1
|
Tia ST, Luo M, Fan W. Mapping the Role of P-gp in Multidrug Resistance: Insights from Recent Structural Studies. Int J Mol Sci 2025; 26:4179. [PMID: 40362415 PMCID: PMC12072085 DOI: 10.3390/ijms26094179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
P-glycoprotein (P-gp/ABCB1), a key ATP-binding cassette (ABC) transporter, plays a central role in multidrug resistance (MDR), one of the leading causes of chemotherapy failure in cancer treatment. P-gp actively pumps chemotherapeutic agents out of cancer cells, reducing intracellular drug concentration and compromising therapeutic efficacy. Recent advancements in structural biology, particularly cryogenic electron microscopy (cryo-EM), have revealed detailed conformational states of P-gp, providing unprecedented insights into its transport mechanisms. In parallel, studies have identified various P-gp mutants in cancer patients, many of which are linked to altered drug efflux activity and resistance phenotypes. This review systematically examines recent structural studies of P-gp, correlates known patient-derived mutations to their functional consequences, and explores their impact on MDR. We propose plausible mechanisms by which these mutations affect P-gp's activity based on structural evidence and discuss their implications for chemotherapy resistance. Additionally, we review current approaches for P-gp inhibition, a critical strategy to restore drug sensitivity in resistant cancers, and outline future research directions to combat P-gp-mediated MDR.
Collapse
MESH Headings
- Humans
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Mutation
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Protein Conformation
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/chemistry
- ATP Binding Cassette Transporter, Subfamily B/metabolism
Collapse
Affiliation(s)
- Shi Ting Tia
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore;
| | - Min Luo
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore;
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wenjie Fan
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore;
| |
Collapse
|
2
|
Stasiak P, Sopel J, Lipowicz JM, Rawłuszko-Wieczorek AA, Korbecki J, Januchowski R. The Role of Elacridar, a P-gp Inhibitor, in the Re-Sensitization of PAC-Resistant Ovarian Cancer Cell Lines to Cytotoxic Drugs in 2D and 3D Cell Culture Models. Int J Mol Sci 2025; 26:1124. [PMID: 39940891 PMCID: PMC11817197 DOI: 10.3390/ijms26031124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Chemotherapy resistance is a significant barrier to effective cancer treatment. A key mechanism of resistance at the single-cell level is the overexpression of drug transporters in the ABC family, particularly P-glycoprotein (P-gp), which leads to multidrug resistance (MDR). Inhibitors of these transporters can help re-sensitize cancer cells to chemotherapeutics. This study evaluated elacridar (GG918 and GF120918), a potent third-generation P-gp inhibitor, for its ability to reverse MDR in paclitaxel (PAC)-resistant ovarian cancer cell lines. Sensitive and PAC-resistant cells were cultured in two-dimensional (2D) and three-dimensional (3D) models. MDR1 gene expression was analyzed using Q-PCR, and P-gp protein expression was examined via Western blot and immunofluorescence. Drug sensitivity was evaluated with MTT assays, and P-gp activity was analyzed by flow cytometry and fluorescence microscopy. Elacridar effectively inhibited P-gp activity and increased sensitivity to PAC and doxorubicin (DOX) in 2D cultures but not cisplatin (CIS). In 3D spheroids, P-gp activity inhibition was observed via Calcein-AM staining. However, no re-sensitization to PAC occurred and limited improvement was observed for DOX. These findings suggest that elacridar effectively inhibits P-gp in both 2D and 3D conditions. However, its ability to overcome drug resistance in 3D models is limited, highlighting the complexity of tissue-specific resistance mechanisms.
Collapse
Affiliation(s)
- Piotr Stasiak
- Institute of Biological Sciences, University of Zielona Góra, 65-417 Zielona Góra, Poland
- The Doctoral School of Exact and Technical Sciences, University of Zielona Góra, 65-417 Zielona Góra, Poland
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, 65-417 Zielona Góra, Poland; (J.S.); (J.K.); (R.J.)
| | - Justyna Sopel
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, 65-417 Zielona Góra, Poland; (J.S.); (J.K.); (R.J.)
| | - Julia Maria Lipowicz
- Department of Histology and Embryology, Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | | | - Jan Korbecki
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, 65-417 Zielona Góra, Poland; (J.S.); (J.K.); (R.J.)
| | - Radosław Januchowski
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, 65-417 Zielona Góra, Poland; (J.S.); (J.K.); (R.J.)
| |
Collapse
|
3
|
Muroi M, Lee DS. Inhibitory Effects of Cryptotanshinone and Dihydrotanshinone I on Intracellular Trafficking of Viral Glycoproteins. J Microbiol Biotechnol 2024; 34:2457-2464. [PMID: 39726295 PMCID: PMC11729303 DOI: 10.4014/jmb.2409.09050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 12/28/2024]
Abstract
Antiviral agents that target the viral envelope surface glycoproteins can disrupt the interactions between the viral glycoproteins and host cell receptors, thereby preventing viral entry into host cells. However, the mechanisms underlying glycoprotein processing and cellular trafficking have not been fully elucidated. In this study, we aimed to investigate the mechanism of action of cryptotanshinone (CTN) and dihydrotanshinone I (DTN) as inhibitors of viral glycoprotein trafficking, by assessing their inhibitory action on syncytium formation and cytopathic effects. CTN and DTN were isolated and characterized from Salvia miltiorrhiza; they effectively inhibited syncytium formation in Newcastle disease virus-infected baby hamster kidney cells. Both compounds inhibited the transport of viral G-proteins to the cell surface, resulting in intracellular accumulation. These results suggest that CTN and DTN are potential glycoprotein trafficking inhibitors that function at the Golgi apparatus. Overall, our results indicate that CTN and DTN suppress intracellular glycosylation by competing as inhibitors of glycosylation trafficking.
Collapse
Affiliation(s)
- Makoto Muroi
- Antibiotics Laboratory, RIKEN (The Institute of Physical and Chemical Research) 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Dong-Sun Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Republic of Korea
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Republic of Korea
- Jeju Microbiome Research Center, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
4
|
Nunes M, Ricardo S. Ivermectin Strengthens Paclitaxel Effectiveness in High-Grade Serous Carcinoma in 3D Cell Cultures. Pharmaceuticals (Basel) 2024; 18:14. [PMID: 39861076 PMCID: PMC11769219 DOI: 10.3390/ph18010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Chemoresistance is a major obstacle in high-grade serous carcinoma (HGSC) treatment. Although many patients initially respond to chemotherapy, the majority of them relapse due to Carboplatin and Paclitaxel resistance. Drug repurposing has surfaced as a potentially effective strategy that works synergically with standard chemotherapy to bypass chemoresistance. In a prior study, using 2D cultures and two HGSC chemoresistant cell lines, it was demonstrated that combining Carboplatin or Paclitaxel with Pitavastatin or Ivermectin resulted in the most notable synergy. Acknowledging that 2D culture systems are limited in reflecting the tumor architecture, 3D cultures were generated to provide insights on treatment efficacy tests in more complex models. OBJECTIVES We aimed to investigate whether combining Carboplatin or Paclitaxel with Pitavastatin or Ivermectin offers therapeutic benefits in a Cultrex-based 3D model. METHODS Here, the cytotoxicity of Carboplatin and Paclitaxel, both alone and in combination with Pitavastatin or Ivermectin, were analyzed on two chemoresistant tumor cell lines, OVCAR8 and OVCAR8 PTX R C, in 3D cultures. Cellular viability was assessed using CellTiter-Glo® Luminescent assays. Also, it explored synergistic interactions using zero interaction potency, Loewe, Bliss independence, and High-single agent reference models. RESULTS Our research indicates combining chemotherapeutic drugs with Pitavastatin or Ivermectin yields significantly more cytotoxic effects than chemotherapy alone. For all the combinations tested, at least one model indicated an additive effect; however, only the combination of Paclitaxel and Ivermectin consistently demonstrated an additive effect across all chemoresistant cell lines cultured in 3D models, as well as in all four synergy reference models used to assess drug interactions. CONCLUSIONS Combining Paclitaxel with Ivermectin has the highest cytotoxic and the strongest additive effect for both chemoresistant cell lines compared to Paclitaxel alone.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), CRL, 4585-116 Gandra, Portugal
- Applied Molecular Biosciences Unit (UCIBIO), Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
5
|
Guo Y, Ashrafizadeh M, Tambuwala MM, Ren J, Orive G, Yu G. P-glycoprotein (P-gp)-driven cancer drug resistance: biological profile, non-coding RNAs, drugs and nanomodulators. Drug Discov Today 2024; 29:104161. [PMID: 39245345 DOI: 10.1016/j.drudis.2024.104161] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance has compromised the efficacy of chemotherapy. The dysregulation of drug transporters including P-glycoprotein (P-gp) can mediate drug resistance through drug efflux. In this review, we highlight the role of P-gp in cancer drug resistance and the related molecular pathways, including phosphoinositide 3-kinase (PI3K)-Akt, phosphatase and tensin homolog (PTEN) and nuclear factor-κB (NF-κB), along with non-coding RNAs (ncRNAs). Extracellular vesicles secreted by the cells can transport ncRNAs and other proteins to change P-gp activity in cancer drug resistance. P-gp requires ATP to function, and the induction of mitochondrial dysfunction or inhibition of glutamine metabolism can impair P-gp function, thus increasing chemosensitivity. Phytochemicals, small molecules and nanoparticles have been introduced as P-gp inhibitors to increase drug sensitivity in human cancers.
Collapse
Affiliation(s)
- Yang Guo
- Department of Respiratory and Critical Care Medicine, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), No. 11 Beihai Street, Dadong District, Shenyang 110044, Liaoning, China
| | - Milad Ashrafizadeh
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, No. 163 Shoushan Road, Jiangyin, China.
| |
Collapse
|
6
|
Ung J, Kassai M, Tan SF, Loughran TP, Feith DJ, Cabot MC. The Drug Transporter P-Glycoprotein and Its Impact on Ceramide Metabolism-An Unconventional Ally in Cancer Treatment. Int J Mol Sci 2024; 25:9825. [PMID: 39337312 PMCID: PMC11432138 DOI: 10.3390/ijms25189825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The tumor-suppressor sphingolipid ceramide is recognized as a key participant in the cytotoxic mechanism of action of many types of chemotherapy drugs, including anthracyclines, Vinca alkaloids, the podophyllotoxin etoposide, taxanes, and the platinum drug oxaliplatin. These drugs can activate de novo synthesis of ceramide or stimulate the production of ceramide via sphingomyelinases to limit cancer cell survival. On the contrary, dysfunctional sphingolipid metabolism, a prominent factor in cancer survival and therapy resistance, blunts the anticancer properties of ceramide-orchestrated cell death pathways, especially apoptosis. Although P-glycoprotein (P-gp) is famous for its role in chemotherapy resistance, herein, we propose alternate interpretations and discuss the capacity of this multidrug transporter as a "ceramide neutralizer", an unwelcome event, highlighting yet another facet of P-gp's versatility in drug resistance. We introduce sphingolipid metabolism and its dysfunctional regulation in cancer, present a summary of factors that contribute to chemotherapy resistance, explain how P-gp "neutralizes" ceramide by hastening its glycosylation, and consider therapeutic applications of the P-gp-ceramide connection in the treatment of cancer.
Collapse
Affiliation(s)
- Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, The East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA;
| | - Su-Fern Tan
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (D.J.F.)
