1
|
Woodson ME, Mottaleb MA, Murelli RP, Tavis JE. In vitro evaluation of tropolone absorption, metabolism, and clearance. Antiviral Res 2023; 220:105762. [PMID: 37996012 PMCID: PMC10843707 DOI: 10.1016/j.antiviral.2023.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Tropolone compounds can inhibit hepatitis B virus (HBV) replication at sub-micromolar levels and are synergistic upon co-treatment with nucleos(t)ide analog drugs. However, only a few compounds within this chemotype have been screened for their pharmacological properties. Here, we chose 36 structurally diverse tropolones from six subclasses to characterize their in vitro pharmacological parameters. All compounds were more soluble in pHs that reflect the gastrointestinal tract (pH 5 and 6.5) than plasma (pH 7.4). Those compounds that had solubility limits >100 μM were tested in a passive permeability assay, and there was no general trend in the compounds' passive permeability at any pH. Twenty-nine compounds with the best absorption parameters were tested in HEK293 cells to assess potential cytotoxicity; measured toxicities were similar to those in the hepatic HepDES19 cells used for screening (R2 = 0.55). Sixteen representative compounds were tested against five major CYP450 isoforms and there was no substantial inhibition by any compound against any of the enzymes tested (<50%). The t1/2 values of 15 compounds were determined in the microsome stability assay and 12 compounds were evaluated in plasma protein binding assays to assess factors affecting their rate of clearance. All compounds with detectable analyte peaks had t1/2 > 30 min, and while 4 of 12 had statistically significant decreased potency in conditions with increased albumin concentrations, only one compound's potency was biologically significant. These data indicate that the tropolones have pharmacological characteristics that reflect approved drugs and inform future structure activity relationships during drug design.
Collapse
Affiliation(s)
- Molly E Woodson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, MO, USA
| | - M Abdul Mottaleb
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, MO, USA
| | - Ryan P Murelli
- Department of Chemistry and Biochemistry, Brooklyn College, City University of New York, Brooklyn, NY, USA; The Graduate Center, City University of New York, New York, NY, USA
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
2
|
McFadden WM, Sarafianos SG. Biology of the hepatitis B virus (HBV) core and capsid assembly modulators (CAMs) for chronic hepatitis B (CHB) cure. Glob Health Med 2023; 5:199-207. [PMID: 37655181 PMCID: PMC10461335 DOI: 10.35772/ghm.2023.01065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/03/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023]
Abstract
Hepatitis B virus (HBV) is a hepadnavirus, a small DNA virus that infects liver tissue, with some unusual replication steps that share similarities to retroviruses. HBV infection can lead to chronic hepatitis B (CHB), a life-long infection associated with significant risks of liver disease, especially if untreated. HBV is a significant global health problem, with hundreds of millions currently living with CHB. Currently approved strategies to prevent or inhibit HBV are highly effective, however, a cure for CHB has remained elusive. To achieve a cure, elimination of the functionally integrated HBV covalently closed chromosomal DNA (cccDNA) genome is required. The capsid core is an essential component of HBV replication, serving roles when establishing infection and in creating new virions. Over the last two and a half decades, significant efforts have been made to find and characterize antivirals that target the capsid, specifically the HBV core protein (Cp). The antivirals that interfere with the kinetics and morphology of the capsid, termed capsid assembly modulators (CAMs), are extremely potent, and clinical investigations indicate they are well tolerated and highly effective. Several CAMs offer the potential to cure CHB by decreasing the cccDNA pools. Here, we review the biology of the HBV capsid, focused on Cp, and the development of inhibitors that target it.
Collapse
Affiliation(s)
- William M. McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
3
|
Ji X, Jiang X, Kobayashi C, Ren Y, Hu L, Gao Z, Kang D, Jia R, Zhang X, Zhao S, Watashi K, Liu X, Zhan P. Design, Synthesis, and Evaluation of a Set of Carboxylic Acid and Phosphate Prodrugs Derived from HBV Capsid Protein Allosteric Modulator NVR 3-778. Molecules 2022; 27:molecules27185987. [PMID: 36144715 PMCID: PMC9505734 DOI: 10.3390/molecules27185987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/04/2022] [Accepted: 09/10/2022] [Indexed: 11/22/2022] Open
Abstract
Hepatitis B virus (HBV) capsid protein (Cp) is necessary for viral replication and the maintenance of viral persistence, having become an attractive target of anti-HBV drugs. To improve the water solubility of HBV capsid protein allosteric modulator (CpAM) NVR 3-778, a series of novel carboxylic acid and phosphate prodrugs were designed and synthesized using a prodrug strategy. In vitro HBV replication assay showed that these prodrugs maintained favorable antiviral potency (EC50 = 0.28−0.42 µM), which was comparable to that of NVR 3-778 (EC50 = 0.38 µM). More importantly, the cytotoxicity of prodrug N8 (CC50 > 256 µM) was significantly reduced compared to NVR 3-778 (CC50 = 13.65 ± 0.21 µM). In addition, the water solubility of prodrug N6 was hundreds of times better than that of NVR 3-778 in three phosphate buffers with various pH levels (2.0, 7.0, 7.4). In addition, N6 demonstrated excellent plasma and blood stability in vitro and good pharmacokinetic properties in rats. Finally, the hemisuccinate prodrug N6 significantly improved the candidate drug NVR 3-778’s water solubility and increased metabolic stability while maintaining its antiviral efficacy.
Collapse
Affiliation(s)
- Xiangkai Ji
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Chisa Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 163-8001, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan
| | - Yujie Ren
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Lide Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 163-8001, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 163-8001, Japan
- Correspondence: (K.W.); (X.L.); (P.Z.)
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (K.W.); (X.L.); (P.Z.)
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (K.W.); (X.L.); (P.Z.)
| |
Collapse
|
4
|
Hong X, Cai Z, Zhou F, Jin X, Wang G, Ouyang B, Zhang J. Improved pharmacokinetics of tenofovir ester prodrugs strengthened the inhibition of HBV replication and the rebalance of hepatocellular metabolism in preclinical models. Front Pharmacol 2022; 13:932934. [PMID: 36105197 PMCID: PMC9465247 DOI: 10.3389/fphar.2022.932934] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Tenofovir (TFV) ester prodrugs, a class of nucleotide analogs (NAs), are the first-line clinical anti-hepatitis B virus (HBV) drugs with potent antiviral efficacy, low resistance rate and high safety. In this work, three marketed TFV ester drugs, tenofovir disoproxil fumarate (TDF), tenofovir alafenamide fumarate (TAF) and tenofovir amibufenamide fumarate (TMF), were used as probes to investigate the relationships among prodrug structures, pharmacokinetic characteristics, metabolic activations, pharmacological responses and to reveal the key factors of TFV ester prodrug design. The results indicated that TMF and TAF exhibited significantly stronger inhibition of HBV DNA replication than did TDF in HBV-positive HepG2.2.15 cells. The anti-HBV activity of TMF was slightly stronger than TAF after 9 days of treatment (EC50 7.29 ± 0.71 nM vs. 12.17 ± 0.56 nM). Similar results were observed in the HBV decline period post drug administration to the HBV transgenic mouse model, although these three TFV prodrugs finally achieved the same anti-HBV effect after 42 days treatments. Furthermore, TFV ester prodrugs showed a correcting effect on disordered host hepatic biochemical metabolism, including TCA cycle, glycolysis, pentose phosphate pathway, purine/pyrimidine metabolism, amino acid metabolism, ketone body metabolism and phospholipid metabolism. The callback effects of the three TFV ester prodrugs were ranked as TMF > TAF > TDF. These advantages of TMF were believed to be attributed to its greater bioavailability in preclinical animals (SD rats, C57BL/6 mice and beagle dogs) and better target loading, especially in terms of the higher hepatic level of the pharmacologically active metabolite TFV-DP, which was tightly related to anti-HBV efficacy. Further analysis indicated that stability in intestinal fluid determined the actual amount of TFV prodrug at the absorption site, and hepatic/intestinal stability determined the maintenance amount of prodrug in circulation, both of which influenced the oral bioavailability of TFV prodrugs. In conclusion, our research revealed that improved pharmacokinetics of TFV ester prodrugs (especially intestinal stability) strengthened the inhibition of HBV replication and the rebalance of hepatocellular metabolism, which provides new insights and a basis for the design, modification and evaluation of new TFV prodrugs in the future.
Collapse
Affiliation(s)
- Xiaodan Hong
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zuhuan Cai
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoliang Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Guangji Wang, ; Bingchen Ouyang, ; Jingwei Zhang,
| | - Bingchen Ouyang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Guangji Wang, ; Bingchen Ouyang, ; Jingwei Zhang,
| | - Jingwei Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Guangji Wang, ; Bingchen Ouyang, ; Jingwei Zhang,
| |
Collapse
|
5
|
Hasanpourghadi M, Novikov M, Newman D, Xiang Z, Zhou XY, Magowan C, Ertl HCJ. Hepatitis B virus polymerase-specific T cell epitopes shift in a mouse model of chronic infection. Virol J 2021; 18:242. [PMID: 34876153 PMCID: PMC8650432 DOI: 10.1186/s12985-021-01712-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection (CHB) is a significant public health problem that could benefit from treatment with immunomodulators. Here we describe a set of therapeutic HBV vaccines that target the internal viral proteins. METHODS Vaccines are delivered by chimpanzee adenovirus vectors (AdC) of serotype 6 (AdC6) and 7 (AdC7) used in prime only or prime-boost regimens. The HBV antigens are fused into an early T cell checkpoint inhibitor, herpes simplex virus (HSV) glycoprotein D (gD), which enhances and broadens vaccine-induced cluster of differentiation (CD8)+ T cell responses. RESULTS Our results show that the vaccines are immunogenic in mice. They induce potent CD8+ T cell responses that recognize multiple epitopes. CD8+ T cell responses increase after a boost, although the breadth remains similar. In mice, which carry high sustained loads of HBV particles due to a hepatic infection with an adeno-associated virus (AAV)8 vector expressing the 1.3HBV genome, CD8+ T cell responses to the vaccines are attenuated with a marked shift in the CD8+ T cells' epitope recognition profile. CONCLUSIONS Our data show that in different stains of mice including those that carry a human major histocompatibility complex (MHC) class I antigen HBV vaccines adjuvanted with a checkpoint inhibitor induce potent and broad HBV-specific CD8+ T cell responses and lower but still detectable CD4+ T cell responses. CD8+ T cell responses are reduced and their epitope specificity changes in mice that are chronically exposed to HBV antigens. Implications for the design of therapeutic HBV vaccines are discussed.
