modifications S138A and E148A in the same peptide retained potency against ENF-escape mutants. The double mutant's increase in potency was greater than the increases from the sum of S138A and E148A individually, showing that these two altered residues synergistically contributed to peptide binding. Isothermal titration calorimetry established that hydrophobic substitutions at positions S138 and E148 improved potency of inhibitory peptides against escape mutants by increasing enthalpic release of energy upon peptide binding.
Collapse
Affiliation(s)
- Michael Y K Leung
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA
| | | |
Collapse
|
41
|
Wang XJ, Li CG, Chi XJ, Wang M. Characterisation and evaluation of antiviral recombinant peptides based on the heptad repeat regions of NDV and IBV fusion glycoproteins. Virology 2011; 416:65-74. [DOI: 10.1016/j.virol.2011.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 04/18/2011] [Accepted: 05/02/2011] [Indexed: 11/27/2022]
|
42
|
Abstract
The development of peptides with therapeutic activities can be based on naturally occurring peptides or alternatively on de novo design. The discovery of natural peptides is often a matter of serendipity. In part, this is because natural peptides are typically proteolytically cleaved out from precursor proteins, a feature that averts the direct benefits of the genomic revolution. The first part of this review describes attempts to create a more systematic identification of natural peptides relying on a two step process. In the initial step, an in silico peptidome is predicted through the use of machine learning. Then, various computational biology tools are tailored to focus on peptides predicted to have the desired biological activity; for example, activating a GPCR or modulating the cellular arm of the immune system. The second part of the review is devoted to de novo peptide design and focuses on arguably the simplest scenario in which the designed peptide corresponds to a contiguous protein subsequence. Amongst these peptides, those corresponding to helical segments are prominent, mainly due to their relative ability to fold independently. Inspired by the clinical success of viral entry inhibitors, which are peptides corresponding to helical segments in viral envelope proteins, a computational tool for the identification of intramolecular helix-helix interactions was developed. Using this approach, peptides having anti-cancer, anti-angiogenic, and anti-inflammatory activities have been recently rationally designed and biologically characterized.
Collapse
Affiliation(s)
- Yossef Kliger
- Compugen LTD, 72 Pinchas Rosen, Tel Aviv 69512, Israel.
| |
Collapse
|
43
|
Bellows ML, Taylor MS, Cole PA, Shen L, Siliciano RF, Fung HK, Floudas CA. Discovery of entry inhibitors for HIV-1 via a new de novo protein design framework. Biophys J 2011; 99:3445-53. [PMID: 21081094 DOI: 10.1016/j.bpj.2010.09.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 09/23/2010] [Accepted: 09/27/2010] [Indexed: 12/11/2022] Open
Abstract
A new (to our knowledge) de novo design framework with a ranking metric based on approximate binding affinity calculations is introduced and applied to the discovery of what we believe are novel HIV-1 entry inhibitors. The framework consists of two stages: a sequence selection stage and a validation stage. The sequence selection stage produces a rank-ordered list of amino-acid sequences by solving an integer programming sequence selection model. The validation stage consists of fold specificity and approximate binding affinity calculations. The designed peptidic inhibitors are 12-amino-acids-long and target the hydrophobic core of gp41. A number of the best-predicted sequences were synthesized and their inhibition of HIV-1 was tested in cell culture. All peptides examined showed inhibitory activity when compared with no drug present, and the novel peptide sequences outperformed the native template sequence used for the design. The best sequence showed micromolar inhibition, which is a 3-15-fold improvement over the native sequence, depending on the donor. In addition, the best sequence equally inhibited wild-type and Enfuvirtide-resistant virus strains.
