1
|
Viola H, Chen LH, Jo S, Washington K, Selva C, Li A, Feng D, Giacalone V, Stephenson ST, Cottrill K, Mohammad A, Williams E, Qu X, Lam W, Ng NL, Fitzpatrick A, Grunwell J, Tirouvanziam R, Takayama S. High-throughput quantitation of human neutrophil recruitment and functional responses in an air-blood barrier array. APL Bioeng 2025; 9:026110. [PMID: 40290728 PMCID: PMC12033047 DOI: 10.1063/5.0220367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/19/2024] [Indexed: 04/30/2025] Open
Abstract
Dysregulated neutrophil recruitment drives many pulmonary diseases, but most preclinical screening methods are unsuited to evaluate pulmonary neutrophilia, limiting progress toward therapeutics. Namely, high-throughput therapeutic assays typically exclude critical neutrophilic pathophysiology, including blood-to-lung recruitment, dysfunctional activation, and resulting impacts on the air-blood barrier. To meet the conflicting demands of physiological complexity and high throughput, we developed an assay of 96-well leukocyte recruitment in an air-blood barrier array (L-ABBA-96) that enables in vivo-like neutrophil recruitment compatible with downstream phenotyping by automated flow cytometry. We modeled acute respiratory distress syndrome (ARDS) with neutrophil recruitment to 20 ng/mL epithelial-side interleukin 8 and found a dose-dependent reduction in recruitment with physiologic doses of baricitinib, a JAK1/2 inhibitor recently Food and Drug Administration-approved for severe Coronavirus Disease 2019 ARDS. Additionally, neutrophil recruitment to patient-derived cystic fibrosis sputum supernatant induced disease-mimetic recruitment and activation of healthy donor neutrophils and upregulated endothelial e-selectin. Compared to 24-well assays, the L-ABBA-96 reduces required patient sample volumes by 25 times per well and quadruples throughput per plate. Compared to microfluidic assays, the L-ABBA-96 recruits two orders of magnitude more neutrophils per well, enabling downstream flow cytometry and other standard biochemical assays. This novel pairing of high-throughput in vitro modeling of organ-level lung function with parallel high-throughput leukocyte phenotyping substantially advances opportunities for pathophysiological studies, personalized medicine, and drug testing applications.
Collapse
Affiliation(s)
| | - Liang-Hsin Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Seongbin Jo
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Kendra Washington
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Cauviya Selva
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Andrea Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Daniel Feng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | - Evelyn Williams
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Xianggui Qu
- Department of Mathematics and Statistics, Oakland University, Rochester, Michigan 48309, USA
| | | | | | | | - Jocelyn Grunwell
- Department of Pediatrics, Division of Critical Care Medicine, Emory University School of Medicine and Children's Healthcare of Atlanta at Arthur M. Blank Hospital, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
2
|
Choi A, Woo JS, Park YS, Kim JH, Chung YE, Lee S, Beom JH, You JS. TARGETED TEMPERATURE MANAGEMENT AT 36°C IMPROVES SURVIVAL AND PROTECTS TISSUES BY MITIGATING THE DELETERIOUS INFLAMMATORY RESPONSE FOLLOWING HEMORRHAGIC SHOCK. Shock 2024; 62:716-727. [PMID: 39186053 DOI: 10.1097/shk.0000000000002453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
ABSTRACT Hemorrhagic shock (HS) is a life-threatening condition with high mortality rates despite current treatments. This study investigated whether targeted temperature management (TTM) could improve outcomes by modulating inflammation and protecting organs following HS. Using a rat model of HS, TTM was applied at 33°C and 36°C after fluid resuscitation. Surprisingly, TTM at 33°C increased mortality, while TTM at 36°C significantly improved survival rates. It also reduced histological damage in lung and kidney tissues, lowered serum lactate levels, and protected against apoptosis and excessive reactive oxygen species production. TTM at 36°C inhibited the release of high mobility group box 1 protein (HMGB1), a key mediator of inflammation, and decreased proinflammatory cytokine levels in the kidneys and lungs. Moreover, it influenced macrophage behavior, suppressing the harmful M1 phenotype while promoting the beneficial M2 polarization. Cytokine array analysis confirmed reduced levels of proinflammatory cytokines with TTM at 36°C. These results collectively highlight the potential of TTM at 36°C as a therapeutic approach to improve outcomes in HS. By addressing multiple aspects of injury and inflammation, including modulation of macrophage responses and cytokine profiles, TTM at 36°C offers promising implications for critical care management after HS, potentially reducing mortality and improving patient recovery.
Collapse
Affiliation(s)
- Arom Choi
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Sun Woo
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo Seok Park
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hee Kim
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Eun Chung
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sojung Lee
- Class of 2025, Biology B.S., Emory University, Atlanta, Georgia
| | - Jin Ho Beom
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Je Sung You
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Yun Y, Mun S, Lee S, Kang HG, Lee J. Serum L-selectin levels as predictive markers for chronic major depressive disorder progression. Ann Gen Psychiatry 2024; 23:37. [PMID: 39415236 PMCID: PMC11481545 DOI: 10.1186/s12991-024-00522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) exhibits a recurrence rate of up to 70%. Frequent recurrence can lead to chronic depression, which has considerable personal and societal consequences. This study aims to identify a serum protein biomarker to predict MDD recurrence and progression to chronicity. METHODS Serum samples from the MDD with single episode group (MDD-S), MDD with recurrence group (MDD-R), and a healthy control group were collected. Non-targeted analysis of the serum proteome was conducted using liquid chromatography-tandem mass spectrometry. Statistically significant common proteins when comparing the three groups were chosen. The selected marker candidates were subsequently validated through multiple response monitoring (MRM), incorporating a healthy control, MDD-S, MDD-R(2) (two episodes), and MDD-R(> 2) (more than two episodes) groups. RESULTS L-selectin levels showed an upward trend in the MDD-R group compared to the healthy control and MDD-S groups. MRM validation revealed a decreased tendency for L-selectin in the MDD-R(> 2) group, indicative of a chronic state, versus the healthy control and MDD-S groups. The receiver operating characteristic analysis highlighted L-selectin as the chosen biomarker due to its classification efficacy for the MDD-R(> 2) group. CONCLUSION L-selectin emerged as a predictive biomarker for MDD recurrence and its potential evolution into chronic depression. This marker offers insights into changes in leukocyte-mediated inflammatory responses characteristic of chronic depression. Consequently, it may forecast the transition from acute to chronic inflammation in depressive patients.