Collapse
Affiliation(s)
| | - Mikhail Novikov
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Dakota Newman
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - ZhiQuan Xiang
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Xiang Yang Zhou
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Colin Magowan
- Virion Therapeutics LLC, 7 Creek Bend Ct, Newark, DE, 19711, USA
| | | |
Collapse
|
6
|
Xu HY, Ren JH, Su Y, Ren F, Zhou YJ, Jiang H, Cheng ST, Zhang CR, Chen J. Anti-hepatitis B virus activity of swertisin isolated from Iris tectorum Maxim. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112787. [PMID: 32224198 DOI: 10.1016/j.jep.2020.112787] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/13/2020] [Accepted: 03/21/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Iris tectorum Maxim (I. tectorum, Yuan Wei in Chinese) is a common and traditional Chinese medicinal herb that be used to treat liver-related diseases. However, the anti-HBV activity of I. tectorum and its isolates has not been systemically studied. AIM OF THE STUDY To screen the active part of I. tectorum and systemically evaluate their anti-HBV activity. MATERIALS AND METHODS In this study, a series of compounds from I. tectorum were evaluated for their ability to inhibit HBV replication. Swertisin showed a significant inhibitory function on HBV replication. Then, the suppression effect of different concentrations of swertisin in HBsAg, HBeAg and HBV DNA level in HepG2.2.15 cells and HBV-infected HepG2-NTCP cells were comprehensive evaluated, respectively. Moreover, the anti-HBV effects of swertisin were confirmed in HBV transgenic mice model. RESULTS Among these compounds, swertisin strongly inhibited the HBsAg, HBeAg and HBV DNA level in a dose-dependent manner in HepG2.2.15 cells and HBV-infected HepG2-NTCP cells. Furthermore, swertisin showed a significant inhibition role on HBV replication in HBV transgenic mice model, the inhibition effect of which was enhanced when combined with ETV. CONCLUSIONS We have identified that swertisin can inhibit HBeAg and HBsAg production, as well as HBV DNA in vitro and in vivo. This study show that we may found a novel compound isolated from traditional Chinese medicines with potent anti-HBV function.
Collapse
Affiliation(s)
- Hong-Yan Xu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yu Su
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yu-Jiao Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Jiang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chuan-Rui Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Pierra Rouviere C, Dousson CB, Tavis JE. HBV replication inhibitors. Antiviral Res 2020; 179:104815. [PMID: 32380149 PMCID: PMC7293572 DOI: 10.1016/j.antiviral.2020.104815] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022]
Abstract
Chronic Hepatitis B Virus infections afflict >250 million people and kill nearly 1 million annually. Current non-curative therapies are dominated by nucleos(t)ide analogs (NAs) that profoundly but incompletely suppress DNA synthesis by the viral reverse transcriptase. Residual HBV replication during NA therapy contributes to maintenance of the critical nuclear reservoir of the HBV genome, the covalently-closed circular DNA, and to ongoing infection of naive cells. Identification of next-generation NAs with improved efficacy and safety profiles, often through novel prodrug approaches, is the primary thrust of ongoing efforts to improve HBV replication inhibitors. Inhibitors of the HBV ribonuclease H, the other viral enzymatic activity essential for viral genomic replication, are in preclinical development. The complexity of HBV's reverse transcription pathway offers many other potential targets. HBV's protein-priming of reverse transcription has been briefly explored as a potential target, as have the host chaperones necessary for function of the HBV reverse transcriptase. Improved inhibitors of HBV reverse transcription would reduce HBV's replication-dependent persistence mechanisms and are therefore expected to become a backbone of future curative combination anti-HBV therapies.
Collapse
Affiliation(s)
| | - Cyril B Dousson
- Ai-biopharma, Medicinal Chemistry Department, Montpellier, France.
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
8
|
Toyoda T, Wang Y, Wen Y, Tanaka Y. Fluorescence-based biochemical analysis of human hepatitis B virus reverse transcriptase activity. Anal Biochem 2020; 597:113642. [PMID: 32171777 DOI: 10.1016/j.ab.2020.113642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Although the unique mechanism by which hepatitis B virus (HBV) polymerase primes reverse transcription is now well-characterized, the subsequent elongation process remains poorly understood. Reverse transcriptase (RT)-RNase H sequences from polymerase amino acid 304 (the C-terminal part of spacer domain) to 843 were expressed in Escherichia coli and purified partially. RT elongation activity was investigated using the fluorescent-tagged primer and homopolymeric RNA templates. RT elongation activity depended on both Mg2+ and Mn2+, and had low affinity for purine deoxynucleotides, which may be related with the success of adefovir, tenofovir, and entecavir. However, the polymerization rate was lower than that of human immunodeficiency virus RT. All HBV genotypes displayed similar RT activity, except for genotype B, which demonstrated increased elongation activity.
Collapse
Affiliation(s)
- Tetsuya Toyoda
- Choju Medical Institute, Fukushimura Hospital, 19-14 Azayamanaka, Noyori-Cho, Toyohashi, Aichi, 441-8124, Japan.
| | - Yongxiang Wang
- Key Laboratory of Medical Molecular Virology, Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology, Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
9
|
An innovative electrochemical platform for the sensitive determination of the hepatitis B inhibitor Entecavir with ionic liquid as a mediator. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Puray-Chavez MN, Farghali MH, Yapo V, Huber AD, Liu D, Ndongwe TP, Casey MC, Laughlin TG, Hannink M, Tedbury PR, Sarafianos SG. Effects of Moloney Leukemia Virus 10 Protein on Hepatitis B Virus Infection and Viral Replication. Viruses 2019; 11:v11070651. [PMID: 31319455 PMCID: PMC6669478 DOI: 10.3390/v11070651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Moloney leukemia virus 10 (MOV10) is an RNA helicase that has been shown to affect the replication of several viruses. The effect of MOV10 on Hepatitis B virus (HBV) infection is not known and its role on the replication of this virus is poorly understood. We investigated the effect of MOV10 down-regulation and MOV10 over-expression on HBV in a variety of cell lines, as well as in an infection system using a replication competent virus. We report that MOV10 down-regulation, using siRNA, shRNA, and CRISPR/Cas9 gene editing technology, resulted in increased levels of HBV DNA, HBV pre-genomic RNA, and HBV core protein. In contrast, MOV10 over-expression reduced HBV DNA, HBV pre-genomic RNA, and HBV core protein. These effects were consistent in all tested cell lines, providing strong evidence for the involvement of MOV10 in the HBV life cycle. We demonstrated that MOV10 does not interact with HBV-core. However, MOV10 binds HBV pgRNA and this interaction does not affect HBV pgRNA decay rate. We conclude that the restriction of HBV by MOV10 is mediated through effects at the level of viral RNA.
Collapse
Affiliation(s)
- Maritza N Puray-Chavez
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mahmoud H Farghali
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta QXXV+C5, Egypt
| | - Vincent Yapo
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Andrew D Huber
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Dandan Liu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Tanyaradzwa P Ndongwe
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mary C Casey
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Thomas G Laughlin
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Mark Hannink
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Philip R Tedbury
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Stefan G Sarafianos
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
11
|
Akanbi OA, Harms D, Wang B, Osundare FA, Adesina O, Oluremi AS, Omoruyi EC, Kappert K, Opaleye OO, Bock CT. High frequency of drug resistance mutations in the HBV genome in ART-experienced HIV-coinfected patients in southwestern Nigeria. Antivir Ther 2019; 24:521-528. [PMID: 31566576 DOI: 10.3851/imp3333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND HBV and HIV infections are highly endemic in sub-Saharan Africa and Nigeria while HBV-HIV coinfection is not uncommon. Antiretroviral (ART)-treatment for HIV can affect HBV whereby antiviral resistance mutations in the HBV genome can be selected. Here, we determined the prevalence of resistance mutations among ART-experienced and ART-naive HIV-HBV-coinfected patients in southwestern Nigeria. METHODS A total of 81 serum samples from HBV-HIV-coinfected patients who were either ART-naive or received lamivudine (3TC)-containing ART-therapy and HBV-monoinfected patients were analysed. Hepatitis B surface antigen (HBsAg) was detected using ELISA. HBV-positive samples were confirmed by PCR amplification of the surface and polymerase regions. Mutations conferring drug resistance to HBV were analysed by direct sequencing. Phylogenetic analysis was performed to identify the HBV genotype. RESULTS Of the 81 HBsAg-positive samples, 27 had detectable HBV DNA by real-time PCR with mean viral loads of 6.77 log IU/ml. Phylogenetic analyses showed a predominance of HBV genotype E. A high prevalence (22.2%; 6/27) of HBV resistance mutations among ART-experienced HBV-HIV-coinfected patients was detected. However, a relatively high selection rate of resistance mutations in drug-naive HIV-HBV-coinfected (3.7%; 1/27) and in HBV-monoinfected patients, potential drug resistance mutations (7.4%; 2/27) were also observed. HBV polymerase amino acid substitutions found included rtV173L, rtL180M, rtM204V, rtK212R, rtS213T, rtV214A, rtL229V and rtP237A/S. CONCLUSIONS Drug resistant mutations were detected frequently in ART-experienced HIV-HBV patients. Well-coordinated antiviral therapy for HIV patients coinfected with HBV should include proper HBV diagnosis and resistance testing to minimize the emergence and spread of antiviral drug resistance.
