1
|
Xu L, Xu H, Tang C. Aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders: progress of experimental models based on disease pathogenesis. Neural Regen Res 2025; 20:354-365. [PMID: 38819039 PMCID: PMC11317952 DOI: 10.4103/nrr.nrr-d-23-01325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/18/2023] [Accepted: 12/19/2023] [Indexed: 06/01/2024] Open
Abstract
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction. To date, no effective treatment exists as the exact causative mechanism remains unknown. Therefore, experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets. Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4, which is highly expressed on the membrane of astrocyte endfeet, most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes. These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders, such as aquaporin-4 loss, astrocytopathy, granulocyte and macrophage infiltration, complement activation, demyelination, and neuronal loss; however, they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders. In this review, we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro, ex vivo, and in vivo for neuromyelitis optica spectrum disorders, suggest potential pathogenic mechanisms for further investigation, and provide guidance on experimental model choices. In addition, this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders, offering further therapeutic targets and a theoretical basis for clinical trials.
Collapse
Affiliation(s)
- Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Xu L, Yang L, Xu H, Li Y, Peng F, Qiu W, Tang C. Lycium barbarum glycopeptide ameliorates motor and visual deficits in autoimmune inflammatory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155610. [PMID: 38640861 DOI: 10.1016/j.phymed.2024.155610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Lycium barbarum glycopeptide (LbGp), extracted from the traditional Chinese medicine (TCM) of Lycium barbarum (LB), provides a neuroprotective effect against neurodegenerative and neuroimmune disorders contributing to its immunomodulatory and anti-inflammatory roles. Neuromyelitis optica spectrum disorders (NMOSD) is an autoimmune-mediated central nervous system (CNS) demyelinating disease, clinically manifested as transverse myelitis (TM) and optic neuritis. However, no drug has been demonstrated to be effective in relieving limb weakness and visual impairment of NMOSD patients. PURPOSE This study investigates the potential role of LbGp in ameliorating pathologic lesions and improving neurological dysfunction during NMOSD progression, and to elucidate the underlying mechanisms for the first time. STUDY DESIGN We administrate LbGp in experimental NMOSD models in ex vivo and in vivo to explore its effect on NMOSD. METHODS To evaluate motor function, both rotarod and gait tasks were performed in systemic NMOSD mice models. Furthermore, we assessed the severity of NMO-like lesions of astrocytes, organotypic cerebellar slices, as well as brain, spinal cord and optic nerve sections from NMOSD mouse models with LbGp treatment by immunofluorescent staining. In addition, demyelination levels in optic nerve were measured by G-ratio through Electro-microscopy (EM). And inflammation response was explored through detecting the protein levels of proinflammatory cytokines and NF-κB signaling in astrocytic culture medium and spinal cord homogenates respectively by Elisa and by Western blotting. RESULTS LbGp could significantly reduce astrocytes injury, demyelination, and microglial activation in NMOSD models. In addition, LbGp also improved locomotor and visual dysfunction through preventing neuron and retinal ganglion cells (RGCs) from inflammatory attack in a systemic mouse model. Mechanistically, LbGp inhibits proinflammatory factors release via inhibition of NF-κB signaling in NMOSD models. CONCLUSION This study provides evidence to develop LbGp as a functional TCM for the clinical treatment of NMOSD.
Collapse
Affiliation(s)
- Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province, PR China
| | - Lu Yang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province, PR China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province, PR China
| | - Yuhan Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province, PR China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province, PR China.
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province, PR China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
3
|
Wang M, Wang W, Liu S, Ma J, Wang X, Chou Y, Gan L, Zhang X, Shao E, Zhong Y, Xu Y. Retinal structural and microvascular deterioration independent of optic neuritis in aquaporin-4 antibody-positive neuromyelitis optica spectrum disorders: An optical coherence tomography angiography study. Mult Scler Relat Disord 2024; 84:105423. [PMID: 38359691 DOI: 10.1016/j.msard.2024.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE To assess the retinal structural and microvascular change in aquaporin-4 antibody (AQP4) positive neuromyelitis optica spectrum disorder (NMOSD) patients and the correlation with clinical features. METHODS A cross-sectional study was performed with optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) to measure retinal structure and microvascular parameters in AQP4 positive NMOSD patients. RESULTS Sixty-two NMOSD patients (44 eyes with ON, NMOSD+ON; 77 eyes without ON, NMOSD-ON) and 62 healthy controls (HC, 124 eyes) were included. BCVA was worse in NMOSD patients compared to HC (p<0.001). Peripapillary retinal nerve fiber layer (pRNFL, p<0.001) and ganglion cell complex (GCC, p<0.001) was thinner in NMOSD+ON eyes compared to NMOSD-ON eyes and HC. Compared to HC, pRNFL (p = 0.002) and GCC (p = 0.001) was thinner in NMOSD-ON eyes. The vessel density (VD) in superficial capillary plexus (SCP, NMOSD+ON vs HC p<0.001, NMOSD-ON vs HC p = 0.002) and radial peripapillary capillary (RPC, NMOSD+ON vs HC p<0.001, NMOSD-ON vs HC p = 0.001) were also lower in NMOSD patients than HC independent of the history of ON. ON frequency and BCVA were correlated with the thickness of pRNFL and GCC, and VD in SCP and RPC (all p<0.001). EDSS was correlated with thickness of GCC (p = 0.008), and VD in SCP (p = 0.013), DCP (p<0.001) and RPC (p = 0.009). CONCLUSIONS Subclinical degradation of retinal structure and microvasculature was found in NMOSD patients before the occurrence of ON, and was correlated with clinical disability. Retinal parameter might be a tool to estimate the disease progression and investigate the pathogenesis of NMOSD.
Collapse
Affiliation(s)
- Meng Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China
| | - Wenjun Wang
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Sihua Liu
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China
| | - Jin Ma
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China
| | - Xuqian Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China
| | - Yuyu Chou
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China
| | - Linyang Gan
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China
| | - Xia Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China
| | - Enhua Shao
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China
| | - Yong Zhong
- Department of Ophthalmology, Peking Union Medical College Hospital, Beijing, China.
| | - Yan Xu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
4
|
Mehmood A, Shah S, Guo RY, Haider A, Shi M, Ali H, Ali I, Ullah R, Li B. Methyl-CpG-Binding Protein 2 Emerges as a Central Player in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Cell Mol Neurobiol 2023; 43:4071-4101. [PMID: 37955798 PMCID: PMC11407427 DOI: 10.1007/s10571-023-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
MECP2 and its product methyl-CpG binding protein 2 (MeCP2) are associated with multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), which are inflammatory, autoimmune, and demyelinating disorders of the central nervous system (CNS). However, the mechanisms and pathways regulated by MeCP2 in immune activation in favor of MS and NMOSD are not fully understood. We summarize findings that use the binding properties of MeCP2 to identify its targets, particularly the genes recognized by MeCP2 and associated with several neurological disorders. MeCP2 regulates gene expression in neurons, immune cells and during development by modulating various mechanisms and pathways. Dysregulation of the MeCP2 signaling pathway has been associated with several disorders, including neurological and autoimmune diseases. A thorough understanding of the molecular mechanisms underlying MeCP2 function can provide new therapeutic strategies for these conditions. The nervous system is the primary system affected in MeCP2-associated disorders, and other systems may also contribute to MeCP2 action through its target genes. MeCP2 signaling pathways provide promise as potential therapeutic targets in progressive MS and NMOSD. MeCP2 not only increases susceptibility and induces anti-inflammatory responses in immune sites but also leads to a chronic increase in pro-inflammatory cytokines gene expression (IFN-γ, TNF-α, and IL-1β) and downregulates the genes involved in immune regulation (IL-10, FoxP3, and CX3CR1). MeCP2 may modulate similar mechanisms in different pathologies and suggest that treatments for MS and NMOSD disorders may be effective in treating related disorders. MeCP2 regulates gene expression in MS and NMOSD. However, dysregulation of the MeCP2 signaling pathway is implicated in these disorders. MeCP2 plays a role as a therapeutic target for MS and NMOSD and provides pathways and mechanisms that are modulated by MeCP2 in the regulation of gene expression.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Arsalan Haider
- Key Lab of Health Psychology, Institute of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
5
|
Silverglate B, Gao X, Lee HP, Maliha P, Grossberg GT. The aquaporin-4 water channel and updates on its potential as a drug target for Alzheimer's disease. Expert Opin Ther Targets 2023; 27:523-530. [PMID: 37475487 DOI: 10.1080/14728222.2023.2240017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Although there are several FDA-approved treatments for Alzheimer's disease (AD), only recently have disease-modifying therapies received approval for use in patients. In this narrative review, we examine the history of aquaporin-4 (AQP4) as a therapeutic target for NMOSD (neuromyelitis optica spectrum disorder) and as a potential therapeutic target for AD. AREAS COVERED We review the basic science and discovery of AQP4, a transmembrane water-channel essential to regulating water balance in the central nervous system (CNS). We also review the pathogenesis of NMOSD, an autoimmune disease characterized by the destruction of cells that express AQP4. Then, we review how AQP4 is likely involved in the pathogenesis of Alzheimer's disease (AD). Finally, we discuss future challenges with drug design that would modulate AQP4 to potentially slow AD development. The literature search for this article consisted of searching Google Scholar and PubMed for permutations of the keywords 'Alzheimer's disease,' 'aquaporin-4,' 'neuromyelitis optica,' and their abbreviations. EXPERT OPINION We place research into AQP4 into context with other recent developments in AD research. A major difficulty with drug development for Alzheimer's is the lack of strategies to cleanly target the early pathogenesis of the disease. Targeting AQP4 may provide such a strategy.
Collapse
Affiliation(s)
- Bret Silverglate
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Xiaoyi Gao
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Hannah P Lee
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Peter Maliha
- Carolyn Wells-Peterson Geriatric Psychiatry Research Fellow, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - George T Grossberg
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Bugshan TF, Asiri M, Alqahtani M, Maghrabi R, Alotaibi HS, Alharbi N. Neuromyelitis Optica Spectrum Disorder: A Rare Case of Transverse Myelitis and Autonomic Dysfunction. Cureus 2023; 15:e38791. [PMID: 37303442 PMCID: PMC10250140 DOI: 10.7759/cureus.38791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a demyelinating central nervous system disease commonly presenting with optic neuritis and transverse myelitis. Its pathology is mediated by serum aquaporin 4 immunoglobulin G (AQP4-IgG) and myelin oligodendrocyte glycoprotein (MOG) antibodies. It can present in a relapsing and monophasic pattern and is diagnosed using the diagnostic criteria published in 2015 by the international panel on neuromyelitis optica (NMO) diagnosis. We describe the case of a 25-year-old man who had a history of painful eye movement and complete loss of vision affecting his left eye for which he was diagnosed with optic neuritis two months prior to presentation. The patient presented with transverse myelitis followed by a picture of autonomic dysfunction in the form of labile blood pressure and heart rate readings associated with profuse sweating as well as significant MRI findings. Neuromyelitis optica was diagnosed with positive AQP4-IgG and longitudinally extensive transverse myelitis. Treatment was initiated with pulse steroid and plasmapheresis followed by oral prednisolone and azathioprine following which the patient's condition stabilized.
Collapse
Affiliation(s)
| | | | - Mohammed Alqahtani
- Neurology, King Fahad General Hospital, Jeddah, SAU
- Neurology, Armed Forces Hospital - Southern Region, Khamis Mushait, SAU
| | | | | | - Naif Alharbi
- Neurology, King Fahad General Hospital, Jeddah, SAU
| |
Collapse
|
7
|
Cabanillas-Lazo M, Cruzalegui-Bazán C, Pascual-Guevara M, Quispe-Vicuña C, Terry-Escalante FA, Mori N, Alva-Díaz C. Clinical and imagenologic significance of the neutrophil-to-lymphocyte ratio in neuromyelitis optica spectrum disorder: A systematic review with meta-analysis. PLoS One 2023; 18:e0281064. [PMID: 36758016 PMCID: PMC9910629 DOI: 10.1371/journal.pone.0281064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Recently, the neutrophil-lymphocyte ratio (NLR) has become a biomarker for assessing inflammatory stress and prognosis in different diseases. OBJECTIVE We aimed to conduct a systematic review and meta-analysis to summarize the current evidence on the capacity of the NLR to serve as a biomarker in neuromyelitis optica spectrum disorder (NMOSD). METHODS Through a comprehensive systematic search up to December 2021 and using the search terms "neutrophil-to-lymphocyte ratio" and "neuromyelitis optica spectrum disorder" we selected studies evaluating NLR values in NMOSD patients. A meta-analysis was planned, and a narrative synthesis was performed when this was not possible. Subgroup and sensitivity analyses were planned. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach was used to assess certainty of the evidence. RESULTS Six studies were included (1036 patients). A significant increase in the NLR was observed between NMOSD patients and healthy controls with high heterogeneity (MD: 1.04; 95% CI: 0.76; 1.32; I2 = 59%). Regarding NMOSD prognosis, relapse (OR: 1.33 -OR: 2.14) was evaluated as being related to NLR with low certainty. An association with Expanded Disability Status Scale (EDSS) score ≥4 (OR: 1.23 -OR: 1.43) was reported with moderate certainty. An association with the occurrence of lesions on MRI was reported with an OR of 1.52. CONCLUSION We found the NLR to be useful as a biomarker of NMOSD as it was significantly increased in the patient group compared to the healthy control group with high certainty. Additionally, the NLR was applicable as an indicator of poor prognosis with low to moderate certainty.