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Thomas P. Loughran
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (D.J.F.)
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - David J. Feith
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (D.J.F.)
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Myles C. Cabot
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, The East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA;
| |
Collapse
|
7
|
Mukai H, Takanashi M, Ogawara KI, Maruyama M, Higaki K. Possible Regulation of P-Glycoprotein Function by Adrenergic Agonists II: Study with Isolated Rat Jejunal Sheets and Caco-2 Cell monolayers. J Pharm Sci 2024; 113:1209-1219. [PMID: 37984697 DOI: 10.1016/j.xphs.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
To clarify the regulation of drug absorption by the enteric nervous system, we investigated how adrenergic agonists (adrenaline (ADR), clonidine (CLO), dobutamine (DOB)) and dibutyryl cAMP (DBcAMP) affected P-glycoprotein (P-gp) function by utilizing isolated rat jejunal sheets and Caco-2 cell monolayers. ADR and CLO significantly decreased the secretory transport (Papptotal) of rhodamine-123 and tended to decrease the transport via P-gp (PappP-gp) and passive transport (Papppassive). In contrast, DBcAMP significantly increased and DOB tended to increase Papptotal and both tended to increase PappP-gpand Papppassive. Changes in P-gp expression on brush border membrane by adrenergic agonists and DBcAMP were significantly correlated with PappP-gp, while P-gp expression was not changed in whole cell homogenates, suggesting that the trafficking of P-gp would be responsible for its functional changes. Papppassive was inversely correlated with transmucosal or transepithelial electrical resistance, indicating that adrenergic agonists affected the paracellular permeability. Adrenergic agonists also changed cAMP levels, which were significantly correlated with PappP-gp. Furthermore, protein kinase A (PKA) or PKC inhibitor significantly decreased PappP-gp in Caco-2 cell monolayers, suggesting that they would partly contribute to the changes in P-gp activity. In conclusion, adrenergic agonists regulated P-gp function and paracellular permeability, which would be caused via adrenoceptor stimulation.
Collapse
Affiliation(s)
- Hironori Mukai
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Production Department, Odawara Central Factory, Nippon Shinyaku Co., Ltd., 676-1 Kuwahara, Odawara, Kanagawa 250-0861, Japan
| | - Masashi Takanashi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Central Hyogo Area, Hanshin Dispensing Pharmacy, I & H Co., Ltd., 1-18 Ohmasu-cho, Ashiya, Hyogo 659-0066, Japan
| | - Ken-Ichi Ogawara
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada-ku, Kobe, Hyogo 658-8558, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
8
|
Shchulkin AV, Abalenikhina YV, Kosmachevskaya OV, Topunov AF, Yakusheva EN. Regulation of P-Glycoprotein during Oxidative Stress. Antioxidants (Basel) 2024; 13:215. [PMID: 38397813 PMCID: PMC10885963 DOI: 10.3390/antiox13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
P-glycoprotein (Pgp, ABCB1, MDR1) is an efflux transporter protein that removes molecules from the cells (outflow) into the extracellular space. Pgp plays an important role in pharmacokinetics, ensuring the absorption, distribution, and excretion of drugs and its substrates, as well as in the transport of endogenous molecules (steroid and thyroid hormones). It also contributes to tumor cell resistance to chemotherapy. In this review, we summarize the mechanisms of Pgp regulation during oxidative stress. The currently available data suggest that Pgp has a complex variety of regulatory mechanisms under oxidative stress, involving many transcription factors, the main ones being Nrf2 and Nf-kB. These factors often overlap, and some can be activated under certain conditions, such as the deposition of oxidation products, depending on the severity of oxidative stress. In most cases, the expression of Pgp increases due to increased transcription and translation, but under severe oxidative stress, it can also decrease due to the oxidation of amino acids in its molecule. At the same time, Pgp acts as a protector against oxidative stress, eliminating the causative factors and removing its by-products, as well as participating in signaling pathways.
Collapse
Affiliation(s)
- Aleksey V. Shchulkin
- Pharmacology Department, Ryazan State Medical University, 390026 Ryazan, Russia; (Y.V.A.); (E.N.Y.)
| | - Yulia V. Abalenikhina
- Pharmacology Department, Ryazan State Medical University, 390026 Ryazan, Russia; (Y.V.A.); (E.N.Y.)
| | - Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (O.V.K.); (A.F.T.)
| | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (O.V.K.); (A.F.T.)
| | - Elena N. Yakusheva
- Pharmacology Department, Ryazan State Medical University, 390026 Ryazan, Russia; (Y.V.A.); (E.N.Y.)
| |
Collapse
|
9
|
Shirbhate E, Singh V, Mishra A, Jahoriya V, Veerasamy R, Tiwari AK, Rajak H. Targeting Lysosomes: A Strategy Against Chemoresistance in Cancer. Mini Rev Med Chem 2024; 24:1449-1468. [PMID: 38343053 DOI: 10.2174/0113895575287242240129120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 07/23/2024]
Abstract
Chemotherapy is still the major method of treatment for many types of cancer. Curative cancer therapy is hampered significantly by medication resistance. Acidic organelles like lysosomes serve as protagonists in cellular digestion. Lysosomes, however, are gaining popularity due to their speeding involvement in cancer progression and resistance. For instance, weak chemotherapeutic drugs of basic nature permeate through the lysosomal membrane and are retained in lysosomes in their cationic state, while extracellular release of lysosomal enzymes induces cancer, cytosolic escape of lysosomal hydrolases causes apoptosis, and so on. Drug availability at the sites of action is decreased due to lysosomal drug sequestration, which also enhances cancer resistance. This review looks at lysosomal drug sequestration mechanisms and how they affect cancer treatment resistance. Using lysosomes as subcellular targets to combat drug resistance and reverse drug sequestration is another method for overcoming drug resistance that is covered in this article. The present review has identified lysosomal drug sequestration as one of the reasons behind chemoresistance. The article delves deeper into specific aspects of lysosomal sequestration, providing nuanced insights, critical evaluations, or novel interpretations of different approaches that target lysosomes to defect cancer.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Varsha Jahoriya
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy; UAMS - University of Arkansas for Medical Sciences, (AR) USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| |
Collapse
|
10
|
Azimi M, Yee SW, Riselli A, Silva DB, Giacomini CP, Giacomini KM, Brett CM. Characterization of P-glycoprotein orthologs from human, sheep, pig, dog, and cat. J Vet Pharmacol Ther 2023; 46:401-412. [PMID: 37198956 DOI: 10.1111/jvp.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
The ATP-binding cassette transporter P-glycoprotein (P-gp) limits the oral bioavailability of many drugs. Although P-gp has been well studied in humans and mice, little is known about the substrate specificities of many of its species orthologs. To address this, we performed in vitro analysis of P-gp transporter function using HEK293 cells stably expressing human, ovine, porcine, canine, and feline P-gp. We also employed a human physiologically based pharmacokinetic (PBPK) model to assess variations in digoxin exposure resulting from altered P-gp function. Compared to human P-gp, sheep P-gp had significantly less digoxin efflux (2.3-fold ±0.04 vs. 1.8-fold ±0.03, p < .0001) and all species orthologs had significantly less quinidine efflux compared with human P-gp (p < .05). Human P-gp also had significantly greater efflux of talinolol compared to sheep and dog P-gp (1.9-fold ±0.04 vs. 1.6-fold ±0.06, p = .003 and 1.6-fold ±0.05, p = .0002, respectively). P-gp expression protected all lines against paclitaxel-induced toxicity, with sheep P-gp being significantly less protective. The inhibitor verapamil demonstrated dose-dependent inhibition of all P-gp orthologs. Finally, a PBPK model showed digoxin exposure was sensitive to altered P-gp activity. Overall, our study found that species differences in this major drug transporter exist and that the appropriate species ortholog of P-gp should be evaluated during veterinary drug development.
Collapse
Affiliation(s)
- Mina Azimi
- Apricity Therapeutics, Inc., San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Sook Wah Yee
- Apricity Therapeutics, Inc., San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Andrew Riselli
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Dina Buitrago Silva
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | | | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Claire M Brett
- Apricity Therapeutics, Inc., San Francisco, California, USA
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
Ge XL, Zhang X, Li CH, Pan K, He L, Ren WZ. Bile Acid Overload Induced by Bile Duct and Portal Vein Ligation Improves Survival after Staged Hepatectomy in Rats. Curr Med Sci 2023; 43:1013-1022. [PMID: 37837571 DOI: 10.1007/s11596-023-2779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 06/26/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVE Compared to portal vein ligation (PVL), simultaneous bile duct and portal vein ligation (BPL) can significantly enhance hypertrophy of the intact liver. This study aimed to investigate whether BPL could improve survival after extended hepatectomy independently of an increased remnant liver. METHODS We adopted rat models of 90% BPL or 90% PVL. To investigate the role of bile acids (BAs) the BA pools in the PVL and BPL groups were altered by the diet. Staged resection preserving 10% of the estimated liver weight was performed 3 days after BPL; PVL; or sham operation. Histology, canalicular network (CN) continuity; and hepatocyte polarity were evaluated. RESULTS At 3 days after BPL; PVL; or sham operation when the volumetric difference of the intended liver remained insignificant, the survival rates after extended hepatectomy were 86.7%, 47%, and 23.3%, respectively (P<0.01). BPL induced faster restoration of canalicular integrity along with an intensive but transient BA overload. Staged hepatectomy after BPL shortened the duration of the bile CN disturbance and limited BA retention. Decreasing the BA pools in the rats that underwent BPL could compromise these effects, whereas increasing the BA pools of rats that underwent PVL could induce similar effects. The changes in CN restoration were associated with activation of LKB1. CONCLUSION In addition to increasing the future remnant liver, BPL shortened the duration of the spatial disturbance of the CN and could significantly improve the tolerance of the hypertrophied liver to staged resection. BPL may be a safe and efficient future option for patients with an insufficient remnant liver.
Collapse
Affiliation(s)
- Xin-Lan Ge
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Xuan Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Chong-Hui Li
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Ke Pan
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Lei He
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China.
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China.
| | - Wei-Zheng Ren
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China.
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China.
| |
Collapse
|
12
|
Henry A, Mauperin M, Devy J, Dedieu S, Chazee L, Hachet C, Terryn C, Duca L, Martiny L, Devarenne-Charpentier E, Btaouri HE. The endocytic receptor protein LRP-1 modulate P-glycoprotein mediated drug resistance in MCF-7 cells. PLoS One 2023; 18:e0285834. [PMID: 37768946 PMCID: PMC10538702 DOI: 10.1371/journal.pone.0285834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 05/02/2023] [Indexed: 09/30/2023] Open
Abstract
Multidrug resistance (MDR) is a major obstacle to successful cancer chemotherapy. A typical form of MDR is due to the overexpression of membrane transport proteins., such as Glycoprotein-P (P-gp), resulting in an increased drug efflux preventing drug cytotoxicity. P-gp is mainly localized on the plasma membrane; however, it can also be endocytosed resulting in the trafficking of P-gp in endoplasmic reticulum, Golgi, endosomes, and lysosomes. The lysosomal P-gp has been found to be capable of transporting and sequestering P-gp substrates (e.g., Doxorubicin (Dox)) into lysosomes to protect cells against cytotoxic drugs. Many translational studies have shown that low-density lipoprotein receptor-related protein-1 (LRP-1) is involved in endocytosis and regulation of signalling pathways. LRP-1 mediates the endocytosis of a diverse set of extracellular ligands that play important roles in tumor progression. Here, we investigated the involvement of LRP-1 in P-gp expression and subcellular redistribution from the cell surface to the lysosomal membrane by endocytosis and its potential implication in P-gp-mediated multidrug resistance in MCF-7 cells. Our results showed that MCF-7 resistant cells (MCF-7R) overexpressed the P-gp, LRP-1 and LAMP-1 and were 11.66-fold resistant to Dox. Our study also revealed that in MCF-7R cells, lysosomes were predominantly high density compared to sensitized cells and P-gp was localized in the plasma membrane and lysosomes. LRP-1 blockade reduced lysosomes density and level of LAMP-1 and P-gp. It also affected the subcellular distribution of P-gp. Under these conditions, we restored Dox nuclear uptake and ERK 1/2 activation thus leading to MCF-7R cell sensitization to Dox. Our data suggest that LRP-1 is able to modulate the P-gp expression and subcellular redistribution by endocytosis and to potentiate the P-gp-acquired Dox resistance.