Collapse
Affiliation(s)
- M L Bellows
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Shimura K, Nameki D, Kajiwara K, Watanabe K, Sakagami Y, Oishi S, Fujii N, Matsuoka M, Sarafianos SG, Kodama EN. Resistance profiles of novel electrostatically constrained HIV-1 fusion inhibitors. J Biol Chem 2010; 285:39471-80. [PMID: 20937812 PMCID: PMC2998136 DOI: 10.1074/jbc.m110.145789] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/27/2010] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus (HIV) gp41 plays a key role in viral fusion; the N- and C-terminal heptad repeats (N-HR and C-HR) of gp41 form a stable 6-helical conformation for fusion. Therefore, HR-derived peptides, such as enfuvirtide (T-20), inhibit HIV-1 fusion by acting as decoys, and have been used for the treatment of HIV-1 infection. However, the efficacy of T-20 is attenuated by resistance mutations in gp41, including V38A and N43D. To suppress the resistant variants, we previously developed electrostatically constrained peptides, SC34 and SC34EK, and showed that both exhibited potent anti-HIV-1 activity against wild-type and T-20-resistant variants. In this study, to clarify the resistance mechanism to this next generation of fusion inhibitors, we selected variants with resistance to SC34 and SC34EK in vitro. The resistant variants had multiple mutations in gp41. All of these mutations individually caused less than 6-fold resistance to SC34 and SC34EK, indicating that there is a significant genetic barrier for high-level resistance. Cross-resistance to SC34 and SC34EK was reduced by a simple difference in the polarity of two intramolecular electrostatic pairs. Furthermore, the selected mutations enhanced the physicochemical interactions with N-HR variants and restored activities of the parental peptide, C34, even to resistant variants. These results demonstrate that our approach of designing gp41-binding inhibitors using electrostatic constraints and information derived from resistance studies produces inhibitors with enhanced activity, high genetic barrier, and distinct resistance profile from T-20 and other inhibitors. Hence, this is a promising approach for the design of future generation peptide fusion inhibitors.
Collapse
Affiliation(s)
- Kazuya Shimura
- From the Laboratory of Virus Control, Institute for Virus Research, and
| | - Daisuke Nameki
- From the Laboratory of Virus Control, Institute for Virus Research, and
| | - Keiko Kajiwara
- From the Laboratory of Virus Control, Institute for Virus Research, and
| | - Kentaro Watanabe
- Graduate School of Pharmaceutical Science, Kyoto University, 606-8507 Kyoto, Japan
| | - Yasuko Sakagami
- From the Laboratory of Virus Control, Institute for Virus Research, and
| | - Shinya Oishi
- Graduate School of Pharmaceutical Science, Kyoto University, 606-8507 Kyoto, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Science, Kyoto University, 606-8507 Kyoto, Japan
| | - Masao Matsuoka
- From the Laboratory of Virus Control, Institute for Virus Research, and
| | - Stefan G. Sarafianos
- the Christopher S. Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Eiichi N. Kodama
- From the Laboratory of Virus Control, Institute for Virus Research, and
- the Division of Emerging Infectious Diseases, Tohoku University School of Medicine, 980-8575 Sendai, Japan, and
| |
Collapse
|
45
|
Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proc Natl Acad Sci U S A 2010; 107:14093-8. [PMID: 20660316 DOI: 10.1073/pnas.1002713107] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The pharmacologic utility of lengthy peptides can be hindered by loss of bioactive structure and rapid proteolysis, which limits bioavailability. For example, enfuvirtide (Fuzeon, T20, DP178), a 36-amino acid peptide that inhibits human immunodeficiency virus type 1 (HIV-1) infection by effectively targeting the viral fusion apparatus, has been relegated to a salvage treatment option mostly due to poor in vivo stability and lack of oral bioavailability. To overcome the proteolytic shortcomings of long peptides as therapeutics, we examined the biophysical, biological, and pharmacologic impact of inserting all-hydrocarbon staples into an HIV-1 fusion inhibitor. We find that peptide double-stapling confers striking protease resistance that translates into markedly improved pharmacokinetic properties, including oral absorption. We determined that the hydrocarbon staples create a proteolytic shield by combining reinforcement of overall alpha-helical structure, which slows the kinetics of proteolysis, with complete blockade of peptide cleavage at constrained sites in the immediate vicinity of the staple. Importantly, double-stapling also optimizes the antiviral activity of HIV-1 fusion peptides and the antiproteolytic feature extends to other therapeutic peptide templates, such as the diabetes drug exenatide (Byetta). Thus, hydrocarbon double-stapling may unlock the therapeutic potential of natural bioactive polypeptides by transforming them into structurally fortified agents with enhanced bioavailability.