Collapse
Affiliation(s)
- Olusola Anuoluwapo Akanbi
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Oshogbo, Nigeria
| | - Dominik Harms
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Bo Wang
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Folakemi Abiodun Osundare
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Oshogbo, Nigeria
| | - Olufisayo Adesina
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Adeolu Sunday Oluremi
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Oshogbo, Nigeria
| | - Ewean Chukwuma Omoruyi
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Oshogbo, Nigeria
| | - Kai Kappert
- Chariteì - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| | - Oluyinka Oladele Opaleye
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Oshogbo, Nigeria
| | - C-Thomas Bock
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
12
|
Zhang J, Wang Y, Peng Y, Qin C, Liu Y, Li J, Jiang J, Zhou Y, Chang J, Wang Q. Novel fluoronucleoside analog NCC inhibits lamivudine-resistant hepatitis B virus in a hepatocyte model. Braz J Infect Dis 2018; 22:477-486. [PMID: 30586543 PMCID: PMC9425639 DOI: 10.1016/j.bjid.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 11/26/2022] Open
Abstract
Antiviral drug resistance is the most important factor contributing to treatment failure using nucleos(t)ide analogs such as lamivudine for chronic infection with hepatitis B virus (HBV). Development of a system supporting efficient replication of clinically resistant HBV strains is imperative, and new antiviral drugs are needed urgently to prevent selection of drug-resistant HBV mutants. A novel fluorinated cytidine analog, NCC (N-cyclopropyl-4′-azido-2′-deoxy-2′-fluoro-β-d-cytidine), was recently shown to strongly inhibit human HBV in vitro and in vivo. This study was designed to evaluate the antiviral activity of NCC against lamivudine-resistant HBV. We generated a stable cell line encoding the major pattern of lamivudine-resistant mutations rtL180M/M204V and designated it “HepG2.RL1”. Immuno-transmission electron microscopic examination and enzyme-linked immunosorbent assay were used to detect secretion of HBV-specific particles and antigens. Quantification of extracellular DNA and intracellular DNA of HepG2.RL1 cells by quantitative real-time polymerase chain reaction revealed >625-fold and >5556-fold increases in the 50% inhibitory concentration of lamivudine, respectively, compared with that for the wild-type virus. The results showed that NCC inhibited DNA replication and HBeAg production in wild-type or lamivudine-resistant HBV in a dose-dependent manner. In conclusion, screening for antiviral compounds active against lamivudine-resistant HBV can be carried out with relative ease using hepG2.RL1 cells. NCC is a potential antiviral agent against wild-type HBV and clinical lamivudine-resistant HBV and deserves evaluation for the treatment of HBV infection.
Collapse
Affiliation(s)
- Jingmin Zhang
- The First Affiliated Hospital of Zhengzhou University, Department of Pharmacy, Zhengzhou, China; Zhengzhou University, Academy of Medical and Pharmaceutical Sciences, Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou, China
| | - Yafeng Wang
- Zhengzhou University, School of Pharmaceutical Sciences, Zhengzhou, China
| | - Youmei Peng
- Zhengzhou University, Academy of Medical and Pharmaceutical Sciences, Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou, China
| | - Chongzhen Qin
- The First Affiliated Hospital of Zhengzhou University, Department of Pharmacy, Zhengzhou, China
| | - Yixian Liu
- Zhengzhou University, Academy of Medical and Pharmaceutical Sciences, Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou, China
| | - Jingjing Li
- The First Affiliated Hospital of Zhengzhou University, Department of Pharmacy, Zhengzhou, China
| | - Jinhua Jiang
- Zhengzhou University, Academy of Medical and Pharmaceutical Sciences, Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou, China
| | - Yubing Zhou
- The First Affiliated Hospital of Zhengzhou University, Department of Pharmacy, Zhengzhou, China.
| | - Junbiao Chang
- Zhengzhou University, College of Chemistry and Molecular Engineering, Zhengzhou, China.
| | - Qingduan Wang
- Zhengzhou University, Academy of Medical and Pharmaceutical Sciences, Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou, China.
| |
Collapse
|
13
|
Wang J, Zhang L, Zhao J, Zhang Y, Liu Q, Tian C, Zhang Z, Liu J, Wang X. 2-Arylthio-5-iodo pyrimidine derivatives as non-nucleoside HBV polymerase inhibitors. Bioorg Med Chem 2018; 26:1573-1578. [PMID: 29459146 DOI: 10.1016/j.bmc.2018.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 11/16/2022]
Abstract
In this study, a series of 2-arylthio-5-iodo pyrimidine derivatives, as non-nucleoside hepatitis B virus inhibitors, were evaluated and firstly reported as potential anti-HBV agents. To probe the mechanism of active agents, DHBV polymerase was isolated and a non-radioisotopic assay was established for measuring HBV polymerase. The biological results demonstrated that 2-arylthio-5-iodo pyrimidine derivatives targeted HBV polymerase. In addition, pharmacophore models were constructed for future optimization of lead compounds. Further study will be performed for the development of non-nucleoside anti-HBV agents.
Collapse
Affiliation(s)
- Jie Wang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, 100191, China
| | - Liang Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, 100191, China
| | - Jianxiong Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, 100191, China
| | - Yu Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, 100191, China
| | - Qingchuan Liu
- Beijing Weijian Jiye Institute of Biotechnology, 100041, China
| | - Chao Tian
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, 100191, China
| | - Zhili Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, 100191, China
| | - Junyi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, 100191, China.
| | - Xiaowei Wang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, 100191, China.
| |
Collapse
|
14
|
The Heteroaryldihydropyrimidine Bay 38-7690 Induces Hepatitis B Virus Core Protein Aggregates Associated with Promyelocytic Leukemia Nuclear Bodies in Infected Cells. mSphere 2018; 3:3/2/e00131-18. [PMID: 29669885 PMCID: PMC5907649 DOI: 10.1128/mspheredirect.00131-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 02/07/2023] Open
Abstract
Heteroaryldihydropyrimidines (HAPs) are compounds that inhibit hepatitis B virus (HBV) replication by modulating viral capsid assembly. While their biophysical effects on capsid assembly in vitro have been previously studied, the effect of HAP treatment on capsid protein (Cp) in individual HBV-infected cells remains unknown. We report here that the HAP Bay 38-7690 promotes aggregation of recombinant Cp in vitro and causes a time- and dose-dependent decrease of Cp in infected cells, consistent with previously studied HAPs. Interestingly, immunofluorescence analysis showed Cp aggregating in nuclear foci of Bay 38-7690-treated infected cells in a time- and dose-dependent manner. We found these foci to be associated with promyelocytic leukemia (PML) nuclear bodies (NBs), which are structures that affect many cellular functions, including DNA damage response, transcription, apoptosis, and antiviral responses. Cp aggregation is not an artifact of the cell system used, as it is observed in HBV-expressing HepAD38 cells, in HepG2 cells transfected with an HBV-expressing plasmid, and in HepG2-NTCP cells infected with HBV. Use of a Cp overexpression vector without HBV sequences shows that aggregation is independent of viral replication, and use of an HBV-expressing plasmid harboring a HAP resistance mutation in Cp abrogated the aggregation, demonstrating that the effect is due to direct compound-Cp interactions. These studies provide novel insight into the effects of HAP-based treatment at a single-cell level.IMPORTANCE Despite the availability of effective vaccines and treatments, HBV remains a significant global health concern, with more than 240 million individuals chronically infected. Current treatments are highly effective at controlling viral replication and disease progression but rarely cure infections. Therefore, much emphasis is being placed on finding therapeutics with new drug targets, such as viral gene expression, covalently closed circular DNA formation and stability, capsid formation, and host immune modulators, with the ultimate goal of an HBV cure. Understanding the mechanisms by which novel antiviral agents act will be imperative for the development of curative HBV therapies.
Collapse
|
15
|
Feng S, Gao L, Han X, Hu T, Hu Y, Liu H, Thomas AW, Yan Z, Yang S, Young JAT, Yun H, Zhu W, Shen HC. Discovery of Small Molecule Therapeutics for Treatment of Chronic HBV Infection. ACS Infect Dis 2018; 4:257-277. [PMID: 29369612 DOI: 10.1021/acsinfecdis.7b00144] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The chronic infection of hepatitis B virus (HBV) inflicts 250 million people worldwide representing a major public health threat. A significant subpopulation of patients eventually develop cirrhosis and hepatocellular carcinoma (HCC). Unfortunately, none of the current standard therapies for chronic hepatitis B (CHB) result in a satisfactory clinical cure rate. Driven by a highly unmet medical need, multiple pharmaceutical companies and research institutions have been engaged in drug discovery and development to improve the CHB functional cure rate, defined by sustainable viral suppression and HBsAg clearance after a finite treatment. This Review summarizes the recent advances in the discovery and development of novel anti-HBV small molecules. It is believed that an improved CHB functional cure rate may be accomplished via the combination of molecules with distinct MoAs. Thus, certain molecules may evolve into key components of a suitable combination therapy leading to superior outcome of clinical efficacy in the future.