Collapse
Affiliation(s)
- Yeeun Yun
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Gyeonggi, Republic of Korea
| | - Sora Mun
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Gyeonggi, Republic of Korea
| | - Seungyeon Lee
- Department of Senior Healthcare, Graduate School, Eulji University, Gyeonggi, Republic of Korea
| | - Hee-Gyoo Kang
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Gyeonggi, Republic of Korea.
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Gyeonggi, Republic of Korea.
- Department of Senior Healthcare, Graduate School, Eulji University, Gyeonggi, Republic of Korea.
| | - Jiyeong Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Gyeonggi, Republic of Korea.
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Gyeonggi, Republic of Korea.
| |
Collapse
|
4
|
San Antonio E, Silván J, Sevilla-Montero J, González-Sánchez E, Muñoz-Callejas A, Sánchez-Abad I, Ramos-Manzano A, Muñoz-Calleja C, González-Álvaro I, Tomero EG, García-Pérez J, García-Vicuña R, Vicente-Rabaneda EF, Castañeda S, Urzainqui A. PSGL-1, ADAM8, and selectins as potential biomarkers in the diagnostic process of systemic lupus erythematosus and systemic sclerosis: an observational study. Front Immunol 2024; 15:1403104. [PMID: 39100683 PMCID: PMC11297358 DOI: 10.3389/fimmu.2024.1403104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 08/06/2024] Open
Abstract
Background Early diagnosis and treatment of Systemic lupus erythematosus (SLE) and Systemic sclerosis (SSc) present significant challenges for clinicians. Although various studies have observed changes in serum levels of selectins between healthy donors and patients with autoimmune diseases, including SLE and SSc, their potential as biomarkers has not been thoroughly explored. We aimed to investigate serum profiles of PSGL-1 (sPSGL-1), ADAM8 (sADAM8) and P-, E- and L-selectins (sP-, sE- and sL-selectins) in defined SLE and SSc patient cohorts to identify disease-associated molecular patterns. Methods We collected blood samples from 64 SLE patients, 58 SSc patients, and 81 healthy donors (HD). Levels of sPSGL-1, sADAM8 and selectins were analyzed by ELISA and leukocyte membrane expression of L-selectin and ADAM8 by flow cytometry. Results Compared to HD, SLE and SSc patients exhibited elevated sE-selectin and reduced sL-selectin levels. Additionally, SLE patients exhibited elevated sPSGL-1 and sADAM8 levels. Compared to SSc, SLE patients had decreased sL-selectin and increased sADAM8 levels. Furthermore, L-selectin membrane expression was lower in SLE and SSc leukocytes than in HD leukocytes, and ADAM8 membrane expression was lower in SLE neutrophils compared to SSc neutrophils. These alterations associated with some clinical characteristics of each disease. Using logistic regression analysis, the sL-selectin/sADAM8 ratio in SLE, and a combination of sL-selectin/sE-selectin and sE-selectin/sPSGL-1 ratios in SSc were identified and cross-validated as potential serum markers to discriminate these patients from HD. Compared to available diagnostic biomarkers for each disease, both sL-selectin/sADAM8 ratio for SLE and combined ratios for SSc provided higher sensitivity (98% SLE and and 67% SSc correctly classified patients). Importantly, the sADAM8/% ADAM8(+) neutrophils ratio discriminated between SSc and SLE patients with the same sensitivity and specificity than current disease-specific biomarkers. Conclusion SLE and SSc present specific profiles of sPSGL-1, sE-, sL-selectins, sADAM8 and neutrophil membrane expression which are potentially relevant to their pathogenesis and might aid in their early diagnosis.