Collapse
Affiliation(s)
- Miguel Cabanillas-Lazo
- Sociedad Cientifica de San Fernando, Lima, Peru
- Red de Eficacia Clinica y Sanitaria (REDECS), Lima, Peru
| | - Claudia Cruzalegui-Bazán
- Sociedad Cientifica de San Fernando, Lima, Peru
- Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Milagros Pascual-Guevara
- Sociedad Cientifica de San Fernando, Lima, Peru
- Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Carlos Quispe-Vicuña
- Sociedad Cientifica de San Fernando, Lima, Peru
- Red de Eficacia Clinica y Sanitaria (REDECS), Lima, Peru
| | - Fernando Andres Terry-Escalante
- Red de Eficacia Clinica y Sanitaria (REDECS), Lima, Peru
- Facultad de Medicina Humana, Universidad de San Martin de Porres, Lima, Peru
| | - Nicanor Mori
- Servicio de Neurología, Departamento de Medicina y Oficina de Apoyo a la Docencia e Investigación (OADI), Hospital Daniel Alcides Carrión, Callao, Perú
| | - Carlos Alva-Díaz
- Red de Eficacia Clinica y Sanitaria (REDECS), Lima, Peru
- Servicio de Neurología, Departamento de Medicina y Oficina de Apoyo a la Docencia e Investigación (OADI), Hospital Daniel Alcides Carrión, Callao, Perú
- Universidad Señor de Sipán, Chiclayo, Perú
- * E-mail:
| |
Collapse
|
8
|
Xue H, Wu M, Wang Y, Zhao Y, Zhang M, Zhang H. The circadian rhythms regulated by Cx43-signaling in the pathogenesis of Neuromyelitis Optica. Front Immunol 2023; 13:1021703. [PMID: 36726988 PMCID: PMC9885795 DOI: 10.3389/fimmu.2022.1021703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Neuromyelitis Optica (NMO) is an inflammatory demyelinating disease of the central nervous system (CNS). NMO manifests as selective and severe attacks on axons and myelin of the optic nerve and spinal cord, resulting in necrotic cavities. The circadian rhythms are well demonstrated to profoundly impact cellular function, behavior, and disease. This study is aimed to explore the role and molecular basis of circadian rhythms in NMO. Methods We used an Aquaporin 4(AQP4) IgG-induced NMO cell model in isolated astrocytes. The expression of Cx43 and Bmal1 were detected by real-time PCR and Western Blot. TAT-Gap19 and DQP-1105 were used to inhibit Cx43 and glutamate receptor respectively. The knockdown of Bmal1 were performed with the shRNA containing adenovirus. The levels of glutamate, anterior visual pathway (AVP), and vasoactive intestinal peptide (VIP) were quantified by ELISA kits. Results We found that Bmal1 and Clock, two essential components of the circadian clock, were significantly decreased in NMO astrocytes, which were reversed by Cx43 activation (linoleic acid) or glutamate. Moreover, the expression levels of Bmal1 and Clock were also decreased by Cx43 blockade (TAT-Gap19) or glutamate receptor inhibition (DQP-1105). Furthermore, adenovirus-mediated Bmal1 knockdown by shRNA (Ad-sh-Bmal1) dramatically decreased the levels of glutamate, AVP, and VIP from neurons, and significantly down-regulated the protein level of Cx43 in NMO astrocytes with Cx43 activation (linoleic acid) or glutamate treatment. However, Bmal1 knockdown did not alter these levels in normal astrocytes with Cx43 blockade (TAT-Gap19) or glutamate receptor inhibition (DQP-1105). Discussion Collectively, these results suggest that Cx43-glutamate signaling would be a critical upstream regulator that contributes to the NMO-induced rhythmic damage in SCN astrocytes.
Collapse
Affiliation(s)
- Huiru Xue
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China,First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Minghui Wu
- First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongle Wang
- First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yunfei Zhao
- First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meini Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China,*Correspondence: Meini Zhang, ; Hui Zhang,
| | - Hui Zhang
- First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China,Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China,*Correspondence: Meini Zhang, ; Hui Zhang,
| |
Collapse
|
9
|
Sandhya P, Akaishi T, Fujihara K, Aoki M. A novel association of osmotic demyelination in Sjögren's syndrome prompts revisiting role of aquaporins in CNS demyelinating diseases: A literature review. Mult Scler Relat Disord 2023; 69:104466. [PMID: 36584554 DOI: 10.1016/j.msard.2022.104466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Primary Sjögren's syndrome (SS) is a chronic systemic autoimmune disease with varied neurological manifestations. SS is associated with anti-aquaporin-4 antibody (AQP4-IgG)-positive neuromyelitis optica spectrum disorder (NMOSD), a demyelinating autoimmune disorder of the central nervous system (CNS). Intriguingly, there are reports of osmotic demyelinating syndrome (ODS), a supposedly non-inflammatory disorder, in the context of SS and renal tubular acidosis (RTA), both of which are not yet established risk factors for ODS. METHODS A literature search was undertaken to identify case reports of ODS in patients with SS. Details of the clinical and laboratory features of these patients were compiled. Additionally, we searched for NMOSD in patients with SS. We looked for co-existing RTA in patients with SS-ODS as well as SS-NMOSD. We also screened for reports of ODS in RTA without underlying SS. RESULTS & DISCUSSION We identified 15 patients (all women, median age 40 years) with ODS in SS, and all of these patients had comorbid RTA. There were only three reported cases of ODS in RTA without underlying SS. We identified a total of 67 patients with SS-NMOSD, of whom only 3 (4.5%) had RTA. Hence, unlike NMOSD, the development of ODS in SS requires a prolonged osmotic or electrolyte abnormality caused by the comorbid RTA. The 15 patients with ODS and SS -RTA, showed heterogeneous clinical manifestations and outcomes. The most common symptom was quadriparesis, seen in 14 of the 15 patients. Eleven of the 15 patients had one of the following features, either alone or in combination: worsening of the sensorium, extensor plantar response, dysphagia/dysarthria, and facial palsy. The latter four manifestations were present at the onset in 7 patients and later in the course of the illness in the remaining 4 patients. Ocular palsy was seen in only four of the 15 patients and was a late manifestation. One patient who had extensive long-segment myelitis and subsequent ODS died, but most patients recovered without significant sequelae. None had hyponatremia, while all patients had hypokalemia and/or hypernatremia. Hypokalemia causing nephrogenic diabetes insipidus (NDI) followed by rapid rise in sodium and the resultant osmotic stress could potentially explain the occurrence of ODS in SS-RTA. Aquaporin (AQP) in astrocytes is implicated in ODS, and renal AQP is downregulated in NDI. Antibodies against AQPs are present in some patients with SS. Defective AQP is therefore a common link underlying all the connected diseases, namely SS, NDI, and ODS, raising the possibility of immune-mediated AQP dysfunction in the pathogenesis. CONCLUSION The hitherto unreported association between SS-RTA and ODS may implicate SS and/or RTA in the development of ODS. In the setting of SS-RTA, ODS must be suspected when a patient with flaccid quadriparesis does not respond to the correction of potassium or develops additional neurological features along with a rise in sodium. Defective functions of AQPs may be a possible mechanism linking demyelinating CNS lesions, SS, and RTA. Studies evaluating AQP functions and serum antibodies against AQPs in these conditions are warranted.
Collapse
Affiliation(s)
- Pulukool Sandhya
- Department of Rheumatology, St Stephen's Hospital, Delhi-110054, India.
| | - Tetsuya Akaishi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Kazuo Fujihara
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
10
|
Kanao E, Wada S, Nishida H, Kubo T, Tanigawa T, Imami K, Shimoda A, Umezaki K, Sasaki Y, Akiyoshi K, Adachi J, Otsuka K, Ishihama Y. Classification of Extracellular Vesicles Based on Surface Glycan Structures by Spongy-like Separation Media. Anal Chem 2022; 94:18025-18033. [PMID: 36511577 DOI: 10.1021/acs.analchem.2c04391] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are lipid bilayer vesicles that enclose various biomolecules. EVs hold promise as sensitive biomarkers to detect and monitor various diseases. However, they have heterogeneous molecular compositions. The compositions of EVs from identical donor cells obtained using the same purification methods may differ, which is a significant obstacle for elucidating objective biological functions. Herein, the potential of a novel lectin-based affinity chromatography (LAC) method to classify EVs based on their glycan structures is demonstrated. The proposed method utilizes a spongy-like monolithic polymer (spongy monolith, SPM), which consists of poly(ethylene-co-glycidyl methacrylate) with continuous micropores and allows an efficient in situ protein reaction with epoxy groups. Two distinct lectins with different specificities, Sambucus sieboldiana agglutinin and concanavalin A, are effectively immobilized on SPM without impacting the binding activity. Moreover, high recovery rates of liposomal nanoparticles as a model of EVs are achieved due to the large flow-through pores (>10 μm) of SPM compared to a typical agarose gel. Finally, lectin-immobilized SPMs are employed to classify EVs based on the surface glycan structures and demonstrate different subpopulations by proteome profiling. This is the first approach to clarify the variation of protein contents in EVs by the difference of surface glycans via lectin immobilized media.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka567-0085, Japan
| | - Shuntaro Wada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Hiroshi Nishida
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka567-0085, Japan
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Tetsuya Tanigawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Koshi Imami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama332-0012, Japan
| | - Asako Shimoda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Kaori Umezaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Jun Adachi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka567-0085, Japan
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka567-0085, Japan
| |
Collapse
|
11
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
12
|
Cai L, Shi Z, Chen H, Du Q, Zhang Y, Zhao Z, Wang J, Lang Y, Kong L, Zhou H. Relationship between the Clinical Characteristics in Patients with Neuromyelitis Optica Spectrum Disorders and Clinical Immune Indicators: A Retrospective Study. Brain Sci 2022; 12:brainsci12030372. [PMID: 35326328 PMCID: PMC8946705 DOI: 10.3390/brainsci12030372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Objective: T lymphocytes, complement, and immunoglobulin play an important role in neuromyelitis optica spectrum disorders (NMOSD). As common clinical examination indicators, they have been used as routine indicators in many hospitals, which is convenient for being carried out in clinical work, but there are few articles of guiding significance for clinical practice. The purpose of this study was to study the relationship between commonly used immune indicators and clinical characteristics in patients with NMOSD. Methods: We compared clinical characteristics and clinical immune indicators in 258 patients with NMOSD and 200 healthy controls (HCs). We used multiple linear regression to study the relationship between immunotherapy, disease phase, sex, age, AQP4-IgG, and immune indicators. In addition, lymphocyte subsets were compared before and after immunotherapy in 24 of the 258 patients. We explored the influencing factors and predictors of severe motor disability. Results: The percentages of CD3 ratio (71.4% vs. 73.8%, p = 0.013), CD4 ratio (38.8% vs. 42.2%, p < 0.001), and CD4/CD8 ratio (1.43 vs. 1.66, p < 0.001) in NMOSD patients were significantly lower than those in the HC group. In addition, complement C4 (0.177 g/L vs. 0.221 g/L, p < 0.001) and peripheral blood IgG (10.95 g/L vs. 11.80 g/L, p = 0.026) in NMOSD patients were significantly lower than those in the HC group. CD3 percentage was correlated with blood collection age and disease stage; CD8 percentage was correlated with blood collection age, disease stage, and treatment; CD4/CD8 percentage was correlated with blood collection age and treatment; complement C4 was correlated with blood collection age and sex; and IgG was correlated with disease stage and treatment. Twenty-four patients before and after treatment showed that the percentages of CD3 ratio (74.8% vs. 66.7%, p = 0.001) and CD8 ratio (32.4% vs. 26.2%, p < 0.001) after treatment in NMOSD patients were significantly increased, and the percentage of CD3 before treatment was moderately negatively correlated with ARR (r = −0.507, p = 0.011). Binary logistic regression analysis showed that peripheral blood complement C3 is a serious influencing factor for severe motor disability (EDSS score ≥ 6 points). Peripheral blood complement C3 and C4 are predictors of severe motor disability (p < 0.05). Conclusion: Our results suggest that peripheral blood T lymphocytes, C3, C4 and immunoglobulin are convenient and routine clinical indicators that are convenient for implementation in clinical work. They have certain reference values for disease staging, recurrence, drug efficacy, and motor disability. They have improved our understanding of clinical immune indicators for NMOSD patients, but whether they can be used as biomarkers for clinical prognosis remains to be further studied.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hongyu Zhou
- Correspondence: ; Tel./Fax: +86-28-8542-2892
| |
Collapse
|
13
|
Lost or fragmented bony septum of the optic canal facing the sphenoid sinus: a histological study using elderly donated cadavers. Surg Radiol Anat 2022; 44:511-519. [PMID: 35244748 DOI: 10.1007/s00276-022-02910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To histologically describe a direct contact (the so-called dehiscence) of the optic nerve (ON) and/or internal carotid artery (ICA) to the mucosa of posterior paranasal sinuses represented by the sphenoid sinus (SS). METHODS Observations of histological sections of unilateral or bilateral skull bases (parasellar area and orbital apex) from 22 elderly cadavers were made. RESULTS A bony septum was less than 300 µm between the SS and ICA and 200 µm between the SS and optic nerve. Parts of the septa were sometimes absent due to fragmentation and holes of the bony lamella (2/22 facing the ICA; 4 facing the ICA in combination with an absent bony septum facing the nerve). In these dehiscence sites, the SS submucosal tissue attached to a thick sheath (50-100 µm in thickness) enclosing the optic nerve and ophthalmic artery and/or the ICA adventitia (50-200 µm in thickness). The ICA sometimes contained a sclerotic plaque that attached to or even protruded into the SS. With or without dehiscence, the SS mucosa was always thin (50-100 µm in thickness) and accompanied no mononuclear cellular infiltration or tumor. CONCLUSIONS A thin bony septum of the optic nerve or ICA had been notable as a danger point during surgery, but even a 0.05-mm-thick bone lamella might be an effective barrier against cellular infiltration or bacterial invasion from the SS. Fragmentation and holes of the bony lamella in 4 cadavers might allow cellular invasion to the optic nerve. Accordingly, unknown immunological cross talks might occur to cause demyelination.