Collapse
Affiliation(s)
- Song Feng
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Lu Gao
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Xingchun Han
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Taishan Hu
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Yimin Hu
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Haixia Liu
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Andrew W. Thomas
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Zhipeng Yan
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Song Yang
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - John A. T. Young
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Hongying Yun
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Wei Zhu
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Hong C. Shen
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| |
Collapse
|
16
|
HIV-1 with HBV-associated Q151M substitution in RT becomes highly susceptible to entecavir: structural insights into HBV-RT inhibition by entecavir. Sci Rep 2018; 8:1624. [PMID: 29374261 PMCID: PMC5785976 DOI: 10.1038/s41598-018-19602-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/02/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) reverse transcriptase (RT) is essential for viral replication and is an important drug target. Nonetheless, the notorious insolubility of HBV RT has hindered experimental structural studies and structure-based drug design. Here, we demonstrate that a Q151M substitution alone at the nucleotide-binding site (N-site) of human immunodeficiency virus type-1 (HIV-1) RT renders HIV-1 highly sensitive to entecavir (ETV), a potent nucleoside analogue RT inhibitor (NRTI) against HBV. The results suggest that Met151 forms a transient hydrophobic interaction with the cyclopentyl methylene of ETV, a characteristic hydrophobic moiety of ETV. We thus solved the crystal structures of HIV-1 RTQ151M:DNA complex with bound dGTP or ETV-triphosphate (ETV-TP). The structures revealed that ETV-TP is accommodated at the N-site slightly apart from the ribose ring of the 3′-end nucleotide, compared to the position of bound dGTP and previously reported NRTI/dNTP. In addition, the protruding methylene group of bound ETV-TP directly pushes the side-chain of Met184 backward. Met184 is a key residue that confers ETV resistance upon substitution with smaller Ile/Val. These results provide novel insights into NRTI binding to the N-site and further provide important clues for the development of novel anti-HBV/HIV-1 RT inhibitors to overcome critical drug resistance.
Collapse
|
17
|
Yamani LN, Yano Y, Utsumi T, Wasityastuti W, Rinonce HT, Widasari DI, Juniastuti, Lusida MI, Soetjipto, Hayashi Y. Profile of Mutations in the Reverse Transcriptase and Overlapping Surface Genes of Hepatitis B Virus (HBV) in Treatment-Naïve Indonesian HBV Carriers. Jpn J Infect Dis 2017; 70:647-655. [PMID: 29093313 DOI: 10.7883/yoken.jjid.2017.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutations in the reverse transcriptase (RT) region of the hepatitis B virus (HBV) genome are an important factor in low therapeutic effectiveness. Nonetheless, the prevalence of these mutations in HBV strains isolated previously in Indonesia has not been systematically examined. Therefore, in this study, we investigated the profile of mutations in the RT region and the associations of these mutations with amino acid changes in the surface protein in the virus of treatment-naïve Indonesian HBV carriers. Overall, 96 sequences of the full-length Indonesian HBV genomes (genotype B, n = 54; genotype C, n = 42) were retrieved from the National Center for Biotechnology Information. Naturally occurring primary and/or compensatory drug resistance mutations were found in 6/54 (11.1%) genotype B strains and in 1/42 (2.4%) genotype C strains. The potential mutations underlying resistance to a nucleos(t)ide analog and/or pretreatment mutations were more frequent in both genotypes but more frequent in genotype C strains than in genotype B strains. The A-B interdomain region in the RT gene was more frequently mutated in genotype C than in genotype B (3.51 ± 2.53 vs. 1.08 ± 1.52, P < 0.001). Knowledge about the mutational profiles of the RT gene and changes in the surface protein may help clinicians to select the most appropriate antiviral drug and vaccination or HBV immunoglobulin regimen for management of HBV infection in Indonesia.
Collapse
Affiliation(s)
| | - Yoshihiko Yano
- Center for Infectious Diseases, Kobe University Graduate School of Medicine.,Department of Gastroenterology, Kobe University Graduate School of Medicine
| | - Takako Utsumi
- Institute of Tropical Disease, Airlangga University.,Center for Infectious Diseases, Kobe University Graduate School of Medicine
| | | | - Hanggoro Tri Rinonce
- Department of Anatomical Pathology, Faculty of Medicine, Dr. Sardjito Hospital, Gadjah Mada University
| | - Dewiyani Indah Widasari
- Department of Anatomical Pathology, Faculty of Medicine, Dr. Sardjito Hospital, Gadjah Mada University
| | - Juniastuti
- Institute of Tropical Disease, Airlangga University
| | | | - Soetjipto
- Institute of Tropical Disease, Airlangga University
| | - Yoshitake Hayashi
- Center for Infectious Diseases, Kobe University Graduate School of Medicine
| |
Collapse
|
18
|
Rendon JC, Cortes-Mancera F, Restrepo-Gutierrez JC, Hoyos S, Navas MC. Molecular characterization of occult hepatitis B virus infection in patients with end-stage liver disease in Colombia. PLoS One 2017; 12:e0180447. [PMID: 28686707 PMCID: PMC5501523 DOI: 10.1371/journal.pone.0180447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) occult infection (OBI) is a risk factor to be taken into account in transfusion, hemodialysis and organ transplantation. The aim of this study was to identify and characterize at the molecular level OBI cases in patients with end-stage liver disease. METHODS Sixty-six liver samples were obtained from patients with diagnosis of end-stage liver disease submitted to liver transplantation in Medellin (North West, Colombia). Samples obtained from patients who were negative for the surface antigen of HBV (n = 50) were tested for viral DNA detection by nested PCR for ORFs S, C, and X and confirmed by Southern-Blot. OBI cases were analyzed by sequencing the viral genome to determine the genotype and mutations; additionally, viral genome integration events were examined by the Alu-PCR technique. RESULTS In five cases out of 50 patients (10%) the criteria for OBI was confirmed. HBV genotype F (subgenotypes F1 and F3), genotype A and genotype D were characterized in liver samples. Three integration events in chromosomes 5q14.1, 16p13 and 20q12 affecting Receptor-type tyrosine-protein phosphatase T, Ras Protein Specific Guanine Nucleotide Releasing Factor 2, and the zinc finger 263 genes were identified in two OBI cases. Sequence analysis of the viral genome of the 5 OBI cases showed several punctual missense and nonsense mutations affecting ORFs S, P, Core and X. CONCLUSIONS This is the first characterization of OBI in patients with end-stage liver disease in Colombia. The OBI cases were identified in patients with HCV infection or cryptogenic cirrhosis. The integration events (5q14.1, 16p13 and 20q12) described in this study have not been previously reported. Further studies are required to validate the role of mutations and integration events in OBI pathogenesis.