Collapse
Affiliation(s)
- Esther San Antonio
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Javier Silván
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Javier Sevilla-Montero
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Elena González-Sánchez
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Antonio Muñoz-Callejas
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Inés Sánchez-Abad
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Alejandra Ramos-Manzano
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
| | - Isidoro González-Álvaro
- Rheumatology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Eva G. Tomero
- Rheumatology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Javier García-Pérez
- Pulmonology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Rosario García-Vicuña
- Medicine Department, School of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
- Rheumatology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Esther F. Vicente-Rabaneda
- Medicine Department, School of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
- Rheumatology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Santos Castañeda
- Rheumatology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Ana Urzainqui
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| |
Collapse
|
5
|
Viola H, Chen LH, Jo S, Washington K, Selva C, Li A, Feng D, Giacalone V, Stephenson ST, Cottrill K, Mohammed A, Williams E, Qu X, Lam W, Ng NL, Fitzpatrick A, Grunwell J, Tirouvanziam R, Takayama S. HIGH THROUGHPUT QUANTITATION OF HUMAN NEUTROPHIL RECRUITMENT AND FUNCTIONAL RESPONSES IN AN AIR-BLOOD BARRIER ARRAY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593624. [PMID: 38798413 PMCID: PMC11118313 DOI: 10.1101/2024.05.10.593624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dysregulated neutrophil recruitment drives many pulmonary diseases, but most preclinical screening methods are unsuited to evaluate pulmonary neutrophilia, limiting progress towards therapeutics. Namely, high throughput therapeutic screening systems typically exclude critical neutrophilic pathophysiology, including blood-to-lung recruitment, dysfunctional activation, and resulting impacts on the air-blood barrier. To meet the conflicting demands of physiological complexity and high throughput, we developed an assay of 96-well Leukocyte recruitment in an Air-Blood Barrier Array (L-ABBA-96) that enables in vivo -like neutrophil recruitment compatible with downstream phenotyping by automated flow cytometry. We modeled acute respiratory distress syndrome (ARDS) with neutrophil recruitment to 20 ng/mL epithelial-side interleukin 8 (IL-8) and found a dose dependent reduction in recruitment with physiologic doses of baricitinib, a JAK1/2 inhibitor recently FDA-approved for severe COVID-19 ARDS. Additionally, neutrophil recruitment to patient-derived cystic fibrosis sputum supernatant induced disease-mimetic recruitment and activation of healthy donor neutrophils and upregulated endothelial e-selectin. Compared to 24-well assays, the L-ABBA-96 reduces required patient sample volumes by 25 times per well and quadruples throughput per plate. Compared to microfluidic assays, the L-ABBA-96 recruits two orders of magnitude more neutrophils per well, enabling downstream flow cytometry and other standard biochemical assays. This novel pairing of high-throughput in vitro modeling of organ-level lung function with parallel high-throughput leukocyte phenotyping substantially advances opportunities for pathophysiological studies, personalized medicine, and drug testing applications.
Collapse
|
6
|
Zhang Q, Li S, Tong R, Zhu Y. Sialylation: An alternative to designing long-acting and targeted drug delivery system. Biomed Pharmacother 2023; 166:115353. [PMID: 37611437 DOI: 10.1016/j.biopha.2023.115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Long-acting and specific targeting are two important properties of excellent drug delivery systems. Currently, the long-acting strategies based on polyethylene glycol (PEG) are controversial, and PEGylation is incapable of simultaneously possessing targeting ability. Thus, it is crucial to identify and develop approaches to produce long-acting and targeted drug delivery systems. Sialic acid (SA) is an endogenous, negatively charged, nine-carbon monosaccharide. SA not only mediates immune escape in the body but also binds to numerous disease related targets. This suggests a potential strategy, namely "sialylation," for preparing long-acting and targeted drug delivery systems. This review focuses on the application status of SA-based long-acting and targeted agents as a reference for subsequent research.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Rongsheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
7
|
Hambrick HR, Short K, Askenazi D, Krallman K, Pino C, Yessayan L, Westover A, Humes HD, Goldstein SL. Hemolytic Uremic Syndrome-Induced Acute Kidney Injury Treated via Immunomodulation with the Selective Cytopheretic Device. Blood Purif 2023; 52:812-820. [PMID: 37607519 DOI: 10.1159/000531963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Shiga-toxin associated-hemolytic uremic syndrome (STEC-HUS) is a severe cause of acute kidney injury (AKI) in children. Although most children recover, about 5% die and 30% develop chronic renal morbidity. HUS pathophysiology includes activated neutrophils damaging vascular endothelial cells. Therapeutic immunomodulation of activated neutrophils may alter the progression of disease. We present 3 pediatric patients treated with the selective cytopheretic device (SCD). METHODS We describe a 12 y.o. (patient 1) and two 2 y.o. twins (patients 2 and 3) with STEC-HUS requiring continuous renal replacement therapy (CRRT) who were enrolled in two separate studies of the SCD. RESULTS Patient 1 presented with STEC-HUS causing AKI and multisystem organ failure and received 7 days of SCD and CRRT treatment. After SCD initiation, the patient had gradual recovery of multi-organ dysfunction, with normal kidney and hematologic parameters at 60-day follow-up. Patients 2 and 3 presented with STEC-HUS with AKI requiring dialysis. Each received 24 h of SCD therapy. Thereafter, both gradually improved, with normalization (patient 2) and near-normalization (patient 3) of kidney function at 60-day follow-up. CONCLUSION Immunomodulatory treatment with the SCD was associated with improvements in multisystem stigmata of STEC-HUS-induced AKI and was well-tolerated without any device-related adverse events.
Collapse
Affiliation(s)
- H Rhodes Hambrick
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kara Short
- Pediatric and Infant Center for Acute Nephrology, Children's of Alabama, Birmingham, Alabama, USA
| | - David Askenazi
- Pediatric and Infant Center for Acute Nephrology, Children's of Alabama, Birmingham, Alabama, USA
| | - Kelli Krallman
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christopher Pino
- Division of Nephrology, University of Michigan Department of Medicine, Ann Arbor, Michigan, USA
- Innovative BioTherapies Inc., Ann Arbor, Michigan, USA
| | - Lenar Yessayan
- Division of Nephrology, University of Michigan Department of Medicine, Ann Arbor, Michigan, USA
- Innovative BioTherapies Inc., Ann Arbor, Michigan, USA
| | - Angela Westover
- Division of Nephrology, University of Michigan Department of Medicine, Ann Arbor, Michigan, USA
- Innovative BioTherapies Inc., Ann Arbor, Michigan, USA
| | - H David Humes
- Division of Nephrology, University of Michigan Department of Medicine, Ann Arbor, Michigan, USA
- Innovative BioTherapies Inc., Ann Arbor, Michigan, USA
| | - Stuart L Goldstein
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Tirandi A, Sgura C, Carbone F, Montecucco F, Liberale L. Inflammatory biomarkers of ischemic stroke. Intern Emerg Med 2023; 18:723-732. [PMID: 36745280 PMCID: PMC10082112 DOI: 10.1007/s11739-023-03201-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
Ischemic stroke remains the second leading cause of death and among the major causes of morbidity worldwide. Therapeutic options are currently limited to early reperfusion strategies, while pharmacological neuroprotective strategies despite showing promising results in the experimental setting constantly failed to enter the clinical arena. Inflammation plays an important role in the pathophysiology of ischemic stroke and mediators of inflammation have been longtime investigated as possible prognostic marker and therapeutic target for stroke patients. Here, we summarized available evidence on the role of cytokines, soluble adhesion molecules and adipokines in the pathophysiology, prognosis and therapy of ischemic stroke.