Collapse
Affiliation(s)
- Aubery Henry
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR SEN, URCA, Reims cedex, France
| | - Marine Mauperin
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR SEN, URCA, Reims cedex, France
| | - Jerome Devy
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR SEN, URCA, Reims cedex, France
| | - Stephane Dedieu
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR SEN, URCA, Reims cedex, France
| | - Lise Chazee
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR SEN, URCA, Reims cedex, France
| | - Cathy Hachet
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR SEN, URCA, Reims cedex, France
| | - Christine Terryn
- Technical Platform for Cellular and Tissue Imaging (PICT), UFR Pharmacie, URCA, Reims, France
| | - Laurent Duca
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR SEN, URCA, Reims cedex, France
| | - Laurent Martiny
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR SEN, URCA, Reims cedex, France
| | | | - Hassan El Btaouri
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR SEN, URCA, Reims cedex, France
| |
Collapse
|
13
|
Vutharadhi S, Ranganatha KS, Nadimpalli SK. Momordica charantia seed proteins - Purification, biochemical characterization of a class II α-mannosidase isoenzyme and its interaction with the lectin and protein body membrane. Int J Biol Macromol 2023; 248:126022. [PMID: 37506790 DOI: 10.1016/j.ijbiomac.2023.126022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Momordica charantia seeds contain a galactose specific lectin and mixture of glycosidases. These bind to lectin-affigel at pH 5.0 and are all eluted at pH 8.0. From the mixture, α-mannosidase was separated by gel filtration (purified enzyme Mr ∼ 238 kDa). In native PAGE (silver staining) it showed three bands that stained with methylumbelliferyl substrate (possible isoforms). Ion exchange chromatography separated two isoforms in 0.5 M eluates and one isoform in 1.0 M eluate. In SDS-PAGE it dissociated to Mr ∼70 and 45 kDa subunits, showing antigenic similarity to jack bean enzyme. MALDI analysis confirmed the 70 kDa band to be α-mannosidase with sequence identity to the genomic sequence of Momordica charantia enzyme (score 83, 29 % sequence coverage). The pH, temperature optima were 5.0 and 60o C respectively. Kinetic parameters KM and Vmax estimated with p-nitrophenyl α-mannopyranoside were 0.85 mM and 12.1 U/mg respectively. Swainsonine inhibits the enzyme activity (IC50 value was 50 nM). Secondary structural analysis at far UV (190-300 nm) showed 11.6 % α-helix and 36.5 % β-sheets. 2.197 mg of the enzyme was found to interact with 3.75 mg of protein body membrane at pH 5.0 and not at pH 8.0 suggesting a pH dependent interaction.
Collapse
Affiliation(s)
- Shivaranjani Vutharadhi
- Protein Biochemistry and Glycobiology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Kavyashree Sakharayapatna Ranganatha
- Protein Biochemistry and Glycobiology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Siva Kumar Nadimpalli
- Protein Biochemistry and Glycobiology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
14
|
Zheng Z, Li X, Yang B, Xu Q, Zhu X, Hu L, Teng Y. SORL1 stabilizes ABCB1 to promote cisplatin resistance in ovarian cancer. Funct Integr Genomics 2023; 23:147. [PMID: 37145301 DOI: 10.1007/s10142-023-01075-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Ovarian cancer (OC) has the worst prognosis among gynecological malignancies. Cisplatin (CDDP) is one of the most commonly used treatments for OC, but recurrence and metastasis are common due to endogenous or acquired resistance. High expression of ATP-binding cassette (ABC) transporters is an important mechanism of resistance to OC chemotherapy, but targeting ABC transporters in OC therapy remains a challenge. The expression of sortilin-related receptor 1 (SORL1; SorLA) in the response of OC to CDDP was determined by analysis of TCGA and GEO public datasets. Immunohistochemistry and western blotting were utilized to evaluate the expression levels of SORL1 in OC tissues and cells that were sensitive or resistant to CDDP treatment. The in vitro effect of SORL1 on OC cisplatin resistance was proven by CCK-8 and cell apoptosis assays. The subcutaneous xenotransplantation model verified the in vivo significance of SORL1 in OC. Finally, the molecular mechanism by which SORL1 regulates OC cisplatin resistance was revealed by coimmunoprecipitation, gene set enrichment analysis and immunofluorescence analysis. This study demonstrated that SORL1 is closely related to CDDP resistance and predicts a poor prognosis in OC. In vivo xenograft experiments showed that SORL1 knockdown significantly enhanced the effect of CDDP on CDDP-resistant OC cells. Mechanistically, silencing of SORL1 inhibits the early endosomal antigen 1 (EEA1) pathway, which impedes the stability of ATP-binding cassette B subfamily member 1 (ABCB1), sensitizing CDDP-resistant OC cells to CDDP. The findings of this study suggest that targeting SORL1 may represent a promising therapeutic approach for overcoming CDDP resistance in OC.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Bikang Yang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - QinYang Xu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Xiaolu Zhu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| | - Lipeng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China.
| | - Yincheng Teng
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
15
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|
16
|
Mehta A, Desai A, Rudd D, Siddiqui G, Nowell CJ, Tong Z, Creek DJ, Tayalia P, Gandhi PS, Voelcker NH. Bio-Mimicking Brain Vasculature to Investigate the Role of Heterogeneous Shear Stress in Regulating Barrier Integrity. Adv Biol (Weinh) 2022; 6:e2200152. [PMID: 35999436 DOI: 10.1002/adbi.202200152] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Indexed: 01/28/2023]
Abstract
A continuous, sealed endothelial membrane is essential for the blood-brain barrier (BBB) to protect neurons from toxins present in systemic circulation. Endothelial cells are critical sensors of the capillary environment, where factors like fluid shear stress (FSS) and systemic signaling molecules activate intracellular pathways that either promote or disrupt the BBB. The brain vasculature exhibits complex heterogeneity across the bed, which is challenging to recapitulate in BBB microfluidic models with fixed dimensions and rectangular cross-section microchannels. Here, a Cayley-tree pattern, fabricated using lithography-less, fluid shaping technique in a modified Hele-Shaw cell is used to emulate the brain vasculature in a microfluidic chip. This geometry generates an inherent distribution of heterogeneous FSS, due to smooth variations in branch height and width. hCMEC/D3 endothelial cells cultured in the Cayley-tree designed chip generate a 3D monolayer of brain endothelium with branching hierarchy, enabling the study of the effect of heterogeneous FSS on the brain endothelium. The model is employed to study neuroinflammatory conditions by stimulating the brain endothelium with tumor necrosis factor-α under heterogeneous FSS conditions. The model has immense potential for studies involving drug transport across the BBB, which can be misrepresented in fixed dimension models.
Collapse
Affiliation(s)
- Ami Mehta
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.,IITB-Monash Research Academy, Mumbai, 400076, India
| | - Anal Desai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Cameron J Nowell
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Prasanna S Gandhi
- Suman Mashruwala Advanced Microengineering Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia.,Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
17
|
The Impact of P-Glycoprotein on Opioid Analgesics: What's the Real Meaning in Pain Management and Palliative Care? Int J Mol Sci 2022; 23:ijms232214125. [PMID: 36430602 PMCID: PMC9695906 DOI: 10.3390/ijms232214125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Opioids are widely used in cancer and non-cancer pain management. However, many transporters at the blood-brain barrier (BBB), such as P-glycoprotein (P-gp, ABCB1/MDR1), may impair their delivery to the brain, thus leading to opioid tolerance. Nonetheless, opioids may regulate P-gp expression, thus altering the transport of other compounds, namely chemotherapeutic agents, resulting in pharmacoresistance. Other kinds of painkillers (e.g., acetaminophen, dexamethasone) and adjuvant drugs used for neuropathic pain may act as P-gp substrates and modulate its expression, thus making pain management challenging. Inflammatory conditions are also believed to upregulate P-gp. The role of P-gp in drug-drug interactions is currently under investigation, since many P-gp substrates may also act as substrates for the cytochrome P450 enzymes, which metabolize a wide range of xenobiotics and endobiotics. Genetic variability of the ABCB1/MDR1 gene may be accountable for inter-individual variation in opioid-induced analgesia. P-gp also plays a role in the management of opioid-induced adverse effects, such as constipation. Peripherally acting mu-opioid receptors antagonists (PAMORAs), such as naloxegol and naldemedine, are substrates of P-gp, which prevent their penetration in the central nervous system. In our review, we explore the interactions between P-gp and opioidergic drugs, with their implications in clinical practice.
Collapse
|
18
|
Pharmacogenetic Study of the Impact of ABCB1 Single Nucleotide Polymorphisms on the Response to Cyclosporine in Psoriasis Patients. Pharmaceutics 2022; 14:pharmaceutics14112441. [PMID: 36432633 PMCID: PMC9693450 DOI: 10.3390/pharmaceutics14112441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis is a chronic, T cell-mediated skin disease affecting 2-3% of the Caucasian population. Cyclosporine A is a calcineurin inhibitor that acts selectively on T cells. The cyclosporine A treatment response has been suggested to be modulated by single-nucleotide polymorphisms (SNPs) in the ABCB1 gene. The aim of this research was to evaluate the effect of ABCB1 genetic variants that could affect the response to a cyclosporine treatment in Russian psoriasis patients with the ABCB1 genotype status. The ABCB1 T-129C, G1199A, C1236T, G2677T/A and C3435T SNPs in the 168 patients with psoriasis were genotyped by PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) and TaqMan SNP genotyping assays. The ABCB1 C1236T, G2677T/A and C3435T SNPs were significantly associated with a negative response to cyclosporine therapy. A very strong association was evident for the C3435T SNP in the ABCB1 gene in the allele, dominant and recessive models (OR = 2.58, OR = 4.01, OR = 2.50, respectively). ABCB1 C1236T and G2677T/A polymorphisms were significantly associated with a negative response to the cyclosporine therapy in the codominant, dominant and recessive models (p ˂ 0.05). Additionally, the haplotype analysis identified that the TGC haplotype is significantly associated with a negative response to cyclosporine therapy in psoriasis patients (p ˂ 0.05). The current study to the best of our knowledge is the first of its kind to be performed in the Russian population. In conclusion, the present results suggest an association between the ABCB1 genetic variants and unresponsiveness to cyclosporine in the Russian population. Further, larger studies are necessary to confirm our findings and replicate them in various ethnic populations before its implementation in the clinical practice.