Collapse
Affiliation(s)
- Julio Cesar Rendon
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellin, Colombia
| | - Fabian Cortes-Mancera
- Grupo de Investigación e Innovacion Biomédica GIB, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnologico Metropolitano (ITM), Medellin, Colombia
| | - Juan Carlos Restrepo-Gutierrez
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellin, Colombia
- Unidad de Hepatologia y Trasplante Hepatico, Hospital Pablo Tobon Uribe, Medellin, Colombia
| | - Sergio Hoyos
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellin, Colombia
- Unidad de Hepatologia y Trasplante Hepatico, Hospital Pablo Tobon Uribe, Medellin, Colombia
| | - Maria-Cristina Navas
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellin, Colombia
| |
Collapse
|
19
|
Menéndez-Arias L, Sebastián-Martín A, Álvarez M. Viral reverse transcriptases. Virus Res 2017; 234:153-176. [PMID: 28043823 DOI: 10.1016/j.virusres.2016.12.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
Reverse transcriptases (RTs) play a major role in the replication of Retroviridae, Metaviridae, Pseudoviridae, Hepadnaviridae and Caulimoviridae. RTs are enzymes that are able to synthesize DNA using RNA or DNA as templates (DNA polymerase activity), and degrade RNA when forming RNA/DNA hybrids (ribonuclease H activity). In retroviruses and LTR retrotransposons (Metaviridae and Pseudoviridae), the coordinated action of both enzymatic activities converts single-stranded RNA into a double-stranded DNA that is flanked by identical sequences known as long terminal repeats (LTRs). RTs of retroviruses and LTR retrotransposons are active as monomers (e.g. murine leukemia virus RT), homodimers (e.g. Ty3 RT) or heterodimers (e.g. human immunodeficiency virus type 1 (HIV-1) RT). RTs lack proofreading activity and display high intrinsic error rates. Besides, high recombination rates observed in retroviruses are promoted by poor processivity that causes template switching, a hallmark of reverse transcription. HIV-1 RT inhibitors acting on its polymerase activity constitute the backbone of current antiretroviral therapies, although novel drugs, including ribonuclease H inhibitors, are still necessary to fight HIV infections. In Hepadnaviridae and Caulimoviridae, reverse transcription leads to the formation of nicked circular DNAs that will be converted into episomal DNA in the host cell nucleus. Structural and biochemical information on their polymerases is limited, although several drugs inhibiting HIV-1 RT are known to be effective against the human hepatitis B virus polymerase. In this review, we summarize current knowledge on reverse transcription in the five virus families and discuss available biochemical and structural information on RTs, including their biosynthesis, enzymatic activities, and potential inhibition.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
20
|
Yamada N, Sugiyama R, Nitta S, Murayama A, Kobayashi M, Okuse C, Suzuki M, Yasuda K, Yotsuyanagi H, Moriya K, Koike K, Wakita T, Kato T. Resistance mutations of hepatitis B virus in entecavir-refractory patients. Hepatol Commun 2017; 1:110-121. [PMID: 29404449 PMCID: PMC5721430 DOI: 10.1002/hep4.1022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/28/2016] [Accepted: 02/08/2017] [Indexed: 12/17/2022] Open
Abstract
The emergence of resistance mutations in the reverse transcriptase gene of hepatitis B virus (HBV) is associated with treatment failure. Entecavir (ETV) is one of the most potent anti‐HBV reagents; it has a very low resistance rate and is used as the first‐line treatment for chronic hepatitis B. In this study, we isolated HBVs in 4 ETV‐refractory patients (2 with viral breakthrough, 1 with partial virological response, and 1 with flare‐up) and assessed ETV resistance using replication‐competent 1.38‐fold HBV genome‐length molecular clones. The full genome sequences of infected HBVs in ETV‐refractory patients were determined. The HBV molecular clones were generated with the patient‐derived sequences. After transfection of these molecular clones into HepG2 cells, viral replications and ETV susceptibilities were evaluated by measuring the amount of intracellular core‐particle‐associated HBV DNA using Southern blotting and real‐time polymerase chain reaction. Among these cases, ETV‐resistant variants were detected in 2 patients with viral breakthrough and responsible amino acid mutations in reverse transcriptase were successfully identified in these variants. No ETV‐resistant mutation was detected in the other cases. The identified ETV‐resistant mutations did not confer resistance to tenofovir disoproxil fumarate. Conclusion: The HBV replication model with patient‐derived sequences is useful for assessing replication efficiency, susceptibility to anti‐HBV reagents, and responsible resistance mutations and can aid in choosing the appropriate treatment strategy for treatment‐failure cases of chronic hepatitis B. (Hepatology Communications 2017;1:110‐121)
Collapse
Affiliation(s)
- Norie Yamada
- Department of Virology II National Institute of Infectious Diseases Tokyo Japan.,Department of Internal Medicine Center for Liver Diseases, Seizankai Kiyokawa Hospital Tokyo Japan
| | - Ryuichi Sugiyama
- Department of Virology II National Institute of Infectious Diseases Tokyo Japan
| | - Sayuri Nitta
- Department of Virology II National Institute of Infectious Diseases Tokyo Japan.,Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Asako Murayama
- Department of Virology II National Institute of Infectious Diseases Tokyo Japan
| | - Minoru Kobayashi
- Department of Internal Medicine Center for Liver Diseases, Seizankai Kiyokawa Hospital Tokyo Japan
| | - Chiaki Okuse
- Department of Internal Medicine Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine Kanagawa Japan
| | - Michihiro Suzuki
- Department of Internal Medicine Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine Kanagawa Japan
| | - Kiyomi Yasuda
- Department of Internal Medicine Center for Liver Diseases, Seizankai Kiyokawa Hospital Tokyo Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases Advanced Clinical Research Center, Institute of Medical Science
| | - Kyoji Moriya
- Department of Infection Control and Prevention Graduate School of Medicine
| | - Kazuhiko Koike
- Department of Gastroenterology Graduate School of Medicine, The University of Tokyo Tokyo Japan
| | - Takaji Wakita
- Department of Virology II National Institute of Infectious Diseases Tokyo Japan
| | - Takanobu Kato
- Department of Virology II National Institute of Infectious Diseases Tokyo Japan
| |
Collapse
|
21
|
Peng Y, Li Y, Hou J, Sun J, Su M, Li Y, Xiang K, Yan L, Zhuang H, Li T. The nucleotide changes within HBV core promoter/precore during the first 12weeks of nucleos(t)ide treatment might be associated with a better virological response. INFECTION GENETICS AND EVOLUTION 2017; 49:116-121. [PMID: 28088502 DOI: 10.1016/j.meegid.2017.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVES We aimed to study the dynamic changes of hepatitis B virus (HBV) core promoter/precore (CP/preC) sequences during antiviral treatment and their associations with virological responses. MATERIALS AND METHODS The baseline and 12-week CP/preC sequences (nts 1655-2014) were obtained from 52 chronic hepatitis B patients with positive hepatitis B e antigen (HBeAg), who received a 104-week lamivudine and adefovir dipivoxil combination therapy. The mutations within the CP/preC were analyzed against genotype specific reference sequences. The nucleotide change rates in individuals during therapy were analyzed in a pairwise comparison manner. RESULTS There was no significant difference of the mutation rate at each nucleotide site between baseline and week 12 of treatment (P>0.05). The mutation rates of A1762T/G1764A and G1896A were found to decrease from 46.2% (24/52) at baseline to 36.5% (19/52) at week 12 (P=0.426) and from 28.8% (15/52) to 21.2% (11/52) (P=0.497), respectively. The nucleotide change rates varied from 0.0% - 7.8% in individuals [0.0% in Group 1 (N=26); 0.3% - 7.8% in Group 2 (N=26)] during the first 12-week treatment. HBV DNA levels in Group 2 were significantly lower than those in Group 1 throughout therapy (P<0.01) (e.g., 1.5±1.3log10 IU/ml vs. 2.6±1.0log10 IU/ml at week 104, P=0.001). At week 104 the rates of HBV DNA undetectable and HBeAg loss in Group 2 were significantly higher than those in Group 1 (P<0.05). Along with the increased nucleotide change rates, the rate of HBV DNA undetectable at week 104 tended to increase (odds ratio=0.323, 95% confidence interval=0.138-0.758, P<0.001). CONCLUSION Our findings suggested that the nucleotide changes within HBV CP/preC region during the first 12-week treatment might be associated with a better virological response.
Collapse
Affiliation(s)
- Yaqin Peng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yutang Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinlin Hou
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jian Sun
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mingze Su
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yao Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Kuanhui Xiang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ling Yan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tong Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
22
|
Xu X, Thai H, Kitrinos KM, Xia G, Gaggar A, Paulson M, Ganova-Raeva L, Khudyakov Y, Lara J. Modeling the functional state of the reverse transcriptase of hepatitis B virus and its application to probing drug-protein interaction. BMC Bioinformatics 2016; 17 Suppl 8:280. [PMID: 27587008 PMCID: PMC5009823 DOI: 10.1186/s12859-016-1116-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Herein, the predicted atomic structures of five representative sequence variants of the reverse transcriptase protein (RT) of hepatitis B virus (HBV), sampled from patients with rapid or slow response to tenofovir disoproxil fumarate (TDF) treatment, have been examined to identify structural variations between them in order to assess structural and functional properties of HBV-RT variants associated with the differential responses to TDF treatment. RESULTS We utilized a hybrid computational approach to model the atomistic structures of HBV-RT/DNA-RNA/dATP and HBV-RT/DNA-RNA/TFV-DP (tenofovir diphosphate) complexes with the native hybrid DNA-RNA substrate in place. Multi-nanosecond molecular dynamics (MD) simulations of HBV-RT/DNA-RNA/dATP complexes revealed strong coupling of the natural nucleotide substrate, dATP, to the active site of the RT, and the differential involvement of the two putative magnesium cations (Mg(2+)) at the active site, whereby one Mg(2+) directly bridges the interaction between dATP and HBV-RT and the other serves as a coordinator to maintain an optimal configuration of the active site. Solvated interaction energy (SIE) calculated in MD simulations of HBV-RT/DNA-RNA/TFV-DP complexes indicate no differential binding affinity between TFV-DP and HBV-RT variants identified in patients with slow or rapid response to TDF treatment. CONCLUSION The predicted atomic structures accurately represent functional states of HBV-RT. The equivalent interaction between TFV-DP and each examined HBV-RT variants suggests that binding affinity of TFV-DP to HBV-RT is not associated with delayed viral clearance.
Collapse
Affiliation(s)
- Xiaojun Xu
- Division of Viral Hepatitis, National Center for HIV, Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Hong Thai
- Division of Viral Hepatitis, National Center for HIV, Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | | | - Guoliang Xia
- Division of Viral Hepatitis, National Center for HIV, Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | | | | | - Lilia Ganova-Raeva
- Division of Viral Hepatitis, National Center for HIV, Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Yury Khudyakov
- Division of Viral Hepatitis, National Center for HIV, Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - James Lara
- Division of Viral Hepatitis, National Center for HIV, Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| |
Collapse
|
23
|
Structural basis of HIV inhibition by translocation-defective RT inhibitor 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA). Proc Natl Acad Sci U S A 2016; 113:9274-9. [PMID: 27489345 DOI: 10.1073/pnas.1605223113] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is the most potent nucleoside analog inhibitor of HIV reverse transcriptase (RT). It retains a 3'-OH yet acts as a chain-terminating agent by diminishing translocation from the pretranslocation nucleotide-binding site (N site) to the posttranslocation primer-binding site (P site). Also, facile misincorporation of EFdA-monophosphate (MP) results in difficult-to-extend mismatched primers. To understand the high potency and unusual inhibition mechanism of EFdA, we solved RT crystal structures (resolutions from 2.4 to 2.9 Å) that include inhibition intermediates (i) before inhibitor incorporation (catalytic complex, RT/DNA/EFdA-triphosphate), (ii) after incorporation of EFdA-MP followed by dT-MP (RT/DNAEFdA-MP(P)• dT-MP(N) ), or (iii) after incorporation of two EFdA-MPs (RT/DNAEFdA-MP(P)• EFdA-MP(N) ); (iv) the latter was also solved with EFdA-MP mismatched at the N site (RT/DNAEFdA-MP(P)• EFdA-MP(*N) ). We report that the inhibition mechanism and potency of EFdA stem from interactions of its 4'-ethynyl at a previously unexploited conserved hydrophobic pocket in the polymerase active site. The high resolution of the catalytic complex structure revealed a network of ordered water molecules at the polymerase active site that stabilize enzyme interactions with nucleotide and DNA substrates. Finally, decreased translocation results from favorable interactions of primer-terminating EFdA-MP at the pretranslocation site and unfavorable posttranslocation interactions that lead to observed localized primer distortions.
