1
|
Sarkar D, Midha P, Shanti SS, Singh SK. A comprehensive review on the decabromodiphenyl ether (BDE-209)-induced male reproductive toxicity: Evidences from rodent studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165938. [PMID: 37541514 DOI: 10.1016/j.scitotenv.2023.165938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a class of brominated flame retardants (BFRs), are employed in various manufactured products to prevent fires, slow down their spread and reduce the resulting damages. Decabromodiphenyl ether (BDE-209), an example of PBDEs, accounts for approximately 82 % of the total production of PBDEs. BDE-209 is a thyroid hormone (TH)-disrupting chemical owing to its structural similarity with TH. Currently, increase in the level of BDE-209 in biological samples has become a major issue because of its widespread use. BDE-209 causes male reproductive toxicity mainly via impairment of steroidogenesis, generation of oxidative stress (OS) and interference with germ cell dynamics. Further, exposure to this chemical can affect metabolic status, sperm concentration, epigenetic regulation of various developmental genes and integrity of blood-testis barrier in murine testis. However, the possible adverse effects of BDE-209 and its mechanism of action on the male reproductive health have not yet been critically evaluated. Hence, the present review article, with the help of available literature, aims to elucidate the reproductive toxicity of BDE-209 in relation to thyroid dysfunction in rodents. Further, several crucial pathways have been also highlighted in order to strengthen our knowledge on BDE-209-induced male reproductive toxicity. Data were extracted from scientific articles available in PubMed, Web of Science, and other databases. A thorough understanding of the risk assessment of BDE-209 exposure and mechanisms of its action is crucial for greater awareness of the potential threat of this BFR to preserve male fertility.
Collapse
Affiliation(s)
- Debarshi Sarkar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Parul Midha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Shashanka Sekhar Shanti
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Hüneke H, Langeheine M, Rode K, Jung K, Pilatz A, Fietz D, Kliesch S, Brehm R. Effects of a Sertoli cell-specific knockout of Connexin43 on maturation and proliferation of postnatal Sertoli cells. Differentiation 2023; 134:31-51. [PMID: 37839230 DOI: 10.1016/j.diff.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
Adult male Sertoli cell-specific Connexin43 knockout mice (SCCx43KO) exhibit higher Sertoli cell (SC) numbers per seminiferous tubule compared to their wild type (WT) littermates. Thus, deletion of this testicular gap junction protein seems to affect the proliferative potential and differentiation of "younger" SC. Although SC have so far mostly been characterised as postmitotic cells that cease to divide and become an adult, terminally differentiated cell population at around puberty, there is rising evidence that there exist exceptions from this for a very long time accepted paradigm. Aim of this study was to investigate postnatal SC development and to figure out underlying causes for observed higher SC numbers in adult KO mice. Therefore, the amount of SC mitotic figures was compared, resulting in slightly more and prolonged detection of SC mitotic figures in KO mice compared to WT. SC counting per tubular cross section revealed significantly different time curves, and comparing proliferation rates using Bromodesoxyuridine and Sox9 showed higher proliferation rates in 8-day old KO mice. SC proliferation was further investigated by Ki67 immunohistochemistry. SC in KO mice displayed a delayed initiation of cell-cycle-inhibitor p27Kip1 synthesis and prolonged synthesis of the phosphorylated tumour suppressor pRb and proliferation marker Ki67. Thus, the higher SC numbers in adult male SCCx43KO mice may arise due to two different reasons: Firstly, in prepubertal KO mice, the proliferation rate of SC was higher. Secondly, there were differences in their ability to cease proliferation as shown by the delayed initiation of p27Kip1 synthesis and the prolonged production of phosphorylated pRb and Ki67. Immunohistochemical results indicating a prolonged period of SC proliferation in SCCx43KO were confirmed by detection of proliferating SC in 17-days-old KO mice. In conclusion, deletion of the testicular gap junction protein Cx43 might prevent normal SC maturation and might even alter also the proliferation potential of adult SC.
Collapse
Affiliation(s)
- Hanna Hüneke
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Marion Langeheine
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Kristina Rode
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Klaus Jung
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Daniela Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Sabine Kliesch
- Centre of Andrology and Reproductive Medicine, University of Muenster, Muenster, Germany
| | - Ralph Brehm
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
3
|
Peña-Corona SI, Vargas-Estrada D, Juárez-Rodríguez I, Retana-Márquez S, Mendoza-Rodríguez CA. Bisphenols as promoters of the dysregulation of cellular junction proteins of the blood-testis barrier in experimental animals: A systematic review of the literature. J Biochem Mol Toxicol 2023; 37:e23416. [PMID: 37352109 DOI: 10.1002/jbt.23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/03/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
Daily, people are exposed to chemicals and environmental compounds such as bisphenols (BPs). These substances are present in more than 80% of human fluids. Human exposure to BPs is associated with male reproductive health disorders. Some of the main targets of BPs are intercellular junction proteins of the blood-testis barrier (BTB) in Sertoli cells because BPs alter the expression or induce aberrant localization of these proteins. In this systematic review, we explore the effects of BP exposure on the expression of BTB junction proteins and the characteristics of in vivo studies to identify potential gaps and priorities for future research. To this end, we conducted a systematic review of articles. Thirteen studies met our inclusion criteria. In most studies, animals treated with bisphenol-A (BPA) showed decreased occludin expression at all tested doses. However, bisphenol-AF treatment did not alter occludin expression. Cx43, ZO-1, β-catenin, nectin-3, cortactin, paladin, and claudin-11 expression also decreased in some tested doses of BP, while N-cadherin and FAK expression increased. BP treatment did not alter the expression of α and γ catenin, E-cadherin, JAM-A, and Arp 3. However, the expression of all these proteins was altered when BPA was administered to neonatal rodents in microgram doses. The results show significant heterogeneity between studies. Thus, it is necessary to perform more research to characterize the changes in BTB protein expression induced by BPs in animals to highlight future research directions that can inform the evaluation of risk of toxicity in humans.
Collapse
Affiliation(s)
- Sheila I Peña-Corona
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ivan Juárez-Rodríguez
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Socorro Retana-Márquez
- Departamento Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | | |
Collapse
|
4
|
Molele RA, Ibrahim MIA, Zakariah M, Mahdy MAA, Clift S, Fosgate GT, Brown G. Junctional complexes of the blood-testis barrier in the Japanese quail (Coturnix Coturnix japonica). Acta Histochem 2022; 124:151929. [PMID: 35947890 DOI: 10.1016/j.acthis.2022.151929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/01/2022]
Abstract
This study investigated the developmental changes in the adherens junctions, gap junctions, as well as tight junctions forming the blood-testis barrier (BTB) in Japanese quail (Coturnix Coturnix japonica) testis. Testicular tissue from pre-pubertal, pubertal, adult, and aged Japanese quail were examined by immunohistochemistry and transmission electron microscopy (TEM). The tight junction proteins claudin-3, claudin-11, occludin and zonula occludens-1 (ZO-1), were generally localised in the cytoplasm of Sertoli cells, spermatogonia, and spermatocytes of pre-pubertal, pubertal, some adult birds. The adherens junction protein E-cadherin had a similar distribution pattern. During pre-pubertal development, the gap junction protein connexin-43 (Cx43) was only localised between Leydig cells in the testicular interstitium. However, TEM revealed the presence of gap junctions between cells of the seminiferous epithelium as early as the pre-pubertal stage. Furthermore, TEM confirmed the presence of tight and adherens junctions in the seminiferous epithelia of all age groups. The findings of this study document age-related differences in the immunolocalisation and intensity of the junctional proteins and the ultrastructure of the junctional complexes forming the BTB in quail testes. Additionally, the junctional complexes forming the BTB in the Japanese quail are well established prior to puberty. This study provides baseline information for the future evaluation of pathological changes in the BTB of avian species at different developmental stages.
Collapse
Affiliation(s)
- Reneilwe A Molele
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private bag X04, Onderstepoort, Pretoria 0110, South Africa.
| | - Mohammed I A Ibrahim
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private bag X04, Onderstepoort, Pretoria 0110, South Africa; Department of Basic Science, University of West Kordofan, West Kordofan State, Sudan
| | - Musa Zakariah
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private bag X04, Onderstepoort, Pretoria 0110, South Africa; Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Maiduguri, PMB 1069, Maiduguri, Nigeria
| | - Mohamed A A Mahdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Sarah Clift
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private bag X04, Onderstepoort, Pretoria 0110, South Africa
| | - Geoffrey T Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private bag X04, Onderstepoort, Pretoria 0110, South Africa
| | - Geoffrey Brown
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private bag X04, Onderstepoort, Pretoria 0110, South Africa
| |
Collapse
|
5
|
Connexin43 represents an important regulator for Sertoli cell morphology, Sertoli cell nuclear ultrastructure, and Sertoli cell maturation. Sci Rep 2022; 12:12898. [PMID: 35902708 PMCID: PMC9334284 DOI: 10.1038/s41598-022-16919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
The Sertoli cell (SC)-specific knockout (KO) of connexin43 (Cx43) was shown to be an effector of multiple histological changes in tubular morphology, resulting in germ cell loss through to a Sertoli-cell-only (SCO) phenotype and vacuolated seminiferous tubules containing SC-clusters. Our present study focused on the effects of Cx43 loss on SC ultrastructure. Using serial block-face scanning electron microscopy (SBF-SEM), we could confirm previous results. Ultrastructural analysis of Sertoli cell nuclei (SCN) revealed that these appear in clusters with a phenotype resembling immature/proliferating SCs in KO mice. Surprisingly, SCs of fertile wild type (WT) mice contained SCN with a predominantly smooth surface instead of deep indentations of the nuclear envelope, suggesting that these indentations do not correlate with germ cell support or spermatogenesis. SBF-SEM facilitated the precise examination of clustered SCs. Even if the exact maturation state of mutant SCs remained unclear, our study could detect indications of cellular senescence as well as immaturity, emphasising that Cx43 affects SC maturation. Moreover, Sudan III staining and transmission electron microscopy (TEM) demonstrated an altered lipid metabolism in SCs of Cx43 deficient mice.
Collapse
|
6
|
Gumułka M, Hrabia A, Rozenboim I. Annual changes in cell proliferation and apoptosis and expression of connexin 43 in the testes of domestic seasonal breeding ganders. Theriogenology 2022; 186:27-39. [DOI: 10.1016/j.theriogenology.2022.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/15/2022]
|
7
|
Francomano D, Sanguigni V, Capogrosso P, Deho F, Antonini G. New Insight into Molecular and Hormonal Connection in Andrology. Int J Mol Sci 2021; 22:ijms222111908. [PMID: 34769341 PMCID: PMC8584869 DOI: 10.3390/ijms222111908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Hormones and cytokines are known to regulate cellular functions in the testes. These biomolecules induce a broad spectrum of effects on various level of spermatogenesis, and among them is the modulation of cell junction restructuring between Sertoli cells and germ cells in the seminiferous epithelium. Cytokines and androgens are closely related, and both correct testicular development and the maintenance of spermatogenesis depend on their function. Cytokines also play a crucial role in the immune testicular system, activating and directing leucocytes across the endothelial barrier to the inflammatory site, as well as in increasing their adhesion to the vascular wall. The purpose of this review is to revise the most recent findings on molecular mechanisms that play a key role in male sexual function, focusing on three specific molecular patterns, namely, cytokines, miRNAs, and endothelial progenitor cells. Numerous reports on the interactions between the immune and endocrine systems can be found in the literature. However, there is not yet a multi-approach review of the literature underlying the role between molecular patterns and testicular and sexual function.