Collapse
|
19
|
Gericke B, Wienböker I, Brandes G, Löscher W. Is P-Glycoprotein Functionally Expressed in the Limiting Membrane of Endolysosomes? A Biochemical and Ultrastructural Study in the Rat Liver. Cells 2022; 11:cells11091556. [PMID: 35563868 PMCID: PMC9102269 DOI: 10.3390/cells11091556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The drug efflux transporter P-glycoprotein (Pgp; ABCB1) plays an important role in drug absorption, disposition, and elimination. There is an ongoing debate whether, in addition to its localization at the plasma membrane, Pgp may also be expressed at the limiting membrane of endolysosomes (ELs), mediating active EL drug sequestration. If true, this would be an important mechanism to prevent drugs from reaching their intracellular targets. However, direct evidence demonstrating the functional expression of Pgp at the limiting membrane of ELs is lacking. This prompted us to perform a biochemical and ultrastructural study on the intracellular localization of Pgp in native rat liver. For this purpose, we established an improved subcellular fractionation procedure for the enrichment of ELs and employed different biochemical and ultrastructural methods to characterize the Pgp localization and function in the enriched EL fractions. Whereas the biochemical methods seemed to indicate that Pgp is functionally expressed at EL limiting membranes, transmission electron microscopy (TEM) indicated that this only occurs rarely, if at all. Instead, Pgp was found in the limiting membrane of early endosomes and intraluminal vesicles. In additional TEM experiments, using a Pgp-overexpressing brain microvessel endothelial cell line (hCMEC/D3-MDR1-EGFP), we examined whether Pgp is expressed at the limiting membrane of ELs when cells are exposed to high levels of the Pgp substrate doxorubicin. Pgp was seen in early endosomes but only rarely in endolysosomes, whereas Pgp immunogold labeling was detected in large autophagosomes. In summary, our data demonstrate the importance of combining biochemical and ultrastructural methods to investigate the relationship between Pgp localization and function.
Collapse
Affiliation(s)
- Birthe Gericke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; (B.G.); (I.W.)
- Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Inka Wienböker
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; (B.G.); (I.W.)
- Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Gudrun Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany;
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; (B.G.); (I.W.)
- Center for Systems Neuroscience, 30559 Hannover, Germany
- Correspondence:
| |
Collapse
|
20
|
Console L, Scalise M. Extracellular Vesicles and Cell Pathways Involved in Cancer Chemoresistance. Life (Basel) 2022; 12:life12050618. [PMID: 35629286 PMCID: PMC9143651 DOI: 10.3390/life12050618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 02/07/2023] Open
Abstract
Chemoresistance is a pharmacological condition that allows transformed cells to maintain their proliferative phenotype in the presence of administered anticancer drugs. Recently, extracellular vesicles, including exosomes, have been identified as additional players responsible for the chemoresistance of cancer cells. These are nanovesicles that are released by almost all cell types in both physiological and pathological conditions and contain proteins and nucleic acids as molecular cargo. Extracellular vesicles released in the bloodstream reach recipient cells and confer them novel metabolic properties. Exosomes can foster chemoresistance by promoting prosurvival and antiapoptotic pathways, affecting cancer stem cells and immunotherapies, and stimulating drug efflux. In this context, a crucial role is played by membrane transporters belonging to ABC, SLC, and P-type pump families. These proteins are fundamental in cell metabolism and drug transport in either physiological or pathological conditions. In this review, different roles of extracellular vesicles in drug resistance of cancer cells will be explored.
Collapse
Affiliation(s)
- Lara Console
- Correspondence: (L.C.); (M.S.); Tel.: +39-0984-492919 (L.C.); +39-0984-492938 (M.S.)
| | | |
Collapse
|
21
|
Eng ME, Bloise E, Matthews SG. Fetal glucocorticoid exposure leads to sex-specific changes in drug-transporter function at the blood-brain barrier in juvenile guinea pigs. FASEB J 2022; 36:e22245. [PMID: 35262963 PMCID: PMC9311705 DOI: 10.1096/fj.202101552rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
Abstract
Antenatal synthetic glucocorticoids (sGCs) are a life‐saving treatment in managing pre‐term birth. However, off‐target effects of sGCs can impact blood‐brain barrier (BBB) drug transporters essential for fetal brain protection, including P‐glycoprotein (P‐gp/Abcb1) and breast cancer resistance protein (BCRP/Abcg2). We hypothesized that maternal antenatal sGC treatment modifies BBB function in juvenile offspring in a sex‐dependent manner. Thus, the objective of this study was to determine the long‐term impact of a single or multiple courses of betamethasone on P‐gp/Abcb1 and BCRP/Abcg2 expression and function at the BBB. Pregnant guinea pigs (N = 42) received 3 courses (gestation days (GDs) 40, 50, and 60) or a single course (GD50) of betamethasone (1 mg/kg) or vehicle (saline). Cerebral microvessels and brain endothelial cells (BEC) were collected from the post‐natal day (PND) 14 offspring to measure protein, gene expression, and function of the drug transporters P‐gp/Abcb1 and BCRP/Abcg2. P‐gp protein expression was decreased (p < .05) in microvessels from male offspring that had been exposed to multiple courses and a single course of sGC, in utero. Multiple courses of sGC resulted in a significant decrease in P‐gp function in BECs from males (p < .05), but not females. There was a very strong trend for increased P‐gp function in males compared to females (p = .055). Reduced P‐gp expression and function at the BBB of young male offspring following multiple prenatal sGC exposures, is clinically relevant as many drugs administered postnatally are P‐gp substrates. These novel sex differences in drug transporter function may underlie potential sexual dimorphism in drug sensitivity and toxicity in the newborn and juvenile brain.
Collapse
Affiliation(s)
- Margaret Elizabeth Eng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Enrrico Bloise
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Nagano H, Ogata S, Ito S, Masuda T, Ohtsuki S. Knockdown of podocalyxin post-transcriptionally induces the expression and activity of ABCB1/MDR1 in human brain microvascular endothelial cells. J Pharm Sci 2022; 111:1812-1819. [PMID: 35182544 DOI: 10.1016/j.xphs.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
Abstract
Podocalyxin (PODXL) is a highly sialylated transmembrane protein that is expressed on the luminal membrane of brain microvascular endothelial cells. To clarify the role of PODXL in the blood-brain barrier (BBB), the present study aimed to investigate the effect of PODXL-knockdown on protein expression, especially the expression of ABCB1/MDR1, in human microvascular endothelial cells (hCMEC/D3). By quantitative proteomics, gene ontology enrichment with differentially expressed proteins showed that PODXL-knockdown influenced the immune response and intracellular trafficking. Among transporters, the protein expression of ABCB1/MDR1 and ABCG2/BCRP was significantly elevated by approximately 2-fold in the PODXL-knockdown cells. In the knockdown cells, the efflux activity of ABCB1/MDR1 was significantly increased, while its mRNA expression was not significantly different from that of the control cells. As receptors and tight junction proteins, levels of low-density lipoprotein receptor-related protein 1 and occludin were significantly increased, while those of transferrin receptor and claudin-11 were significantly decreased in the knockdown cells. The present results suggest that PODXL functions as a modulator of BBB function, including transport, tight junctions, and immune responses. Furthermore, PODXL post-transcriptionally regulates the protein expression and efflux activity of ABCB1/MDR1 at the BBB, which may affect drug distribution in the brain.
Collapse
Key Words
- Blood-brain barrier, brain microvascular endothelial cells, ABCB1, MDR1, podocalyxin, proteomics, regulation, List of Abbreviations, BMECs
- Bood-brain barrier, HFD
- Brain microvascular endothelial cells, BBB
- Control hCMEC/D3 cells, shPODXL
- High-fat diet, LRP1
- Low-density lipoprotein receptor-related protein 1, MS
- Mass spectrometry, PODXL
- PODXL-knockdown hCMEC/D3 cells, SEM
- Podocalyxin, shNT
- Standard error of the mean, TFRC
- Transferrin receptor
Collapse
Affiliation(s)
- Hinako Nagano
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
23
|
Liu D, Rong H, Chen Y, Wang Q, Qian S, Ji Y, Yao W, Yin J, Gao X. Targeted disruption of mitochondria potently reverses multidrug resistance in cancer therapy. Br J Pharmacol 2022; 179:3346-3362. [PMID: 35040123 DOI: 10.1111/bph.15801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Multidrug resistance (MDR) is the main obstacle to cancer therapy. Ample evidence shows that ATP-binding cassette (ABC) transporters and high-energy state substantially relate to cancer drug resistance. Our previous work reported an engineered therapeutic protein named PAK, which selectively inhibited tumor progression by targeting mitochondria. EXPERIMENTAL APPROACH Here, we studied the effects of PAK on reversing drug resistance in MDR phenotypic cells and xenograft mice models. The effects of PAK on the process of mitochondrial energy production, ABC transporters expression, and the drugs enrichment in cancer cells were further investigated. RNA-seq and co-immunoprecipitation were employed to analyze the mechanism of PAK on the redistribution of ABC transporters. KEY RESULTS PAK promoted the enrichment of drugs in MDR cancer cells, thus enhancing the sensitivity of cancer cells to chemotherapy. Furthermore, PAK was colocalized in the mitochondria and initiated mitochondrial injury by selectively inhibiting the mitochondrial complex V. Besides, ABCB1 and ABCC1 were found to be redistributed from the plasma membrane to the cytoplasm through the disruption of lipid rafts, which was attributed to the low energy state and the decrease of cholesterol levels. CONCLUSIONS AND IMPLICATIONS Our results revealed a previously unrecognized drug resistance reversal pattern and suggested mitochondria as a clinically relevant target for the treatment of MDR malignant tumors.