Collapse
Affiliation(s)
- Amedeo Tirandi
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132, Genoa, Italy
| | - Cosimo Sgura
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132, Genoa, Italy
| | - Federico Carbone
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| |
Collapse
|
9
|
Zhang L, Liu C, Li Y, Wu Y, Wei Y, Zeng D, He S, Huang J, Li H. Plasma biomarker panel for major depressive disorder by quantitative proteomics using ensemble learning algorithm: A preliminary study. Psychiatry Res 2023; 323:115185. [PMID: 37003170 DOI: 10.1016/j.psychres.2023.115185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Major depressive disorder (MDD) is a major international public health issue; thus, investigating its underlying mechanisms and identifying suitable biomarkers to enable its early detection are imperative. Using data-independent acquisition-mass spectrometry-based proteomics, the plasma of 44 patients with MDD and 25 healthy controls was studied to detect differentially expressed proteins. Bioinformatics analyses, such as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, Protein-Protein Interaction network, and weighted gene co-expression network analysis were employed. Moreover, an ensemble learning technique was used to build a prediction model. A panel of two biomarkers, L-selectin and an isoform of the Ras oncogene family was identified. With an area under the receiver operating characteristic curve of 0.925 and 0.901 for the training and test sets, respectively, the panel was able to distinguish MDD from the controls. Our investigation revealed numerous potential biomarkers and a diagnostic panel based on several algorithms, which may contribute to the future development of a plasma-based diagnostic approach and better understanding of the molecular mechanisms of MDD.
Collapse
Affiliation(s)
- Linna Zhang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiping Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yumei Wei
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duan Zeng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen He
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jingjing Huang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huafang Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Goldstein SL, Yessayan LT, Krallman KA, Collins M, Benoit S, Westover A, Humes HD. Use of extracorporeal immunomodulation in a toddler with hemophagocytic lymphohistiocytosis and multisystem organ failure. Pediatr Nephrol 2023; 38:927-931. [PMID: 35869162 PMCID: PMC9307428 DOI: 10.1007/s00467-022-05692-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Hemophagocytic lymphohistiocytosis (HLH) is a dysregulated immune disorder in children, associated with Epstein-Barr virus (EBV) infection or malignancies. In severe forms, HLH presents with signs and symptoms of hyperinflammation that progress to life-threatening multiorgan failure. Intervention with an extracorporeal immunomodulatory treatment utilizing a selective cytopheretic device (SCD) could be beneficial. The SCD with regional citrate anticoagulation selectively binds the most highly activated circulating neutrophils and monocytes and deactivates them before release to the systemic circulation. Multiple clinical studies, including a multicenter study in children, demonstrate SCD therapy attenuates hyperinflammation, resolves ongoing tissue injury and allows progression to functional organ recovery. We report the first case of SCD therapy in a patient with HLH and multi-organ failure. CASE DIAGNOSIS/TREATMENT A previously healthy 22-month-old toddler presented with fever, abdominal distension, organomegaly, pancytopenia, and signs of hyperinflammation. EBV PCR returned at > 25 million copies. The clinical and laboratory pictures were consistent with systemic EBV-positive T-cell lymphoma with symptoms secondary to HLH. The patient met inclusion criteria for an ongoing study of integration of the SCD with a continuous kidney replacement therapy (CKRT) as part of standard of care. The patient received CKRT-SCD for 4 days with normalization of serum markers of sepsis and inflammation. The patient underwent hematopoietic stem cell transplantation 52 days after presentation and has engrafted with normal kidney function 8 months later. CONCLUSIONS SCD treatment resulted in improvement of poor tissue perfusion reflected by rapid decline in serum lactate levels, lessened systemic capillary leak with discontinuation of vasoactive agents, and repair and recovery of lung and kidney function with extubation and removal of hemodialysis support.
Collapse
Affiliation(s)
- Stuart L Goldstein
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7022, Cincinnati, Ohio, 45229, USA.