Collapse
Affiliation(s)
- Davide Francomano
- Division of Internal Medicine and Endocrinology, Madonna delle Grazie Hospital, 00049 Rome, Italy
- GCS Point Medical Center, 0010 Rome, Italy
- Correspondence:
| | - Valerio Sanguigni
- Department of Medicine of Systems, University of Rome Tor Vergata, 00100 Rome, Italy;
| | - Paolo Capogrosso
- ASST-Sette Laghi, Circolo & Fondazione Macchi Hospital, University of Insurbria, 21100 Varese, Italy; (P.C.); (F.D.)
| | - Federico Deho
- ASST-Sette Laghi, Circolo & Fondazione Macchi Hospital, University of Insurbria, 21100 Varese, Italy; (P.C.); (F.D.)
| | | |
Collapse
|
8
|
Rode K, Langeheine M, Seeger B, Brehm R. Connexin43 in Germ Cells Seems to Be Dispensable for Murine Spermatogenesis. Int J Mol Sci 2021; 22:ijms22157924. [PMID: 34360693 PMCID: PMC8348783 DOI: 10.3390/ijms22157924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Testicular Connexin43 (Cx43) connects adjacent Sertoli cells (SC) and SC to germ cells (GC) in the seminiferous epithelium and plays a crucial role in spermatogenesis. However, the distinction whether this results from impaired inter-SC communication or between GC and SC is not possible, so far. Thus, the question arises, whether a GC-specific Cx43 KO has similar effects on spermatogenesis as it is general or SC-specific KO. Using the Cre/loxP recombinase system, two conditional KO mouse lines lacking Cx43 in premeiotic (pGCCx43KO) or meiotic GC (mGCCx43KO) were generated. It was demonstrated by qRT-PCR that Cx43 mRNA was significantly decreased in adult pGCCx43KO mice, while it was also reduced in mGCCx43KO mice, yet not statistically significant. Body and testis weights, testicular histology, tubular diameter, numbers of intratubular cells and Cx43 protein synthesis and localization did not show any significant differences in semi-quantitative Western blot analysis and immunohistochemistry comparing adult male KO and WT mice of both mouse lines. Male KO mice were fertile. These results indicate that Cx43 in spermatogonia/spermatids does not seem to be essential for successful termination of spermatogenesis and fertility as it is known for Cx43 in somatic SC, but SC-GC communication might rather occur via heterotypic GJ channels.
Collapse
Affiliation(s)
- Kristina Rode
- Institute of Anatomy, University of Veterinary Medicine Foundation, 30173 Hanover, Germany; (K.R.); (M.L.)
| | - Marion Langeheine
- Institute of Anatomy, University of Veterinary Medicine Foundation, 30173 Hanover, Germany; (K.R.); (M.L.)
| | - Bettina Seeger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Foundation, 30173 Hanover, Germany;
| | - Ralph Brehm
- Institute of Anatomy, University of Veterinary Medicine Foundation, 30173 Hanover, Germany; (K.R.); (M.L.)
- Correspondence: ; Tel.: +49-511-8457215
| |
Collapse
|
9
|
Kumar J, Verma R, Haldar C. Melatonin ameliorates Bisphenol S induced testicular damages by modulating Nrf-2/HO-1 and SIRT-1/FOXO-1 expressions. ENVIRONMENTAL TOXICOLOGY 2021; 36:396-407. [PMID: 33098627 DOI: 10.1002/tox.23045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
BPS has detrimental effects on human reproductive health and emerged as an environmental contaminant for global health concern. This study deals with the adverse impact of BPS exposure on testicular oxidative stress, inflammation and apoptosis in adult male golden hamster, Mesocricetus auratus and its amelioration by melatonin. BPS (75 mg/kg BW/day) exposure caused testicular impairment as evident by histological degenerative changes, declined sperm quality (viability and motility), serum levels of testosterone and melatonin with a concomitant decrease in testicular androgen receptor (AR) and melatonin receptor (MT1) expression. The BPS exposure caused marked increase in testicular oxidative load, inflammation (NF-kB/COX-2) and apoptosis (caspase-3). Melatonin (10 mg/kg BW/alternate day) pretreatment to BPS exposed hamsters resumed normal testicular histoarchitecture, sperm quality and decreased testicular oxidative load as evident by enhanced antioxidant enzymes (SOD and catalase) activities and decreased lipid peroxidation (LPO) level. Further, melatonin also stimulated the testicular antioxidant proteins Nrf-2/HO-1, SIRT-1/FOXO-1 and reduced inflammatory proteins NF-kB/COX-2 expression to counteract BPS induced testicular damages. Melatonin administration to the BPS treated hamsters resulted in increased testicular cell proliferation (PCNA), survival (Bcl-2), gap junction (connexin-43) and decreased apoptosis (caspase-3). In conclusion, our study documented the detrimental effects of BPS on testes that compromises male fertility. Further, melatonin was found as a potent molecule that rescued the BPS induced testicular damages in male golden hamster Mesocricetus auratus.
Collapse
Affiliation(s)
- Jitendra Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rakesh Verma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Chandana Haldar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
10
|
Sarkar D, Singh SK. Decabromodiphenyl ether (BDE-209) exposure to lactating mice perturbs steroidogenesis and spermatogenesis in adult male offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111783. [PMID: 33383340 DOI: 10.1016/j.ecoenv.2020.111783] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/29/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Decabromodiphenyl ether (BDE-209) is widely used as a flame retardant in many products like electronic equipments, plastics, furniture and textiles. BDE-209, a thyroid hormones (THs)-disrupting chemical, affects male reproductive health through altered THs status in mouse model. The present study was designed in continuation to our earlier work to elucidate whether early life exposure to BDE-209 has a long term potential risk to male reproductive health. This study, therefore, aimed to evaluate the effect of maternal BDE-209 exposure during lactation and to elucidate possible mechanism(s) of its action on male reproduction in adult Parkes mice offspring. Lactating female Parkes mice were orally gavaged with 500, and 700 mg/kg body weight of BDE-209 in corn oil from postnatal day (PND) 1 to PND 28 along with 6-propyl-2-thiouracil (PTU)-treated positive controls and vehicle-treated controls. Male pups of lactating dams were euthanized at PND 75. Maternal BDE-209 exposure during lactation markedly affected histoarchitecture of testis and testosterone production with concomitant down-regulation in the expression of various steroidogenic markers in adult offspring. Maternal exposure to BDE-209 during lactation also interfered with germ cell dynamics and oxidative status in testes of adult mice offspring. A decreased expression of connexin 43 and androgen receptor was also evident in testes of these mice offspring; further, number, motility and viability of spermatozoa were also adversely affected in these mice. The results thus provide evidences that maternal exposure to BDE-209 during lactation causes reproductive toxicity in adult mice offspring.
Collapse
Affiliation(s)
- Debarshi Sarkar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India; Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda-151001, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
11
|
Cisplatin-Induced Stria Vascularis Damage Is Associated with Inflammation and Fibrosis. Neural Plast 2020; 2020:8851525. [PMID: 33029120 PMCID: PMC7527906 DOI: 10.1155/2020/8851525] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
The stria vascularis (SV) generates the endocochlear potential (EP) in the inner ear and is necessary for proper hair cell (HC) mechanotransduction and hearing. Cell junctions are indispensable for the establishment of compositionally distinct fluid compartments in the inner ear. Ototoxic drug cisplatin can damage SV and cause sensorineural hearing loss; however, the underlying mechanisms behind such injury are unclear. In this study, after the intraperitoneal injection of cisplatin (3 mg/kg/day for 7 days) in mice, we determined the auditory function by EP recording and auditory brainstem response (ABR) analysis, observed the ultrastructure of SV by transmission electron microscopy (TEM), and examined the expression and distribution of cell junction proteins by western blot, PCR, and immunofluorescence staining. We discovered that the EP was significantly reduced while ABR thresholds were significantly elevated in cisplatin-treated mice; cisplatin induced ultrastructural changes in marginal cells (MCs), endothelial cells (ECs), pericytes, etc. We found that cisplatin insulted auditory function not only by reducing the expression of zonula occludens protein-1 (ZO-1) in MCs of the SV but also by decreasing the expression of connexin 26 (Cx26) and connexin 43 (Cx43) in MCs and basal cells (BCs). More importantly, cisplatin induced activations of perivascular-resident macrophage-like melanocytes (PVM/Ms) and interleukin-1beta (IL-1β) as well as increased expressions of profibrotic proteins such as laminin and collagen IV in SV. Thus, our results firstly showed that cisplatin induced fibrosis, inflammation, and the complex expression change of cell junctions in SV.
Collapse
|
12
|
Durand P, Blondet A, Martin G, Carette D, Pointis G, Perrard MH. Effects of a mixture of low doses of atrazine and benzo[a]pyrene on the rat seminiferous epithelium either during or after the establishment of the blood-testis barrier in the rat seminiferous tubule culture model. Toxicol In Vitro 2020; 62:104699. [DOI: 10.1016/j.tiv.2019.104699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
|
13
|
de Michele F, Poels J, Giudice MG, De Smedt F, Ambroise J, Vermeulen M, Gruson D, Wyns C. In vitro formation of the blood-testis barrier during long-term organotypic culture of human prepubertal tissue: comparison with a large cohort of pre/peripubertal boys. Mol Hum Reprod 2019. [PMID: 29538744 DOI: 10.1093/molehr/gay012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION How does the formation of the blood-testis barrier (BTB), as reflected by the expression of connexin 43 and claudin 11 proteins during the pubertal transition period, take place in vitro compared to samples from a large cohort of pre/peripubertal boys? SUMMARY ANSWER The BTB connexin 43 and claudin 11 expression patterns appeared to be partially achieved in organotypic culture when compared to that in samples from 71 pre/peripubertal patients. WHAT IS KNOWN ALREADY Although alterations in the protein expression patterns of the BTB, whose main components are connexin 43 and claudin 11, are known to be associated with impaired spermatogenesis in mice and adult men, there is a lack of knowledge on its formation in pre-peripubertal human tissue both in vitro and in vivo. Moreover, despite Sertoli cell (SC) maturation during long-term organotypic culture of immature testicular tissue (ITT), initiation of spermatogenesis has not yet been achieved. STUDY DESIGN, SIZE, DURATION Histological sections from 71 pre-peripubertal patients were evaluated for the formation of the BTB acting as in vivo controls according to age, SC maturation, clinical signs of puberty and germ cell differentiation. Testicular tissue fragments retrieved from three prepubertal boys were cultured in a long-term organotypic system to analyze the BTB formation and expression pattern in correlation with SC maturation. PARTICIPANTS/MATERIALS, SETTING, METHODS Testicular histological sections from 71 patients aged 0-16 years who underwent a biopsy between 2005 and 2014 to preserve their fertility before gonadotoxic treatment were examined. Immunohistochemistry (IHC) results for connexin 43 and claudin 11 as BTB markers, using a semi-quantitative score for their expression, and for Anti-Mullerian hormone (AMH), as SC maturation marker, were analyzed. Germ cell differentiation was evaluated on Hematoxylin-Eosin sections. Tanner stages at the time of biopsy were recorded from medical files. A longitudinal analysis of connexin 43, claudin 11 and AMH expressions on immunohistological sections of organotypic cultured testicular tissue from three prepubertal boys who underwent a biopsy for fertility preservation was performed. Immunostaining was evaluated at culture Days 0, 1, 3, 10, 16, 27, 32, 53, 64 and 139 for two different types of culture media. MAIN RESULTS AND THE ROLE OF CHANCE Immunohistochemical control sections showed progressive maturation of SCs, as shown by the decrease in AMH expression, with increasing age (P ≤ 0.01) and the AMH expression was negatively correlated with the expression of connexin 43 and claudin 11 (P ≤ 0.01 for both proteins). Androgen receptor (AR) expression increased with age (P ≤ 0.01) and was significantly correlated with the expression of connexin 43 (P = 0.002) and claudin 11 (P = 0.03). A statistical correlation was also found between the reduction of AMH expression and both the advancement of Tanner stages (P ≤ 0.01) and the differentiation of germ cells (P ≤ 0.01). Furthermore, positive correlations between BTB formation (using connexin 43 and claudin 11 expression) and age (P ≤ 0.01 for both the proteins), higher Tanner stages (P ≤ 0.001 and P ≤ 0.01 for connexin 43 and claudin 11, respectively), and presence of more advanced germ cells (P ≤ 0.001 for both proteins) were observed. In the subanalysis on organotypic cultured ITT, where a significant decrease in AMH expression as a marker of SC maturation was already reported, we showed the onset of expression of connexin 43 at Day 16 (P ≤ 0.001) and a constant expression of claudin 11 from Days 0 to 139, for all three patients, without differences between the two types of culture media. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION Accessibility of prepubertal human testicular tissue is a major limiting factor to the analysis of cultured tissue samples from a wide number of patients, as would be needed to assess the in vitro development of the BTB according to the age. The impossibility of performing longitudinal studies on in vivo BTB formation in the same patient prevents a comparison of the time needed to achieve effective BTB formation and protein expression patterns in vivo and in vitro. WIDER IMPLICATIONS OF THE FINDINGS To the best of our knowledge, this is the first report describing the expression of two BTB proteins in samples from a cohort of prepubertal and peripubertal boys, for the in vivo pattern, and in cultured ITT from a few prepubertal boys, for the in vitro evaluation. Since the formation of this barrier is essential for spermatogenesis and because little is known about its protein expression patterns and development in humans, a deeper understanding of the testicular microenvironment is essential to improve ITT in vitro culture conditions. The final aim is to restore fertility by acheiving in vitro differentiation of spermatogonial stem cells, using cryopreserved ITT collected before gonadotoxic therapies. STUDY FUNDING AND COMPETING INTEREST(S) Funding was received from Fonds National de la Recherche Scientifique de Belgique (Grant Télevie Nos. 7.4554.14F and 7.6511.16) and Fondation Salus Sanguinis. No conflict of interest has to be disclosed.