Collapse
Affiliation(s)
- Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qun Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Sijia Qian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
24
|
Lei Z, Teng Q, Wu Z, Ping F, Song P, Wurpel JN, Chen Z. Overcoming multidrug resistance by knockout of ABCB1 gene using CRISPR/Cas9 system in SW620/Ad300 colorectal cancer cells. MedComm (Beijing) 2021; 2:765-777. [PMID: 34977876 PMCID: PMC8706751 DOI: 10.1002/mco2.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Multidrug resistance (MDR) has been extensively reported in colorectal cancer patients, which remains a major cause of chemotherapy failure. One of the critical mechanisms of MDR in colorectal cancer is the reduced intracellular drug level led by the upregulated expression of the ATP-binding cassette (ABC) transporters, particularly, ABCB1/P-gp. In this study, the CRISPR/Cas9 system was utilized to target ABCB1 in MDR colorectal cancer SW620/Ad300 cell line with ABCB1 overexpression. The results showed that stable knockout of ABCB1 gene by the CRISPR/Cas9 system was achieved in the MDR cancer cells. Reversal of MDR against ABCB1 chemotherapeutic drugs increased intracellular accumulation of [3H]-paclitaxel accumulation, and decreased drug efflux activity was observed in MDR SW620/Ad300 cells after ABCB1 gene knockout. Further tests using the 3D multicellular tumor spheroid model suggested that deficiency in ABCB1 restrained tumor spheroid growth and restore sensitivity to paclitaxel in MDR tumor spheroids. Overall, the CRISPR/Cas9 system targeting the ABCB1 gene can be an effective approach to overcome ABCB1-mediated MDR in colorectal cancer SW620/Ad300 cells.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Zhuo‐Xun Wu
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Feng‐Feng Ping
- Department of Reproductive MedicineWuxi People's Hospital Affiliated to Nanjing Medical UniversityWu‐xiJiangsuP.R. China
| | - Peng Song
- Key Laboratory of Prevention and Treatment for Chronic Diseases by TCM in Gansu ProvinceAffiliated Hospital of Gansu University of Chinese MedicineLanzhouP.R. China
| | - John N.D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
25
|
Weng HJ, Tsai TF. ABCB1 in dermatology: roles in skin diseases and their treatment. J Mol Med (Berl) 2021; 99:1527-1538. [PMID: 34370042 PMCID: PMC8350552 DOI: 10.1007/s00109-021-02105-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Adenosine triphosphate-binding cassette subfamily B member 1 (ABCB1), also known as permeability glycoprotein, multidrug-resistant protein 1, or cluster of differentiation 243 (CD243), is a crucial protein for purging foreign substances from cells. The functions of ABCB1 have been investigated extensively for their roles in cancer, stem cells, and drug resistance. Abundant pharmacogenetic studies have been conducted on ABCB1 and its association with treatment responsiveness to various agents, particularly chemotherapeutic and immunomodulatory agents. However, its functions in the skin and implications on dermatotherapeutics are far less reported. In this article, we reviewed the roles of ABCB1 in dermatology. ABCB1 is expressed in the skin and its appendages during drug delivery and transport. It is associated with treatment responsiveness to various agents, including topical steroids, methotrexate, cyclosporine, azathioprine, antihistamines, antifungal agents, colchicine, tacrolimus, ivermectin, tetracycline, retinoid acids, and biologic agents. Moreover, genetic variation in ABCB1 is associated with the pathogenesis of several dermatoses, including psoriasis, atopic dermatitis, melanoma, bullous pemphigoid, Behçet disease, and lichen planus. Further investigation is warranted to elucidate the roles of ABCB1 in dermatology and the possibility of enhancing therapeutic efficacy through ABCB1 manipulation.
Collapse
Affiliation(s)
- H J Weng
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Dermatology, National Taiwan University Hospital, 7 Chung Shan S Rd, Taipei, 10048, Taiwan
| | - T F Tsai
- Department of Dermatology, National Taiwan University Hospital, 7 Chung Shan S Rd, Taipei, 10048, Taiwan.
| |
Collapse
|
26
|
Mukai H, Takanashi M, Ogawara KI, Maruyama M, Higaki K. Possible Regulation of P-glycoprotein Function by Adrenergic Agonists in a Vascular-luminal Perfused Preparation of Small Intestine. J Pharm Sci 2021; 110:3889-3895. [PMID: 34530005 DOI: 10.1016/j.xphs.2021.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022]
Abstract
Although the functions of small intestine are largely regulated by enteric nervous system (ENS), an independent intrinsic innervation, as well as central nervous system (CNS), the neural regulation of drug absorption from the small intestine still remains to be clarified. To obtain some information on it, the effect of adrenergic agonists on P-glycoprotein (P-gp) function was investigated by utilizing a vascular-luminal perfused rat small intestine. Adrenaline significantly decreased the secretion of rhodamine-123 (R-123) into the intestinal lumen, but dibutyryl cAMP (DBcAMP) significantly enhanced R-123 secretion. The inhibition study with quinidine clearly indicated that the decrease in secretory clearance of R-123 by adrenaline or the increase by DBcAMP would be attributed to the decrease or increase in P-gp activity, respectively. Expression levels of P-gp in whole mucosal homogenates were not changed at all by any chemicals examined, but those on brush border membrane (BBM) of intestinal epithelial cells were significantly decreased or increased by adrenaline or DBcAMP, respectively. Furthermore, changes in P-gp activity caused by adrenergic agonists and DBcAMP were significantly correlated with changes in expression level of P-gp in BBM, suggesting that the trafficking of P-gp from cytosolic pool to BBM would be regulated by adrenergic agonists and DBcAMP.
Collapse
Affiliation(s)
- Hironori Mukai
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Production Department, Odawara Central Factory, Nippon Shinyaku Co., Ltd., 676-1 Kuwahara, Odawara, Kanagawa 250-0861, Japan
| | - Masashi Takanashi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Central Hyogo Area, Hanshin Dispensing Pharmacy, I & H Co., Ltd., 1-18 Ohmasu-cho, Ashiya, Hyogo 659-0066, Japan
| | - Ken-Ichi Ogawara
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada-ku, Kobe, Hyogo 658-8558, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
27
|
LightSpot ®-FL-1 Fluorescent Probe: An Innovative Tool for Cancer Drug Resistance Analysis by Direct Detection and Quantification of the P-glycoprotein (P-gp) on Monolayer Culture and Spheroid Triple Negative Breast Cancer Models. Cancers (Basel) 2021; 13:cancers13164050. [PMID: 34439204 PMCID: PMC8391116 DOI: 10.3390/cancers13164050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tumoral drug resistance is mainly caused by multidrug resistance transporters (MDR), such as the P-gp, which presents high clinical interest. For this reason, the P-gp-mediated drug resistance diagnosis may be very relevant for optimizing anticancer treatment efficacy. However, the lack of effective analytical tools limits this clinical diagnostic approach. Therefore, our group has developed LightSpot®-FL-1, a new cell-permeant fluorescent probe able to specifically localize and quantify the P-gp inside unicellular, monolayer, and cellular mass models. The application of this innovative tool was firstly demonstrated in the preclinical field, using five triple-negative breast cancer (TNBC) cell models. The comparison between classical anti-P-gp immunostaining and LightSpot®-FL-1 P-gp staining highlighted a strong similarity with P-gp localization and expression level quantification. LightSpot®-FL-1 P-gp detection and quantification, using several fluorescence imaging methods, are easy, direct, and cost-effective and are, therefore, very promising for future clinical diagnosis development. Abstract P-gp is the most widely studied MDR protein conferring cellular resistance to many standard or targeted therapeutic agents. For this reason, P-gp chemoresistance evaluation, established before or during chemotherapy, can be very relevant in order to optimize the efficacy of treatments, particularly for aggressive tumoral subtypes such as triple-negative breast cancer (TNBC). In this context, our team developed an innovative cell-permeant fluorescent probe called the LightSpot®-FL-1, which is able to specifically localize and quantify the P-gp in cells or cell masses, as evidenced on different TNBC cell models. First, flow cytometry analysis showed LightSpot®-FL-1 cell penetration and persistence in time, in TNBC cells. Then, LightSpot®-FL-1 staining was compared to anti-P-gp immunostaining by fluorescence microscopy on five TNBC cell lines. Results showed a clear similarity of P-gp localization and expression level, confirmed by Pearson’s and Mander’s colocalization coefficients with 92.1% and 100.0%, and a strong correlation coefficient of R2 = 0.99. In addition, the LightSpot®-FL-1 staining allowed the quantification of a P-gp induction (33% expression increase) following a 6-hour spheroid model exposure to the anti-PARP Olaparib. Thus, the new LightSpot®-FL-1 cell-permeant probe, targeting P-gp, appears to be an effective tool for drug resistance evaluation in preclinical models and shows promising possibilities for future use in clinical diagnosis.
Collapse
|
28
|
Potential Applications of Chitosan-Based Nanomaterials to Surpass the Gastrointestinal Physiological Obstacles and Enhance the Intestinal Drug Absorption. Pharmaceutics 2021; 13:pharmaceutics13060887. [PMID: 34203816 PMCID: PMC8232820 DOI: 10.3390/pharmaceutics13060887] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
The small intestine provides the major site for the absorption of numerous orally administered drugs. However, before reaching to the systemic circulation to exert beneficial pharmacological activities, the oral drug delivery is hindered by poor absorption/metabolic instability of the drugs in gastrointestinal (GI) tract and the presence of the mucus layer overlying intestinal epithelium. Therefore, a polymeric drug delivery system has emerged as a robust approach to enhance oral drug bioavailability and intestinal drug absorption. Chitosan, a cationic polymer derived from chitin, and its derivatives have received remarkable attention to serve as a promising drug carrier, chiefly owing to their versatile, biocompatible, biodegradable, and non-toxic properties. Several types of chitosan-based drug delivery systems have been developed, including chemical modification, conjugates, capsules, and hybrids. They have been shown to be effective in improving intestinal assimilation of several types of drugs, e.g., antidiabetic, anticancer, antimicrobial, and anti-inflammatory drugs. In this review, the physiological challenges affecting intestinal drug absorption and the effects of chitosan on those parameters impacting on oral bioavailability are summarized. More appreciably, types of chitosan-based nanomaterials enhancing intestinal drug absorption and their mechanisms, as well as potential applications in diabetes, cancers, infections, and inflammation, are highlighted. The future perspective of chitosan applications is also discussed.
Collapse
|
29
|
El-Readi MZ, Al-Abd AM, Althubiti MA, Almaimani RA, Al-Amoodi HS, Ashour ML, Wink M, Eid SY. Multiple Molecular Mechanisms to Overcome Multidrug Resistance in Cancer by Natural Secondary Metabolites. Front Pharmacol 2021; 12:658513. [PMID: 34093189 PMCID: PMC8176113 DOI: 10.3389/fphar.2021.658513] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Plant secondary metabolites (SMs) common natural occurrences and the significantly lower toxicities of many SM have led to the approaching development and use of these compounds as effective pharmaceutical agents; especially in cancer therapy. A combination of two or three of plant secondary metabolites together or of one SM with specific anticancer drugs, may synergistically decrease the doses needed, widen the chemotherapeutic window, mediate more effective cell growth inhibition, and avoid the side effects of high drug concentrations. In mixtures they can exert additive or even synergistic activities. Many SM can effectively increase the sensitivity of cancer cells to chemotherapy. In phytotherapy, secondary metabolites (SM) of medicinal plants can interact with single or multiple targets. The multi-molecular mechanisms of plant secondary metabolites to overcome multidrug resistance (MDR) are highlighted in this review. These mechanisms include interaction with membrane proteins such as P-glycoprotein (P-gp/MDR1); an ATP-binding cassette (ABC) transporter, nucleic acids (DNA, RNA), and induction of apoptosis. P-gp plays an important role in the development of MDR in cancer cells and is involved in potential chemotherapy failure. Therefore, the ingestion of dietary supplements, food or beverages containing secondary metabolites e.g., polyphenols or terpenoids may alter the bioavailability, therapeutic efficacy and safety of the drugs that are P-gp substrates.