Collapse
|
46
|
Franquelim HG, Veiga AS, Weissmüller G, Santos NC, Castanho MA. Unravelling the molecular basis of the selectivity of the HIV-1 fusion inhibitor sifuvirtide towards phosphatidylcholine-rich rigid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1234-43. [DOI: 10.1016/j.bbamem.2010.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/19/2010] [Accepted: 02/08/2010] [Indexed: 11/29/2022]
|
47
|
Izumi K, Nakamura S, Nakano H, Shimura K, Sakagami Y, Oishi S, Uchiyama S, Ohkubo T, Kobayashi Y, Fujii N, Matsuoka M, Kodama EN. Characterization of HIV-1 resistance to a fusion inhibitor, N36, derived from the gp41 amino-terminal heptad repeat. Antiviral Res 2010; 87:179-86. [PMID: 20438763 DOI: 10.1016/j.antiviral.2010.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 11/15/2022]
Abstract
A transmembrane glycoprotein of HIV-1, gp41, plays a central role in membrane fusion of HIV-1 and host cells. Peptides derived from the amino- and carboxyl-terminal heptad repeat (N-HR and C-HR, respectively) of gp41 inhibit this fusion. The mechanism of resistance to enfuvirtide, a C-HR-derived peptide, is well defined; however the mechanism of resistance to N-HR-derived peptides remains unclear. We characterized an HIV-1 isolate resistant to the N-HR-derived peptide, N36. This HIV-1 acquired a total of four amino acid substitutions, D36G, N126K and E137Q in gp41, and P183Q in gp120. Among these substitutions, N126K and/or E137Q conferred resistance to not only N36, but also C34, which is the corresponding C-HR-derived peptide fusion inhibitor. We performed crystallographic and biochemical analysis of the 6-helix bundle formed by synthetic gp41-derived peptides containing the N126K/E137Q substitutions. The structure of the 6-helix bundle with N126K/E137Q was identical to that in wild-type HIV-1 except for the presence of a new hydrogen bond. Denaturing experiments revealed that the stability of the 6-helix bundle of N126K/E137Q is greater than in the wild-type. These results suggest that the stabilizing effect of N126K/E137Q provides resistance to N36 and C34.
Collapse
Affiliation(s)
- Kazuki Izumi
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bioorganic synthesis of a recombinant HIV-1 fusion inhibitor, SC35EK, with an N-terminal pyroglutamate capping group. Bioorg Med Chem 2009; 17:7964-70. [PMID: 19864148 DOI: 10.1016/j.bmc.2009.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 01/30/2023]
Abstract
The bioorganic synthesis of an end-capped anti-HIV peptide from a recombinant protein was investigated. Cyanogen bromide-mediated cleavage of two Met-Gln sites across the target anti-HIV sequence generated an HIV-1 fusion inhibitor (SC35EK) analog bearing an N-terminal pyroglutamate (pGlu) residue and a C-terminal homoserine lactone (Hsl) residue. The end-capped peptide, pGlu-SC35EK-Hsl, had similar bioactivity and biophysical properties to the parent peptide, and an improved resistance to peptidase-mediated degradation was observed compared with the non-end-capped peptide obtained using standard recombinant technology.
Collapse
|
49
|
Naider F, Anglister J. Peptides in the treatment of AIDS. Curr Opin Struct Biol 2009; 19:473-82. [PMID: 19632107 DOI: 10.1016/j.sbi.2009.07.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 01/11/2023]
Abstract
Fusion of HIV-1 and target cells is mediated by the envelope protein gp41 that undergoes a series of conformational changes during the process of infection. Knowledge of the structural biology of gp41 allows the design of potent peptide inhibitors that prevent the virus from entering lymphocytes and macrophages. The design of such inhibitors is the subject of this review.
Collapse
Affiliation(s)
- Fred Naider
- Department of Chemistry, College of Staten Island of the City University of New York, Staten Island, New York 10314, USA.
| | | |
Collapse
|
50
|
Oishi S, Kodera Y, Nishikawa H, Kamitani H, Watabe T, Ohno H, Tochikura T, Shimane K, Kodama E, Matsuoka M, Mizukoshi F, Tsujimoto H, Fujii N. Design and synthesis of membrane fusion inhibitors against the feline immunodeficiency virus. Bioorg Med Chem 2009; 17:4916-20. [PMID: 19541488 DOI: 10.1016/j.bmc.2009.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 05/30/2009] [Accepted: 06/02/2009] [Indexed: 11/29/2022]
Abstract
Feline immunodeficiency virus (FIV) is a pathogenic virus that causes an AIDS-like syndrome in the domestic cats. For viral entry and infection, fusion between the virus and the cell membrane is the critical process and this process is mediated by an envelope glycoprotein gp40. We have identified fusion inhibitory peptides from the heptad repeat-2 (HR2) of gp40. Remodeling of the original sequences using alpha-helix-inducible motifs revealed the interactive residues of gp40. Comparative analysis of HR2 peptides derived from four FIV strains demonstrated that the interactive surface of the Shizuoka strain-derived HR2 peptides provides the highest affinity of all the FIV strains examined.
Collapse
Affiliation(s)
- Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|