Collapse
Affiliation(s)
- F de Michele
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Avenue Mounier 52, 1200 Brussels, Belgium
| | - J Poels
- Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Avenue Mounier 52, 1200 Brussels, Belgium
| | - M G Giudice
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - F De Smedt
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - J Ambroise
- Institut de Recherche Expérimentale et Clinique (IREC), Centre de Technologies Moléculaires Appliquées (CTMA), Clos Chapelle-aux-Champs 30, 1200 Brussels, Belgium
| | - M Vermeulen
- Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Avenue Mounier 52, 1200 Brussels, Belgium
| | - D Gruson
- Department of Clinical Biochemistry, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - C Wyns
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Avenue Mounier 52, 1200 Brussels, Belgium
| |
Collapse
|
14
|
Kolasa-Wołosiuk A, Misiakiewicz-Has K, Baranowska-Bosiacka I, Gutowska I, Tarnowski M, Tkacz M, Wiszniewska B. Connexin 43 expression in the testes during postnatal development of finasteride-treated male rat offspring. Arch Med Sci 2018; 14:1471-1479. [PMID: 30393503 PMCID: PMC6209711 DOI: 10.5114/aoms.2016.63022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/16/2016] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Hormone-dependent events that occur throughout the first wave of spermatogenesis, such as cellular communication within seminiferous epithelium during early postnatal testis maturation, are important for adult male fertility. Any changes in the T/DHT ratio in male progeny born from females fertilized by finasteride-treated male rats can result in impairment of testicular physiology. The aim of the study was to verify whether finasteride has a transgenerational effect on the expression of connexin 43 (Cx43), a gap junction protein in testes of the F1 generation. MATERIAL AND METHODS The subjects of the study were 7, 14, 21/22, 28, and 90-day-old Wistar male rats born by females fertilized by finasteride-treated rats (F1:Fin). The offspring born by untreated rats were used as controls (F1:Control). Connexin 43 was evaluated in the seminiferous epithelium by immunohistochemistry, and in the testis homogenates by Western blot and qRT-PCR. The Cx43 mRNA and protein expression was correlated with intratesticular levels of T and DHT by Spearman's rank correlation coefficient. RESULTS We observed a difference in the Cx43 expression in the testis of male rats born by female rats fertilized by finasteride-treated male rats, as compared to the control on following PND (7, 22 and 28 PND, p < 0.001; 14 PND, p < 0.01); and a strong, positive correlation between Cx43 with DHT was only in the F1:Fin group (mRNA: rs = +0.51, p = 0.004; protein: rs = +0.54, p = 0.002). CONCLUSIONS Finasteride treatment of male adult rats may cause changes in the communication between the testicular cells of their offspring, leading to a defective course of spermatogenesis.
Collapse
Affiliation(s)
| | | | | | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
15
|
Loss of connexin 43 in Sertoli cells provokes postnatal spermatogonial arrest, reduced germ cell numbers and impaired spermatogenesis. Reprod Biol 2018; 18:456-466. [PMID: 30243528 DOI: 10.1016/j.repbio.2018.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 01/27/2023]
Abstract
For the reason that adult Sertoli cell specific connexin 43 knockout (SCCx43KO) mice show arrested spermatogenesis at spermatogonial level or Sertoli cell only tubules and significantly reduced germ cell (GC) numbers, the aims of the present study were (1) to characterize the remaining GC population and (2) to elucidate possible mechanisms of their fading. Apoptosis was analyzed in both, KO and wild type (WT) male littermates during postnatal development and in adulthood using TUNEL. Although GC numbers were significantly reduced in KO at 2 and 8 days postpartum (dpp) when compared to WT, no differences were found concerning apoptotic incidence between genotypes. From 10 dpp, the substantial GC deficiency became more obvious. However, significantly higher apoptotic GC numbers were seen in WT during this period, possibly related to the first wave of spermatogenesis, a known phenomenon in normal pubertal testes associated with increased apoptosis. Characterization of residual spermatogonia in postnatal to adult KO and WT mice was performed by immunohistochemical reaction against VASA (marker of GCs in general), Lin28 and Fox01 (markers for undifferentiated spermatogonia) and Stra8 (marker for differentiating spermatogonia and early spermatocytes). During puberty, the GC component in SCCx43KO mice consisted likely of undifferentiated spermatogonia, few differentiating spermatogonia and very few early spermatocytes, which seemed to be rapidly cleared by apoptosis. In adult KOs, spermatogenesis was arrested at the level of undifferentiated spermatogonia. Overall, our data indicate that Cx43 gap junctions in SCs influence male GC development and differentiation rather than their survival.
Collapse
|
16
|
Ahmed N, Yang P, Chen H, Ujjan IA, Haseeb A, Wang L, Soomro F, Faraz S, Sahito B, Ali W, Chen Q. Characterization of inter-Sertoli cell tight and gap junctions in the testis of turtle: Protect the developing germ cells from an immune response. Microb Pathog 2018; 123:60-67. [PMID: 29959039 DOI: 10.1016/j.micpath.2018.06.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
It is conceivable that early developing germ cells must across the basal to the luminal region of seminiferous tubules (STs) during spermatogenesis is associated with extensive restructuring of junctional complex. However, very limited information is documented about these junctional complexes in reptiles. In the present study we have determined the localization of inter-Sertoli cell tight junctions (TJ's), protein CLDN11 and gap junction protein Cx43 during spermatogenesis in the testis. In early spermatogenesis, weak immunoreactivity of CLDN11and focal localization of Cx43 was observed around the Sertoli cell in the luminal region, but completely delaminated from the basal compartment of STs. In late spermatogenesis, strong focal to linear localization of CLDN11and Cx43 was detected at the points of contact between two Sertoli cells and around the early stages of primary spermatocytes in the basal compartment of STs. In late spermatogenesis, localization of CLDN11and Cx43 was drastically reduced and seen only around Sertoli cells and spermatogonia near the basal lamina. However, transmission electron microscopy revealed that inter-Sertoli cell tight junctions were present within the basal compartment of STs, leaving the spermatogonia and early primary spermatocytes in the basal region during mid spermatogenesis. Gap junctions were observed between Sertoli cells, and Sertoli cells with spermatogonia and primary spermatocytes throughout spermatogenesis. Moreover, adherens and hemidesmosomes junctions were observed during spermatogenesis. The above findings collectively suggest that the intensity and localization of TJ's and gap junctions vary according to the spermatogenetic stages that might be protected the developing germ cells from own immune response.
Collapse
Affiliation(s)
- Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Faculty of Veterinary and Animal Sciences, LUAWMS, Uthal, 90150, Pakistan
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Imtiaz Ali Ujjan
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Abdul Haseeb
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Lingling Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Feroza Soomro
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Shahid Faraz
- Faculty of Veterinary and Animal Sciences, LUAWMS, Uthal, 90150, Pakistan
| | - Benazir Sahito
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Waseem Ali
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
17
|
Sarkar D, Singh SK. Maternal exposure to polybrominated diphenyl ether (BDE-209) during lactation affects germ cell survival with altered testicular glucose homeostasis and oxidative status through down-regulation of Cx43 and p27Kip1 in prepubertal mice offspring. Toxicology 2017; 386:103-119. [DOI: 10.1016/j.tox.2017.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/12/2017] [Accepted: 05/27/2017] [Indexed: 11/29/2022]
|
18
|
Multiple and complex influences of connexins and pannexins on cell death. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [PMID: 28625689 DOI: 10.1016/j.bbamem.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell death is a fundamental process for organogenesis, immunity and cell renewal. During the last decades a broad range of molecular tools were identified as important players for several different cell death pathways (apoptosis, pyroptosis, necrosis, autosis…). Aside from these direct regulators of cell death programs, several lines of evidence proposed connexins and pannexins as potent effectors of cell death. In the present review we discussed the potential roles played by connexins, pannexins and innexins in the different cell death programs at different scales from gap junction intercellular communication to protein-protein interactions. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
|
19
|
Sarkar D, Singh SK. Neonatal hypothyroidism affects testicular glucose homeostasis through increased oxidative stress in prepubertal mice: effects on GLUT3, GLUT8 and Cx43. Andrology 2017; 5:749-762. [PMID: 28471544 DOI: 10.1111/andr.12363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/04/2017] [Accepted: 03/10/2017] [Indexed: 12/20/2022]
Abstract
Thyroid hormones (THs) play an important role in maintaining the link between metabolism and reproduction and the altered THs status is associated with induction of oxidative stress in various organs like brain, heart, liver and testis. Further, reactive oxygen species play a pivotal role in regulation of glucose homeostasis in several organs, and glucose utilization by Leydig cells is essential for testosterone biosynthesis and thus is largely dependent on glucose transporter 8 (GLUT8). Glucose uptake by Sertoli cells is mediated through glucose transporter 3 (GLUT3) under the influence of THs to meet energy requirement of developing germ cells. THs also modulate level of gap junctional protein such as connexin 43 (Cx43), a potential regulator of cell proliferation and apoptosis in the seminiferous epithelium. Although the role of transient neonatal hypothyroidism in adult testis in terms of testosterone production is well documented, the effect of THs deficiency in early developmental period and its role in testicular glucose homeostasis and oxidative stress with reference to Cx43 in immature mice remain unknown. Therefore, the present study was conducted to evaluate the effect of neonatal hypothyroidism on testicular glucose homeostasis and oxidative stress at postnatal days (PND) 21 and 28 in relation to GLUT3, GLUT8 and Cx43. Hypothyroidism induced by 6-propyl-2-thiouracil (PTU) markedly decreased testicular glucose level with considerable reduction in expression level of GLUT3 and GLUT8. Likewise, lactate dehydrogenase (LDH) activity and intratesticular concentration of lactate were also decreased in hypothyroid mice. There was also a rise in germ cell apoptosis with increased expression of caspase-3 in PTU-treated mice. Further, neonatal hypothyroidism affected germ cell proliferation with decreased expression of proliferating cell nuclear antigen (PCNA) and Cx43. In conclusion, our results suggest that neonatal hypothyroidism alters testicular glucose homeostasis via increased oxidative stress in prepubertal mice, thereby affecting germ cell survival and proliferation.