Collapse
|
14
|
Liu J, Zhou R, Gong Y, Ding X, Huang Q, Zhang Y, Feng Y, Wang D, Zhou H, Ma Y, Zhang X, Zhou Y. A prospective study on tryptophan immunoadsorption in AQP4 antibody-positive neuromyelitis optica spectrum disorders. J Clin Apher 2022; 37:237-244. [PMID: 35104012 DOI: 10.1002/jca.21965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/01/2022] [Accepted: 01/08/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Neuromyelitis optica spectrum disorders (NMOSD) is a rare inflammatory demyelinating disease of the central nervous system. NMOSD pathogenesis is mainly mediated by antibodies directed against aquaporin4 (AQP4 antibody). Immunoadsorption (IA) could specifically remove pathogenic antibody to alleviate the disease. Until now, prospective studies concerning the efficacy of IA on NMOSD are scarce. This study aims to prospectively evaluate the efficacy and safety of IA in the treatment of NMOSD. PATIENTS AND METHODS We included patients with AQP4 antibody-positive NMOSD who were hospitalized from September 2019 to September 2020, with no significant improvement in symptoms after 1 week of high-dose intravenous steroid therapy. Tryptophan IA therapy was initiated with five sessions on alternate days. Expanded Disability Status Scale (EDSS), visual acuity, and laboratory values were measured before and after IA, with a follow-up of 6 months. Spinal magnetic resonance imaging (MRI) characteristics were collected. Related side effects were recorded. RESULTS Seven patients were enrolled in the present study. After five IA, the patients' EDSS decreased from 5.71 ± 2.04 to 4.64 ± 2.29, P = .006. The visual acuity of the three visually impaired patients was improved. AQP4-IgG decreased significantly from 80.00 (interquartile range [IQR], 21.00-80.00) (U/mL) to 9.72 (IQR, 5.21-55.57) (U/mL) (P = .018). MRI of the spinal cord showed the scope of the myelopathy was narrowed and no significant enhancement was observed on postcontrast T1-weighted image at 90 days after treatment. Only one patient had transient hypotension. CONCLUSIONS Tryptophan IA therapy effectively and safely improved neurological function and visual acuity, and reduced the AQP4 antibody concentration in patients with NMOSD.
Collapse
Affiliation(s)
- Jing Liu
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ran Zhou
- Department of Nephrology, China Rehabilitation Research Center, Beijing, China
| | - Yong Gong
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xia Ding
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi Huang
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Zhang
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yiduo Feng
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongxue Wang
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Heng Zhou
- Department of Neuroinfection and Immunology, Center of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuetao Ma
- Department of Neuroinfection and Immunology, Center of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinghu Zhang
- Department of Neuroinfection and Immunology, Center of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yilun Zhou
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Cho S, Lee H, Jung M, Hong K, Woo SH, Lee YS, Kim BJ, Jeon MY, Seo J, Mun JY. Neuromyelitis optica (NMO)-IgG-driven organelle reorganization in human iPSC-derived astrocytes. FASEB J 2021; 35:e21894. [PMID: 34460995 DOI: 10.1096/fj.202100637r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune disease that primarily targets astrocytes. Autoantibodies (NMO-IgG) against the water channel protein, aquaporin 4 (AQP4), are a serologic marker in NMO patients, and they are known to be responsible for the pathophysiology of the disease. In the brain, AQP4 is mainly expressed in astrocytes, especially at the end-feet, where they form the blood-brain barrier. Following the interaction between NMO-IgG and AQP4 in astrocytes, rapid AQP4 endocytosis initiates pathogenesis. However, the cellular and molecular mechanisms of astrocyte destruction by autoantibodies remain largely elusive. We established an in vitro human astrocyte model system using induced pluripotent stem cells (iPSCs) technology in combination with NMO patient-derived serum and IgG to elucidate the cellular and functional changes caused by NMO-IgG. Herein, we observed that NMO-IgG induces structural alterations in mitochondria and their association with the endoplasmic reticulum (ER) and lysosomes at the ultrastructural level, which potentially leads to impaired mitochondrial functions and dynamics. Indeed, human astrocytes display impaired mitochondrial bioenergetics and autophagy activity in the presence of NMO-IgG. We further demonstrated NMO-IgG-driven ER membrane deformation into a multilamellar structure in human astrocytes. Together, we show that NMO-IgG rearranges cellular organelles and alter their functions and that our in vitro system using human iPSCs offers previously unavailable experimental opportunities to study the pathophysiological mechanisms of NMO in human astrocytes or conduct large-scale screening for potential therapeutic compounds targeting astrocytic abnormalities in patients with NMO.
Collapse
Affiliation(s)
- Sukhee Cho
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Hyein Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Kirim Hong
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Seung-Hwa Woo
- Department of New Biology, DGIST, Daegu, South Korea
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu, South Korea
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Mi Young Jeon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
16
|
Cacciaguerra L, Storelli L, Radaelli M, Mesaros S, Moiola L, Drulovic J, Filippi M, Rocca MA. Application of deep-learning to the seronegative side of the NMO spectrum. J Neurol 2021; 269:1546-1556. [PMID: 34328544 DOI: 10.1007/s00415-021-10727-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To apply a deep-learning algorithm to brain MRIs of seronegative patients with neuromyelitis optica spectrum disorders (NMOSD) and NMOSD-like manifestations and assess whether their structural features are similar to aquaporin-4-seropositive NMOSD or multiple sclerosis (MS) patients. PATIENTS AND METHODS We analyzed 228 T2- and T1-weighted brain MRIs acquired from aquaporin-4-seropositive NMOSD (n = 85), MS (n = 95), aquaporin-4-seronegative NMOSD [n = 11, three with anti-myelin oligodendrocyte glycoprotein antibodies (MOG)], and aquaporin-4-seronegative patients with NMOSD-like manifestations (idiopathic recurrent optic neuritis and myelitis, n = 37), who were recruited from February 2010 to December 2019. Seventy-three percent of aquaporin-4-seronegative patients with NMOSD-like manifestations also had a clinical follow-up (median duration of 4 years). The deep-learning neural network architecture was based on four 3D convolutional layers. It was trained and validated on MRI scans of aquaporin-4-seropositive NMOSD and MS patients and was then applied to aquaporin-4-seronegative NMOSD and NMOSD-like manifestations. Assignment of unclassified aquaporin-4-seronegative patients was compared with their clinical follow-up. RESULTS The final algorithm differentiated aquaporin-4-seropositive NMOSD and MS patients with an accuracy of 0.95. All aquaporin-4-seronegative NMOSD and 36/37 aquaporin-4-seronegative patients with NMOSD-like manifestations were classified as NMOSD. Anti-MOG patients had a similar probability of being NMOSD or MS. At clinical follow-up, one unclassified aquaporin-4-seronegative patient evolved to MS, three developed NMOSD, and the others did not change phenotype. CONCLUSIONS Our findings support the inclusion of aquaporin4-seronegative patients into NMOSD and suggest a possible expansion to aquaporin-4-seronegative unclassified patients with NMOSD-like manifestations. Anti-MOG patients are likely to have intermediate brain features between NMOSD and MS.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Radaelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sarlota Mesaros
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jelena Drulovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy. .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
17
|
Netti V, Fernández J, Melamud L, Garcia-Miranda P, Di Giusto G, Ford P, Echevarría M, Capurro C. Aquaporin-4 Removal from the Plasma Membrane of Human Müller Cells by AQP4-IgG from Patients with Neuromyelitis Optica Induces Changes in Cell Volume Homeostasis: the First Step of Retinal Injury? Mol Neurobiol 2021; 58:5178-5193. [PMID: 34263427 DOI: 10.1007/s12035-021-02491-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/11/2021] [Indexed: 11/27/2022]
Abstract
Aquaporin-4 (AQP4) is the target of the specific immunoglobulin G autoantibody (AQP4-IgG) produced in patients with neuromyelitis optica spectrum disorders (NMOSD). Previous studies demonstrated that AQP4-IgG binding to astrocytic AQP4 leads to cell-destructive lesions. However, the early physiopathological events in Müller cells in the retina are poorly understood. Here, we investigated the consequences of AQP4-IgG binding to AQP4 of Müller cells, previous to the inflammatory response, on two of AQP4's key functions, cell volume regulation response (RVD) and cell proliferation, a process closely associated with changes in cell volume. Experiments were performed in a human retinal Müller cell line (MIO-M1) exposed to complement-inactivated sera from healthy volunteers or AQP4-IgG positive NMOSD patients. We evaluated AQP4 expression (immunofluorescence and western blot), water permeability coefficient, RVD, intracellular calcium levels and membrane potential changes during hypotonic shock (fluorescence videomicroscopy) and cell proliferation (cell count and BrdU incorporation). Our results showed that AQP4-IgG binding to AQP4 induces its partial internalization, leading to the decrease of the plasma membrane water permeability, a reduction of swelling-induced increase of intracellular calcium levels and the impairment of RVD in Müller cells. The loss of AQP4 from the plasma membrane induced by AQP4-IgG positive sera delayed Müller cells' proliferation rate. We propose that Müller cell dysfunction after AQP4 removal from the plasma membrane by AQP4-IgG binding could be a non-inflammatory mechanism of retinal injury in vivo, altering cell volume homeostasis and cell proliferation and consequently, contributing to the physiopathology of NMOSD.
Collapse
Affiliation(s)
- Vanina Netti
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Fernández
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana Melamud
- Servicio de Neurología, Centro Universitario de Neurología Dr. J.M. Ramos Mejía, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Garcia-Miranda
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Gisela Di Giusto
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Ford
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Miriam Echevarría
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Claudia Capurro
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Richard C, Ruiz A, Cavagna S, Bigotte M, Vukusic S, Masaki K, Suenaga T, Kira JI, Giraudon P, Marignier R. Connexins in neuromyelitis optica: a link between astrocytopathy and demyelination. Brain 2021; 143:2721-2732. [PMID: 32889550 DOI: 10.1093/brain/awaa227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 01/26/2023] Open
Abstract
Neuromyelitis optica, a rare neuroinflammatory demyelinating disease of the CNS, is characterized by the presence of specific pathogenic autoantibodies directed against the astrocytic water channel aquaporin 4 (AQP4) and is now considered as an astrocytopathy associated either with complement-dependent astrocyte death or with astrocyte dysfunction. However, the link between astrocyte dysfunction and demyelination remains unclear. We propose glial intercellular communication, supported by connexin hemichannels and gap junctions, to be involved in demyelination process in neuromyelitis optica. Using mature myelinated cultures, we demonstrate that a treatment of 1 h to 48 h with immunoglobulins purified from patients with neuromyelitis optica (NMO-IgG) is responsible for a complement independent demyelination, compared to healthy donors' immunoglobulins (P < 0.001). In parallel, patients' immunoglobulins induce an alteration of connexin expression characterized by a rapid loss of astrocytic connexins at the membrane followed by an increased size of gap junction plaques (+60%; P < 0.01). This was co-observed with connexin dysfunction with gap junction disruption (-57%; P < 0.001) and increased hemichannel opening (+17%; P < 0.001), associated with glutamate release. Blocking connexin 43 hemichannels with a specific peptide was able to prevent demyelination in co-treatment with patients compared to healthy donors' immunoglobulins. By contrast, the blockade of connexin 43 gap junctions with another peptide was detrimental for myelin (myelin density -48%; P < 0.001). Overall, our results suggest that dysregulation of connexins would play a pathogenetic role in neuromyelitis optica. The further identification of mechanisms leading to connexin dysfunction and soluble factors implicated, would provide interesting therapeutic strategies for demyelinating disorders.