Collapse
|
24
|
Study on 2-arylthio-5-iodo pyrimidine derivatives as novel nonnucleoside inhibitors against hepatitis B virus DNA replication. Future Med Chem 2016; 8:751-63. [PMID: 27172826 DOI: 10.4155/fmc.16.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Novel nonnucleoside hepatitis B virus inhibitors have been recently developed for the reason of drug-resistant mutations and adverse effects of nucleoside analogs. In this study, two series of 2-arylthio-5-iodo pyrimidine analogs were firstly reported as potential anti-HBV agents. METHODOLOGY Target compounds were prepared according to two high-yielded synthetic routes, and their anti-HBV activities were evaluated on Hep2.2.15 and HepAD38 cell lines, respectively. To probe the mechanism of active agents, a cell-based (Huh-7) study of biochemical markers (e.g., HBeAg, HBsAg, intracellular HBV DNA and pgRNA) was performed. Furthermore, the pharmacophore models were constructed for future optimization of lead compounds. CONCLUSION 2-Arylthio-5-iodo pyrimidine derivatives firstly proved to be effective against HBV, which paves the way for future development of nonnucleoside anti-HBV agents.
Collapse
|
25
|
Archampong TN, Boyce CL, Lartey M, Sagoe KW, Obo-Akwa A, Kenu E, Blackard JT, Kwara A. HBV genotypes and drug resistance mutations in antiretroviral treatment-naive and treatment-experienced HBV-HIV-coinfected patients. Antivir Ther 2016; 22:13-20. [PMID: 27167598 DOI: 10.3851/imp3055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND The presence of HBV resistance mutations upon initiation or during antiretroviral therapy (ART) in HIV-coinfected patients is an important determinant of treatment response. The main objective of the study was to determine the prevalence of HBV resistance mutations in antiretroviral treatment-naive and treatment-experienced HBV-HIV-coinfected Ghanaian patients with detectable HBV viraemia. METHODS HBV-HIV-coinfected patients who were ART-naive or had received at least 9 months of lamivudine (3TC)-containing ART were enrolled in a cross-sectional study. Demographic and clinical data were collected and HBV DNA quantified. Partial HBV sequences were amplified by PCR and sequenced bi-directionally to obtain a 2.1-2.2 kb fragment for phylogenetic analysis of HBV genotypes and evaluation of drug resistance mutations. RESULTS Of the 100 HBV-HIV-coinfected study patients, 75 were successfully PCR-amplified, and 63 were successfully sequenced. Of these 63 patients, 27 (42.9%) were ART-experienced and 58 (92.1%) had HBV genotype E. No resistance mutations were observed in the 36 ART-naive patients, while 21 (77.8%) of 27 treatment-experienced patients had resistance mutations. All patients with resistance mutations had no tenofovir in their regimens, and 80% of them had HIV RNA <40 copies/ml. The 3TC resistance mutations rtL180M and rtM204V were observed in 10 (47.6%) of the 21 patients, while 5 patients (23.8%) had rtV173L, rtL180M and rtM204V mutations. CONCLUSIONS A high proportion of HBV-HIV-coinfected patients with detectable viraemia on 3TC-containing ART had resistance mutations despite good ART adherence as determined by HIV RNA suppression. This study emphasizes the need for dual therapy as part of a fully suppressive ART in all HBV-HIV-coinfected patients in Ghana.
Collapse
Affiliation(s)
- Timothy Na Archampong
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana.,Korle-Bu Teaching Hospital, Accra, Ghana
| | - Ceejay L Boyce
- Division of Digestive Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Margaret Lartey
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana.,Korle-Bu Teaching Hospital, Accra, Ghana
| | - Kwamena W Sagoe
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Adjoa Obo-Akwa
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ernest Kenu
- Korle-Bu Teaching Hospital, Accra, Ghana.,School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Jason T Blackard
- Division of Digestive Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Awewura Kwara
- Warren Alpert Medical School of Brown University, Providence, RI, USA.,The Miriam Hospital, Providence, RI, USA
| |
Collapse
|
26
|
Recent advance of the hepatitis B virus inhibitors: a medicinal chemistry overview. Future Med Chem 2016; 7:587-607. [PMID: 25921400 DOI: 10.4155/fmc.15.19] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B Virus (HBV) is one of the most prevalent viral infections of human worldwide. The therapies are limited in the clinical context because of negative side effects of interferons and the development of viral resistance to the nucleoside/nucleotide inhibitors. In this review, we summarize the recent advances in design and development of potent anti-HBV inhibitors from natural sources and synthetic compounds, targeting different steps in the life cycle of HBV. We attempt to emphasize the major structural modifications, mechanisms of action and computer-aided docking analysis of novel potent inhibitors that need to be addressed in the future to design potent anti-HBV molecules.
Collapse
|
27
|
Nakamura A, Tamura N, Yasutake Y. Structure of the HIV-1 reverse transcriptase Q151M mutant: insights into the inhibitor resistance of HIV-1 reverse transcriptase and the structure of the nucleotide-binding pocket of Hepatitis B virus polymerase. Acta Crystallogr F Struct Biol Commun 2015; 71:1384-90. [PMID: 26527265 PMCID: PMC4631587 DOI: 10.1107/s2053230x15017896] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/24/2015] [Indexed: 02/08/2023] Open
Abstract
Hepatitis B virus polymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stability in vitro has hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol and Human immunodeficiency virus 1 (HIV-1) RT, leading to speculation on structural and mechanistic analogies between the deoxynucleotide triphosphate (dNTP)-binding sites of these enzymes. The Q151M mutation in HIV-1 RT, located at the dNTP-binding site, confers resistance to various NRTIs, while maintaining sensitivity to tenofovir and lamivudine. The residue corresponding to Gln151 is strictly conserved as a methionine in HBV Pol. Therefore, the structure of the dNTP-binding pocket of the HIV-1 RT Q151M mutant may reflect that of HBV Pol. Here, the crystal structure of HIV-1 RT Q151M, determined at 2.6 Å resolution, in a new crystal form with space group P321 is presented. Although the structure of HIV-1 RT Q151M superimposes well onto that of HIV-1 RT in a closed conformation, a slight movement of the β-strands (β2-β3) that partially create the dNTP-binding pocket was observed. This movement might be caused by the introduction of the bulky thioether group of Met151. The structure also highlighted the possibility that the hydrogen-bonding network among amino acids and NRTIs is rearranged by the Q151M mutation, leading to a difference in the affinity of NRTIs for HIV-1 RT and HBV Pol.
Collapse
Affiliation(s)
- Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido 062-8517, Japan
| | - Noriko Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido 062-8517, Japan
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido 062-8517, Japan
| |
Collapse
|
28
|
Koumbi L. Current and future antiviral drug therapies of hepatitis B chronic infection. World J Hepatol 2015; 7:1030-1040. [PMID: 26052392 PMCID: PMC4450180 DOI: 10.4254/wjh.v7.i8.1030] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/12/2015] [Accepted: 02/04/2015] [Indexed: 02/06/2023] Open
Abstract
Despite significant improvement in the management of chronic hepatitis B virus (HBV) it remains a public health problem, affecting more than 350 million people worldwide. The natural course of the infection is dynamic and involves a complex interplay between the virus and the host's immune system. Currently the approved therapeutic regimens include pegylated-interferon (IFN)-α and monotherapy with five nucleos(t)ide analogues (NAs). Both antiviral treatments are not capable to eliminate the virus and do not establish long-term control of infection after treatment withdrawal. IFN therapy is of finite duration and associates with low response rates, liver decompensating and numerous side effects. NAs are well-tolerated therapies but have a high risk of drug resistance development that limits their prolonged use. The imperative for the development of new approaches for the treatment of chronic HBV infection is a challenging issue that cannot be over-sided. Research efforts are focusing on the identification and evaluation of various viral replication inhibitors that target viral replication and a number of immunomodulators that aim to restore the HBV specific immune hyporesponsiveness without inducing liver damage. This review brings together our current knowledge on the available treatment and discusses potential therapeutic approaches in the battle against chronic HBV infection.
Collapse
Affiliation(s)
- Lemonica Koumbi
- Lemonica Koumbi, Hepatology and Gastroenterology Section, Department of Medicine, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
29
|
Menéndez-Arias L, Álvarez M, Pacheco B. Nucleoside/nucleotide analog inhibitors of hepatitis B virus polymerase: mechanism of action and resistance. Curr Opin Virol 2014; 8:1-9. [PMID: 24814823 DOI: 10.1016/j.coviro.2014.04.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) polymerase and human immunodeficiency virus (HIV) reverse transcriptase are structurally related. However, the HBV enzyme has a protein priming activity absent in the HIV enzyme. Approved nucleoside/nucleotide inhibitors of the HBV polymerase include lamivudine, adefovir, telbivudine, entecavir and tenofovir. Although most of them target DNA elongation, guanosine and adenosine analogs (e.g. entecavir and tenofovir, respectively) also impair protein priming. Major mutational patterns conferring nucleoside/nucleotide analog resistance include the combinations rtL180M/rtM204(I/V) (for lamivudine, entecavir, telbivudine and clevudine) and rtA181V/rtN236T (for adefovir and tenofovir). However, development of drug resistance is very slow for entecavir and tenofovir. Novel nucleoside/nucleotide analogs in advanced clinical trials include phosphonates similar to adefovir or tenofovir, and new tenofovir derivatives with improved pharmacological properties.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, Madrid 28049, Spain.