Collapse
Affiliation(s)
- D Sarkar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - S K Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
20
|
Zhang H, Na W, Zhang HL, Wang N, Du ZQ, Wang SZ, Wang ZP, Zhang Z, Li H. TCF21 is related to testis growth and development in broiler chickens. Genet Sel Evol 2017; 49:25. [PMID: 28235410 PMCID: PMC5326497 DOI: 10.1186/s12711-017-0299-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
Background Large amounts of fat deposition often lead to loss of reproductive efficiency in humans and animals. We used broiler chickens as a model species to conduct a two-directional selection for and against abdominal fat over 19 generations, which resulted in a lean and a fat line. Direct selection for abdominal fat content also indirectly resulted in significant differences (P < 0.05) in testis weight (TeW) and in TeW as a percentage of total body weight (TeP) between the lean and fat lines. Results A total of 475 individuals from the generation 11 (G11) were genotyped. Genome-wide association studies revealed two regions on chicken chromosomes 3 and 10 that were associated with TeW and TeP. Forty G16 individuals (20 from each line), were further profiled by focusing on these two chromosomal regions, to identify candidate genes with functions that may be potentially related to testis growth and development. Of the nine candidate genes identified with database mining, a significant association was confirmed for one gene, TCF21, based on mRNA expression analysis. Gene expression analysis of the TCF21 gene was conducted again across 30 G19 individuals (15 individuals from each line) and the results confirmed the findings on the G16 animals. Conclusions This study revealed that the TCF21 gene is related to testis growth and development in male broilers. This finding will be useful to guide future studies to understand the genetic mechanisms that underlie reproductive efficiency. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0299-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wei Na
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hong-Li Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhi-Qiang Du
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shou-Zhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhi-Peng Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhiwu Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China. .,Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
21
|
Severi-Aguiar GDDC, Pinto SJ, Capucho C, Oliveira CA, Diamante MA, Barbieri R, Predes FS, Dolder H. Chronic Intake of Green Propolis Negatively Affecting the Rat Testis. Pharmacognosy Res 2017; 9:27-33. [PMID: 28250650 PMCID: PMC5330099 DOI: 10.4103/0974-8490.199777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Human and animal evidence suggests that environmental toxicants may have an adverse impact on male reproductive health, reducing the population's reproductive output. Owing to the renewed attraction for natural products, some of them constitute effective alternatives to mitigate these effects. Propolis is a candidate for this use because of its intrinsic properties. In many situations, it improved the testicular damage and alleviated the toxic effects induced by environmental contaminant exposure. OBJECTIVE The aim of this study was to investigate possible alterations of testicular parameters and certify if its use is really advantageous to the testis, since this could affect rat reproductive function. MATERIALS AND METHODS Forty-eight adult male Wistar rats were divided into four groups (Co = control, T1 = 3 mg propolis/kg/day, T2 = 6 mg/kg/day, T3 = 10 mg/kg/day) and were exposed during 56 days. The testes were assessed with morphometrical, stereological, and ultrastructural analyses. Cell proliferation and death were diagnosed, respectively, by immunocytochemistry. Connexin 43 (Cx43) and N-cadherin transcript levels were determined by reverse transcription-polymerase chain reaction. RESULTS Increased cell proliferation and Leydig cell volume were observed in T2, and in contrast, Cx43 upregulation and cell death were observed in T3. Both T2 and T3 showed ultrastructural abnormalities in testicular parenchyma. CONCLUSION We recommend a cautious intake of propolis to avoid deleterious effects. SUMMARY Chronic intake of Brazilian green propolis induced N.-cadherin downregulation and decreased on seminiferous tubule volumeIncrease on connexin 43 expression and cell death and decrease in Leydig cell.(LC) number/testis with the concentration of 10 mg/kg/day were observedIncrease on cell proliferation, cytoplasmic proportion, and volume of LC with the concentration of 6 mg/kg/day was detectedThe presence of empty spaces between spermatids and malformed spermatozoa in the lumen of seminiferous tubule was showedThis male reproductive disruption can be linked to phenolic compounds present in Brazilian green propolis. Abbreviation Used: AEC: 3-amino-9-ethylcarbazole; AJ: Adherens junction; AME: Aromadendrin-40-methyl ether; CAPE: Caffeic acid phenethyl ester; Co: Control group; C×43: Connexin 43; DAB: Diaminobenzidine; dNTP: Deoxyribonucleotide phosphate; DSP: Daily sperm production; FA: Ferulic acid; FSH: Follicle-stimulating hormone; GJ: Gap junction; GJIC: Gap junction intercellular communication; HPLC: High-performance liquid chromatography; LC: Leydig cell; LH: Luteinizing hormone; N-cad: N-cadherin; PCNA: Proliferating cell nuclear antigen; PCR: Polymerase chain reaction; RT-PCR: Reverse transcription-polymerase chain reaction; SDM: Standard deviation of mean; T1: Group exposed to 3 mg of propolis/kg/day; T2: Group exposed to 6 mg of propolis/kg/day; T3: Group exposed to 10 mg of propolis/kg/day; TUNEL: Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling; WB-ras 2 cells: Ras-transformed rat liver epithelial cell line.
Collapse
Affiliation(s)
- Grasiela Dias de Campos Severi-Aguiar
- Reproductive Biology Laboratory, Department of Structural and Functional Biology, Biology Institute, State University of Campinas – UNICAMP, Campinas, Brazil
| | - Suellen Josine Pinto
- Heath Sciences Nucleus, Hermínio Ometto Univerity Center, UNIARARAS, Araras, São Paulo, Brazil
| | - Cristina Capucho
- Reproductive Biology Laboratory, Department of Structural and Functional Biology, Biology Institute, State University of Campinas – UNICAMP, Campinas, Brazil
| | - Camila Andrea Oliveira
- Graduate Program in Biomedical Sciences, Hermínio Ometto University Center, UNIARARAS, Araras, São Paulo, Brazil
| | - Maria Aparecida Diamante
- Reproductive Biology Laboratory, Department of Structural and Functional Biology, Biology Institute, State University of Campinas – UNICAMP, Campinas, Brazil
| | - Renata Barbieri
- Heath Sciences Nucleus, Hermínio Ometto Univerity Center, UNIARARAS, Araras, São Paulo, Brazil
| | - Fabrícia Souza Predes
- Department of Biological Sciences, State University of Paraná (UNESPAR), Paranaguá, Paraná, Brazil
| | - Heidi Dolder
- Reproductive Biology Laboratory, Department of Structural and Functional Biology, Biology Institute, State University of Campinas – UNICAMP, Campinas, Brazil
| |
Collapse
|
22
|
Arnoldussen YJ, Anmarkrud KH, Skaug V, Apte RN, Haugen A, Zienolddiny S. Effects of carbon nanotubes on intercellular communication and involvement of IL-1 genes. J Cell Commun Signal 2016; 10:153-62. [PMID: 27101311 PMCID: PMC4882305 DOI: 10.1007/s12079-016-0323-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/16/2016] [Indexed: 01/01/2023] Open
Abstract
An increasing amount of products containing engineered nanoparticles is emerging. Among these particles are carbon nanotubes (CNTs) which are of interest for a wide range of industrial and biomedical applications. There have been raised concerns over the effects of CNTs on human health. Some types of CNTs are classified as group 2B carcinogens by the International Agency for Research on Cancer. CNTs may also induce pulmonary inflammatory and fibrotic effects. By utilizing CNTs of different lengths, we investigated the role of the proinflammatory cytokine, interleukin-1 (IL-1) on gap junctional intercellular communication (GJIC) by using IL-1 wild-type (IL1-WT) and IL-1 knock-out (IL1-KO) cells. GJIC decreased equally in both cell types after CNT exposure. Immunofluorescence staining showed Gja1 and Gjb2 in gap junctions and hemichannels for both cell types. Gjb1 and Gjb2 expression was low in IL1-KO cells, which was confirmed by protein analysis. Gja1 was upregulated with both CNTs, whereas Gjb1 was down-regulated by CNT-2 in IL1-WT cells. Connexin mRNA expression was regulated differently by the CNTs. CNT-1 affected Gja1 and Gjb2, whereas CNT-2 had an effect on Gjb1. CNTs negatively affect GJIC through gap junctions independently of the length of CNT and IL-1 status. Furthermore, connexin gene expression was affected by IL-1 at transcriptional and translational levels. As both CNTs used in this study are cytotoxic to the cells and reduce cell survival, we suggest that CNT-induced reduction in GJIC may be important for inhibiting transfer of cell survival signals between cells.
Collapse
Affiliation(s)
- Yke Jildouw Arnoldussen
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Pb 8149 Dep, N-0033, Oslo, Norway
| | - Kristine Haugen Anmarkrud
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Pb 8149 Dep, N-0033, Oslo, Norway
| | - Vidar Skaug
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Pb 8149 Dep, N-0033, Oslo, Norway
| | - Ron N Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, The Faculty of Health Sciences, Ben Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Aage Haugen
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Pb 8149 Dep, N-0033, Oslo, Norway
| | - Shanbeh Zienolddiny
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Pb 8149 Dep, N-0033, Oslo, Norway.
| |
Collapse
|
23
|
Use of a rat ex-vivo testis culture method to assess toxicity of select known male reproductive toxicants. Reprod Toxicol 2016; 60:92-103. [DOI: 10.1016/j.reprotox.2016.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 01/12/2016] [Accepted: 01/18/2016] [Indexed: 01/21/2023]
|
24
|
Chojnacka K, Hejmej A, Zarzycka M, Tworzydlo W, Bilinski S, Pardyak L, Kaminska A, Bilinska B. Flutamide induces alterations in the cell-cell junction ultrastructure and reduces the expression of Cx43 at the blood-testis barrier with no disturbance in the rat seminiferous tubule morphology. Reprod Biol Endocrinol 2016; 14:14. [PMID: 27036707 PMCID: PMC4818424 DOI: 10.1186/s12958-016-0144-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Present study was designed to establish a causal connection between changes in the cell-cell junction protein expression at the blood-testis barrier and alterations in the adult rat testis histology following an anti-androgen flutamide exposure. Particular emphasis was placed on the basal ectoplasmic specialization (ES) in the seminiferous epithelium and expression of gap junction protein, connexin 43 (Cx43). METHODS Flutamide (50 mg/kg body weight) was administered to male rats daily from 82 to 88 postnatal day. Testes from 90-day-old control and flutamide-exposed rats were used for all analyses. Testis morphology was analyzed using light and electron microscopy. Gene and protein expressions were analyzed by real-time RT-PCR and Western blotting, respectively, protein distribution by immunohistochemistry, and steroid hormone concentrations by radioimmunoassay. RESULTS Seminiferous epithelium of both groups of rats displayed normal histology without any loss of germ cells. In accord, no difference in the apoptosis and proliferation level was found between control and treated groups. As shown by examination of semi-thin and ultrathin sections, cell surface occupied by the basal ES connecting neighboring Sertoli cells and the number of gap and tight junctions coexisting with the basal ES were apparently reduced in flutamide-treated rats. Moreover, the appearance of unconventional circular ES suggests enhanced internalization and degradation of the basal ES. These changes were accompanied by decreased Cx43 and ZO-1 expression (p < 0.01) and a loss of linear distribution of these proteins at the region of the blood-testis barrier. On the other hand, Cx43 expression in the interstitial tissue of flutamide-treated rats increased (p < 0.01), which could be associated with Leydig cell hypertrophy. Concomitantly, both intratesticular testosterone and estradiol concentrations were elevated (p < 0.01), but testosterone to estradiol ratio decreased significantly (p < 0.05) in flutamide-treated rats compared to the controls. CONCLUSIONS Short-term treatment with flutamide applied to adult rats exerts its primary effect on the basal ES, coexisting junctional complexes and their constituent proteins Cx43 and ZO-1, without any apparent morphological alterations in the seminiferous epithelium. In the interstitial compartment, however, short-term exposure leads to both histological and functional changes of the Leydig cells.