Collapse
Affiliation(s)
- Chloé Richard
- INSERM U1028, CNRS UMR 5292, Lyon1 University, Center for Research in Neuroscience of Lyon, Lyon, France
| | - Anne Ruiz
- INSERM U1028, CNRS UMR 5292, Lyon1 University, Center for Research in Neuroscience of Lyon, Lyon, France
| | - Sylvie Cavagna
- INSERM U1028, CNRS UMR 5292, Lyon1 University, Center for Research in Neuroscience of Lyon, Lyon, France
| | - Maxime Bigotte
- INSERM U1028, CNRS UMR 5292, Lyon1 University, Center for Research in Neuroscience of Lyon, Lyon, France
| | - Sandra Vukusic
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation, Hôpital Neurologique Pierre Wertheimer Hospices Civils de Lyon, Lyon, France.,Centre de référence des maladies inflammatoires rares du cerveau et de la moelle, Lyon, France
| | - Katsuhisa Masaki
- Department of Neurology, Neurological institute, Graduate School of Medical Sciences, Kyushu University
| | | | - Jun-Ichi Kira
- Department of Neurology, Neurological institute, Graduate School of Medical Sciences, Kyushu University
| | - Pascale Giraudon
- INSERM U1028, CNRS UMR 5292, Lyon1 University, Center for Research in Neuroscience of Lyon, Lyon, France
| | - Romain Marignier
- INSERM U1028, CNRS UMR 5292, Lyon1 University, Center for Research in Neuroscience of Lyon, Lyon, France.,Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation, Hôpital Neurologique Pierre Wertheimer Hospices Civils de Lyon, Lyon, France.,Centre de référence des maladies inflammatoires rares du cerveau et de la moelle, Lyon, France
| |
Collapse
|
19
|
Abstract
The terminal complement protein (C5) inhibitor eculizumab (Soliris®) is the first agent to be specifically approved in the EU, USA, Canada and Japan for the treatment of neuromyelitis optica spectrum disorder (NMOSD) in adults who are aquaporin-4 water channel autoantibody (AQP4-IgG) seropositive and (in the EU only) for those with a relapsing course of disease. In the phase III PREVENT trial, eculizumab significantly reduced the risk of adjudicated relapse relative to placebo in patients with AQP4-IgG-seropositive NMOSD, approximately a quarter of whom did not receive concomitant immunosuppressive therapies. The beneficial effect of eculizumab was seen across all patient subgroups analysed and was accompanied by improvements in neurological and functional disability assessments, as well as generic health-related quality of life measures; it was sustained through 4 years of treatment, according to combined data from the PREVENT trial and an interim analysis of its ongoing open-label extension study. The safety profile of eculizumab in AQP4-IgG-seropositive NMOSD was consistent with that seen for the drug in other approved indications. Thus, eculizumab provides an effective, generally well tolerated and approved treatment option for this rare, disabling and potentially life-threatening condition.
Collapse
|
20
|
Filippatou AG, Vasileiou ES, He Y, Fitzgerald KC, Kalaitzidis G, Lambe J, Mealy MA, Levy M, Liu Y, Prince JL, Mowry EM, Saidha S, Calabresi PA, Sotirchos ES. Evidence of subclinical quantitative retinal layer abnormalities in AQP4-IgG seropositive NMOSD. Mult Scler 2020; 27:1738-1748. [PMID: 33307967 DOI: 10.1177/1352458520977771] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Prior studies have suggested that subclinical retinal abnormalities may be present in aquaporin-4 immunoglobulin G (AQP4-IgG) seropositive neuromyelitis optica spectrum disorder (NMOSD), in the absence of a clinical history of optic neuritis (ON). OBJECTIVE Our aim was to compare retinal layer thicknesses at the fovea and surrounding macula between AQP4-IgG+ NMOSD eyes without a history of ON (AQP4-nonON) and healthy controls (HC). METHODS In this single-center cross-sectional study, 83 AQP4-nonON and 154 HC eyes were studied with spectral-domain optical coherence tomography (OCT). RESULTS Total foveal thickness did not differ between AQP4-nonON and HC eyes. AQP4-nonON eyes exhibited lower outer nuclear layer (ONL) and inner photoreceptor segment (IS) thickness at the fovea (ONL: -4.01 ± 2.03 μm, p = 0.049; IS: -0.32 ± 0.14 μm, p = 0.029) and surrounding macula (ONL: -1.98 ± 0.95 μm, p = 0.037; IS: -0.16 ± 0.07 μm, p = 0.023), compared to HC. Macular retinal nerve fiber layer (RNFL: -1.34 ± 0.51 μm, p = 0.009) and ganglion cell + inner plexiform layer (GCIPL: -2.44 ± 0.93 μm, p = 0.009) thicknesses were also lower in AQP4-nonON compared to HC eyes. Results were similar in sensitivity analyses restricted to AQP4-IgG+ patients who had never experienced ON in either eye. CONCLUSIONS AQP4-nonON eyes exhibit evidence of subclinical retinal ganglion cell neuronal and axonal loss, as well as structural evidence of photoreceptor layer involvement. These findings support that subclinical anterior visual pathway involvement may occur in AQP4-IgG+ NMOSD.
Collapse
Affiliation(s)
- Angeliki G Filippatou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eleni S Vasileiou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yufan He
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Grigorios Kalaitzidis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey Lambe
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maureen A Mealy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA/Viela Bio, Gaithersburg, MD, USA
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yihao Liu
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ellen M Mowry
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Ramakrishnan P. Could Galectin-3 be a key player in the etiology of neuromyelitis optica spectrum disorder? Med Hypotheses 2020; 146:110450. [PMID: 33309338 DOI: 10.1016/j.mehy.2020.110450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
Neuromyelitis Optica Spectrum Disorder (NMOSD) is a chronic, inflammatory, demyelinating disorder of the central nervous system (CNS) characterized primarily by transverse myelitis (TM) and optic neuritis (ON). Serum antibodies of the IgG class to the water channel protein aquaporin-4 (AQP4) are associated with NMOSD in most cases. These antibodies are thought to cause functional abnormality or changed expressional pattern of AQP4 channel proteins in the CNS lesions. Activation of microglia is one of the chief antibody-mediated effects in NMOSD and it has opposing detrimental and protective effects in NMOSD. On the one hand, it promotes neuroinflammation, demyelination and BBB breakdown. On the other, it aids in remyelination. What controls the switch between these effects is unknown. Recently, Galectin- 3, a lectin, has been identified as a key player in several neurodegenerative diseases. In transient focal brain ischemia, alzheimer's disease (AD), huntington disease (HD), and experimental autoimmune encephalitis (EAE), Galectin-3 promotes microglia-mediated inflammation. Conversely, in amyotrophic lateral sclerosis (ALS), Galectin-3 reduces inflammation. It also suppresses Th17 cytokines, which play a crucial role in NMOSD pathogenesis. Being devoid of a leader signal, Gal-3 localizes in different cellular compartments and is subject to various post-translational modifications. These reasons explain why Galectin-3 expression has opposing effects under different physiological conditions. Microglia-mediated inflammation in NMOSD has not been extensively studied. The factors that regulate microglia-mediated inflammation in NMOSD are unknown. Here, I hypothesize that Galectin-3 might be an etiological factor in NMOSD that regulates microglia-mediated inflammation. Analysing the role of Gal-3 in NMOSD could help in the development of novel therapies to treat NMOSD.
Collapse
|
22
|
Abstract
Optic neuritis (ON) is an inflammatory attack of the optic nerve that leads to visual disability. It is the most common optic neuropathy affecting healthy young adults, most commonly women aged 20-45 years. It can be idiopathic and monophasic or as part of a neurologic disease such as multiple sclerosis with recurrence and cumulative damage. Currently, there is no therapy to repair the damage from optic neuritis. Animal models are an essential tool for the understanding of the pathogenesis of optic neuritis and for the development of potential treatment strategies. Experimental autoimmune encephalomyelitis (EAE) is the most commonly used experimental rodent model for human autoimmune inflammatory demyelinating diseases of the central nervous system (CNS). In this review, we discuss the latest rodent models regarding optic neuritis, focusing on EAE model, and on its recent achievements and developments.
Collapse
Affiliation(s)
- Yael Redler
- Department of Neuro-Ophthalmology, Massachusetts Eye & Ear Infirmary/Harvard Medical School, Boston, MA, United States
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Moon J, Yoon CH, Choi SH, Kim MK. Can Gut Microbiota Affect Dry Eye Syndrome? Int J Mol Sci 2020; 21:E8443. [PMID: 33182758 PMCID: PMC7697210 DOI: 10.3390/ijms21228443] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Using metagenomics, continuing evidence has elicited how intestinal microbiota trigger distant autoimmunity. Sjögren's syndrome (SS) is an autoimmune disease that affects the ocular surface, with frequently unmet therapeutic needs requiring new interventions for dry eye management. Current studies also suggest the possible relation of autoimmune dry eye with gut microbiota. Herein, we review the current knowledge of how the gut microbiota interact with the immune system in homeostasis as well as its influence on rheumatic and ocular autoimmune diseases, and compare their characteristics with SS. Both rodent and human studies regarding gut microbiota in SS and environmental dry eye are explored, and the effects of prebiotics and probiotics on dry eye are discussed. Recent clinical studies have commonly observed a correlation between gut dysbiosis and clinical manifestations of SS, while environmental dry eye portrays characteristics in between normal and autoimmune. Moreover, a decrease in both the Firmicutes/Bacteroidetes ratio and genus Faecalibacterium have most commonly been observed in SS subjects. The presumable pathways forming the "gut dysbiosis-ocular surface-lacrimal gland axis" are introduced. This review may provide perspectives into the link between the gut microbiome and dry eye, enhance our understanding of the pathogenesis in autoimmune dry eye, and be useful in the development of future interventions.
Collapse
Affiliation(s)
- Jayoon Moon
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| | - Chang Ho Yoon
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| | - Se Hyun Choi
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
- Department of Ophthalmology, Hallym University Sacred Heart Hospital, Anyang-si 14068, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| |
Collapse
|
24
|
Ipe TS, Meyer EK, Sanford KW, Joshi SK, Wong ECC, Raval JS. Use of therapeutic plasma exchange for pediatric neurological diseases. J Clin Apher 2020; 36:161-176. [PMID: 33063869 DOI: 10.1002/jca.21850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/10/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Therapeutic plasma exchange is used to treat neurological diseases in the pediatric population. Since its first use in pediatric patients with hepatic coma in the form of manual whole blood exchange, therapeutic plasma exchange has been increasingly used to treat these disorders of the nervous system. This expansion is a result of improved techniques and apheresis instruments suitable for small children, as well as the recognition of its applicability to many diseases in the pediatric population. This review provides a historical overview of the use of therapeutic apheresis in children and highlights the most common applications for therapeutic plasma exchange to treat neurological disorders in children.
Collapse
Affiliation(s)
- Tina S Ipe
- Department of Pathology and Laboratory Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Erin K Meyer
- American Red Cross, Columbus, Ohio, USA.,Department of Pathology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kimberly W Sanford
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sarita K Joshi
- Department of Hematology/Oncology and Bone Marrow Transplant, University of Washington, Seattle, Washington, USA
| | - Edward C C Wong
- Department of Pediatrics and Pathology, George Washington School of Medicine and Health Sciences, Washington, District of Columbia, USA.,Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jay S Raval
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Review of approved NMO therapies based on mechanism of action, efficacy and long-term effects. Mult Scler Relat Disord 2020; 46:102538. [PMID: 33059216 PMCID: PMC7539063 DOI: 10.1016/j.msard.2020.102538] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023]
Abstract
Neuromyelitis optica (NMO - including NMO spectrum disorders [NMOSD]) is a devastating disease. Up until recently, there was no proven agent to treat to prevent relapses. We now have three agents indicated for the treatment of NMO. We might suggest the following sequence – 1st line using eculizumab for rapid efficacy and stabilization without effect on the acquired immune system followed by satrilizumab (long term immunomodulation). Reserve inebilizumab (immunosuppressant) for breakthrough disease and salvage the severe with AHSCBMT. In NMO, control the complement, transition to modulation, and reserve suppression – and salvage the severe with AHSCBMT.
Importance Neuromyelitis optica (NMO - including NMO spectrum disorders [NMOSD]) is a devastating disease. Eighty-three percent of patients with transverse myelitic (TM) attacks and 67% of patients with optic neuritis (ON) attacks have no or a partial recovery. Observations Up until recently, there was no proven agent to treat to prevent relapses. The neuro-immunological community had a dearth of indicated agents for NMOSD. We now have three agents indicated for the treatment of NMO including (eculizumab [Soliris®]), an anti-C5 complement inhibitor, satralizumab (ENSRYNG®), a monoclonal antibody against the IL-6 receptor (IL-6R) that blocks B cell antibody production and inebilizumab (Uplinza®), a monoclonal antibody that binds to the B-cell surface antigen CD19 with subsequent B and plasmablast cell lymphocytolysis with decreasing antibody production. Autologous hematopoietic stem cell bone marrow transplantation (AHSCBMT) has also been used. How do we sequence NMO therapies with the understanding of the acuteness and severity of the disease, the individual mechanism of action (MOA) and rapidity of onset of action, onset of efficacy and long-term safety of each agent? Conclusions and Relevance We might suggest the following sequence – 1st line using eculizumab for rapid efficacy and stabilization without effect on the acquired immune system followed by satrilizumab (long term immunomodulation). Reserve inebilizumab (immunosuppressant) for breakthrough disease and salvage the severe with AHSCBMT. In NMO, control the complement, transition to modulation, and reserve suppression – and salvage the severe with AHSCBMT.