| | - Lenar T Yessayan
- University of Michigan Medical Center, University of Michigan Hospital, Ann Arbor, MI, USA
| | - Kelli A Krallman
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7022, Cincinnati, Ohio, 45229, USA
| | - Michaela Collins
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7022, Cincinnati, Ohio, 45229, USA
| | - Stefanie Benoit
- Cincinnati Children's Hospital Medical Center Burnet Campus, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Angela Westover
- University of Michigan Medical Center, University of Michigan Hospital, Ann Arbor, MI, USA
| | - H David Humes
- University of Michigan Medical Center, University of Michigan Hospital, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Malinowski D, Zawadzka M, Safranow K, Droździk M, Pawlik A. SELL and GUCY1A1 Gene Polymorphisms in Patients with Unstable Angina. Biomedicines 2022; 10:biomedicines10102494. [PMID: 36289756 PMCID: PMC9598954 DOI: 10.3390/biomedicines10102494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 12/04/2022] Open
Abstract
Acute ischaemia is mostly caused by the rupture of an unstable atherosclerotic plaque in a coronary artery, resulting in platelet accumulation and thrombus formation, which closes the lumen of the coronary vessel. Many different factors can cause atherosclerotic plaques to occlude the lumen of a coronary artery, including factors that increase vascular inflammation and blood platelet aggregation, as well as genetic factors. L-selectin is an adhesion molecule encoded by the human SELL gene, playing an important role in leukocyte adhesion to the endothelium and the development of inflammation. Guanylate cyclase 1 soluble subunit alpha 1 (GUCY1A1) is a gene that affects vasoreactivity and platelet function, thereby influencing thrombotic processes and the risk of developing thrombotic lesions in the coronary vessels. In SELL and GUCY1A1 genes, several polymorphisms have been detected, which may affect gene expression. The aim of our study was to assess the association between the SELL rs2205849 and rs2229569 and GUCY1A1 rs7692387 polymorphisms with the risk of acute coronary syndromes in the form of unstable angina pectoris, and the association between these polymorphisms and selected clinical parameters affecting the risk of developing ischemic heart disease. The study included 232 patients with unstable angina. The diagnosis of unstable angina was achieved by a typical clinical presentation and confirmation of significant coronary artery lumen stenosis (>70%) during coronary angiography. There were no statistically significant differences in GUCY1A1 rs7692387 and SELL rs2205849 and rs2229569 polymorphism distribution between the total study and the control groups. However, when only analysing patients over 55 years of age, we found a decreased frequency of the GUCY1A1 rs7692387AA genotype (AA vs. GA + GG, OR: 0.07; 95% CI: 0.01−0.78) and an increased frequency of the SELL rs2205849 CC genotype (CC vs. TC + TT p = 0.022) and SELL rs2229569 AA genotype (AA vs. GA + GG p = 0.022) in patients with unstable angina. Our results suggest that the SELL rs2205849 and rs2229569 and GUCY1A1 rs7692387 polymorphisms are not risk factors for unstable angina in the Polish population. The GUCY1A1 rs7692387 polymorphism may increase the risk of unstable angina in patients younger than 55 years, while the SELL polymorphisms rs2205849 and rs2229569 may increase the risk of unstable angina in patients older than 55 years in the Polish population.
Collapse
Affiliation(s)
- Damian Malinowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Magda Zawadzka
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
12
|
Recombinant Klotho Protein Ameliorates Myocardial Ischemia/Reperfusion Injury by Attenuating Sterile Inflammation. Biomedicines 2022; 10:biomedicines10040894. [PMID: 35453645 PMCID: PMC9032004 DOI: 10.3390/biomedicines10040894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Currently, no effective therapy and potential target have been elucidated for preventing myocardial ischemia and reperfusion injury (I/R). We hypothesized that the administration of recombinant klotho (rKL) protein could attenuate the sterile inflammation in peri-infarct regions by inhibiting the extracellular release of high mobility group box-1 (HMGB1). This hypothesis was examined using a rat coronary artery ligation model. Rats were divided into sham, sham+ rKL, I/R, and I/R+ rKL groups (n = 5/group). Administration of rKL protein reduced infarct volume and attenuated extracellular release of HMGB1 from peri-infarct tissue after myocardial I/R injury. The administration of rKL protein inhibited the expression of pro-inflammatory cytokines in the peri-infarct regions and significantly attenuated apoptosis and production of intracellular reactive oxygen species by myocardial I/R injury. Klotho treatment significantly reduced the increase in the levels of circulating HMGB1 in blood at 4 h after myocardial ischemia. rKL regulated the levels of inflammation-related proteins. This is the first study to suggest that exogenous administration of rKL exerts myocardial protection effects after I/R injury and provides new mechanistic insights into rKL that can provide the theoretical basis for clinical application of new adjunctive modality for critical care of acute myocardial infarction.
Collapse
|
13
|
Cappenberg A, Kardell M, Zarbock A. Selectin-Mediated Signaling-Shedding Light on the Regulation of Integrin Activity in Neutrophils. Cells 2022; 11:cells11081310. [PMID: 35455989 PMCID: PMC9025114 DOI: 10.3390/cells11081310] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
As a consequence of tissue injury or infection, neutrophils are recruited in a stepwise recruitment process from the bloodstream into the surrounding tissue. Selectins are a family of adhesion molecules comprised of L-, E-, and P-selectin. Differences in expression patterns, protein structure, and ligand binding characteristics mediate distinct functions of each selectin. Interactions of selectins and their counter-receptors mediate the first contact of neutrophils with the endothelium, as well as subsequent neutrophil rolling along the endothelial surface. For efficient neutrophil recruitment, activation of β2-integrins on the cell surface is essential. Integrin activation can be elicited via selectin- as well as chemokine-mediated inside-out signaling resulting in integrin conformational changes and clustering. Dysregulation of selectin-induced integrin activation on neutrophils is involved in the development of severe pathological disease conditions including leukocyte adhesion deficiency (LAD) syndromes in humans. Here, we review molecular mechanisms involved in selectin-mediated signaling pathways in neutrophils and their impact on integrin activation, neutrophil recruitment, and inflammatory diseases.