Collapse
Affiliation(s)
- Katarzyna Chojnacka
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Marta Zarzycka
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Szczepan Bilinski
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Alicja Kaminska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
25
|
Pinet-Charvet C, Geller S, Desroziers E, Ottogalli M, Lomet D, Georgelin C, Tillet Y, Franceschini I, Vaudin P, Duittoz A. GnRH Episodic Secretion Is Altered by Pharmacological Blockade of Gap Junctions: Possible Involvement of Glial Cells. Endocrinology 2016; 157:304-22. [PMID: 26562259 DOI: 10.1210/en.2015-1437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Episodic release of GnRH is essential for reproductive function. In vitro studies have established that this episodic release is an endogenous property of GnRH neurons and that GnRH secretory pulses are associated with synchronization of GnRH neuron activity. The cellular mechanisms by which GnRH neurons synchronize remain largely unknown. There is no clear evidence of physical coupling of GnRH neurons through gap junctions to explain episodic synchronization. However, coupling of glial cells through gap junctions has been shown to regulate neuron activity in their microenvironment. The present study investigated whether glial cell communication through gap junctions plays a role in GnRH neuron activity and secretion in the mouse. Our findings show that Glial Fibrillary Acidic Protein-expressing glial cells located in the median eminence in close vicinity to GnRH fibers expressed Gja1 encoding connexin-43. To study the impact of glial-gap junction coupling on GnRH neuron activity, an in vitro model of primary cultures from mouse embryo nasal placodes was used. In this model, GnRH neurons possess a glial microenvironment and were able to release GnRH in an episodic manner. Our findings show that in vitro glial cells forming the microenvironment of GnRH neurons expressed connexin-43 and displayed functional gap junctions. Pharmacological blockade of the gap junctions with 50 μM 18-α-glycyrrhetinic acid decreased GnRH secretion by reducing pulse frequency and amplitude, suppressed neuronal synchronization and drastically reduced spontaneous electrical activity, all these effects were reversed upon 18-α-glycyrrhetinic acid washout.
Collapse
Affiliation(s)
- Caroline Pinet-Charvet
- Unité Mixte de Recherche (UMR) 85 Physiologie de la Reproduction et des Comportements (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Institut National de la Recherche Agronomique (INRA); UMR7247 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Centre National de la Recherche Scientifique (CNRS); and Institut Français du Cheval et de l'Equitation (IFCE) (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37380 Nouzilly, France; Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA CNRS IFCE (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.) and CNRS UMR7350 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Laboratoire de Mathématiques et Physiques Théoriques, Université François Rabelais, F-37041 Tours, France; Fédération Denis Poisson (C.G.), F-37000 Tours, France; Structure Fédérative de Recherche (SFR) FED4226 Neuro-Imagerie Fonctionnelle (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37044 Tours, France; and Université de Poitiers (C.P.-C.), Unité de Formation et de Recherche (UFR) Pharmacie, F-86000 Poitiers, France
| | - Sarah Geller
- Unité Mixte de Recherche (UMR) 85 Physiologie de la Reproduction et des Comportements (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Institut National de la Recherche Agronomique (INRA); UMR7247 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Centre National de la Recherche Scientifique (CNRS); and Institut Français du Cheval et de l'Equitation (IFCE) (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37380 Nouzilly, France; Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA CNRS IFCE (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.) and CNRS UMR7350 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Laboratoire de Mathématiques et Physiques Théoriques, Université François Rabelais, F-37041 Tours, France; Fédération Denis Poisson (C.G.), F-37000 Tours, France; Structure Fédérative de Recherche (SFR) FED4226 Neuro-Imagerie Fonctionnelle (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37044 Tours, France; and Université de Poitiers (C.P.-C.), Unité de Formation et de Recherche (UFR) Pharmacie, F-86000 Poitiers, France
| | - Elodie Desroziers
- Unité Mixte de Recherche (UMR) 85 Physiologie de la Reproduction et des Comportements (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Institut National de la Recherche Agronomique (INRA); UMR7247 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Centre National de la Recherche Scientifique (CNRS); and Institut Français du Cheval et de l'Equitation (IFCE) (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37380 Nouzilly, France; Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA CNRS IFCE (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.) and CNRS UMR7350 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Laboratoire de Mathématiques et Physiques Théoriques, Université François Rabelais, F-37041 Tours, France; Fédération Denis Poisson (C.G.), F-37000 Tours, France; Structure Fédérative de Recherche (SFR) FED4226 Neuro-Imagerie Fonctionnelle (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37044 Tours, France; and Université de Poitiers (C.P.-C.), Unité de Formation et de Recherche (UFR) Pharmacie, F-86000 Poitiers, France
| | - Monique Ottogalli
- Unité Mixte de Recherche (UMR) 85 Physiologie de la Reproduction et des Comportements (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Institut National de la Recherche Agronomique (INRA); UMR7247 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Centre National de la Recherche Scientifique (CNRS); and Institut Français du Cheval et de l'Equitation (IFCE) (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37380 Nouzilly, France; Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA CNRS IFCE (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.) and CNRS UMR7350 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Laboratoire de Mathématiques et Physiques Théoriques, Université François Rabelais, F-37041 Tours, France; Fédération Denis Poisson (C.G.), F-37000 Tours, France; Structure Fédérative de Recherche (SFR) FED4226 Neuro-Imagerie Fonctionnelle (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37044 Tours, France; and Université de Poitiers (C.P.-C.), Unité de Formation et de Recherche (UFR) Pharmacie, F-86000 Poitiers, France
| | - Didier Lomet
- Unité Mixte de Recherche (UMR) 85 Physiologie de la Reproduction et des Comportements (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Institut National de la Recherche Agronomique (INRA); UMR7247 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Centre National de la Recherche Scientifique (CNRS); and Institut Français du Cheval et de l'Equitation (IFCE) (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37380 Nouzilly, France; Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA CNRS IFCE (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.) and CNRS UMR7350 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Laboratoire de Mathématiques et Physiques Théoriques, Université François Rabelais, F-37041 Tours, France; Fédération Denis Poisson (C.G.), F-37000 Tours, France; Structure Fédérative de Recherche (SFR) FED4226 Neuro-Imagerie Fonctionnelle (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37044 Tours, France; and Université de Poitiers (C.P.-C.), Unité de Formation et de Recherche (UFR) Pharmacie, F-86000 Poitiers, France
| | - Christine Georgelin
- Unité Mixte de Recherche (UMR) 85 Physiologie de la Reproduction et des Comportements (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Institut National de la Recherche Agronomique (INRA); UMR7247 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Centre National de la Recherche Scientifique (CNRS); and Institut Français du Cheval et de l'Equitation (IFCE) (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37380 Nouzilly, France; Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA CNRS IFCE (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.) and CNRS UMR7350 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Laboratoire de Mathématiques et Physiques Théoriques, Université François Rabelais, F-37041 Tours, France; Fédération Denis Poisson (C.G.), F-37000 Tours, France; Structure Fédérative de Recherche (SFR) FED4226 Neuro-Imagerie Fonctionnelle (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37044 Tours, France; and Université de Poitiers (C.P.-C.), Unité de Formation et de Recherche (UFR) Pharmacie, F-86000 Poitiers, France
| | - Yves Tillet
- Unité Mixte de Recherche (UMR) 85 Physiologie de la Reproduction et des Comportements (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Institut National de la Recherche Agronomique (INRA); UMR7247 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Centre National de la Recherche Scientifique (CNRS); and Institut Français du Cheval et de l'Equitation (IFCE) (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37380 Nouzilly, France; Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA CNRS IFCE (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.) and CNRS UMR7350 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Laboratoire de Mathématiques et Physiques Théoriques, Université François Rabelais, F-37041 Tours, France; Fédération Denis Poisson (C.G.), F-37000 Tours, France; Structure Fédérative de Recherche (SFR) FED4226 Neuro-Imagerie Fonctionnelle (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37044 Tours, France; and Université de Poitiers (C.P.-C.), Unité de Formation et de Recherche (UFR) Pharmacie, F-86000 Poitiers, France
| | - Isabelle Franceschini
- Unité Mixte de Recherche (UMR) 85 Physiologie de la Reproduction et des Comportements (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Institut National de la Recherche Agronomique (INRA); UMR7247 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Centre National de la Recherche Scientifique (CNRS); and Institut Français du Cheval et de l'Equitation (IFCE) (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37380 Nouzilly, France; Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA CNRS IFCE (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.) and CNRS UMR7350 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Laboratoire de Mathématiques et Physiques Théoriques, Université François Rabelais, F-37041 Tours, France; Fédération Denis Poisson (C.G.), F-37000 Tours, France; Structure Fédérative de Recherche (SFR) FED4226 Neuro-Imagerie Fonctionnelle (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37044 Tours, France; and Université de Poitiers (C.P.-C.), Unité de Formation et de Recherche (UFR) Pharmacie, F-86000 Poitiers, France
| | - Pascal Vaudin
- Unité Mixte de Recherche (UMR) 85 Physiologie de la Reproduction et des Comportements (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Institut National de la Recherche Agronomique (INRA); UMR7247 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Centre National de la Recherche Scientifique (CNRS); and Institut Français du Cheval et de l'Equitation (IFCE) (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37380 Nouzilly, France; Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA CNRS IFCE (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.) and CNRS UMR7350 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Laboratoire de Mathématiques et Physiques Théoriques, Université François Rabelais, F-37041 Tours, France; Fédération Denis Poisson (C.G.), F-37000 Tours, France; Structure Fédérative de Recherche (SFR) FED4226 Neuro-Imagerie Fonctionnelle (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37044 Tours, France; and Université de Poitiers (C.P.-C.), Unité de Formation et de Recherche (UFR) Pharmacie, F-86000 Poitiers, France
| | - Anne Duittoz
- Unité Mixte de Recherche (UMR) 85 Physiologie de la Reproduction et des Comportements (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Institut National de la Recherche Agronomique (INRA); UMR7247 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Centre National de la Recherche Scientifique (CNRS); and Institut Français du Cheval et de l'Equitation (IFCE) (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37380 Nouzilly, France; Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA CNRS IFCE (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.) and CNRS UMR7350 (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), Laboratoire de Mathématiques et Physiques Théoriques, Université François Rabelais, F-37041 Tours, France; Fédération Denis Poisson (C.G.), F-37000 Tours, France; Structure Fédérative de Recherche (SFR) FED4226 Neuro-Imagerie Fonctionnelle (C.P.-C., S.G., E.D., M.O., D.L., Y.T., I.F., P.V., A.D.), F-37044 Tours, France; and Université de Poitiers (C.P.-C.), Unité de Formation et de Recherche (UFR) Pharmacie, F-86000 Poitiers, France
| |
Collapse
|
26
|
Carette D, Blondet A, Martin G, Montillet G, Janczarski S, Christin E, Pointis G, Durand P, Perrard MH. Endocrine Disrupting Effects of Noncytotoxic Doses of Carbendazim on the Pubertal Rat Seminiferous Epithelium: An Ex Vivo Study. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Cao XN, Yan C, Liu DY, Peng JP, Chen JJ, Zhou Y, Long CL, He DW, Lin T, Shen LJ, Wei GH. Fine particulate matter leads to reproductive impairment in male rats by overexpressing phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Toxicol Lett 2015; 237:181-90. [DOI: 10.1016/j.toxlet.2015.06.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/08/2015] [Accepted: 06/13/2015] [Indexed: 01/05/2023]
|
28
|
Kibschull M, Gellhaus A, Carette D, Segretain D, Pointis G, Gilleron J. Physiological roles of connexins and pannexins in reproductive organs. Cell Mol Life Sci 2015; 72:2879-98. [PMID: 26100514 PMCID: PMC11114083 DOI: 10.1007/s00018-015-1965-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022]
Abstract
Reproductive organs are complex and well-structured tissues essential to perpetuate the species. In mammals, the male and female reproductive organs vary on their organization, morphology and function. Connectivity between cells in such tissues plays pivotal roles in organogenesis and tissue functions through the regulation of cellular proliferation, migration, differentiation and apoptosis. Connexins and pannexins can be seen as major regulators of these physiological processes. In the present review, we assembled several lines of evidence demonstrating that these two families of proteins are essential for male and female reproduction.