Collapse
|
26
|
Cui C, Tan S, Tao L, Gong J, Chang Y, Wang Y, Fan P, He D, Ruan Y, Qiu W. Intestinal Barrier Breakdown and Mucosal Microbiota Disturbance in Neuromyelitis Optical Spectrum Disorders. Front Immunol 2020; 11:2101. [PMID: 32983166 PMCID: PMC7492665 DOI: 10.3389/fimmu.2020.02101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose The mechanism underlying the pathology of neuromyelitis optica spectrum disorders (NMOSD) remains unclear even though antibodies to the water channel protein aquaporin-4 (AQP4) on astrocytes play important roles. Our previous study showed that dysbiosis occurred in the fecal microbiota of NMOSD patients. In this study, we further investigated whether the intestinal barrier and mucosal flora balance are also interrupted in NMOSD patients. Methods Sigmoid mucosal biopsies were collected by endoscopy from six patients with NMOSD and compared with samples from five healthy control (HC) individuals. These samples were processed for electron microscopy and immunohistochemistry to investigate changes in ultrastructure and in the number and size of intestinal inflammatory cells. Changes in mucosal flora were also analyzed by high-throughput 16S ribosomal RNA gene amplicon sequencing. Results The results from bacterial rRNA gene sequencing showed that bacterial diversity was decreased, but Streptococcus and Granulicatella were abundant in the colonic mucosa specimens of NMOSD patients compared to the HC individuals. The intercellular space between epithelia of the colonic mucosa was wider in NMOSD patients compared to the HC subjects (p < 0.01), and the expression of tight junction proteins [occludin, claudin-1 and zonula occludens-1 (ZO-1)] in NMOSD patients significantly decreased compared to that in the HC subjects. We also found numerous activated macrophages with many inclusions within the cytoplasm, mast cells with many particles in their cytoplasm, and enlarged plasma cells with rich developed rough endoplasmic reticulum in the lamina propria of the mucosa of the patients with NMOSD. Quantitative analysis showed that the percentages of small CD38+ and CD138+ cells (plasma cells) were lower, but the percentage of larger plasma cells was higher in NMOSD patients. Conclusion The present study demonstrated that the intestinal barrier was disrupted in the patients with NMOSD, accompanied by dysbiosis and inflammatory activation of the gut. The mucosal microbiota imbalance and inflammatory responses might allow pathogens to cross the damaged intestinal barrier and participate in pathological process in NMOSD. However, further study on the pathological mechanism of NMOSD underlying gut dysbiosis is warranted in the future.
Collapse
Affiliation(s)
- Chunping Cui
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sha Tan
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Tao
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junli Gong
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanyu Chang
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ping Fan
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dan He
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiwen Ruan
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Qiu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Ciappelloni S, Bouchet D, Dubourdieu N, Boué-Grabot E, Kellermayer B, Manso C, Marignier R, Oliet SHR, Tourdias T, Groc L. Aquaporin-4 Surface Trafficking Regulates Astrocytic Process Motility and Synaptic Activity in Health and Autoimmune Disease. Cell Rep 2020; 27:3860-3872.e4. [PMID: 31242419 DOI: 10.1016/j.celrep.2019.05.097] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/08/2019] [Accepted: 05/23/2019] [Indexed: 01/21/2023] Open
Abstract
Astrocytes constantly adapt their ramified morphology in order to support brain cell assemblies. Such plasticity is partly mediated by ion and water fluxes, which rely on the water channel aquaporin-4 (AQP4). The mechanism by which this channel locally contributes to process dynamics has remained elusive. Using a combination of single-molecule and calcium imaging approaches, we here investigated in hippocampal astrocytes the dynamic distribution of the AQP4 isoforms M1 and M23. Surface AQP4-M1 formed small aggregates that contrast with the large AQP4-M23 clusters that are enriched near glutamatergic synapses. Strikingly, stabilizing surface AQP4-M23 tuned the motility of astrocyte processes and favors glutamate synapse activity. Furthermore, human autoantibodies directed against AQP4 from neuromyelitis optica (NMO) patients impaired AQP4-M23 dynamic distribution and, consequently, astrocyte process and synaptic activity. Collectively, it emerges that the membrane dynamics of AQP4 isoform regulate brain cell assemblies in health and autoimmune brain disease targeting AQP4.
Collapse
Affiliation(s)
- Silvia Ciappelloni
- Interdisciplinary Institute for NeuroSciences, CNRS UMR 5297, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France; INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Delphine Bouchet
- Interdisciplinary Institute for NeuroSciences, CNRS UMR 5297, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
| | - Nadège Dubourdieu
- Université de Bordeaux, 33077 Bordeaux, France; INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Eric Boué-Grabot
- Université de Bordeaux, 33077 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Blanka Kellermayer
- Interdisciplinary Institute for NeuroSciences, CNRS UMR 5297, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
| | - Constance Manso
- Interdisciplinary Institute for NeuroSciences, CNRS UMR 5297, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
| | - Romain Marignier
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France
| | - Stéphane H R Oliet
- Université de Bordeaux, 33077 Bordeaux, France; INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Thomas Tourdias
- Université de Bordeaux, 33077 Bordeaux, France; INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Laurent Groc
- Interdisciplinary Institute for NeuroSciences, CNRS UMR 5297, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France.
| |
Collapse
|
28
|
Huang YJ, Lee JJ, Fan WL, Hsu CW, Tsai NW, Lu CH, Chang WN, Tsai MH. A CD33 frameshift variant is associated with neuromyelitis optica spectrum disorders. Biomed J 2020; 44:S93-S100. [PMID: 35735085 PMCID: PMC9038945 DOI: 10.1016/j.bj.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/09/2020] [Accepted: 07/22/2020] [Indexed: 01/21/2023] Open
|
29
|
Tan A, Fraser C, Khoo P, Watson S, Ooi K. Statins in Neuro-ophthalmology. Neuroophthalmology 2020; 45:219-237. [PMID: 34366510 PMCID: PMC8312600 DOI: 10.1080/01658107.2020.1755872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/05/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022] Open
Abstract
Statins are effective and well-tolerated hypolipidaemic agents which have been increasingly studied for their pleiotropic immunomodulatory and anti-inflammatory effects. Statins have potential therapeutic benefit in a range of neuro-ophthalmological conditions but may also induce or exacerbate certain neurological disorders. This literature review examines evidence from clinical and in vitro studies assessing the effects of statins in myasthenia gravis, myopathy, multiple sclerosis, neuromyelitis optica, idiopathic intracranial hypertension (pseudotumour cerebri), migraine, giant cell arteritis, Bell's palsy, ocular ischaemia, stroke, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Alvin Tan
- Discipline of Ophthalmology, Faculty of Health and Medicine, The University of Sydney, Save Sight Institute, Sydney, New South Wales, Australia
| | - Clare Fraser
- Discipline of Ophthalmology, Faculty of Health and Medicine, The University of Sydney, Save Sight Institute, Sydney, New South Wales, Australia
| | - Pauline Khoo
- Discipline of Ophthalmology, Faculty of Health and Medicine, The University of Sydney, Save Sight Institute, Sydney, New South Wales, Australia
| | - Stephanie Watson
- Discipline of Ophthalmology, Faculty of Health and Medicine, The University of Sydney, Save Sight Institute, Sydney, New South Wales, Australia
| | - Kenneth Ooi
- Discipline of Ophthalmology, Faculty of Health and Medicine, The University of Sydney, Save Sight Institute, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Shi Z, Feng L, Lian Z, Liu J, Chen H, Du Q, Zhang Y, Zhang Q, Yang M, Zhou H. Decreased mRNA Expressions of CD40L in Patients with Neuromyelitis Optica Spectrum Disorder. J Mol Neurosci 2020; 70:610-617. [PMID: 31925706 DOI: 10.1007/s12031-019-01467-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease that preferentially affects central nerve system. Herein, we evaluated changes of CD40L and CD40 mRNA expressions in NMOSD and controls to explore their potential roles in development of NMOSD. The expressions of CD40L and CD40 mRNA in peripheral blood mononuclear cells (PBMCs) from patients with NMOSD and healthy controls were detected by quantitative real-time PCR (qPCR). Kruskal-Wallis tests were used to compare expression levels of CD40L and CD40 mRNA between groups, and Spearman correlation analysis was performed to evaluate correlation between mRNA expression levels and annual relapse rate (ARR) of NMOSD. A total of 71 patients with NMOSD and 42 gender- and age-matched healthy volunteers were recruited in our study. Compared with healthy controls, expression of CD40L mRNA was significantly decreased in untreated patients with NMOSD, and similar trends were observed also in CD40 mRNA expression although the difference was not significant. Other than that, immunosuppressants not only successfully increased CD40L and CD40 mRNA levels during remission of NMOSD, but also corrected the negative correlation between CD40L mRNA expression and annual relapse rate (ARR) of patients NMOSD. These results favored the long-term prognosis of NMOSD patients. Our results suggest that decreased expressions of CD40L mRNA may be involved in developing of NMOSD and the proper CD40L mRNA levels benefit to prevent attacks of NMOSD. Nevertheless, the relationship between protein and mRNA expressions of CD40L and their underlying roles in the pathogenesis of NMOSD remains to be further studied.
Collapse
Affiliation(s)
- Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Ling Feng
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Zhiyun Lian
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Ju Liu
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Hongxi Chen
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Qin Du
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Ying Zhang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Qin Zhang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Mu Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Translational Centre for Oncoimmunology, Sichuan Cancer Hospital and research Institute, Sichuan Cancer Center, No.55 South Renmin Road, Chengdu, 610000, China.
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
31
|
Ramakrishnan P, Nagarajan D. Neuromyelitis optica spectrum disorder: an overview. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Duan T, Verkman AS. Experimental animal models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders: progress and shortcomings. Brain Pathol 2019; 30:13-25. [PMID: 31587392 DOI: 10.1111/bpa.12793] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) is a heterogeneous group of neuroinflammatory conditions associated with demyelination primarily in spinal cord and optic nerve, and to a lesser extent in brain. Most NMOSD patients are seropositive for IgG autoantibodies against aquaporin-4 (AQP4-IgG), the principal water channel in astrocytes. There has been interest in establishing experimental animal models of seropositive NMOSD (herein referred to as NMO) in order to elucidate NMO pathogenesis mechanisms and to evaluate drug candidates. An important outcome of early NMO animal models was evidence for a pathogenic role of AQP4-IgG. However, available animal models of NMO, based largely on passive transfer to rodents of AQP4-IgG or transfer of AQP4-sensitized T cells, often together with pro-inflammatory maneuvers, only partially recapitulate the clinical and pathological features of human NMO, and are inherently biased toward humoral or cellular immune mechanisms. This review summarizes current progress and shortcomings in experimental animal models of seropositive NMOSD, and opines on the import of advancing animal models.
Collapse
Affiliation(s)
- Tianjiao Duan
- Departments of Medicine and Physiology, University of California, San Francisco, CA, 94143.,Department of Neurology, Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, 94143
| |
Collapse
|
33
|
Chang VTW, Chang HM. Review: Recent advances in the understanding of the pathophysiology of neuromyelitis optica spectrum disorder. Neuropathol Appl Neurobiol 2019; 46:199-218. [PMID: 31353503 DOI: 10.1111/nan.12574] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
Neuromyelitis optica is an autoimmune inflammatory disorder of the central nervous system that preferentially targets the spinal cord and optic nerve. Following the discovery of circulating antibodies against the astrocytic aquaporin 4 (AQP4) water channel protein, recent studies have expanded our knowledge of the unique complexities of the pathogenesis of neuromyelitis optica and its relationship with the immune response. This review describes and summarizes the recent advances in our understanding of the molecular mechanisms underlying neuromyelitis optica disease pathology and examines their potential as therapeutic targets. Additionally, we update the most recent research by proposing major unanswered questions regarding how peripheral AQP4 antibodies are produced and their entry into the central nervous system, the causes of AQP4-IgG-seronegative disease, why peripheral AQP4-expressing organs are spared from damage, and the impact of this disease on pregnancy.