Collapse
|
14
|
Kraus RF, Gruber MA. Neutrophils-From Bone Marrow to First-Line Defense of the Innate Immune System. Front Immunol 2022; 12:767175. [PMID: 35003081 PMCID: PMC8732951 DOI: 10.3389/fimmu.2021.767175] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils (polymorphonuclear cells; PMNs) form a first line of defense against pathogens and are therefore an important component of the innate immune response. As a result of poorly controlled activation, however, PMNs can also mediate tissue damage in numerous diseases, often by increasing tissue inflammation and injury. According to current knowledge, PMNs are not only part of the pathogenesis of infectious and autoimmune diseases but also of conditions with disturbed tissue homeostasis such as trauma and shock. Scientific advances in the past two decades have changed the role of neutrophils from that of solely immune defense cells to cells that are responsible for the general integrity of the body, even in the absence of pathogens. To better understand PMN function in the human organism, our review outlines the role of PMNs within the innate immune system. This review provides an overview of the migration of PMNs from the vascular compartment to the target tissue as well as their chemotactic processes and illuminates crucial neutrophil immune properties at the site of the lesion. The review is focused on the formation of chemotactic gradients in interaction with the extracellular matrix (ECM) and the influence of the ECM on PMN function. In addition, our review summarizes current knowledge about the phenomenon of bidirectional and reverse PMN migration, neutrophil microtubules, and the microtubule organizing center in PMN migration. As a conclusive feature, we review and discuss new findings about neutrophil behavior in cancer environment and tumor tissue.
Collapse
Affiliation(s)
- Richard Felix Kraus
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | | |
Collapse
|
15
|
Ji P, Yang Z, Li H, Wei M, Yang G, Xing H, Li Q. Smart exosomes with lymph node homing and immune-amplifying capacities for enhanced immunotherapy of metastatic breast cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:987-996. [PMID: 34760340 PMCID: PMC8560825 DOI: 10.1016/j.omtn.2021.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/09/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023]
Abstract
Tumor-draining lymph nodes (TDLNs) are the primary sites to initiate immune responses against cancer, as well as the origin of metastasis for most breast cancer cases. Reverting the immunosuppression microenvironment in TDLNs is critical to improving the outcome of the malignancy, though still a big technical challenge. In this study, a type of smart exosomes was developed in which the exosome surface was functionally engineered with CD62L (L-selectin, a gene for lymphocyte homing to lymph nodes) and OX40L (CD134L, a gene for effector T cell expansion and regulatory T cell [Treg] inhibition) by forced expression of the genes in the donor cells. Compared with control exosomes, the smart exosomes displayed strong TDLN homing capacity in the 4T1 syngeneic mouse model. Moreover, injection of the smart exosomes activated effector T cells and inhibited Treg induction, thereby amplifying the antitumor immune response and inhibiting tumor development. Together, the engineered smart exosomes provide a novel nanoplatform for TDLN-targeted delivery and cancer immunotherapy.
Collapse
Affiliation(s)
- Panpan Ji
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Zheng Yang
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hua Li
- Shaanxi Provincial Center for Disease Control and Prevention, Xi’an, Shaanxi 710054, China
| | - Mengying Wei
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, No. 169 Changlexi Road, Xi’an, Shaanxi 710032, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, No. 169 Changlexi Road, Xi’an, Shaanxi 710032, China
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, NO. 4 Tiantanxi Road, Beijing 100050, China
| | - Qiuyun Li
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| |
Collapse
|
16
|
Demaria MC, Yeung L, Peeters R, Wee JL, Mihaljcic M, Jones EL, Nasa Z, Alderuccio F, Hall P, Smith BC, Binger KJ, Hammerling G, Kwok HF, Newman A, Ager A, van Spriel A, Hickey MJ, Wright MD. Tetraspanin CD53 Promotes Lymphocyte Recirculation by Stabilizing L-Selectin Surface Expression. iScience 2020; 23:101104. [PMID: 32428859 PMCID: PMC7232089 DOI: 10.1016/j.isci.2020.101104] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/14/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
Tetraspanins regulate key processes in immune cells; however, the function of the leukocyte-restricted tetraspanin CD53 is unknown. Here we show that CD53 is essential for lymphocyte recirculation. Lymph nodes of Cd53-/- mice were smaller than those of wild-type mice due to a marked reduction in B cells and a 50% decrease in T cells. This reduced cellularity reflected an inability of Cd53-/- B and T cells to efficiently home to lymph nodes, due to the near absence of L-selectin from Cd53-/- B cells and reduced stability of L-selectin on Cd53-/- T cells. Further analyses, including on human lymphocytes, showed that CD53 stabilizes L-selectin surface expression and may restrain L-selectin shedding via both ADAM17-dependent and ADAM17-independent mechanisms. The disruption in lymphocyte recirculation in Cd53-/- mice led to impaired immune responses dependent on antigen delivery to lymph nodes. Together these findings demonstrate an essential role for CD53 in lymphocyte trafficking and immunity.
Collapse
Affiliation(s)
- Maria C Demaria
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia
| | - Louisa Yeung
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Rens Peeters
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Janet L Wee
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Masa Mihaljcic
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia
| | - Eleanor L Jones
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia
| | - Zeyad Nasa
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia
| | - Frank Alderuccio
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia
| | - Pamela Hall
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Brodie C Smith
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Katrina J Binger
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Gunther Hammerling
- Molecular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Andrew Newman
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ann Ager
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Annemiek van Spriel
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Mark D Wright
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia.