Collapse
Affiliation(s)
- Mark Kibschull
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Toronto, M5T 3H7 Canada
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Diane Carette
- UMR S1147, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
- University of Versailles, 78035 Saint Quentin, France
- INSERM U 1065, University of Nice Sophia-Antipolis, 151 Route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Dominique Segretain
- UMR S1147, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
- University of Versailles, 78035 Saint Quentin, France
| | - Georges Pointis
- INSERM U 1065, University of Nice Sophia-Antipolis, 151 Route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Jerome Gilleron
- INSERM U 1065, University of Nice Sophia-Antipolis, 151 Route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| |
Collapse
|
29
|
Smendziuk CM, Messenberg A, Vogl AW, Tanentzapf G. Bi-directional gap junction-mediated soma-germline communication is essential for spermatogenesis. Development 2015; 142:2598-609. [PMID: 26116660 DOI: 10.1242/dev.123448] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/12/2015] [Indexed: 01/25/2023]
Abstract
Soma-germline interactions play conserved essential roles in regulating cell proliferation, differentiation, patterning and homeostasis in the gonad. In the Drosophila testis, secreted signalling molecules of the JAK-STAT, Hedgehog, BMP and EGF pathways are used to mediate soma-germline communication. Here, we demonstrate that gap junctions may also mediate direct, bi-directional signalling between the soma and germ line. When gap junctions between the soma and germ line are disrupted, germline differentiation is blocked and germline stem cells are not maintained. In the soma, gap junctions are required to regulate proliferation and differentiation. Localization and RNAi-mediated knockdown studies reveal that gap junctions in the fly testis are heterotypic channels containing Zpg (Inx4) and Inx2 on the germ line and the soma side, respectively. Overall, our results show that bi-directional gap junction-mediated signalling is essential to coordinate the soma and germ line to ensure proper spermatogenesis in Drosophila. Moreover, we show that stem cell maintenance and differentiation in the testis are directed by gap junction-derived cues.
Collapse
Affiliation(s)
- Christopher M Smendziuk
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Anat Messenberg
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - A Wayne Vogl
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, Canada V6T 1Z3
| |
Collapse
|
30
|
Pérez CV, Theas MS, Jacobo PV, Jarazo-Dietrich S, Guazzone VA, Lustig L. Dual role of immune cells in the testis: Protective or pathogenic for germ cells? SPERMATOGENESIS 2014; 3:e23870. [PMID: 23687616 PMCID: PMC3644047 DOI: 10.4161/spmg.23870] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The purpose of this review is to describe how the immune cells present in the testis interact with the germinal epithelium contributing to survival or apoptosis of germ cells (GCs). Physiologically, the immunosuppressor testicular microenvironment protects GCs from immune attack, whereas in inflammatory conditions, tolerance is disrupted and immune cells and their mediators respond to GC self antigens, inducing damage of the germinal epithelium. Considering that experimental models of autoimmune orchitis have clarified the local immune mechanisms by which protection of the testis is compromised, we described the following topics in the testis of normal and orchitic rats: (1) cell adhesion molecule expression of seminiferous tubule specialized junctions and modulation of blood-testis barrier permeability by cytokines (2) phenotypic and functional characteristics of testicular dendritic cells, macrophages, effector and regulatory T cells and mast cells and (3) effects of pro-inflammatory cytokines (TNF-α, IL-6 and FasL) and the nitric oxide-nitric oxide synthase system on GC apoptosis.
Collapse
Affiliation(s)
- Cecilia V Pérez
- Instituto de Investigaciones Biomédicas; UBA/CONICET; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
31
|
Ali S, Steinmetz G, Montillet G, Perrard MH, Loundou A, Durand P, Guichaoua MR, Prat O. Exposure to low-dose bisphenol A impairs meiosis in the rat seminiferous tubule culture model: a physiotoxicogenomic approach. PLoS One 2014; 9:e106245. [PMID: 25181051 PMCID: PMC4152015 DOI: 10.1371/journal.pone.0106245] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/29/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Bisphenol A (BPA) is one of the most widespread chemicals in the world and is suspected of being responsible for male reproductive impairments. Nevertheless, its molecular mode of action on spermatogenesis is unclear. This work combines physiology and toxicogenomics to identify mechanisms by which BPA affects the timing of meiosis and induces germ-cell abnormalities. METHODS We used a rat seminiferous tubule culture model mimicking the in vivo adult rat situation. BPA (1 nM and 10 nM) was added to the culture medium. Transcriptomic and meiotic studies were performed on the same cultures at the same exposure times (days 8, 14, and 21). Transcriptomics was performed using pangenomic rat microarrays. Immunocytochemistry was conducted with an anti-SCP3 antibody. RESULTS The gene expression analysis showed that the total number of differentially expressed transcripts was time but not dose dependent. We focused on 120 genes directly involved in the first meiotic prophase, sustaining immunocytochemistry. Sixty-two genes were directly involved in pairing and recombination, some of them with high fold changes. Immunocytochemistry indicated alteration of meiotic progression in the presence of BPA, with increased leptotene and decreased diplotene spermatocyte percentages and partial meiotic arrest at the pachytene checkpoint. Morphological abnormalities were observed at all stages of the meiotic prophase. The prevalent abnormalities were total asynapsis and apoptosis. Transcriptomic analysis sustained immunocytological observations. CONCLUSION We showed that low doses of BPA alter numerous genes expression, especially those involved in the reproductive system, and severely impair crucial events of the meiotic prophase leading to partial arrest of meiosis in rat seminiferous tubule cultures.
Collapse
Affiliation(s)
- Sazan Ali
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Centre National de la Recherche Scientifique (CNRS) UMR 7263/ Institut de Recherche pour le Développement (IRD) 237, Faculté de Médecine, Aix-Marseille Université (AMU), Marseille, France
| | - Gérard Steinmetz
- Institute of Environmental Biology and Biotechnology (IBEB), Life Science division, French Alternative Energy and Atomic Energy Commission (CEA), Marcoule, Bagnols-sur-Cèze, France
| | - Guillaume Montillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS) UMR 5242/ Institut National de la Recherche Agronomique (INRA), Ecole Normale Supérieure de Lyon (ENS), Lyon, France
| | - Marie-Hélène Perrard
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS) UMR 5242/ Institut National de la Recherche Agronomique (INRA), Ecole Normale Supérieure de Lyon (ENS), Lyon, France
| | - Anderson Loundou
- Unité d'Aide Méthodologique à la Recherche clinique, Faculté de Médecine, Aix-Marseille Université (AMU), Marseille, France
| | - Philippe Durand
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS) UMR 5242/ Institut National de la Recherche Agronomique (INRA), Ecole Normale Supérieure de Lyon (ENS), Lyon, France
| | - Marie-Roberte Guichaoua
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Centre National de la Recherche Scientifique (CNRS) UMR 7263/ Institut de Recherche pour le Développement (IRD) 237, Faculté de Médecine, Aix-Marseille Université (AMU), Marseille, France
| | - Odette Prat
- Institute of Environmental Biology and Biotechnology (IBEB), Life Science division, French Alternative Energy and Atomic Energy Commission (CEA), Marcoule, Bagnols-sur-Cèze, France
| |
Collapse
|
32
|
Carette D, Gilleron J, Chevallier D, Segretain D, Pointis G. Connexin a check-point component of cell apoptosis in normal and physiopathological conditions. Biochimie 2014; 101:1-9. [DOI: 10.1016/j.biochi.2013.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 11/18/2013] [Indexed: 12/16/2022]
|
33
|
Zhang W, Zhao G, Hu X, Wang M, Li H, Ye Y, Du Q, Yao J, Bao Z, Hong W, Fu G, Ge J, Qiu Z. Aliskiren-attenuated myocardium apoptosis via regulation of autophagy and connexin-43 in aged spontaneously hypertensive rats. J Cell Mol Med 2014; 18:1247-56. [PMID: 24702827 PMCID: PMC4124010 DOI: 10.1111/jcmm.12273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/07/2014] [Indexed: 11/26/2022] Open
Abstract
There are controversies about the mechanism of myocardium apoptosis in hypertensive heart disease. The aim of this study was to investigate the relationship among autophagy, Cx43 and apoptosis in aged spontaneously hypertensive rats (SHRs) and establish whether Aliskiren is effective or not for the treatment of myocardium apoptosis. Twenty-one SHRs aged 52 weeks were randomly divided into three groups, the first two receiving Aliskiren at a dose of 10 and 25 mg/kg/day respectively; the third, placebo for comparison with seven Wistar-Kyoto (WKY) as controls. After a 2-month treatment, systolic blood pressure (SBP), heart to bw ratios (HW/BW%) and angiotensin II (AngII) concentration were significantly enhanced in SHRs respectively. Apoptotic cardiomyocytes detected with TUNEL and immunofluorescent labelling for active caspase-3 increased nearly fourfolds in SHRs, with a decline in the expression of survivin and AKT activation, and an increase in caspase-3 activation and the ratio of Bax/Bcl-2. Myocardium autophagy, detected with immunofluorescent labelling for LC3-II, increased nearly threefolds in SHRs, with the up-regulation of Atg5, Atg16L1, Beclin-1 and LC3-II. The expression of Cx43 plaque was found to be down-regulated in SHRs. Aliskiren significantly reduced SBP, HW/BW%, AngII concentration and the expression of AT(1)R. Thus, Aliskiren protects myocardium against apoptosis by decreasing autophagy, up-regulating Cx43. These effects showed a dose-dependent tendency, but no significance. In conclusion, the myocardium apoptosis developed during the hypertensive end-stage of SHRs could be ameliorated by Aliskiren via the regulation of myocardium autophagy and maladaptive remodelling of Cx43.
Collapse
Affiliation(s)
- Wenbin Zhang
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Gang Zhao
- Shanghai Institute of Cardiovascular Diseases of Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Xiaona Hu
- Gastroenterology Department, Huadong Hospital, Fudan UniversityShanghai, China
- Shanghai Key Laboratory of Clinical Geriatric MedicineShanghai, China
| | - Min Wang
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Hua Li
- Shanghai Institute of Cardiovascular Diseases of Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Yong Ye
- Shanghai Institute of Cardiovascular Diseases of Zhongshan Hospital, Fudan UniversityShanghai, China
- Institute of Biomedical Science, Fudan UniversityShanghai, China
| | - Qijun Du
- Shanghai Institute of Cardiovascular Diseases of Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Jin Yao
- Cardiovascular Department, Huadong Hospital, Fudan UniversityShanghai, China
| | - Zhijun Bao
- Gastroenterology Department, Huadong Hospital, Fudan UniversityShanghai, China
- Shanghai Key Laboratory of Clinical Geriatric MedicineShanghai, China
| | - Wei Hong
- Shanghai Key Laboratory of Clinical Geriatric MedicineShanghai, China
- Geriatrics Department, Huadong Hospital, Fudan UniversityShanghai, China
| | - Guosheng Fu
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
- *Correspondence to: Zhaohui QIU, Ph.D., Junbo GE, M.D., Guosheng FU, M.D., Cardiovascular department, Huadong Hospital, Fudan University, 221 Yananxi Road, Shanghai 200040, China. Tel.: +86 21 62483180 (ext. 1919) Fax: +86 21 62484879 E-mail: (or) (or)
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases of Zhongshan Hospital, Fudan UniversityShanghai, China
- Institute of Biomedical Science, Fudan UniversityShanghai, China
- *Correspondence to: Zhaohui QIU, Ph.D., Junbo GE, M.D., Guosheng FU, M.D., Cardiovascular department, Huadong Hospital, Fudan University, 221 Yananxi Road, Shanghai 200040, China. Tel.: +86 21 62483180 (ext. 1919) Fax: +86 21 62484879 E-mail: (or) (or)
| | - Zhaohui Qiu
- Shanghai Key Laboratory of Clinical Geriatric MedicineShanghai, China
- Cardiovascular Department, Huadong Hospital, Fudan UniversityShanghai, China
- *Correspondence to: Zhaohui QIU, Ph.D., Junbo GE, M.D., Guosheng FU, M.D., Cardiovascular department, Huadong Hospital, Fudan University, 221 Yananxi Road, Shanghai 200040, China. Tel.: +86 21 62483180 (ext. 1919) Fax: +86 21 62484879 E-mail: (or) (or)
| |
Collapse
|
34
|
Abstract
Mammalian male fertility relies on complex inter- and intracellular signaling during spermatogenesis. Here we describe three alleles of the widely expressed A-kinase anchoring protein 9 (Akap9) gene, all of which cause gametogenic failure and infertility in the absence of marked somatic phenotypes. Akap9 disruption does not affect spindle nucleation or progression of prophase I of meiosis but does inhibit maturation of Sertoli cells, which continue to express the immaturity markers anti-Mullerian hormone and thyroid hormone receptor alpha in adults and fail to express the maturation marker p27(Kip1). Furthermore, gap and tight junctions essential for blood-testis barrier (BTB) organization are disrupted. Connexin43 (Cx43) and zona occludens-1 are improperly localized in Akap9 mutant testes, and Cx43 fails to compartmentalize germ cells near the BTB. These results identify and support a novel reproductive tissue-specific role for Akap9 in the coordinated regulation of Sertoli cells in the testis.