Collapse
Affiliation(s)
- V T W Chang
- St George's, University of London, London, UK
| | - H-M Chang
- Department of Obstetrics and Gynaecology, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
34
|
McConnell HL, Li Z, Woltjer RL, Mishra A. Astrocyte dysfunction and neurovascular impairment in neurological disorders: Correlation or causation? Neurochem Int 2019; 128:70-84. [PMID: 30986503 DOI: 10.1016/j.neuint.2019.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
The neurovascular unit, consisting of neurons, astrocytes, and vascular cells, has become the focus of much discussion in the last two decades and emerging literature now suggests an association between neurovascular dysfunction and neurological disorders. In this review, we synthesize the known and suspected contributions of astrocytes to neurovascular dysfunction in disease. Throughout the brain, astrocytes are centrally positioned to dynamically mediate interactions between neurons and the cerebral vasculature, and play key roles in blood-brain barrier maintenance and neurovascular coupling. It is increasingly apparent that the changes in astrocytes in response to a variety of insults to brain tissue -collectively referred to as "reactive astrogliosis" - are not just an epiphenomenon restricted to morphological alterations, but comprise functional changes in astrocytes that contribute to the phenotype of neurological diseases with both beneficial and detrimental effects. In the context of the neurovascular unit, astrocyte dysfunction accompanies, and may contribute to, blood-brain barrier impairment and neurovascular dysregulation, highlighting the need to determine the exact nature of the relationship between astrocyte dysfunction and neurovascular impairments. Targeting astrocytes may represent a new strategy in combinatorial therapeutics for preventing the mismatch of energy supply and demand that often accompanies neurological disorders.
Collapse
Affiliation(s)
- Heather L McConnell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Zhenzhou Li
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States; Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan City, China
| | - Randall L Woltjer
- Department of Neuropathology, Oregon Health & Science University, Portland, OR, United States
| | - Anusha Mishra
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
35
|
Soltys J, Liu Y, Ritchie A, Wemlinger S, Schaller K, Schumann H, Owens GP, Bennett JL. Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica. J Clin Invest 2019; 129:2000-2013. [PMID: 30958797 DOI: 10.1172/jci122942] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/26/2019] [Indexed: 01/29/2023] Open
Abstract
Neuromyelitis optica (NMO) is an autoimmune CNS disorder mediated by pathogenic aquaporin-4 (AQP4) water channel autoantibodies (AQP4-IgG). Although AQP4-IgG-driven complement-dependent cytotoxicity (CDC) is critical for the formation of NMO lesions, the molecular mechanisms governing optimal classical pathway activation are unknown. We investigated the molecular determinants driving CDC in NMO using recombinant AQP4-specific autoantibodies (AQP4 rAbs) derived from affected patients. We identified a group of AQP4 rAbs targeting a distinct extracellular loop C epitope that demonstrated enhanced CDC on target cells. Targeted mutations of AQP4 rAb Fc domains that enhance or diminish C1q binding or antibody Fc-Fc interactions showed that optimal CDC was driven by the assembly of multimeric rAb platforms that increase multivalent C1q binding and facilitate C1q activation. A peptide that blocks antibody Fc-Fc interaction inhibited CDC induced by AQP4 rAbs and polyclonal NMO patient sera. Super-resolution microscopy revealed that AQP4 rAbs with enhanced CDC preferentially formed organized clusters on supramolecular AQP4 orthogonal arrays, linking epitope-dependent multimeric assembly with enhanced C1q binding and activation. The resulting model of AQP4-IgG CDC provides a framework for understanding classical complement activation in human autoantibody-mediated disorders and identifies a potential new therapeutic avenue for treating NMO.
Collapse
Affiliation(s)
- John Soltys
- Neuroscience and Medical Scientist Training Programs
| | | | | | | | | | | | | | - Jeffrey L Bennett
- Neuroscience and Medical Scientist Training Programs.,Department of Neurology, and.,Department of Ophthalmology, University of Colorado at Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
36
|
Etemadifar M, Nikanpour Y, Neshatfar A, Sabeti F. Paraneoplastic neuromyelitis optica associated with fever of unknown origin as an early manifestation: A case report. Mult Scler Relat Disord 2018; 27:200-202. [PMID: 30408758 DOI: 10.1016/j.msard.2018.10.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 11/16/2022]
Abstract
Tumors have been frequently reported to be associated with neuromyelitis optica (NMO). Here we review a case of a 34-year-old woman who presented with complaint of one-sided visual loss. All Lab tests exhibited negative results which decreased the possibility of Auto-immune or neuro-inflammatory disorders. Magnetic resonance imaging (MRI) of the brain and spinal cord was done as a part of work up, which showed Meningioma in anterior fossa without any other findings supporting neuro-demyelinating disorders. After complete surgical removal of the meningioma, patient's visual loss was completely resolved. 4 weeks later, she was admitted to the hospital for the second time with fever fulfilling the Fever of Unknown Origin (FUO) criteria. One week after she was discharged, she came back with paraplegia. MRI with Gadolinium showed an enhancing lesion involving T6-T9 segments of the thoracic spine. In order to rule in NMO, we checked for antibody to aquaporin-4 (AQP4-Ab) and the result was positive. This is the first report showing a probable association between FUO and NMO. Our case also demonstrates how variable the clinical presentations of NMO can be. We suggest that the diagnosis of NMO should be considered in the appropriate clinical setting despite of the presence of unconventional manifestations.
Collapse
Affiliation(s)
- Masoud Etemadifar
- Department of functional neurosurgery medical school, Isfahan University of medical science, Isfahan, Iran
| | - Yalda Nikanpour
- Isfahan research center of Multiple Sclerosis, Isfahan University of medical sciences, Isfahan, Iran.
| | - Amir Neshatfar
- Department of neurology, Missouri University, Columbia, MO, USA
| | | |
Collapse
|
37
|
Wang Y, Zhu M, Liu C, Han J, Lang W, Gao Y, Lu C, Wang S, Hou S, Zheng N, Wang D, Chen Y, Zhang Y, Zhang HL, Zhu J. Blood Brain Barrier Permeability Could Be a Biomarker to Predict Severity of Neuromyelitis Optica Spectrum Disorders: A Retrospective Analysis. Front Neurol 2018; 9:648. [PMID: 30131763 PMCID: PMC6090143 DOI: 10.3389/fneur.2018.00648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/19/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Blood-brain barrier (BBB) pathology exists in neuromyelitis optica spectrum disorders (NMOSD). However, the clinical use of BBB permeability, such as predicting disease severity of NMOSD, has rarely been studied in a large cohort of patients. Objectives: The current study explored the association between BBB permeability and clinical parameters in order to assess if BBB permeability could be a biomarker to predict disease severity and clinical characteristics of NMOSD. Methods: Among 69 enrolled NMOSD patients, 47 with albumin index over 5 × 10-3 were assigned to the increased BBB permeability group, and the remaining 22 were to the normal BBB permeability group. Disease severity was assessed using the Expanded Disability Status Scale (EDSS). Results: Patients in the increased BBB permeability group had significantly higher EDSS scores, anti-aquporin-4 immunoglobulin G titers, more dense cerebrospinal fluid protein concentrations, white blood cell counts, myelin basic protein levels and more dense complement 3 concentrations than found in the comparative normal BBB permeability group. The albumin index was positively correlated to the length of lesions in spinal cord. Conclusions: BBB permeability was associated with clinical features, laboratory results and radiological data of NMOSD patients, and may be a potential biomarker to predict disease severity and clinical characteristics of NMOSD.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Caiyun Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wenjuan Lang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Gao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Chao Lu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shuang Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Nannan Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Dong Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Chen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hong-Liang Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Department of Life Sciences, The National Natural Science Foundation of China, Beijing, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences & Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Katz Sand I, Fabian MT, Telford R, Kraus TA, Chehade M, Masilamani M, Moran T, Farrell C, Ebel S, Cook LJ, Rose J, Lublin FD. Open-label, add-on trial of cetirizine for neuromyelitis optica. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 5:e441. [PMID: 30426035 PMCID: PMC6201737 DOI: 10.1212/nxi.0000000000000441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022]
Abstract
Objective This pilot study preliminarily examined the efficacy and tolerability of cetirizine as an add-on to standard therapy for neuromyelitis optica (NMO). Methods Eligible participants met the Wingerchuk 2006 diagnostic criteria or had a single typical episode along with positive NMO immunoglobulin G. After baseline clinical and laboratory assessments, participants began treatment with cetirizine 10 mg orally daily, in addition to their usual disease-modifying therapy for NMO, and continued for 1 year. The primary end point was the annualized relapse rate (ARR) while on the same disease-modifying therapy before starting cetirizine compared with after taking cetirizine. Additional end points included disability (Expanded Disability Status Scale [EDSS]), relapse severity, tolerability, especially with respect to drowsiness measured by the Epworth Sleepiness Scale (ESS), and laboratory parameters. Results The ARR before cetirizine was 0.4 ± 0.80 and after cetirizine was 0.1 ± 0.24 (p = 0.047). There was no statistically significant difference in the EDSS (mean 3.9 ± 2.18 before the start of the study and 3.2 ± 2.31 at the conclusion of the study, p = 0.500). The ESS remained fairly consistent throughout the study (mean 6.5 ± 5.33 at baseline and 6.9 ± 4.50 at month 12, p = 0.740). Laboratory studies were unrevealing. Conclusions In this pilot study, cetirizine was well tolerated, and the prespecified primary efficacy end point was satisfied. However, the open-label design and the small sample size of this pilot study preclude definitive conclusions. Further research is needed. Classification of evidence This study provides Class IV evidence that in patients with NMO, the addition of cetirizine to standard therapy is safe, well tolerated, and reduces relapses.
Collapse
Affiliation(s)
- Ilana Katz Sand
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis (I.K.S., M.F., C.F., S.E., F.L.), Department of Neurology, Icahn School of Medicine at Mount Sinai, NY; Department of Pediatrics (R.T., L.C.), University of Utah, Salt Lake City; Drug Discovery Institute (T.A.K.), Mount Sinai Center for Eosinophilic Disorders (M.C.), Jaffe Food Allergy Institute (M.M.), Department of Pediatrics, and Department of Microbiology (T.M.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurology (J.R.), University of Utah, Salt Lake City
| | - Michelle T Fabian
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis (I.K.S., M.F., C.F., S.E., F.L.), Department of Neurology, Icahn School of Medicine at Mount Sinai, NY; Department of Pediatrics (R.T., L.C.), University of Utah, Salt Lake City; Drug Discovery Institute (T.A.K.), Mount Sinai Center for Eosinophilic Disorders (M.C.), Jaffe Food Allergy Institute (M.M.), Department of Pediatrics, and Department of Microbiology (T.M.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurology (J.R.), University of Utah, Salt Lake City
| | - Russell Telford
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis (I.K.S., M.F., C.F., S.E., F.L.), Department of Neurology, Icahn School of Medicine at Mount Sinai, NY; Department of Pediatrics (R.T., L.C.), University of Utah, Salt Lake City; Drug Discovery Institute (T.A.K.), Mount Sinai Center for Eosinophilic Disorders (M.C.), Jaffe Food Allergy Institute (M.M.), Department of Pediatrics, and Department of Microbiology (T.M.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurology (J.R.), University of Utah, Salt Lake City
| | - Thomas A Kraus
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis (I.K.S., M.F., C.F., S.E., F.L.), Department of Neurology, Icahn School of Medicine at Mount Sinai, NY; Department of Pediatrics (R.T., L.C.), University of Utah, Salt Lake City; Drug Discovery Institute (T.A.K.), Mount Sinai Center for Eosinophilic Disorders (M.C.), Jaffe Food Allergy Institute (M.M.), Department of Pediatrics, and Department of Microbiology (T.M.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurology (J.R.), University of Utah, Salt Lake City
| | - Mirna Chehade
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis (I.K.S., M.F., C.F., S.E., F.L.), Department of Neurology, Icahn School of Medicine at Mount Sinai, NY; Department of Pediatrics (R.T., L.C.), University of Utah, Salt Lake City; Drug Discovery Institute (T.A.K.), Mount Sinai Center for Eosinophilic Disorders (M.C.), Jaffe Food Allergy Institute (M.M.), Department of Pediatrics, and Department of Microbiology (T.M.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurology (J.R.), University of Utah, Salt Lake City
| | - Madhan Masilamani
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis (I.K.S., M.F., C.F., S.E., F.L.), Department of Neurology, Icahn School of Medicine at Mount Sinai, NY; Department of Pediatrics (R.T., L.C.), University of Utah, Salt Lake City; Drug Discovery Institute (T.A.K.), Mount Sinai Center for Eosinophilic Disorders (M.C.), Jaffe Food Allergy Institute (M.M.), Department of Pediatrics, and Department of Microbiology (T.M.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurology (J.R.), University of Utah, Salt Lake City