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, Madrid 28049, Spain
| | - Beatriz Pacheco
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
30
|
Michailidis E, Huber AD, Ryan EM, Ong YT, Leslie MD, Matzek KB, Singh K, Marchand B, Hagedorn AN, Kirby KA, Rohan LC, Kodama EN, Mitsuya H, Parniak MA, Sarafianos SG. 4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) inhibits HIV-1 reverse transcriptase with multiple mechanisms. J Biol Chem 2014; 289:24533-48. [PMID: 24970894 DOI: 10.1074/jbc.m114.562694] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a nucleoside analog that, unlike approved anti-human immunodeficiency virus type 1 (HIV-1) nucleoside reverse transcriptase inhibitors, has a 3'-OH and exhibits remarkable potency against wild-type and drug-resistant HIVs. EFdA triphosphate (EFdA-TP) is unique among nucleoside reverse transcriptase inhibitors because it inhibits HIV-1 reverse transcriptase (RT) with multiple mechanisms. (a) EFdA-TP can block RT as a translocation-defective RT inhibitor that dramatically slows DNA synthesis, acting as a de facto immediate chain terminator. Although non-translocated EFdA-MP-terminated primers can be unblocked, they can be efficiently converted back to the EFdA-MP-terminated form. (b) EFdA-TP can function as a delayed chain terminator, allowing incorporation of an additional dNTP before blocking DNA synthesis. In such cases, EFdA-MP-terminated primers are protected from excision. (c) EFdA-MP can be efficiently misincorporated by RT, leading to mismatched primers that are extremely hard to extend and are also protected from excision. The context of template sequence defines the relative contribution of each mechanism and affects the affinity of EFdA-MP for potential incorporation sites, explaining in part the lack of antagonism between EFdA and tenofovir. Changes in the type of nucleotide before EFdA-MP incorporation can alter its mechanism of inhibition from delayed chain terminator to immediate chain terminator. The versatility of EFdA in inhibiting HIV replication by multiple mechanisms may explain why resistance to EFdA is more difficult to emerge.
Collapse
Affiliation(s)
- Eleftherios Michailidis
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Andrew D Huber
- From the Christopher Bond Life Sciences Center and Departments of Veterinary Pathobiology and
| | - Emily M Ryan
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Yee T Ong
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Maxwell D Leslie
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Kayla B Matzek
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Kamalendra Singh
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Bruno Marchand
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Ariel N Hagedorn
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Karen A Kirby
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Lisa C Rohan
- Magee-Womens Research Institute and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Eiichi N Kodama
- Division of Emerging Infectious Diseases, Tohoku University, Sendai 980-8575, Japan
| | - Hiroaki Mitsuya
- Department of Internal Medicine, Kumamoto University, Kumamoto 860-8556, Japan, Experimental Retrovirology Section, HIV/AIDS Malignancy Branch, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Michael A Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Stefan G Sarafianos
- From the Christopher Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211, Biochemistry, University of Missouri, Columbia, Missouri 65211,
| |
Collapse
|
31
|
Chen HM, Liu HL, Yang YC, Cheng XL, Wang YF, Xing FF, Zhao YR. Serum IL-21 levels associated with chronic hepatitis B and hepatitis B-related liver failure. Exp Ther Med 2014; 7:1013-1019. [PMID: 24669269 PMCID: PMC3964921 DOI: 10.3892/etm.2014.1533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/27/2014] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the role of interleukin (IL)-21 in chronic hepatitis B virus (HBV) infection. IL-21 stimulates T and B cell responses and plays a role in the control of chronic viral infections. Serum IL-21 levels were measured by enzyme immunoassay in 109 patients with chronic HBV infection at various clinical stages, as well as in 19 healthy controls (HCs). The proportion of T cells producing IL-21 in the peripheral blood was assessed by intracellular cytokine staining and flow cytometry. Mean serum IL-21 levels in patients with chronic hepatitis B (CHB) and the HCs were 303.54±152.77 pg/ml and 68.24±9.06 pg/ml, respectively (P=0.003). In addition, the mean serum IL-21 level in patients with hepatitis B-related acute-on-chronic liver failure (HB-ACLF) was 455.38±412.38 pg/ml, which exhibited a statistically significant difference when compared with the HCs (P=0.000). Serum IL-21 levels were highest in the patients with HB-ACLF (455.38±412.38 pg/ml) and exhibited a significant difference when compared with the CHB patients (P=0.04). The mean serum IL-21 levels in patients with cirrhosis also increased, but there was no statistically significant difference when compared with the HCs (P=0.82). The frequency of IL-21+CD4+ cells also increased compared with the HCs and correlated with the number and percentage of lymphocytes in the peripheral blood. Serum IL-21 levels increased in CHB and HB-ACLF patients. Relatively low serum IL-21 levels in CHB may have a causal role in the persistence of HBV infection. Higher serum levels in HB-ACLF may activate T and B cells to eliminate the virus or injure the liver via the release of inflammatory cytokines.
Collapse
Affiliation(s)
- Hong-Mei Chen
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hong-Li Liu
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yu-Cong Yang
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiao-Li Cheng
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yue-Fei Wang
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fan-Fan Xing
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ying-Ren Zhao
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
32
|
Large-scale production and structural and biophysical characterizations of the human hepatitis B virus polymerase. J Virol 2013; 88:2584-99. [PMID: 24352439 DOI: 10.1128/jvi.02575-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) is a major human pathogen that causes serious liver disease and 600,000 deaths annually. Approved therapies for treating chronic HBV infections usually target the multifunctional viral polymerase (hPOL). Unfortunately, these therapies--broad-spectrum antivirals--are not general cures, have side effects, and cause viral resistance. While hPOL remains an attractive therapeutic target, it is notoriously difficult to express and purify in a soluble form at yields appropriate for structural studies. Thus, no empirical structural data exist for hPOL, and this impedes medicinal chemistry and rational lead discovery efforts targeting HBV. Here, we present an efficient strategy to overexpress recombinant hPOL domains in Escherichia coli, purifying them at high yield and solving their known aggregation tendencies. This allowed us to perform the first structural and biophysical characterizations of hPOL domains. Apo-hPOL domains adopt mainly α-helical structures with small amounts of β-sheet structures. Our recombinant material exhibited metal-dependent, reverse transcriptase activity in vitro, with metal binding modulating the hPOL structure. Calcomine orange 2RS, a small molecule that inhibits duck HBV POL activity, also inhibited the in vitro priming activity of recombinant hPOL. Our work paves the way for structural and biophysical characterizations of hPOL and should facilitate high-throughput lead discovery for HBV. IMPORTANCE The viral polymerase from human hepatitis B virus (hPOL) is a well-validated therapeutic target. However, recombinant hPOL has a well-deserved reputation for being extremely difficult to express in a soluble, active form in yields appropriate to the structural studies that usually play an important role in drug discovery programs. This has hindered the development of much-needed new antivirals for HBV. However, we have solved this problem and report here procedures for expressing recombinant hPOL domains in Escherichia coli and also methods for purifying them in soluble forms that have activity in vitro. We also present the first structural and biophysical characterizations of hPOL. Our work paves the way for new insights into hPOL structure and function, which should assist the discovery of novel antivirals for HBV.
Collapse
|
33
|
Effects of substitutions at the 4' and 2 positions on the bioactivity of 4'-ethynyl-2-fluoro-2'-deoxyadenosine. Antimicrob Agents Chemother 2013; 57:6254-64. [PMID: 24100493 DOI: 10.1128/aac.01703-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nucleos(t)ide reverse transcriptase inhibitors (NRTIs) form the backbone of most anti-HIV therapies. We have shown that 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a highly effective NRTI; however, the reasons for the potent antiviral activity of EFdA are not well understood. Here, we use a combination of structural, computational, and biochemical approaches to examine how substitutions in the sugar or adenine rings affect the incorporation of dA-based NRTIs like EFdA into DNA by HIV RT and their susceptibility to deamination by adenosine deaminase (ADA). Nuclear magnetic resonance (NMR) spectroscopy studies of 4'-substituted NRTIs show that ethynyl or cyano groups stabilize the sugar ring in the C-2'-exo/C-3'-endo (north) conformation. Steady-state kinetic analysis of the incorporation of 4'-substituted NRTIs by RT reveals a correlation between the north conformation of the NRTI sugar ring and efficiency of incorporation into the nascent DNA strand. Structural analysis and the kinetics of deamination by ADA demonstrate that 4'-ethynyl and cyano substitutions decrease the susceptibility of adenosine-based compounds to ADA through steric interactions at the active site. However, the major determinant for decreased susceptibility to ADA is the 2-halo substitution, which alters the pKa of N1 on the adenine base. These results provide insight into how NRTI structural attributes affect their antiviral activities through their interactions with the RT and ADA active sites.