Collapse
Affiliation(s)
- Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmed M Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy & Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.,Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Mohammad A Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hiba Saeed Al-Amoodi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed Lotfy Ashour
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
30
|
Kobori T, Tameishi M, Tanaka C, Urashima Y, Obata T. Subcellular distribution of ezrin/radixin/moesin and their roles in the cell surface localization and transport function of P-glycoprotein in human colon adenocarcinoma LS180 cells. PLoS One 2021; 16:e0250889. [PMID: 33974673 PMCID: PMC8112653 DOI: 10.1371/journal.pone.0250889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
The ezrin/radixin/moesin (ERM) family proteins act as linkers between the actin cytoskeleton and P-glycoprotein (P-gp) and regulate the plasma membrane localization and functionality of the latter in various cancer cells. Notably, P-gp overexpression in the plasma membrane of cancer cells is a principal factor responsible for multidrug resistance and drug-induced mutagenesis. However, it remains unknown whether the ERM proteins contribute to the plasma membrane localization and transport function of P-gp in human colorectal cancer cells in which the subcellular localization of ERM has yet to be determined. This study aimed to determine the gene expression patterns and subcellular localization of ERM and P-gp and investigate the role of ERM proteins in the plasma membrane localization and transport function of P-gp using the human colon adenocarcinoma cell line LS180. Using real-time reverse transcription polymerase chain reaction and immunofluorescence analyses, we showed higher levels of ezrin and moesin mRNAs than those of radixin mRNA in these cells and preferential distribution of all three ERM proteins on the plasma membrane. The ERM proteins were highly colocalized with P-gp. Additionally, we show that the knockdown of ezrin, but not of radixin and moesin, by RNA interference significantly decreased the cell surface expression of P-gp in LS180 cells without affecting the mRNA expression of P-gp. Furthermore, gene silencing of ezrin substantially increased the intracellular accumulation of rhodamine123, a typical P-gp substrate, with no alterations in the plasma membrane permeability of Evans blue, a passive transport marker. In conclusion, ezrin may primarily regulate the cell surface localization and transport function of P-gp as a scaffold protein without influencing the transcriptional activity of P-gp in LS180 cells. These findings should be relevant for treating colorectal cancer, which is the second leading cause of cancer-related deaths in males and females combined.
Collapse
Affiliation(s)
- Takuro Kobori
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Mayuka Tameishi
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Chihiro Tanaka
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yoko Urashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Tokio Obata
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
- * E-mail:
| |
Collapse
|
31
|
Mouskeftara T, Goulas A, Ioannidou D, Ntenti C, Agapakis D, Assimopoulou A, Gika H. A Study of Blood Fatty Acids Profile in Hyperlipidemic and Normolipidemic Subjects in Association with Common PNPLA3 and ABCB1 Polymorphisms. Metabolites 2021; 11:metabo11020090. [PMID: 33557317 PMCID: PMC7915980 DOI: 10.3390/metabo11020090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 01/06/2023] Open
Abstract
Adiponutrin (patatin-like phospholipase domain-containing 3; PNPLA3), encoded in humans by the PNPLA3 gene, is a protein associated with lipid droplet and endoplasmic reticulum membranes, where it is apparently involved in fatty acid redistribution between triglycerides and phospholipids. A common polymorphism of PNPLA3 (I148M, rs738409), linked to increased PNPLA3 presence on lipid droplets, is a strong genetic determinant of non-alcoholic fatty liver disease (NAFLD) and of its progression. P-glycoprotein (Pgp, MDR1—multidrug resistance protein 1, ABCB1—ATP-binding cassette sub-family B member 1), encoded by the ABCB1 gene, is another membrane protein implicated in lipid homeostasis and steatosis. In the past, common ABCB1 polymorphisms have been associated with the distribution of serum lipids but not with fatty acids (FA) profiles. Similarly, data on the effect of PNPLA3 I148M polymorphism on blood FAs are scarce. In this study, a gas chromatography-flame ionization detection (GC-FID) method was optimized, allowing us to analyze twenty FAs (C14: 0, C15: 0, C15: 1, C16: 0, C16: 1, C17: 0, C17: 1, C18: 0, C18: 1cis, C18: 2cis, C20: 0, C20: 1n9, C20: 2, C20: 3n6, C20: 4n6, C20: 5, C23: 0, C24: 0, C24: 1 and C22: 6) in whole blood, based on the indirect determination of the fatty acids methyl esters (FAMES), in 62 hyperlipidemic patients and 42 normolipidemic controls. FA concentrations were then compared between the different genotypes of the rs738409 and rs2032582 (ABCB1 G2677T) polymorphisms, within and between the hyperlipidemic and normolipidemic groups. The rs738409 polymorphism appears to exert a significant effect on the distribution of blood fatty acids, in a lipidemic and fatty acid saturation state-depending manner. The effect of rs2032582 was less pronounced, but the polymorphism did appear to affect the relative distribution of blood fatty acids between hyperlipidemic patients and normolipidemic controls.
Collapse
Affiliation(s)
- Thomai Mouskeftara
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Antonis Goulas
- Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.G.); (D.I.); (C.N.)
| | - Despoina Ioannidou
- Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.G.); (D.I.); (C.N.)
| | - Charikleia Ntenti
- Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.G.); (D.I.); (C.N.)
| | - Dimitris Agapakis
- Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Andreana Assimopoulou
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece;
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Helen Gika
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
32
|
Increasing Intracellular Levels of Iron with Ferric Ammonium Citrate Leads to Reduced P-glycoprotein Expression in Human Immortalised Brain Microvascular Endothelial Cells. Pharm Res 2021; 38:97-111. [PMID: 33532991 DOI: 10.1007/s11095-021-03006-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/11/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE P-glycoprotein (P-gp) at the blood-brain barrier (BBB) precludes the brain penetration of many xenobiotics and mediates brain-to-blood clearance of β-amyloid, which accumulates in the Alzheimer's disease (AD) brain. Zinc and copper are reported to modulate BBB expression and function of P-gp; however, the impact of exogenous iron, which accumulates in AD, on P-gp dynamics remains unknown. METHODS P-gp protein and MDR1 transcript levels were assessed in immortalised human cerebral microvascular endothelial (hCMEC/D3) cells treated with ferric ammonium citrate (FAC; 250 μM, 72 h), by Western blotting and RT-qPCR, respectively. P-gp function was assessed using rhodamine-123 and [3H]-digoxin accumulation. Intracellular reactive oxygen species (ROS) levels were determined using 2',7'-dichlorofluorescin diacetate and intracellular iron levels quantified using a ferrozine assay. RESULTS FAC treatment significantly reduced P-gp protein (36%) and MDR1 mRNA (16%) levels, with no significant change in rhodamine-123 or [3H]-digoxin accumulation. While P-gp/MDR1 downregulation was associated with elevated ROS and intracellular iron, MDR1 downregulation was not attenuated with the antioxidant N-acetylcysteine nor the iron chelators desferrioxamine and deferiprone, suggesting the involvement of a ROS-independent mechanism or incomplete iron chelation. CONCLUSIONS These studies demonstrate that iron negatively regulates P-gp expression at the BBB, potentially impacting CNS drug delivery and brain β-amyloid clearance.
Collapse
|
33
|
Novel Intrinsic Mechanisms of Active Drug Extrusion at the Blood-Brain Barrier: Potential Targets for Enhancing Drug Delivery to the Brain? Pharmaceutics 2020; 12:pharmaceutics12100966. [PMID: 33066604 PMCID: PMC7602420 DOI: 10.3390/pharmaceutics12100966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) limits the pharmacotherapy of several brain disorders. In addition to the structural and metabolic characteristics of the BBB, the ATP-driven, drug efflux transporter P-glycoprotein (Pgp) is a selective gatekeeper of the BBB; thus, it is a primary hindrance to drug delivery into the brain. Here, we review the complex regulation of Pgp expression and functional activity at the BBB with an emphasis on recent studies from our laboratory. In addition to traditional processes such as transcriptional regulation and posttranscriptional or posttranslational modification of Pgp expression and functionality, novel mechanisms such as intra- and intercellular Pgp trafficking and intracellular Pgp-mediated lysosomal sequestration in BBB endothelial cells with subsequent disposal by blood neutrophils are discussed. These intrinsic mechanisms of active drug extrusion at the BBB are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the treatment of brain diseases and enhance drug delivery to the brain.
Collapse
|
34
|
Geisslinger F, Müller M, Vollmar AM, Bartel K. Targeting Lysosomes in Cancer as Promising Strategy to Overcome Chemoresistance-A Mini Review. Front Oncol 2020; 10:1156. [PMID: 32733810 PMCID: PMC7363955 DOI: 10.3389/fonc.2020.01156] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
To date, cancer remains a worldwide leading cause of death, with a still rising incidence. This is essentially caused by the fact, that despite the abundance of therapeutic targets and treatment strategies, insufficient response and multidrug resistance frequently occur. Underlying mechanisms are multifaceted and extensively studied. In recent research, it became evident, that the lysosome is of importance in drug resistance phenotypes. While it has long been considered just as cellular waste bag, it is now widely known that lysosomes play an important role in important cellular signaling processes and are in the focus of cancer research. In that regard lysosomes are now considered as so-called "drug safe-houses" in which chemotherapeutics are trapped passively by diffusion or actively by lysosomal P-glycoprotein activity, which prevents them from reaching their intracellular targets. Furthermore, alterations in lysosome to nucleus signaling by the transcription factor EB (TFEB)-mTORC1 axis are implicated in development of chemoresistance. The identification of lysosomes as essential players in drug resistance has introduced novel strategies to overcome chemoresistance and led to innovate therapeutic approaches. This mini review gives an overview of the current state of research on the role of lysosomes in chemoresistance, summarizing underlying mechanisms and treatment strategies and critically discussing open questions and drawbacks.
Collapse
Affiliation(s)
- Franz Geisslinger
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Martin Müller
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Angelika M Vollmar
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Karin Bartel
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
35
|
Scherrmann JM. Intracellular ABCB1 as a Possible Mechanism to Explain the Synergistic Effect of Hydroxychloroquine-Azithromycin Combination in COVID-19 Therapy. AAPS JOURNAL 2020; 22:86. [PMID: 32533263 PMCID: PMC7291928 DOI: 10.1208/s12248-020-00465-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/19/2020] [Indexed: 12/27/2022]
Abstract
The co-administration of hydroxychloroquine with azithromycin is proposed in COVID-19 therapy. We hypothesize a new mechanism supporting the synergistic interaction between these drugs. Azithromycin is a substrate of ABCB1 (P-glycoprotein) which is localized in endosomes and lysosomes with a polarized substrate transport from the cell cytosol into the vesicle interior. SARS-CoV-2 and drugs meet in these acidic organelles and both basic drugs, which are potent lysosomotropic compounds, will become protonated and trapped within these vesicles. Consequently, their intra-vesicular concentrations can attain low micromolar effective cytotoxic concentrations on SARS-CoV-2 while concomitantly increase the intra-vesicular pH up to around neutrality. This last effect inhibits lysosomal enzyme activities responsible in virus entry and replication cycle. Based on these considerations, we hypothesize that ABCB1 could be a possible enhancer by confining azithromycin more extensively than expected when the trapping is solely dependent on the passive diffusion. This additional mechanism may therefore explain the synergistic effect when azithromycin is added to hydroxychloroquine, leading to apparently more rapid virus clearance and better clinical benefit, when compared to monotherapy with hydroxychloroquine alone.
Collapse
Affiliation(s)
- J M Scherrmann
- Faculty of Pharmacy, University of Paris, Inserm UMRS-1144, Paris, France. .,Laboratoire de Pharmacocinétique, Faculté de Pharmacie, 4, avenue de l'Observatoire, 75006, Paris, France.
| |
Collapse
|
36
|
Mlejnek P, Kosztyu P, Dolezel P, Kimura Y, Cizkova K, Ruzickova E. Estimation of ABCB1 concentration in plasma membrane. J Cell Biochem 2019; 120:18406-18414. [PMID: 31209929 DOI: 10.1002/jcb.29157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
The interaction between ABCB1 transporter and its substrates takes place in cell membranes but the available data precludes quantitative analysis of the interaction between transporter and substrate molecules. Further, the amount of transporter is usually expressed as a number of ABCB1 molecules per cell. In contrast, the substrate concentration in cell membranes is estimated by determination of substrate-lipid partition coefficient, as examples. In this study, we demonstrate an approach, which enables us to estimate the concentration of ABCB1 molecules within plasma membranes. For this purpose, human leukemia K562 cells with varying expression levels of ABCB1 were used: drug selected K562/Dox and K562/HHT cells with very high transporter expression, and K562/DoxDR2, K562/DoxDR1, and K562/DoxDR05 cells with gradually decreased expression of ABCB1 derived from K562/Dox cells using RNA interference technology. First, we determined the absolute amount of ABCB1 in cell lysates using immunoblotting and recombinant ABCB1 as a standard. We then determined the relative portion of transporter residing in the plasma membrane using immunohistochemistry in nonpermeabilized and permeabilized cells. These results enabled us to estimate the concentration of ABCB1 in the plasma membrane in resistant cells. The ABCB1 concentrations in the plasma membrane of drug selected K562/Dox and K562/HHT cells containing the highest amount of transporter reached millimolar levels. Concentrations of ABCB1 in the plasma membrane of resistant K562/DoxDR2, K562/DoxDR1, and K562/DoxDR05 cells with lower transporter expression were proportionally decreased.