| |
Collapse
|
17
|
Drescher HK, Schippers A, Rosenhain S, Gremse F, Bongiovanni L, de Bruin A, Eswaran S, Gallage SU, Pfister D, Szydlowska M, Heikenwalder M, Weiskirchen S, Wagner N, Trautwein C, Weiskirchen R, Kroy DC. L-Selectin/CD62L is a Key Driver of Non-Alcoholic Steatohepatitis in Mice and Men. Cells 2020; 9:cells9051106. [PMID: 32365632 PMCID: PMC7290433 DOI: 10.3390/cells9051106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
CD62L (L-Selectin) dependent lymphocyte infiltration is known to induce inflammatory bowel disease (IBD), while its function in the liver, especially in non-alcoholic steatohepatitis (NASH), remains unclear. We here investigated the functional role of CD62L in NASH in humans as well as in two mouse models of steatohepatitis. Hepatic expression of a soluble form of CD62L (sCD62L) was measured in patients with steatosis and NASH. Furthermore, CD62L−/− mice were fed with a methionine and choline deficient (MCD) diet for 4 weeks or with a high fat diet (HFD) for 24 weeks. Patients with NASH displayed increased serum levels of sCD62L. Hepatic CD62L expression was higher in patients with steatosis and increased dramatically in NASH patients. Interestingly, compared to wild type (WT) mice, MCD and HFD-treated CD62L−/− mice were protected from diet-induced steatohepatitis. This was reflected by less fat accumulation in hepatocytes and a dampened manifestation of the metabolic syndrome with an improved insulin resistance and decreased cholesterol and triglyceride levels. Consistent with ameliorated disease, CD62L−/− animals exhibited an enhanced hepatic infiltration of Treg cells and a strong activation of an anti-oxidative stress response. Those changes finally resulted in less fibrosis in CD62L−/− mice. Additionally, this effect could be reproduced in a therapeutic setting by administrating an anti-CD62L blocking antibody. CD62L expression in humans and mice correlates with disease activity of steatohepatitis. CD62L knockout and anti-CD62L-treated mice are protected from diet-induced steatohepatitis suggesting that CD62L is a promising target for therapeutic interventions in NASH.
Collapse
Affiliation(s)
- Hannah K. Drescher
- Department of Internal Medicine III, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (C.T.); (D.C.K.)
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Correspondence:
| | - Angela Schippers
- Department of Pediatrics, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (A.S.); (S.E.); (N.W.)
| | - Stefanie Rosenhain
- Institute for Experimental Molecular Imaging, University Hospital, RWTH Aachen University, 52074 Aachen, Germany; (S.R.); (F.G.)
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, University Hospital, RWTH Aachen University, 52074 Aachen, Germany; (S.R.); (F.G.)
| | - Laura Bongiovanni
- Dutch Molecular Pathology Centre, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3508 Utrecht, The Netherlands; (L.B.); (A.d.B.)
| | - Alain de Bruin
- Dutch Molecular Pathology Centre, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3508 Utrecht, The Netherlands; (L.B.); (A.d.B.)
| | - Sreepradha Eswaran
- Department of Pediatrics, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (A.S.); (S.E.); (N.W.)
| | - Suchira U. Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany; (S.U.G.); (D.P.); (M.S.); (M.H.)
| | - Dominik Pfister
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany; (S.U.G.); (D.P.); (M.S.); (M.H.)
| | - Marta Szydlowska
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany; (S.U.G.); (D.P.); (M.S.); (M.H.)
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany; (S.U.G.); (D.P.); (M.S.); (M.H.)
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen University, 52074 Aachen, Germany; (S.W.); (R.W.)
| | - Norbert Wagner
- Department of Pediatrics, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (A.S.); (S.E.); (N.W.)
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (C.T.); (D.C.K.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen University, 52074 Aachen, Germany; (S.W.); (R.W.)
| | - Daniela C. Kroy
- Department of Internal Medicine III, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (C.T.); (D.C.K.)
| |
Collapse
|
18
|
Newe A, Rzeniewicz K, König M, Schroer CFE, Joachim J, Rey-Gallardo A, Marrink SJ, Deka J, Parsons M, Ivetic A. Serine Phosphorylation of L-Selectin Regulates ERM Binding, Clustering, and Monocyte Protrusion in Transendothelial Migration. Front Immunol 2019; 10:2227. [PMID: 31608057 PMCID: PMC6774396 DOI: 10.3389/fimmu.2019.02227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
The migration of circulating leukocytes toward damaged tissue is absolutely fundamental to the inflammatory response, and transendothelial migration (TEM) describes the first cellular barrier that is breached in this process. Human CD14+ inflammatory monocytes express L-selectin, bestowing a non-canonical role in invasion during TEM. In vivo evidence supports a role for L-selectin in regulating TEM and chemotaxis, but the intracellular mechanism is poorly understood. The ezrin-radixin-moesin (ERM) proteins anchor transmembrane proteins to the cortical actin-based cytoskeleton and additionally act as signaling adaptors. During TEM, the L-selectin tail within transmigrating pseudopods interacts first with ezrin to transduce signals for protrusion, followed by moesin to drive ectodomain shedding of L-selectin to limit protrusion. Collectively, interaction of L-selectin with ezrin and moesin fine-tunes monocyte protrusive behavior in TEM. Using FLIM/FRET approaches, we show that ERM binding is absolutely required for outside-in L-selectin clustering. The cytoplasmic tail of human L-selectin contains two serine (S) residues at positions 364 and 367, and here we show that they play divergent roles in regulating ERM binding. Phospho-S364 blocks direct interaction with ERM, whereas molecular modeling suggests phospho-S367 likely drives desorption of the L-selectin tail from the inner leaflet of the plasma membrane to potentiate ERM binding. Serine-to-alanine mutagenesis of S367, but not S364, significantly reduced monocyte protrusive behavior in TEM under flow conditions. Our data propose a model whereby L-selectin tail desorption from the inner leaflet of the plasma membrane and ERM binding are two separable steps that collectively regulate protrusive behavior in TEM.