Collapse
|
34
|
Martinez AA, Zaldivar Y, Hong CC, Alvarado-Mora MV, Smith R, Ortiz AY, Pinho JRR, Cristina J, Pascale JM. Molecular characterisation of hepatitis B virus in the resident Chinese population in Panama City. Mem Inst Oswaldo Cruz 2013; 108:541-7. [PMID: 23903967 PMCID: PMC3970604 DOI: 10.1590/s0074-02762013000500002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/26/2013] [Indexed: 02/06/2023] Open
Abstract
Despite the effectiveness of current hepatitis B virus (HBV) vaccines, it is estimated that 350 million individuals suffer from chronic HBV infection and more than 50% of these affected individuals live on the Asian continent. Panama is a country with a great diversity of foreign groups; the Chinese community is a large example of this phenomenon. There is an urgent need to perform studies that evaluate the prevalence and the genetic diversity of HBV in this community. This study aimed to evaluate the prevalence of HBV and its genotypes and mutant variants in the Chinese population residing in Panama. In total, 320 subjects were enrolled in the study. Forty-two subjects (13.1%) were positive for HBsAg and HBV-DNA from 18 subjects revealed the presence of genotypes B2 and C1. Secondary mutations associated with drug resistance at positions rtV207L and rtN239T of the reverse transcriptase gene were identified. Additionally, the mutation pair A1762T/G1764A was found in three samples and the mutation G1896A was detected in an HBeAg-negative subject. In conclusion, to our knowledge, this is the first study to report high HBV prevalence rates in resident ethnic Chinese in Central America and the presence of genotypes B2 and C1 in this region.
Collapse
Affiliation(s)
- Alexander Augusto Martinez
- Gorgas Memorial Institute for Health Studies, Panama, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur,
India
- Instituto de Investigaciones Científicas y Servicios de Alta
Tecnología-AIP, Ciudad del Saber, Clayton, Panama
| | | | - Chen Ch Hong
- Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Monica Viviana Alvarado-Mora
- Laboratório de Gastroenterologia e Hepatologia Tropical,
Departamento de Gastroenterologia, Instituto de Medicina Tropical, Faculdade de
Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Rebecca Smith
- Gorgas Memorial Institute for Health Studies, Panama, Panama
| | - Alma Y Ortiz
- Gorgas Memorial Institute for Health Studies, Panama, Panama
| | - João Renato Rebello Pinho
- Laboratório de Gastroenterologia e Hepatologia Tropical,
Departamento de Gastroenterologia, Instituto de Medicina Tropical, Faculdade de
Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones
Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Juan Miguel Pascale
- Gorgas Memorial Institute for Health Studies, Panama, Panama
- School of Medicine, University of Panama, Panama, Panama
| |
Collapse
|
35
|
Martinez AA, Zaldivar Y, Hong CC, Alvarado-Mora MV, Smith R, Ortiz AY, Pinho JRR, Cristina J, Pascale JM. Molecular characterisation of hepatitis B virus in the resident Chinese population in Panama City. Mem Inst Oswaldo Cruz 2013; 108. [PMID: 23903967 PMCID: PMC3970604 DOI: 10.1590/0074-0276108052013002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Despite the effectiveness of current hepatitis B virus (HBV) vaccines, it is estimated that 350 million individuals suffer from chronic HBV infection and more than 50% of these affected individuals live on the Asian continent. Panama is a country with a great diversity of foreign groups; the Chinese community is a large example of this phenomenon. There is an urgent need to perform studies that evaluate the prevalence and the genetic diversity of HBV in this community. This study aimed to evaluate the prevalence of HBV and its genotypes and mutant variants in the Chinese population residing in Panama. In total, 320 subjects were enrolled in the study. Forty-two subjects (13.1%) were positive for HBsAg and HBV-DNA from 18 subjects revealed the presence of genotypes B2 and C1. Secondary mutations associated with drug resistance at positions rtV207L and rtN239T of the reverse transcriptase gene were identified. Additionally, the mutation pair A1762T/G1764A was found in three samples and the mutation G1896A was detected in an HBeAg-negative subject. In conclusion, to our knowledge, this is the first study to report high HBV prevalence rates in resident ethnic Chinese in Central America and the presence of genotypes B2 and C1 in this region.
Collapse
Affiliation(s)
- Alexander Augusto Martinez
- Gorgas Memorial Institute for Health Studies, Panama, Panama , Department of Biotechnology, Acharya Nagarjuna University, Guntur,
India , Instituto de Investigaciones Científicas y Servicios de Alta
Tecnología-AIP, Ciudad del Saber, Clayton, Panama
| | | | - Chen Ch Hong
- Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Monica Viviana Alvarado-Mora
- Laboratório de Gastroenterologia e Hepatologia Tropical,
Departamento de Gastroenterologia, Instituto de Medicina Tropical, Faculdade de
Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Rebecca Smith
- Gorgas Memorial Institute for Health Studies, Panama, Panama
| | - Alma Y Ortiz
- Gorgas Memorial Institute for Health Studies, Panama, Panama
| | - João Renato Rebello Pinho
- Laboratório de Gastroenterologia e Hepatologia Tropical,
Departamento de Gastroenterologia, Instituto de Medicina Tropical, Faculdade de
Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones
Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Juan Miguel Pascale
- Gorgas Memorial Institute for Health Studies, Panama, Panama , School of Medicine, University of Panama, Panama, Panama , Corresponding author:
| |
Collapse
|
36
|
De Clercq E. A cutting-edge view on the current state of antiviral drug development. Med Res Rev 2013; 33:1249-77. [PMID: 23495004 DOI: 10.1002/med.21281] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prominent in the current stage of antiviral drug development are: (i) for human immunodeficiency virus (HIV), the use of fixed-dose combinations (FDCs), the most recent example being Stribild(TM); (ii) for hepatitis C virus (HCV), the pleiade of direct-acting antivirals (DAAs) that should be formulated in the most appropriate combinations so as to obtain a cure of the infection; (iii)-(v) new strategies (i.e., AIC316, AIC246, and FV-100) for the treatment of herpesvirus infections: herpes simplex virus (HSV), cytomegalovirus (CMV), and varicella-zoster virus (VZV), respectively; (vi) the role of a new tenofovir prodrug, tenofovir alafenamide (TAF) (GS-7340) for the treatment of HIV infections; (vii) the potential use of poxvirus inhibitors (CMX001 and ST-246); (viii) the usefulness of new influenza virus inhibitors (peramivir and laninamivir octanoate); (ix) the position of the hepatitis B virus (HBV) inhibitors [lamivudine, adefovir dipivoxil, entecavir, telbivudine, and tenofovir disoproxil fumarate (TDF)]; and (x) the potential of new compounds such as FGI-103, FGI-104, FGI-106, dUY11, and LJ-001 for the treatment of filoviruses (i.e., Ebola). Whereas for HIV and HCV therapy is aimed at multiple-drug combinations, for all other viruses, HSV, CMV, VZV, pox, influenza, HBV, and filoviruses, current strategies are based on the use of single compounds.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
37
|
The hepatitis B virus ribonuclease H is sensitive to inhibitors of the human immunodeficiency virus ribonuclease H and integrase enzymes. PLoS Pathog 2013; 9:e1003125. [PMID: 23349632 PMCID: PMC3551811 DOI: 10.1371/journal.ppat.1003125] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/27/2012] [Indexed: 12/26/2022] Open
Abstract
Nucleos(t)ide analog therapy blocks DNA synthesis by the hepatitis B virus (HBV) reverse transcriptase and can control the infection, but treatment is life-long and has high costs and unpredictable long-term side effects. The profound suppression of HBV by the nucleos(t)ide analogs and their ability to cure some patients indicates that they can push HBV to the brink of extinction. Consequently, more patients could be cured by suppressing HBV replication further using a new drug in combination with the nucleos(t)ide analogs. The HBV ribonuclease H (RNAseH) is a logical drug target because it is the second of only two viral enzymes that are essential for viral replication, but it has not been exploited, primarily because it is very difficult to produce active enzyme. To address this difficulty, we expressed HBV genotype D and H RNAseHs in E. coli and enriched the enzymes by nickel-affinity chromatography. HBV RNAseH activity in the enriched lysates was characterized in preparation for drug screening. Twenty-one candidate HBV RNAseH inhibitors were identified using chemical structure-activity analyses based on inhibitors of the HIV RNAseH and integrase. Twelve anti-RNAseH and anti-integrase compounds inhibited the HBV RNAseH at 10 µM, the best compounds had low micromolar IC50 values against the RNAseH, and one compound inhibited HBV replication in tissue culture at 10 µM. Recombinant HBV genotype D RNAseH was more sensitive to inhibition than genotype H. This study demonstrates that recombinant HBV RNAseH suitable for low-throughput antiviral drug screening has been produced. The high percentage of compounds developed against the HIV RNAseH and integrase that were active against the HBV RNAseH indicates that the extensive drug design efforts against these HIV enzymes can guide anti-HBV RNAseH drug discovery. Finally, differential inhibition of HBV genotype D and H RNAseHs indicates that viral genetic variability will be a factor during drug development. Current therapy for HBV blocks DNA synthesis by the viral reverse transcriptase and can control the infection indefinitely, but treatment rarely cures patients. More patients could be cured by suppressing HBV replication further using a new drug in combination with the existing ones. The HBV RNAseH is a logical drug target because it is the second of only two viral enzymes that are essential for viral replication, but it has not been exploited, primarily because it is very difficult to produce active enzyme. We expressed active recombinant HBV RNAseHs and demonstrated that it was suitable for antiviral drug screening. Twenty-one candidate HBV RNAseH inhibitors were identified based on antagonists of the HIV RNAseH and integrase enzymes. Twelve of these compounds inhibited the HBV RNAseH in enzymatic assays, and one inhibited HBV replication in cell-based assays. The high percentage of compounds developed against the HIV RNAseH and integrase that were also active against the HBV RNAseH indicates that the extensive drug design efforts against these HIV enzymes can be used to guide anti-HBV RNAseH drug discovery.
Collapse
|
38
|
Hu Y, Zhu W, Tang G, Mayweg AV, Yang G, Wu JZ, Shen HC. Novel Therapeutics in Discovery and Development for Treatment of Chronic HBV Infection. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-417150-3.00017-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|