| | - Thomas Moran
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis (I.K.S., M.F., C.F., S.E., F.L.), Department of Neurology, Icahn School of Medicine at Mount Sinai, NY; Department of Pediatrics (R.T., L.C.), University of Utah, Salt Lake City; Drug Discovery Institute (T.A.K.), Mount Sinai Center for Eosinophilic Disorders (M.C.), Jaffe Food Allergy Institute (M.M.), Department of Pediatrics, and Department of Microbiology (T.M.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurology (J.R.), University of Utah, Salt Lake City
| | - Colleen Farrell
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis (I.K.S., M.F., C.F., S.E., F.L.), Department of Neurology, Icahn School of Medicine at Mount Sinai, NY; Department of Pediatrics (R.T., L.C.), University of Utah, Salt Lake City; Drug Discovery Institute (T.A.K.), Mount Sinai Center for Eosinophilic Disorders (M.C.), Jaffe Food Allergy Institute (M.M.), Department of Pediatrics, and Department of Microbiology (T.M.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurology (J.R.), University of Utah, Salt Lake City
| | - Shelly Ebel
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis (I.K.S., M.F., C.F., S.E., F.L.), Department of Neurology, Icahn School of Medicine at Mount Sinai, NY; Department of Pediatrics (R.T., L.C.), University of Utah, Salt Lake City; Drug Discovery Institute (T.A.K.), Mount Sinai Center for Eosinophilic Disorders (M.C.), Jaffe Food Allergy Institute (M.M.), Department of Pediatrics, and Department of Microbiology (T.M.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurology (J.R.), University of Utah, Salt Lake City
| | - Lawrence J Cook
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis (I.K.S., M.F., C.F., S.E., F.L.), Department of Neurology, Icahn School of Medicine at Mount Sinai, NY; Department of Pediatrics (R.T., L.C.), University of Utah, Salt Lake City; Drug Discovery Institute (T.A.K.), Mount Sinai Center for Eosinophilic Disorders (M.C.), Jaffe Food Allergy Institute (M.M.), Department of Pediatrics, and Department of Microbiology (T.M.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurology (J.R.), University of Utah, Salt Lake City
| | - John Rose
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis (I.K.S., M.F., C.F., S.E., F.L.), Department of Neurology, Icahn School of Medicine at Mount Sinai, NY; Department of Pediatrics (R.T., L.C.), University of Utah, Salt Lake City; Drug Discovery Institute (T.A.K.), Mount Sinai Center for Eosinophilic Disorders (M.C.), Jaffe Food Allergy Institute (M.M.), Department of Pediatrics, and Department of Microbiology (T.M.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurology (J.R.), University of Utah, Salt Lake City
| | - Fred D Lublin
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis (I.K.S., M.F., C.F., S.E., F.L.), Department of Neurology, Icahn School of Medicine at Mount Sinai, NY; Department of Pediatrics (R.T., L.C.), University of Utah, Salt Lake City; Drug Discovery Institute (T.A.K.), Mount Sinai Center for Eosinophilic Disorders (M.C.), Jaffe Food Allergy Institute (M.M.), Department of Pediatrics, and Department of Microbiology (T.M.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurology (J.R.), University of Utah, Salt Lake City
| |
Collapse
|
39
|
Annus Á, Bencsik K, Obál I, Kincses ZT, Tiszlavicz L, Höftberger R, Vécsei L. Paraneoplastic neuromyelitis optica spectrum disorder: A case report and review of the literature. J Clin Neurosci 2018; 48:7-10. [DOI: 10.1016/j.jocn.2017.10.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
|
40
|
Xu Y, Li L, Ren HT, Yin B, Yuan JG, Peng XZ, Qiang BQ, Cui LY. Mutation of the cellular adhesion molecule NECL2 is associated with neuromyelitis optica spectrum disorder. J Neurol Sci 2017; 388:133-138. [PMID: 29627007 DOI: 10.1016/j.jns.2017.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/01/2017] [Accepted: 10/15/2017] [Indexed: 11/20/2022]
Abstract
AIMS To investigate the association of the Nectin/Necl family genes with the risk of developing NMOSD. METHODS Whole-exome sequencing was performed on two familial NMOSD cases and two unaffected family members. Additionally, 106 patients with sporadic NMOSD and 212 healthy controls (HCs) underwent screening for mutant Necl2. Finally, the molecular weight and cellular localization of mutant NECL2 was examined in transfected HeLa cells. RESULTS We identified a novel deletion mutation in Necl2 (c.1052_1060delCCACCACCA; p. Thr351_Thr353del), which was associated with disease manifestation in the NMOSD familial cases. The frequency at which the mutation occurred in patients with sporadic NMOSD was significantly higher than for HCs (5.7% and 0, respectively; p<0.01). The mutation was located in the extracellular domain close to the transmembrane region, at a point in the protein sequence characterized by threonine enrichment. The mutant NECL2 had a lower molecular weight and exhibited defective trafficking to the cell surface. CONCLUSIONS Our results suggest that the Necl2 mutation identified herein may be associated with the risk of developing NMOSD. Furthermore, mutated NECL2 may play a role in the pathogenesis of the disease, potentially through its roles in axonal regeneration and/or via neuron-glia interactions that are relevant to myelination.
Collapse
Affiliation(s)
- Yan Xu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liang Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Hai-Tao Ren
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Bin Yin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Jian-Gang Yuan
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Xiao-Zhong Peng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China.
| | - Bo-Qin Qiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China; Neuroscience Center, CAMS, Beijing, China.
| |
Collapse
|
41
|
Verkhratsky A, Zorec R, Parpura V. Stratification of astrocytes in healthy and diseased brain. Brain Pathol 2017; 27:629-644. [PMID: 28805002 PMCID: PMC5599174 DOI: 10.1111/bpa.12537] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Astrocytes, a subtype of glial cells, come in variety of forms and functions. However, overarching role of these cell is in the homeostasis of the brain, be that regulation of ions, neurotransmitters, metabolism or neuronal synaptic networks. Loss of homeostasis represents the underlying cause of all brain disorders. Thus, astrocytes are likely involved in most if not all of the brain pathologies. We tabulate astroglial homeostatic functions along with pathological condition that arise from dysfunction of these glial cells. Classification of astrocytes is presented with the emphasis on evolutionary trails, morphological appearance and numerical preponderance. We note that, even though astrocytes from a variety of mammalian species share some common features, human astrocytes appear to be the largest and most complex of all astrocytes studied thus far. It is then an imperative to develop humanized models to study the role of astrocytes in brain pathologies, which is perhaps most abundantly clear in the case of glioblastoma multiforme.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUnited Kingdom
- Achúcarro Basque Center for NeuroscienceIKERBASQUE, Basque Foundation for Science48011 BilbaoSpain
- Department of NeuroscienceUniversity of the Basque Country UPV/EHU and CIBERNED48940 LeioaSpain
| | - Robert Zorec
- Laboratory of Cell EngineeringCelica BIOMEDICAL, Tehnološki park 24, Ljubljana 1000SloveniaEurope
- Laboratory of Neuroendocrinology‐Molecular Cell PhysiologyInstitute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana 1000SloveniaEurope
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, 1719 6th Avenue South, CIRC 429University of Alabama at BirminghamBirminghamAL 35294‐0021
| |
Collapse
|
42
|
Wang Y, Gong Q, Zhu M, Lu C, Sun L, Feng J, Zhang H. Aquaporin-4 positive neuromyelitis optica spectrum disorders secondary to thrombopenic purpura: A case report. Medicine (Baltimore) 2017; 96:e5792. [PMID: 28079804 PMCID: PMC5266166 DOI: 10.1097/md.0000000000005792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Neuromyelitis optica spectrum disorders (NMOSD) is considered as an immune-mediated disorder in the central nervous system (CNS). Numerous autoimmune diseases are frequently complicated with NMOSD and distinct clinical characteristics are noted in NMOSD patients with other autoimmune diseases. However, to our best knowledge, co-occurrence of NMOSD and thrombopenic purpura is rarely identified. PATIENT CONCERNS We presented a rare case of a 72-year-old female with 6-year history of thrombopenic purpura, and 1-month history of blurred vision as well as chest zonethesia. Anti-aquaporin-4 (AQP4) antibodies was positive in the serum of the patient. DIAGNOSES With the addition of laboratory findings, iconography findings and physical examination results, the diagnosis of NMOSD was established according to the most recent diagnostic criteria. INTERVENTIONS AND OUTCOMES With the treatment of intravenous immunoglobulin (IVIg), the patient felt better at discharge without changing of expanded disability status scale (EDSS) score. LESSONS The case indicates that NMOSD could co-occur with thrombopenic purpura. The disturbance of immune system balance may explain this overlap. Further studies are warranted to reveal the mechanism and to explore whether patients with NMOSD with and without thrombopenic purpura have distinct clinical feature, drug responsiveness or prognosis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurology, the First Hospital of Jilin University
| | - Qiaoyun Gong
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun
| | - Mingqin Zhu
- Department of Neurology, the First Hospital of Jilin University
| | - Chao Lu
- Department of Neurology, the First Hospital of Jilin University
| | - Li Sun
- Department of Neurology, the First Hospital of Jilin University
| | - Jiachun Feng
- Department of Neurology, the First Hospital of Jilin University
| | - Hongliang Zhang
- Department of Neurology, the First Hospital of Jilin University
- Current address: Department of Life Sciences, the National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
43
|
Collin M, Björck L. Toward Clinical use of the IgG Specific Enzymes IdeS and EndoS against Antibody-Mediated Diseases. Methods Mol Biol 2017; 1535:339-351. [PMID: 27914091 DOI: 10.1007/978-1-4939-6673-8_23] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endoglycosidase EndoS and the protease IdeS from the human pathogen Streptococcus pyogenes are immunomodulating enzymes hydrolyzing human IgG. IdeS cleaves IgG in the lower hinge region, while EndoS hydrolyzes the conserved N-linked glycan in the Fc region. Both enzymes are remarkably specific for human IgG that after hydrolysis loses most of its effector functions, such as binding to leukocytes and complement activation, all contributing to bacterial evasion of adaptive immunity. However, taken out of their infectious context, we and others have shown that IdeS and EndoS can alleviate autoimmune disease in a number of animal models of antibody-mediated disorders. In this chapter, we will briefly describe the discovery and characterization of these unique enzymes, present the findings from a number of animal models of autoimmunity where the enzymes have been tested, and outline the ongoing clinical testing of IdeS. Furthermore, we will discuss the rationale for further development of IdeS and EndoS into novel pharmaceuticals against diseases where IgG antibodies contribute to the pathology, including, but not restricted to, chronic and acute autoimmunity, transplant rejection, and antidrug antibody reactions.
Collapse
Affiliation(s)
- Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Biomedical Center B14, SE-221 84, Lund, Sweden.
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Biomedical Center B14, SE-221 84, Lund, Sweden
| |
Collapse
|
44
|
Pisani F, Simone L, Gargano CD, De Bellis M, Cibelli A, Mola MG, Catacchio G, Frigeri A, Svelto M, Nicchia GP. Role of the H-bond between L53 and T56 for Aquaporin-4 epitope in Neuromyelitis Optica. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:368-376. [PMID: 28027883 DOI: 10.1016/j.bbamem.2016.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/13/2016] [Accepted: 12/23/2016] [Indexed: 11/29/2022]
Abstract
Aquaporin-4 (AQP4) is the CNS water channel organized into well-ordered protein aggregates called Orthogonal Arrays of Particles (OAPs). Neuromyelitis Optica (NMO) is an autoimmune disease caused by anti-OAP autoantibodies (AQP4-IgG). Molecular Dynamics (MD) simulations have identified an H-bond between L53 and T56 as the key for AQP4 epitope and therefore of potential interest for drug design in NMO field. In the present study, we have experimentally tested this MD-prediction using the classic mutagenesis approach. We substituted T56 with V56 and tested this mutant for AQP4 aggregates and AQP4-IgG binding. gSTED super-resolution microscopy showed that the mutation does not affect AQP4 aggregate dimension; immunofluorescence and cytofluorimetric analysis demonstrated its unaltered AQP4-IgG binding, therefore invalidating the MD-prediction. We later investigated whether AQP4, expressed in Sf9 insect and HEK-293F cells, is able to correctly aggregate before and after the purification steps usually applied to obtain AQP4 crystal. The results demonstrated that AQP4-IgG recognizes AQP4 expressed in Sf9 and HEK-293F cells by immunofluorescence even though BN-PAGE analysis showed that AQP4 forms smaller aggregates when expressed in insect cells compared to mammalian cell lines. Notably, after AQP4 purification, from both insect and HEK-293F cells, no aggregates are detectable by BN-PAGE and AQP4-IgG binding is impaired in sandwich ELISA assays. All together these results indicate that 1) the MD prediction under analysis is not supported by experimental data and 2) the procedure to obtain AQP4 crystals might affect its native architecture and, as a consequence, MD simulations. In conclusion, given the complex nature of the AQP4 epitope, MD might not be the suitable for molecular medicine advances in NMO.