Collapse
Affiliation(s)
- Petr Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Petr Kosztyu
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Petr Dolezel
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Yasuhisa Kimura
- Laboratory of Cellular Biochemistry, Division of Applied Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Eliska Ruzickova
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
37
|
Guo W, Dong W, Li M, Shen Y. Mitochondria P-glycoprotein confers paclitaxel resistance on ovarian cancer cells. Onco Targets Ther 2019; 12:3881-3891. [PMID: 31190887 PMCID: PMC6529025 DOI: 10.2147/ott.s193433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/27/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Subcellular expression of P-glycoprotein (P-gp) may play an essential role in multidrug resistance (MDR) in many cancers. However, the mitochondria expression and functional activity of P-gp in ovarian cancer are still unclear. In this study, we isolated mitochondria from A2780 cell line and its paclitaxel-resistant subline A2780T and investigated the expression and function of mitochondria P-gp. Methods: Immunocytochemistry was used to evaluate P-gp expression and subcellular localization in cancer cells. Immunofluorescence and laser confocal microscopy were used to detect the co-localization of P-gp and mitochondria both in ovarian cancer tissues and in cell lines. Western blotting (WB), transmission electron microscopy and JC-1 kit were used to evaluate the purity, integrity and activity of the isolated mitochondria. P-gp expression in the whole cell and the isolated mitochondria was evaluated by WB. Flow cytometry was used to evaluate the efflux function of mitochondria P-gp. Results: P-gp expression was detected at the membrane, cytoplasm and nuclei of the A2780T cells, but not in the A2780 cells. Co-localization of P-gp and mitochondria was observed in the A2780T cell line and ovarian cancer tissues, but not in A2780 cells. The purity, integration and activity of the isolated mitochondria are high. P-gp was highly expressed in the A2780T cells and the isolated mitochondria, but was not found in A2780 cells. Rho123 efflux rate was significantly increased in isolated A2780T mitochondria compared to those in A2780 (43.2% vs 9.6%), but it was partly reversed by cyclosporin A (CsA, a P-gp inhibitor). Conclusion: P-gp is highly expressed in mitochondria of taxol-resistant ovarian cancer cells and ovarian cancer tissues and mediates the drug efflux, which probably protect cancer cells from chemotherapy.
Collapse
Affiliation(s)
- Weina Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihong Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
38
|
Nandigama K, Lusvarghi S, Shukla S, Ambudkar SV. Large-scale purification of functional human P-glycoprotein (ABCB1). Protein Expr Purif 2019; 159:60-68. [PMID: 30851394 DOI: 10.1016/j.pep.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/21/2019] [Accepted: 03/02/2019] [Indexed: 12/27/2022]
Abstract
Human P-glycoprotein (P-gp) is an ATP-binding cassette transporter that has been implicated in altering the pharmacokinetics of anticancer drugs in normal tissues and development of multidrug resistance in tumor cells via drug efflux. There is still no definitive explanation of the mechanism by which P-gp effluxes drugs. One of the challenges of large-scale purification of membrane transporters is the selection of a suitable detergent for its optimal extraction from cell membranes. In addition, further steps of purification can often lead to inactivation and aggregation, decreasing the yield of purified protein. Here we report the large-scale purification of human P-gp expressed in High-Five insect cells using recombinant baculovirus. The purification strategies we present yield homogeneous functionally active wild type P-gp and its E556Q/E1201Q mutant, which is defective in carrying out ATP hydrolysis. Three detergents (1,2-diheptanoyol-sn-glycero-3-phosphocholine, dodecyl maltoside and n-octyl-β-d-glucopyranoside) were used to solubilize and purify P-gp from insect cell membranes. P-gp purification was performed first using immobilized metal affinity chromatography, then followed by a second step of either anion exchange chromatography or size exclusion chromatography to yield protein in concentrations of 2-12 mg/mL. Size exclusion chromatography was the preferred method, as it allows separation of monomeric transporters from aggregates. We show that the purified protein, when reconstituted in proteoliposomes and nanodiscs, exhibits both basal and substrate or inhibitor-modulated ATPase activity. This report thus provides a convenient and robust method to obtain large amounts of active homogeneously purified human P-gp that is suitable for biochemical, biophysical and structural characterization.
Collapse
Affiliation(s)
- Krishnamachary Nandigama
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
39
|
Increase in P-glycoprotein levels in the blood-brain barrier of partial portal vein ligation /chronic hyperammonemia rats is medicated by ammonia/reactive oxygen species/ERK1/2 activation: In vitro and in vivo studies. Eur J Pharmacol 2019; 846:119-127. [PMID: 30639310 DOI: 10.1016/j.ejphar.2019.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
Liver failure altered P-glycoprotein (P-gp) function and expression at blood-brain barrier (BBB), partly owing to hyperammonemia. We aimed to examine the effects of partial portal vein ligation (PVL) plus chronic hyperammonemia (CHA) on P-gp function and expression at rat BBB. Experimental rats included sham-operation (SH), PVL, CHA and PVL+CHA. The PVL+CHA rats were developed by ammonia-containing diet for 2 weeks after operation. The brain-to-plasma concentration ratios (Kp) and apparent unidirectional influx constants (Kin) of rhodamine123 and sodium fluorescein were measured to assess function of P-gp and BBB integrity, respectively. Human cerebral microvascular endothelial cells (HCMEC/D3) were used to assess effects of ammonia on P-gp expression and function. It was found that PVL+CHA significantly decreased Kp and Kin of rhodamine123 without affecting brain distribution of fluorescein. The P-gp expressions in membrane protein in cortex and hippocampus were significantly increased in CHA and PVL +CHA rats, especially in PVL + CHA rats, while remarkably increased phosphorylated ERK1/2 was only found in PVL +CHA rats. Expressions of tight junction proteins claudin-5 and occluding in rat brain remained unchanged. In vitro data showed that NH4Cl increased reactive oxygen species, membrane expression and function of P-gp as well as phosphorylated ERK1/2 levels in HCMEC/D3. The NH4Cl-induced alterations were reversed by reactive oxygen species scavenger N-acetylcysteine and ERK1/2 inhibitor U0126. In conclusion, PVL+CHA increased function and membrane translocation of P-gp at rat BBB partly via ammonia. Reactive oxygen species/ERK1/2 pathway activation may be one of the reasons that ammonia upregulated P-gp expression and function at BBB.
Collapse
|
40
|
Li Q, Zhou T, Wu F, Li N, Wang R, Zhao Q, Ma YM, Zhang JQ, Ma BL. Subcellular drug distribution: mechanisms and roles in drug efficacy, toxicity, resistance, and targeted delivery. Drug Metab Rev 2018; 50:430-447. [PMID: 30270675 DOI: 10.1080/03602532.2018.1512614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
After administration, drug molecules usually enter target cells to access their intracellular targets. In eukaryotic cells, these targets are often located in organelles, including the nucleus, endoplasmic reticulum, mitochondria, lysosomes, Golgi apparatus, and peroxisomes. Each organelle type possesses unique biological features. For example, mitochondria possess a negative transmembrane potential, while lysosomes have an intraluminal delta pH. Other properties are common to several organelle types, such as the presence of ATP-binding cassette (ABC) or solute carrier-type (SLC) transporters that sequester or pump out xenobiotic drugs. Studies on subcellular drug distribution are critical to understand the efficacy and toxicity of drugs along with the body's resistance to them and to potentially offer hints for targeted subcellular drug delivery. This review summarizes the results of studies from 1990 to 2017 that examined the subcellular distribution of small molecular drugs. We hope this review will aid in the understanding of drug distribution within cells.
Collapse
Affiliation(s)
- Qiao Li
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Ting Zhou
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Fei Wu
- b Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Na Li
- c Department of Chinese materia medica , School of Pharmacy , Shanghai , China
| | - Rui Wang
- b Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Qing Zhao
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yue-Ming Ma
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Ji-Quan Zhang
- b Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Bing-Liang Ma
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| |
Collapse
|
41
|
Yano K, Tomono T, Ogihara T. Advances in Studies of P-Glycoprotein and Its Expression Regulators. Biol Pharm Bull 2018; 41:11-19. [PMID: 29311472 DOI: 10.1248/bpb.b17-00725] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review deals with recent advances in studies on P-glycoprotein (P-gp) and its expression regulators, focusing especially on our own research. Firstly, we describe findings demonstrating that the distribution of P-gp along the small intestine is heterogeneous, which explains why orally administered P-gp substrate drugs often show bimodal changes of plasma concentration. Secondly, we discuss the post-translational regulation of P-gp localization and function by the scaffold proteins ezrin, radixin and moesin (ERM proteins), together with recent reports indicating that tissue-specific differences in regulation by ERM proteins in normal tissues might be retained in corresponding cancerous tissues. Thirdly, we review evidence that P-gp activity is enhanced in the process of epithelial-to-mesenchymal transition (EMT), which is associated with cancer progression, without any increase in expression of P-gp mRNA. Finally, we describe two examples in which P-gp critically influences the brain distribution of drugs, i.e., oseltamivir, where low levels of P-gp associated with early development allow oseltamivir to enter the brain, potentially resulting in neuropsychiatric side effects in children, and cilnidipine, where impairment of P-gp function in ischemia allows cilnidipine to enter the ischemic brain, where it exerts a neuroprotective action.
Collapse
Affiliation(s)
- Kentaro Yano
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Takumi Tomono
- Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare
| | - Takuo Ogihara
- Faculty of Pharmacy, Takasaki University of Health and Welfare.,Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare
| |
Collapse
|
42
|
Zhang Q, Cong D, An D, Fan A, Liu Q, Yi Y, Song Z, Chen X, Lu Y, Zhao D, He L. Determination of oroxylin A and oroxylin A 7-O-d-glucuronide in HepG2 cell lysate and subcellular fractions with SPE-UPLC–MS/MS: Cellular pharmacokinetic study to indicate anti-cancer mechanisms. J Pharm Biomed Anal 2018; 154:364-372. [DOI: 10.1016/j.jpba.2018.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 11/30/2022]
|
43
|
McInerney MP, Volitakis I, Bush AI, Banks WA, Short JL, Nicolazzo JA. Ionophore and Biometal Modulation of P-glycoprotein Expression and Function in Human Brain Microvascular Endothelial Cells. Pharm Res 2018; 35:83. [DOI: 10.1007/s11095-018-2377-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/26/2018] [Indexed: 11/30/2022]
|
44
|
Jia S, Shen M, Zhang F, Xie J. Recent Advances in Momordica charantia: Functional Components and Biological Activities. Int J Mol Sci 2017; 18:E2555. [PMID: 29182587 PMCID: PMC5751158 DOI: 10.3390/ijms18122555] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Momordica charantia L. (M. charantia), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia.