Collapse
|
35
|
Chevallier D, Carette D, Segretain D, Gilleron J, Pointis G. Connexin 43 a check-point component of cell proliferation implicated in a wide range of human testis diseases. Cell Mol Life Sci 2013; 70:1207-20. [PMID: 22918484 PMCID: PMC11113700 DOI: 10.1007/s00018-012-1121-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 01/09/2023]
Abstract
Gap junction channels link cytoplasms of adjacent cells. Connexins, their constitutive proteins, are essential in cell homeostasis and are implicated in numerous physiological processes. Spermatogenesis is a sophisticated model of germ cell proliferation, differentiation, survival, and apoptosis, in which a connexin isotype, connexin 43, plays a crucial role as evidenced by genomic approaches based on gene deletion. The balance between cell proliferation/differentiation/apoptosis is a prerequisite for maintaining levels of spermatozoa essential for fertility and for limiting anarchic cell proliferation, a major risk of testis tumor. The present review highlights the emerging role of connexins in testis pathogenesis, focusing specifically on two intimately interconnected human testicular diseases (azoospermia with impaired spermatogenesis and testicular germ cell tumors), whose incidence increased during the last decades. This work proposes connexin 43 as a potential cancer diagnostic and prognostic marker, as well as a promising therapeutic target for testicular diseases.
Collapse
Affiliation(s)
- Daniel Chevallier
- Department of Urology, Pasteur Hospital, Nice, France
- INSERM U 1065, Team 5 “Physiopathologic Control of Germ Cell Proliferation: Genomic and Non Genomic Mechanisms”, University Nice Sophia-Antipolis, C3M, 151 route Saint-Antoine de Ginestière BP 2 3194, Nice Cedex 3, 06204 France
| | - Diane Carette
- UMR S775, University Paris Descartes, 45 rue des Saints Pères, Paris, 75006 France
- University of Versailles, Saint Quentin, 78035 France
| | - Dominique Segretain
- UMR S775, University Paris Descartes, 45 rue des Saints Pères, Paris, 75006 France
- University of Versailles, Saint Quentin, 78035 France
| | - Jérome Gilleron
- INSERM U 1065, Team 5 “Physiopathologic Control of Germ Cell Proliferation: Genomic and Non Genomic Mechanisms”, University Nice Sophia-Antipolis, C3M, 151 route Saint-Antoine de Ginestière BP 2 3194, Nice Cedex 3, 06204 France
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Georges Pointis
- INSERM U 1065, Team 5 “Physiopathologic Control of Germ Cell Proliferation: Genomic and Non Genomic Mechanisms”, University Nice Sophia-Antipolis, C3M, 151 route Saint-Antoine de Ginestière BP 2 3194, Nice Cedex 3, 06204 France
| |
Collapse
|
36
|
Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model. Toxicol Appl Pharmacol 2013; 268:27-36. [DOI: 10.1016/j.taap.2013.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 11/20/2022]
|
37
|
Liu ML, Wang H, Wang ZR, Zhang YF, Chen YQ, Zhu FH, Zhang YQ, Ma J, Li Z. TGF-β1 regulation of estrogen production in mature rat Leydig cells. PLoS One 2013; 8:e60197. [PMID: 23555924 PMCID: PMC3612063 DOI: 10.1371/journal.pone.0060197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/22/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Besides androgens, estrogens produced in Leydig cells are also crucial for mammalian germ cell differentiation. Transforming growth factor-β1 (TGF-β1) is now known to have multiple effects on regulation of Leydig cell function. The objective of the present study is to determine whether TGF-β1 regulates estradiol (E2) synthesis in adult rat Leydig cells and then to assess the impact of TGF-β1 on Cx43-based gap junctional intercellular communication (GJIC) between Leydig cells. METHODOLOGY/PRINCIPAL FINDINGS Primary cultured Leydig cells were incubated in the presence of recombinant TGF-β1 and the production of E2 as well as testosterone (T) were measured by RIA. The activity of P450arom was addressed by the tritiated water release assay and the expression of Cyp19 gene was evaluated by Western blotting and real time RT-PCR. The expression of Cx43 and GJIC were investigated with immunofluorescence and fluorescence recovery after photo-bleaching (FRAP), respectively. Results from this study show that TGF-β1 down-regulates the level of E2 secretion and the activity of P450arom in a dose-dependent manner in adult Leydig cells. In addition, the expression of Cx43 and GJIC was closely related to the regulation of E2 and TGF-β1, and E2 treatment in turn restored the inhibition of TGF-β1 on GJIC. CONCLUSIONS Our results indicate, for the first time in adult rat Leydig cells, that TGF-β1 suppresses P450arom activity, as well as the expression of the Cyp19 gene, and that depression of E2 secretion leads to down-regulation of Cx43-based GJIC between Leydig cells.
Collapse
Affiliation(s)
- Man-Li Liu
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
- Department of Human Anatomy and Histology and Embryology, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Huan Wang
- Department of Dermatology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zong-Ren Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yu-Fen Zhang
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yan-Qiu Chen
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Fang-Hong Zhu
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yuan-Qiang Zhang
- Department of Human Anatomy and Histology and Embryology, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jing Ma
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zhen Li
- Department of Human Anatomy and Histology and Embryology, the Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
38
|
Mauro V, Carette D, Pontier-Bres R, Dompierre J, Czerucka D, Segretain D, Gilleron J, Pointis G. The anti-mitotic drug griseofulvin induces apoptosis of human germ cell tumor cells through a connexin 43-dependent molecular mechanism. Apoptosis 2013; 18:480-91. [DOI: 10.1007/s10495-012-0800-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Sánchez-Cárdenas C, Guerrero A, Treviño CL, Hernández-Cruz A, Darszon A. Acute slices of mice testis seminiferous tubules unveil spontaneous and synchronous Ca2+ oscillations in germ cell clusters. Biol Reprod 2012; 87:92. [PMID: 22914313 DOI: 10.1095/biolreprod.112.100255] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spermatogenic cell differentiation involves changes in the concentration of cytoplasmic Ca(2+) ([Ca(2+)]i); however, very few studies exist on [Ca(2+)]i dynamics in these cells. Other tissues display Ca(2+) oscillations involving multicellular functional arrangements. These phenomena have been studied in acute slice preparations that preserve tissue architecture and intercellular communications. Here we report the implementation of intracellular Ca(2+) imaging in a sliced seminiferous tubule (SST) preparation to visualize [Ca(2+)]i changes of living germ cells in situ within the SST preparation. Ca(2+) imaging revealed that a subpopulation of male germ cells display spontaneous [Ca(2+)]i fluctuations resulting from Ca(2+) entry possibly throughout Ca(V)3 channels. These [Ca(2+)]i fluctuation patterns are also present in single acutely dissociated germ cells, but they differ from those recorded from germ cells in the SST preparation. Often, spontaneous Ca(2+) fluctuations of spermatogenic cells in the SST occur synchronously, so that clusters of cells can display Ca(2+) oscillations for at least 10 min. Synchronous Ca(2+) oscillations could be mediated by intercellular communication via gap junctions, although intercellular bridges could also be involved. We also observed an increase in [Ca(2+)]i after testosterone application, suggesting the presence of functional Sertoli cells in the SST. In summary, we believe that the SST preparation is suitable to explore the physiology of spermatogenic cells in their natural environment, within the seminiferous tubules, in particular Ca(2+) signaling phenomena, functional cell-cell communication, and multicellular functional arrangements.
Collapse
Affiliation(s)
- Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
40
|
Kar R, Batra N, Riquelme MA, Jiang JX. Biological role of connexin intercellular channels and hemichannels. Arch Biochem Biophys 2012; 524:2-15. [PMID: 22430362 PMCID: PMC3376239 DOI: 10.1016/j.abb.2012.03.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/16/2012] [Accepted: 03/06/2012] [Indexed: 12/11/2022]
Abstract
Gap junctions (GJ) and hemichannels (HC) formed from the protein subunits called connexins are transmembrane conduits for the exchange of small molecules and ions. Connexins and another group of HC-forming proteins, pannexins comprise the two families of transmembrane proteins ubiquitously distributed in vertebrates. Most cell types express more than one connexin or pannexin. While connexin expression and channel activity may vary as a function of physiological and pathological states of the cell and tissue, only a few studies suggest the involvement of pannexin HC in acquired pathological conditions. Importantly, genetic mutations in connexin appear to interfere with GJ and HC function which results in several diseases. Thus connexins could serve as potential drug target for therapeutic intervention. Growing evidence suggests that diseases resulting from HC dysfunction might open a new direction for development of specific HC reagents. This review provides a comprehensive overview of the current studies of GJ and HC formed by connexins and pannexins in various tissue and organ systems including heart, central nervous system, kidney, mammary glands, ovary, testis, lens, retina, inner ear, bone, cartilage, lung and liver. In addition, present knowledge of the role of GJ and HC in cell cycle progression, carcinogenesis and stem cell development is also discussed.
Collapse
Affiliation(s)
| | | | - Manuel A Riquelme
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900
| | - Jean X. Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900
| |
Collapse
|
41
|
Knapczyk-Stwora K, Durlej-Grzesiak M, Duda M, Slomczynska M. Expression of Connexin 43 in the Porcine Foetal Gonads During Development. Reprod Domest Anim 2012; 48:272-7. [DOI: 10.1111/j.1439-0531.2012.02144.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Giese S, Hossain H, Markmann M, Chakraborty T, Tchatalbachev S, Guillou F, Bergmann M, Failing K, Weider K, Brehm R. Sertoli-cell-specific knockout of connexin 43 leads to multiple alterations in testicular gene expression in prepubertal mice. Dis Model Mech 2012; 5:895-913. [PMID: 22699423 PMCID: PMC3484871 DOI: 10.1242/dmm.008649] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A significant decline in human male reproductive function has been reported for the past 20 years but the molecular mechanisms remain poorly understood. However, recent studies showed that the gap junction protein connexin-43 (CX43; also known as GJA1) might be involved. CX43 is the predominant testicular connexin (CX) in most species, including in humans. Alterations of its expression are associated with different forms of spermatogenic disorders and infertility. Men with impaired spermatogenesis often exhibit a reduction or loss of CX43 expression in germ cells (GCs) and Sertoli cells (SCs). Adult male transgenic mice with a conditional knockout (KO) of the Gja1 gene [referred to here as connexin-43 (Cx43)] in SCs (SCCx43KO) show a comparable testicular phenotype to humans and are infertile. To detect possible signaling pathways and molecular mechanisms leading to the testicular phenotype in adult SCCx43KO mice and to their failure to initiate spermatogenesis, the testicular gene expression of 8-day-old SCCx43KO and wild-type (WT) mice was compared. Microarray analysis revealed that 658 genes were significantly regulated in testes of SCCx43KO mice. Of these genes, 135 were upregulated, whereas 523 genes were downregulated. For selected genes the results of the microarray analysis were confirmed using quantitative real-time PCR and immunostaining. The majority of the downregulated genes are GC-specific and are essential for mitotic and meiotic progression of spermatogenesis, including Stra8, Dazl and members of the DM (dsx and map-3) gene family. Other altered genes can be associated with transcription, metabolism, cell migration and cytoskeleton organization. Our data show that deletion of Cx43 in SCs leads to multiple alterations of gene expression in prepubertal mice and primarily affects GCs. The candidate genes could represent helpful markers for investigators exploring human testicular biopsies from patients showing corresponding spermatogenic deficiencies and for studying the molecular mechanisms of human male sterility.