Collapse
Affiliation(s)
- Francesco Pisani
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Laura Simone
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy; IRCCS "Casa Sollievo della Sofferenza", Research Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Concetta Domenica Gargano
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Manuela De Bellis
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Cibelli
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Giacomo Catacchio
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Frigeri
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy; Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Maria Svelto
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy; Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy; Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.
| |
Collapse
|
45
|
Valentino P, Marnetto F, Granieri L, Capobianco M, Bertolotto A. Aquaporin-4 antibody titration in NMO patients treated with rituximab: A retrospective study. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 4:e317. [PMID: 28054001 PMCID: PMC5182057 DOI: 10.1212/nxi.0000000000000317] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022]
Abstract
Objective: We undertook an observational retrospective study to investigate the usefulness of aquaporin-4 (AQP4) antibodies (Ab) titration in the management of patients with neuromyelitis optica (NMO) treated with rituximab (RTX) by studying (1) the correlation between AQP4-Ab titer and disease activity, (2) the influence of RTX on antibody levels, and (3) the association between AQP4-Ab levels and responsiveness to RTX. Methods: A cell-based assay was used for AQP4-Ab titration in 322 serum samples from 7 patients with NMO treated with RTX (median follow-up 65 months), according to a treatment-to-target approach. Serum samples were collected every month following standardized procedures. Results: (1) In group analysis, AQP4-Ab titers correlated with the disease activity, showing higher titers during and preceding relapses than during remission. However, in individual analysis, an increase in AQP4-Ab titers and CD19+ B cells did not always precede a relapse. (2) A reduction of AQP4-Ab titers in the short-term and long-term period was observed during RTX treatment. (3) Reduction of AQP4-Ab titers was observed in responder patients both 3 months after RTX infusion and in the long-term follow-up. In one nonresponder patient, AQP4-Ab levels never decreased during the treatment period. Conclusions: Titration of AQP4-Abs could be useful in the clinical management of patients with NMO treated with RTX: titration before each reinfusion and 3 months after each reinfusion may provide information about responsiveness to RTX. Although a relationship among AQP4-Ab levels, disease activity, and response to RTX was observed, the usefulness of AQP4-Ab titration to predict relapses is limited.
Collapse
Affiliation(s)
- Paola Valentino
- Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., F.M., L.G., A.B.) and Neurologia 2-CRESM (P.V., F.M., L.G., M.C., A.B.), AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Fabiana Marnetto
- Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., F.M., L.G., A.B.) and Neurologia 2-CRESM (P.V., F.M., L.G., M.C., A.B.), AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Letizia Granieri
- Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., F.M., L.G., A.B.) and Neurologia 2-CRESM (P.V., F.M., L.G., M.C., A.B.), AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Marco Capobianco
- Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., F.M., L.G., A.B.) and Neurologia 2-CRESM (P.V., F.M., L.G., M.C., A.B.), AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., F.M., L.G., A.B.) and Neurologia 2-CRESM (P.V., F.M., L.G., M.C., A.B.), AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| |
Collapse
|
46
|
Desai B, Hsu Y, Schneller B, Hobbs JG, Mehta AI, Linninger A. Hydrocephalus: the role of cerebral aquaporin-4 channels and computational modeling considerations of cerebrospinal fluid. Neurosurg Focus 2016; 41:E8. [DOI: 10.3171/2016.7.focus16191] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aquaporin-4 (AQP4) channels play an important role in brain water homeostasis. Water transport across plasma membranes has a critical role in brain water exchange of the normal and the diseased brain. AQP4 channels are implicated in the pathophysiology of hydrocephalus, a disease of water imbalance that leads to CSF accumulation in the ventricular system. Many molecular aspects of fluid exchange during hydrocephalus have yet to be firmly elucidated, but review of the literature suggests that modulation of AQP4 channel activity is a potentially attractive future pharmaceutical therapy. Drug therapy targeting AQP channels may enable control over water exchange to remove excess CSF through a molecular intervention instead of by mechanical shunting. This article is a review of a vast body of literature on the current understanding of AQP4 channels in relation to hydrocephalus, details regarding molecular aspects of AQP4 channels, possible drug development strategies, and limitations. Advances in medical imaging and computational modeling of CSF dynamics in the setting of hydrocephalus are summarized. Algorithmic developments in computational modeling continue to deepen the understanding of the hydrocephalus disease process and display promising potential benefit as a tool for physicians to evaluate patients with hydrocephalus.
Collapse
Affiliation(s)
| | - Ying Hsu
- 2Bioengineering, University of Illinois at Chicago; and
| | | | | | | | - Andreas Linninger
- Departments of 1Neurosurgery and
- 2Bioengineering, University of Illinois at Chicago; and
| |
Collapse
|
47
|
Yang X, Ransom BR, Ma JF. The role of AQP4 in neuromyelitis optica: More answers, more questions. J Neuroimmunol 2016; 298:63-70. [DOI: 10.1016/j.jneuroim.2016.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/30/2016] [Accepted: 06/06/2016] [Indexed: 12/14/2022]
|
48
|
Association of CD40 Gene Polymorphisms with Susceptibility to Neuromyelitis Optica Spectrum Disorders. Mol Neurobiol 2016; 54:5236-5242. [PMID: 27578014 DOI: 10.1007/s12035-016-0070-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/18/2016] [Indexed: 02/05/2023]
Abstract
The CD40 gene is associated with many autoimmune diseases; however, there are few studies in literatures that investigate the association between CD40 and neuromyelitis optica spectrum disorders (NMOSD). This study aimed to estimate the potential association of CD40 gene polymorphisms with susceptibility to NMOSD. Four SNPs (rs1883832, rs3765459, rs4810485, and rs6074022) were selected and genotyped in a Chinese cohort comprising 162 patients with NMOSD and 237 healthy controls. P values, odds ratios (ORs), and 95 % confidential intervals (CI) for four test models (allelic, additive, dominant, and recessive) were used to assess relationships between CD40 and NMOSD. Results showed that the rs3765459 variant was significantly associated with increased risk of NMOSD in allelic model (OR = 1.48, 95 % CI 1.10-1.98, P = 0.009, P corr = 0.037), and similar results were detected in the additive and recessive models (OR = 1.47, 95 % CI 1.09-1.97, P = 0.010, P corr = 0.042; OR = 2.12, 95 % CI 1.18-3.8, P = 0.012, P corr = 0.048, respectively). Other three SNPs showed protections on NMOSD in dominant models (rs6074022, OR = 0.64, 95 % CI 0.42-0.95, P = 0.031; rs1883832, OR = 0.65, 95 % CI 0.43-0.97, P = 0.036; and rs4810485, OR = 0.63, 95 % CI 0.42-0.95, P = 0.029, respectively), but not significantly after Bonferroni corrections for multiple tests. In addition, haplotype analysis of these SNPs in tight linkage did not reveal significant association with NMOSD. This study indicates that the rs3765459 variant in CD40 gene is associated with susceptibility to NMOSD. Larger sample size studies in other ethnicities are needed to verify this association.
Collapse
|
49
|
Tuller F, Holzer H, Schanda K, Aboulenein-Djamshidian F, Höftberger R, Khalil M, Seifert-Held T, Leutmezer F, Berger T, Reindl M. Characterization of the binding pattern of human aquaporin-4 autoantibodies in patients with neuromyelitis optica spectrum disorders. J Neuroinflammation 2016; 13:176. [PMID: 27371173 PMCID: PMC4930584 DOI: 10.1186/s12974-016-0642-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/24/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The discovery of a highly specific antibody against the aquaporin-4 (AQP4) water channel (AQP4-IgG) unified the spectrum of neuromyelitis optica spectrum disorders (NMOSD), which are considered to be antibody-mediated autoimmune diseases. The AQP4 water channel is located on astrocytic end-feet processes and consists of six transmembrane helical domains forming three extracellular loops A, C, and E in which defined amino acids were already proven to be critical for AQP4-IgG binding. However, the clinical relevance of these findings is unclear. Therefore, we have characterized the epitope specificity of AQP4-IgG-positive NMOSD patients. METHODS We established a cell-based flow cytometry assay for the quantitative detection of AQP4-IgG-positive serum samples. Human embryonic kidney (HEK) cells were transiently transfected with an EmGFP-tagged AQP4-M23, AQP4-M1, or six AQP4-M23 extracellular loop mutants including two mutations in loop A (serial AA substitution, insertion of a myc-tag), two in loop C (N153Q, insertion of a myc-tag), and two in loop E (H230G, insertion of a myc-tag). Fourty-seven baseline and 49 follow-up serum samples and six paired cerebrospinal fluid (CSF) baseline samples of 47 AQP4-IgG-positive Austrian NMOSD patients were then tested for their binding capability to AQP4-M1 and AQP4-M23 isoforms and these six extracellular loop mutants. RESULTS Overall, we could identify two broad patterns of antibody recognition based on differential sensitivity to mutations in extracellular loop A. Pattern A was characterized by reduced binding to the two mutations in loop A, whereas pattern B had only partial or no reduced binding to these mutations. These two patterns were not associated with significant differences in demographic and clinical parameters or serum titers in this retrospective study. Interestingly, we found a change of AQP4-IgG epitope recognition pattern in seven of 20 NMOSD patients with available follow-up samples. Moreover, we found different binding patterns in five of six paired CSF versus serum samples, with a predominance of pattern A in CSF. CONCLUSIONS Our study demonstrates that AQP4-IgG in sera of NMOSD patients show distinct patterns of antibody recognition. The clinical and diagnostic relevance of these findings have to be addressed in prospective studies.
Collapse
Affiliation(s)
- Friederike Tuller
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannah Holzer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kathrin Schanda
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fahmy Aboulenein-Djamshidian
- Department of Neurology, Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Sozialmedizinisches Zentrum Ost Donauspital, Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
50
|
Marignier R, Ruiz A, Cavagna S, Nicole A, Watrin C, Touret M, Parrot S, Malleret G, Peyron C, Benetollo C, Auvergnon N, Vukusic S, Giraudon P. Neuromyelitis optica study model based on chronic infusion of autoantibodies in rat cerebrospinal fluid. J Neuroinflammation 2016; 13:111. [PMID: 27193196 PMCID: PMC4872335 DOI: 10.1186/s12974-016-0577-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/10/2016] [Indexed: 11/19/2022] Open
Abstract
Background Devic’s neuromyelitis optica (NMO) is an autoimmune astrocytopathy, associated with central nervous system inflammation, demyelination, and neuronal injury. Several studies confirmed that autoantibodies directed against aquaporin-4 (AQP4-IgG) are relevant in the pathogenesis of NMO, mainly through complement-dependent toxicity leading to astrocyte death. However, the effect of the autoantibody per se and the exact role of intrathecal AQP4-IgG are still controversial. Methods To explore the intrinsic effect of intrathecal AQP4-IgG, independent from additional inflammatory effector mechanisms, and to evaluate its clinical impact, we developed a new animal model, based on a prolonged infusion of purified immunoglobulins from NMO patient (IgGAQP4+, NMO-rat) and healthy individual as control (Control-rat) in the cerebrospinal fluid (CSF) of live rats. Results We showed that CSF infusion of purified immunoglobulins led to diffusion in the brain, spinal cord, and optic nerves, the targeted structures in NMO. This was associated with astrocyte alteration in NMO-rats characterized by loss of aquaporin-4 expression in the spinal cord and the optic nerves compared to the Control-rats (p = 0.001 and p = 0.02, respectively). In addition, glutamate uptake tested on vigil rats was dramatically reduced in NMO-rats (p = 0.001) suggesting that astrocytopathy occurred in response to AQP4-IgG diffusion. In parallel, myelin was altered, as shown by the decrease of myelin basic protein staining by up to 46 and 22 % in the gray and white matter of the NMO-rats spinal cord, respectively (p = 0.03). Loss of neurofilament positive axons in NMO-rats (p = 0.003) revealed alteration of axonal integrity. Then, we investigated the clinical consequences of such alterations on the motor behavior of the NMO-rats. In a rotarod test, NMO-rats performance was lower compared to the controls (p = 0.0182). AQP4 expression, and myelin and axonal integrity were preserved in AQP4-IgG-depleted condition. We did not find a major immune cell infiltration and microglial activation nor complement deposition in the central nervous system, in our model. Conclusions We establish a link between motor-deficit, NMO-like lesions and astrocytopathy mediated by intrathecal AQP4-IgG. Our study validates the concept of the intrinsic effect of autoantibody against surface antigens and offers a model for testing antibody and astrocyte-targeted therapies in NMO. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0577-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R Marignier
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France. .,Université Lyon 1, Université de Lyon, Lyon, France. .,Service de Neurologie A, Eugène Devic EDMUS Foundation Against Multiple Sclerosis, Observatoire Français de la Sclérose en Plaques, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 59 Boulevard Pinel, 69677, Lyon-Bron cedex, France.
| | - A Ruiz
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France.,Université Lyon 1, Université de Lyon, Lyon, France
| | - S Cavagna
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France.,Université Lyon 1, Université de Lyon, Lyon, France
| | - A Nicole
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France
| | - C Watrin
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France.,Université Lyon 1, Université de Lyon, Lyon, France
| | - M Touret
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France.,Université Lyon 1, Université de Lyon, Lyon, France
| | - S Parrot
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France.,Université Lyon 1, Université de Lyon, Lyon, France
| | - G Malleret
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France.,Université Lyon 1, Université de Lyon, Lyon, France
| | - C Peyron
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France.,Université Lyon 1, Université de Lyon, Lyon, France
| | - C Benetollo
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France.,Université Lyon 1, Université de Lyon, Lyon, France
| | - N Auvergnon
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France.,Université Lyon 1, Université de Lyon, Lyon, France
| | - S Vukusic
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France.,Université Lyon 1, Université de Lyon, Lyon, France.,Service de Neurologie A, Eugène Devic EDMUS Foundation Against Multiple Sclerosis, Observatoire Français de la Sclérose en Plaques, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 59 Boulevard Pinel, 69677, Lyon-Bron cedex, France
| | - P Giraudon
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France.,Université Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|