Collapse
Affiliation(s)
- Shuo Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Fan Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
45
|
Pokharel D, Roseblade A, Oenarto V, Lu JF, Bebawy M. Proteins regulating the intercellular transfer and function of P-glycoprotein in multidrug-resistant cancer. Ecancermedicalscience 2017; 11:768. [PMID: 29062386 PMCID: PMC5636210 DOI: 10.3332/ecancer.2017.768] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy is an essential part of anticancer treatment. However, the overexpression of P-glycoprotein (P-gp) and the subsequent emergence of multidrug resistance (MDR) hampers successful treatment clinically. P-gp is a multidrug efflux transporter that functions to protect cells from xenobiotics by exporting them out from the plasma membrane to the extracellular space. P-gp inhibitors have been developed in an attempt to overcome P-gp-mediated MDR; however, lack of specificity and dose limiting toxicity have limited their effectiveness clinically. Recent studies report on accessory proteins that either directly or indirectly regulate P-gp expression and function and which are necessary for the establishment of the functional phenotype in cancer cells. This review discusses the role of these proteins, some of which have been recently proposed to comprise an interactive complex, and discusses their contribution towards MDR. We also discuss the role of other pathways and proteins in regulating P-gp expression in cells. The potential for these proteins as novel therapeutic targets provides new opportunities to circumvent MDR clinically.
Collapse
Affiliation(s)
- Deep Pokharel
- Discipline of Pharmacy, The Graduate School of Health, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ariane Roseblade
- Discipline of Pharmacy, The Graduate School of Health, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Vici Oenarto
- Discipline of Pharmacy, The Graduate School of Health, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jamie F Lu
- Discipline of Pharmacy, The Graduate School of Health, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, The Graduate School of Health, The University of Technology Sydney, Sydney, NSW 2007, Australia.,Laboratory of Cancer Cell Biology and Therapeutics, The University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
46
|
McInerney MP, Pan Y, Short JL, Nicolazzo JA. Development and Validation of an In-Cell Western for Quantifying P-Glycoprotein Expression in Human Brain Microvascular Endothelial (hCMEC/D3) Cells. J Pharm Sci 2017; 106:2614-2624. [DOI: 10.1016/j.xphs.2016.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
|
47
|
Turkanovic J, Ward MB, Gerber JP, Milne RW. Effect of Garlic, Gingko, and St. John's Wort Extracts on the Pharmacokinetics of Fexofenadine: A Mechanistic Study. Drug Metab Dispos 2017; 45:569-575. [PMID: 28188296 DOI: 10.1124/dmd.116.073528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/06/2017] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine the effects of garlic and ginkgo herbal extracts on the pharmacokinetics of the P-glycoprotein (P-gp)/organic anion-transporting polypeptides (Oatps) substrate fexofenadine. Male rats were dosed orally with garlic (120 mg/kg), ginkgo (17 mg/kg), St. John's wort (SJW; 1000 mg/kg; positive control), or Milli-Q water for 14 days. On day 15, rats either were administered fexofenadine (orally or i.v.), had their livers isolated and perfused with fexofenadine, or had their small intestines divided into four segments (SI-SIV) and analyzed for P-gp and Oatp1a5. In vivo, SJW increased the clearance of i.v. administered fexofenadine by 28%. Garlic increased the area under the curve0-∞ and maximum plasma concentration of orally administered fexofenadine by 47% and 85%, respectively. Ginkgo and SJW had no effect on the oral absorption of fexofenadine. In the perfused liver, garlic, ginkgo, and SJW increased the biliary clearance of fexofenadine with respect to perfusate by 71%, 121%, and 234%, respectively. SJW increased the biliary clearance relative to the liver concentration by 64%. The ratio of liver to perfusate concentrations significantly increased in all treated groups. The expression of Oatp1a5 in SI was increased by garlic (88%) and SJW (63%). There were no significant changes in the expression of P-gp. Induction of intestinal Oatp1a5 by garlic may explain the increased absorption of orally administered fexofenadine. Ginkgo had no effect on the expression of intestinal P-gp or Oatp1a5. A dual inductive effect by SJW on opposing intestinal epithelial transport by Oatp1a5 and P-gp remains a possibility.
Collapse
Affiliation(s)
- Jasmina Turkanovic
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Michael B Ward
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Jacobus P Gerber
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Robert W Milne
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
48
|
González ML, Vera DMA, Laiolo J, Joray MB, Maccioni M, Palacios SM, Molina G, Lanza PA, Gancedo S, Rumjanek V, Carpinella MC. Mechanism Underlying the Reversal of Drug Resistance in P-Glycoprotein-Expressing Leukemia Cells by Pinoresinol and the Study of a Derivative. Front Pharmacol 2017; 8:205. [PMID: 28487651 PMCID: PMC5403950 DOI: 10.3389/fphar.2017.00205] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/31/2017] [Indexed: 11/17/2022] Open
Abstract
P-glycoprotein (P-gp) is a membrane protein associated with multidrug resistance (MDR) due to its key role in mediating the traffic of chemotherapeutic drugs outside cancer cells, leading to a cellular response that hinders efforts toward successful therapy. With the aim of finding agents that circumvent the MDR phenotype mediated by P-gp, 15 compounds isolated from native and naturalized plants of Argentina were screened. Among these, the non-cytotoxic lignan (±) pinoresinol successfully restored sensitivity to doxorubicin from 7 μM in the P-gp overexpressed human myelogenous leukemia cells, Lucena 1. This resistance-reversing effect was confirmed by competitively increasing the intracellular doxorubicin accumulation and by significantly inhibiting the efflux of doxorubicin and, to a lesser extent, that of rhodamine 123. The activity obtained was similar to that observed with verapamil. No such results were observed in the sensitive parental K562 cell line. To gain deeper insight into the mode of action of pinoresinol, its effect on P-gp function and expression was examined. The docking simulations indicated that the lignan bound to P-gp at the apex of the V-shaped transmembrane cavity, involving transmembrane helices 4, 5, and 6, and partially overlapped the binding region of tariquidar, which was used as a positive control. These results would shed some light on the nature of its interaction with P-gp at molecular level and merit further mechanistic and kinetic studies. In addition, it showed a maximum 29% activation of ATP hydrolysis and antagonized verapamil-stimulated ATPase activity with an IC50 of 20.9 μM. On the other hand, pinoresinol decreased the presence of P-gp in the cell surface. Derivatives of pinoresinol with improved activity were identified by docking studies. The most promising one, the non-cytotoxic 1-acetoxypinoresinol, caused a reversion of doxorubicin resistance from 0.11 μM and thus higher activity than the lead compound. It also caused a significant increase in doxorubicin accumulation. Results were similar to those observed with verapamil. The results obtained positioned these compounds as potential candidates for effective agents to overcome P-gp-mediated MDR, leading to better outcomes for leukemia chemotherapy.
Collapse
Affiliation(s)
- María L González
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - D Mariano A Vera
- Department of Chemistry, QUIAMM-INBIOTEC-CONICET, College of Exact and Natural Sciences, National University of Mar del PlataMar del Plata, Argentina
| | - Jerónimo Laiolo
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Mariana B Joray
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Mariana Maccioni
- Immunology, Department of Biochemical Chemistry, CIBICI-CONICET, School of Chemical Sciences, National University of CórdobaCórdoba, Argentina
| | - Sara M Palacios
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Gabriela Molina
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Priscila A Lanza
- Department of Chemistry, QUIAMM-INBIOTEC-CONICET, College of Exact and Natural Sciences, National University of Mar del PlataMar del Plata, Argentina
| | - Samanta Gancedo
- Immunology, Department of Biochemical Chemistry, CIBICI-CONICET, School of Chemical Sciences, National University of CórdobaCórdoba, Argentina
| | - Vivian Rumjanek
- Institute of Medical Biochemistry, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - María C Carpinella
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| |
Collapse
|
49
|
Hu T, Li Z, Gao CY, Cho CH. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol 2017. [PMID: 27570424 DOI: 10.3748/wjg.vss.i30.6876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Drug resistance develops in nearly all patients with colon cancer, leading to a decrease in the therapeutic efficacies of anticancer agents. This review provides an up-to-date summary on over-expression of ATP-binding cassette (ABC) transporters and evasion of apoptosis, two representatives of transport-based and non-transport-based mechanisms of drug resistance, as well as their therapeutic strategies. Different ABC transporters were found to be up-regulated in colon cancer, which can facilitate the efflux of anticancer drugs out of cancer cells and decrease their therapeutic effects. Inhibition of ABC transporters by suppressing their protein expressions or co-administration of modulators has been proven as an effective approach to sensitize drug-resistant cancer cells to anticancer drugs in vitro. On the other hand, evasion of apoptosis observed in drug-resistant cancers also results in drug resistance to anticancer agents, especially to apoptosis inducers. Restoration of apoptotic signals by BH3 mimetics or epidermal growth factor receptor inhibitors and inhibition of cancer cell growth by alternative cell death pathways, such as autophagy, are effective means to treat such resistant cancer types. Given that the drug resistance mechanisms are different among colon cancer patients and may change even in a single patient at different stages, personalized and specific combination therapy is proposed to be more effective and safer for the reversal of drug resistance in clinics.
Collapse
Affiliation(s)
- Tao Hu
- Tao Hu, Chi Hin Cho, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Li
- Tao Hu, Chi Hin Cho, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Ying Gao
- Tao Hu, Chi Hin Cho, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Chi Hin Cho
- Tao Hu, Chi Hin Cho, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
50
|
Gameiro M, Silva R, Rocha-Pereira C, Carmo H, Carvalho F, Bastos MDL, Remião F. Cellular Models and In Vitro Assays for the Screening of modulators of P-gp, MRP1 and BCRP. Molecules 2017; 22:600. [PMID: 28397762 PMCID: PMC6153761 DOI: 10.3390/molecules22040600] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are highly expressed in tumor cells, as well as in organs involved in absorption and secretion processes, mediating the ATP-dependent efflux of compounds, both endogenous substances and xenobiotics, including drugs. Their expression and activity levels are modulated by the presence of inhibitors, inducers and/or activators. In vitro, ex vivo and in vivo studies with both known and newly synthesized P-glycoprotein (P-gp) inducers and/or activators have shown the usefulness of these transport mechanisms in reducing the systemic exposure and specific tissue access of potentially harmful compounds. This article focuses on the main ABC transporters involved in multidrug resistance [P-gp, multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP)] expressed in tissues of toxicological relevance, such as the blood-brain barrier, cardiovascular system, liver, kidney and intestine. Moreover, it provides a review of the available cellular models, in vitro and ex vivo assays for the screening and selection of safe and specific inducers and activators of these membrane transporters. The available cellular models and in vitro assays have been proposed as high throughput and low-cost alternatives to excessive animal testing, allowing the evaluation of a large number of compounds.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Drug Discovery
- Drug Evaluation, Preclinical/methods
- Drug Resistance/drug effects
- Humans
- Models, Biological
- Multidrug Resistance-Associated Proteins/chemistry
- Multidrug Resistance-Associated Proteins/metabolism
- Organ Specificity
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Mariline Gameiro
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Renata Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carolina Rocha-Pereira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Helena Carmo
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|