Collapse
Affiliation(s)
- Sarah Giese
- Institute of Veterinary Anatomy, Histology and Embryology, University of Giessen, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium into the basal and the apical (adluminal) compartments. Meiosis I and II, spermiogenesis, and spermiation all take place in a specialized microenvironment behind the BTB in the apical compartment, but spermatogonial renewal and differentiation and cell cycle progression up to the preleptotene spermatocyte stage take place outside of the BTB in the basal compartment of the epithelium. However, the BTB is not a static ultrastructure. Instead, it undergoes extensive restructuring during the seminiferous epithelial cycle of spermatogenesis at stage VIII to allow the transit of preleptotene spermatocytes at the BTB. Yet the immunological barrier conferred by the BTB cannot be compromised, even transiently, during the epithelial cycle to avoid the production of antibodies against meiotic and postmeiotic germ cells. Studies have demonstrated that some unlikely partners, namely adhesion protein complexes (e.g., occludin-ZO-1, N-cadherin-β-catenin, claudin-5-ZO-1), steroids (e.g., testosterone, estradiol-17β), nonreceptor protein kinases (e.g., focal adhesion kinase, c-Src, c-Yes), polarity proteins (e.g., PAR6, Cdc42, 14-3-3), endocytic vesicle proteins (e.g., clathrin, caveolin, dynamin 2), and actin regulatory proteins (e.g., Eps8, Arp2/3 complex), are working together, apparently under the overall influence of cytokines (e.g., transforming growth factor-β3, tumor necrosis factor-α, interleukin-1α). In short, a "new" BTB is created behind spermatocytes in transit while the "old" BTB above transiting cells undergoes timely degeneration, so that the immunological barrier can be maintained while spermatocytes are traversing the BTB. We also discuss recent findings regarding the molecular mechanisms by which environmental toxicants (e.g., cadmium, bisphenol A) induce testicular injury via their initial actions at the BTB to elicit subsequent damage to germ-cell adhesion, thereby leading to germ-cell loss, reduced sperm count, and male infertility or subfertility. Moreover, we also critically evaluate findings in the field regarding studies on drug transporters in the testis and discuss how these influx and efflux pumps regulate the entry of potential nonhormonal male contraceptives to the apical compartment to exert their effects. Collectively, these findings illustrate multiple potential targets are present at the BTB for innovative contraceptive development and for better delivery of drugs to alleviate toxicant-induced reproductive dysfunction in men.
Collapse
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
44
|
Gregory M, Kahiri CN, Barr KJ, Smith CE, Hermo L, Cyr DG, Kidder GM. Male reproductive system defects and subfertility in a mutant mouse model of oculodentodigital dysplasia1. ACTA ACUST UNITED AC 2011; 34:e630-41. [DOI: 10.1111/j.1365-2605.2011.01224.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
45
|
Pointis G, Gilleron J, Carette D, Segretain D. Testicular connexin 43, a precocious molecular target for the effect of environmental toxicants on male fertility. SPERMATOGENESIS 2011; 1:303-317. [PMID: 22332114 DOI: 10.4161/spmg.1.4.18392] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/10/2011] [Accepted: 10/10/2011] [Indexed: 02/08/2023]
Abstract
Many recent epidemiological, clinical and experimental findings support the hypothesis that environmental toxicants are responsible for the increasing male reproductive disorders (congenital malformations, declining sperm counts and testicular cancer) over the past 20 years. It has also been reported that exposure to these toxicants, during critical periods of development (fetal and neonatal), represents a more considerable risk for animals and humans than exposure during adulthood. However, the molecular targets for these chemicals have not been clearly identified. Recent studies showed that a family of transmembranous proteins, named connexins, regulates numerous physiological processes involved in testicular development and function, such as Sertoli and germ cell proliferation, differentiation, germ cell migration and apoptosis. In the testis, knockout strategy revealed that connexin 43, the predominant connexin in this organ, is essential for spermatogenesis. In addition, there is evidence that many environmental toxicants could alter testicular connexin 43 by dysregulation of numerous mechanisms controlling its function. In the present work, we propose first to give an overview of connexin expression and intercellular gap junction coupling in the developing fetal and neonatal testes. Second, we underline the impact of maternally chemical exposure on connexin 43 expression in the perinatal developing testis. Lastly, we attempt to link this precocious effect to male offspring fertility.
Collapse
|
46
|
Gilleron J, Carette D, Fiorini C, Dompierre J, Macia E, Denizot JP, Segretain D, Pointis G. The large GTPase dynamin2: A new player in connexin 43 gap junction endocytosis, recycling and degradation. Int J Biochem Cell Biol 2011; 43:1208-17. [DOI: 10.1016/j.biocel.2011.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
|
47
|
Walczak-Jedrzejowska R, Kula K, Oszukowska E, Marchlewska K, Kula W, Slowikowska-Hilczer J. Testosterone and oestradiol in concert protect seminiferous tubule maturation against inhibition by GnRH-antagonist. ACTA ACUST UNITED AC 2011; 34:e378-85. [PMID: 21535008 DOI: 10.1111/j.1365-2605.2011.01146.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oestradiol enhances follicle stimulating hormone (FSH) action on seminiferous tubule maturation, but the relative involvement of oestradiol and testosterone remains unclear. This study compares the influences of oestrogen and androgen in FSH and testosterone-deficient rats. Animals were injected daily GnRH-antagonist alone (Ant) or combined with 17β-oestradiol benzoate (EB), or testosterone propionate (TP), or both from post-natal day (pnd) 5 to 15. Hormone levels, tubule growth, cell numbers, germ cell apoptosis and proliferation, and Sertoli cell maturation were evaluated on pnd 16. Ant decreased serum FSH and testosterone levels to ∼60% and ∼50% of control values, respectively, and decreased tubule growth, Sertoli cell number and maturation. Germ cell number declined by apoptosis. Co-administration of EB stimulated spermatogonia proliferation and maintained FSH levels (86% of control). Tubule growth, Sertoli cell number and spermatocyte apoptosis remained normal after TP co-administration, but Sertoli cell maturation, germ cell number and spermatogonia survival were reduced. Co-administration of EB with TP prevented all inhibitions. In conclusion, administration of oestradiol with testosterone, but neither one alone, protected seminiferous tubule maturation against inhibition caused by Ant-induced disruption. Oestrogen was involved in stimulating germ cell proliferation and the maintenance of Sertoli cell maturation, whereas androgen affected seminiferous tubule growth and spermatocyte survival.
Collapse
|
48
|
Weider K, Bergmann M, Giese S, Guillou F, Failing K, Brehm R. Altered differentiation and clustering of Sertoli cells in transgenic mice showing a Sertoli cell specific knockout of the connexin 43 gene. Differentiation 2011; 82:38-49. [PMID: 21489682 DOI: 10.1016/j.diff.2011.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 03/08/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
Abstract
Histological analysis revealed that Sertoli cell specific knockout of the predominant testicular gap junction protein connexin 43 results in a spermatogenic arrest at the level of spermatogonia or Sertoli cell-only syndrome, intratubular cell clusters and still proliferating adult Sertoli cells, implying an important role for connexin 43 in the Sertoli and germ cell development. This study aimed to determine the (1) Sertoli cell maturation state, (2) time of occurrence and (3) composition, differentiation and fate of clustered cells in knockout mice. Using immunohistochemistry connexin 43 deficient Sertoli cells showed an accurate start of the mature markers androgen receptor and GATA-1 during puberty and a vimentin expression from neonatal to adult. Expression of anti-Muellerian hormone, as a marker of Sertoli cell immaturity, was finally down-regulated during puberty, but its disappearance was delayed. This observed extended anti-Müllerian hormone synthesis during puberty was confirmed by western blot and Real-Time PCR and suggests a partial alteration in the Sertoli cell differentiation program. Additionally, Sertoli cells of adult knockouts showed a permanent and uniform expression of GATA-1 at protein and mRNA level, maybe caused by the lack of maturing germ cells and missing negative feedback signals. At ultrastructural level, basally located adult Sertoli cells obtained their mature appearance, demonstrated by the tripartite nucleolus as a typical feature of differentiated Sertoli cells. Intratubular clustered cells were mainly formed by abnormal Sertoli cells and single attached apoptotic germ cells, verified by immunohistochemistry, TUNEL staining and transmission electron microscopy. Clusters first appeared during puberty and became more numerous in adulthood with increasing cell numbers per cluster suggesting an age-related process. In conclusion, adult connexin 43 deficient Sertoli cells seem to proliferate while maintaining expression of mature markers and their adult morphology, indicating a unique and abnormal intermediate phenotype with characteristics common to both undifferentiated and differentiated Sertoli cells.
Collapse
Affiliation(s)
- Karola Weider
- Institute of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Kopera I, Durlej M, Hejmej A, Knapczyk-Stwora K, Duda M, Slomczynska M, Bilinska B. Differential Expression of Connexin 43 in Adult Pig Testes During Normal Spermatogenic Cycle and After Flutamide Treatment. Reprod Domest Anim 2011; 46:1050-60. [DOI: 10.1111/j.1439-0531.2011.01783.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Segretain D, Zeghimi A, Carette D, Carpentier F, Dompierre J, Gilleron J, Pointis G. Connexines testiculaires: marqueurs physiopathologiques et cibles potentielles aux toxiques environnementaux. Basic Clin Androl 2011. [DOI: 10.1007/s12610-011-0123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Résumé
Les jonctions communicantes et leurs protéines constitutives, les connexines (Cxs), sont des constituants nécessaires à la cohésion tissulaire et reconnus comme suppresseurs de tumeurs. Le but de la présente revue est de faire le point sur l’organisation et le rôle des Cxs au sein du testicule et d’analyser leur expression en physiopathologie testiculaire. Organisées en structures hexamèriques formant un canal reliant directement les cytoplasmes des cellules adjacentes, les Cxs sont impliquées dans de nombreux processus physiologiques tels que la prolifération et la différenciation cellulaires. Le maintien d’une balance entre prolifération, différenciation et apoptose est un équilibre primordial évitant une prolifération cellulaire anarchique, risque de cancer. La spermatogenèse est un modèle sophistiqué de prolifération et de différenciation des cellules germinales dans lequel les Cxs jouent un rôle essentiel. Il est acquis qu’une altération de l’expression membranaire des Cxs est l’un des signes avant-coureurs de la cinétique tumorale germinale, et il a été suggéré que les toxiques environnementaux qui, dans leur grande majorité, affectent l’expression de ces protéines, puissent être impliqués dans le développement de cette pathologie. La recherche de molécules capables de freiner les effets délétères de toxiques carcinogènes sur les Cxs semble être à l’heure actuelle une voie intéressante ouvrant de nouvelles perspectives en santé humaine.
Collapse
|