Collapse
Affiliation(s)
- Abigail Newe
- BHF Centre of Research Excellence, James Black Centre, King's College London, London, United Kingdom
| | - Karolina Rzeniewicz
- BHF Centre of Research Excellence, James Black Centre, King's College London, London, United Kingdom
| | - Melanie König
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, Netherlands
| | - Carsten F E Schroer
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, Netherlands
| | - Justin Joachim
- BHF Centre of Research Excellence, James Black Centre, King's College London, London, United Kingdom
| | - Angela Rey-Gallardo
- BHF Centre of Research Excellence, James Black Centre, King's College London, London, United Kingdom
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, Netherlands
| | - Jürgen Deka
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Aleksandar Ivetic
- BHF Centre of Research Excellence, James Black Centre, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Abstract
The C-type lectins are a superfamily of proteins that recognize a broad repertoire of ligands and that regulate a diverse range of physiological functions. Most research attention has focused on the ability of C-type lectins to function in innate and adaptive antimicrobial immune responses, but these proteins are increasingly being recognized to have a major role in autoimmune diseases and to contribute to many other aspects of multicellular existence. Defects in these molecules lead to developmental and physiological abnormalities, as well as altered susceptibility to infectious and non-infectious diseases. In this Review, we present an overview of the roles of C-type lectins in immunity and homeostasis, with an emphasis on the most exciting recent discoveries.
Collapse
|
20
|
Ivetic A, Hoskins Green HL, Hart SJ. L-selectin: A Major Regulator of Leukocyte Adhesion, Migration and Signaling. Front Immunol 2019; 10:1068. [PMID: 31139190 PMCID: PMC6527602 DOI: 10.3389/fimmu.2019.01068] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
L-selectin (CD62L) is a type-I transmembrane glycoprotein and cell adhesion molecule that is expressed on most circulating leukocytes. Since its identification in 1983, L-selectin has been extensively characterized as a tethering/rolling receptor. There is now mounting evidence in the literature to suggest that L-selectin plays a role in regulating monocyte protrusion during transendothelial migration (TEM). The N-terminal calcium-dependent (C-type) lectin domain of L-selectin interacts with numerous glycans, including sialyl Lewis X (sLex) for tethering/rolling and proteoglycans for TEM. Although the signals downstream of L-selectin-dependent adhesion are poorly understood, they will invariably involve the short 17 amino acid cytoplasmic tail. In this review we will detail the expression of L-selectin in different immune cell subsets, and its influence on cell behavior. We will list some of the diverse glycans known to support L-selectin-dependent adhesion, within luminal and abluminal regions of the vessel wall. We will describe how each domain within L-selectin contributes to adhesion, migration and signal transduction. A significant focus on the L-selectin cytoplasmic tail and its proposed contribution to signaling via the ezrin-radixin-moesin (ERM) family of proteins will be outlined. Finally, we will discuss how ectodomain shedding of L-selectin during monocyte TEM is essential for the establishment of front-back cell polarity, bestowing emigrated cells the capacity to chemotax toward sites of damage.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| | - Hannah Louise Hoskins Green
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| | - Samuel James Hart
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| |
Collapse
|
21
|
Liu G, Zhang F, Wang R, London SD, London L. Salivary gland immunization via Wharton's duct activates differential T-cell responses within the salivary gland immune system. FASEB J 2019; 33:6011-6022. [PMID: 30817215 PMCID: PMC6463922 DOI: 10.1096/fj.201801993r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Abstract
Salivary glands are a major component of the mucosal immune system that confer adaptive immunity to mucosal pathogens. As previously demonstrated, immunization of the submandibular gland with tissue culture-derived murine cytomegalovirus (tcMCMV) or replication-deficient adenoviruses expressing individual murine cytomegalovirus (MCMV) genes protected mice against a lethal MCMV challenge. Here, we report that salivary gland inoculation of BALB/cByJ mice with tcMCMV or recombinant adenoviruses differentially activates T helper (Th)1, -2, and -17 cells in the salivary glands vs. the associated lymph nodes. After inoculation with tcMCMV, lymphocytes from the submandibular gland preferentially express the transcription factor T-cell-specific T-box transcription factor (T-bet), which controls the expression of the hallmark Th1 cytokine, IFN-γ. Lymphocytes from the periglandular lymph nodes (PGLNs) express both T-bet and GATA-binding protein 3 (GATA3), which promotes the secretion of IL-4, -5, and -10 from Th2 cells. In contrast, after inoculation with replication-deficient adenoviruses, lymphocytes from the submandibular gland express T-bet, GATA3, and RAR-related orphan receptor γ, thymus-specific isoform (RORγt) (required for differentiation of Th17 cells) and forkhead box P3 (Foxp3) (required for the differentiation of regulatory T cells). Lymphocytes from the PGLNs were not activated. The differential induction of Th responses in the salivary gland vs. the PGLNs after inoculation with attenuated virus vs. a nominal protein antigen supports the use of the salivary as an alternative mucosal route for administering vaccines.-Liu, G., Zhang, F., Wang, R., London, S. D., London, L. Salivary gland immunization via Wharton's duct activates differential T-cell responses within the salivary gland immune system.
Collapse
Affiliation(s)
- Guangliang Liu
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Fangfang Zhang
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Ruixue Wang
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Steven D. London
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Lucille London
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
22
|
The E3 ubiquitin ligase Itch is required for B-cell development. Sci Rep 2019; 9:421. [PMID: 30674954 PMCID: PMC6344599 DOI: 10.1038/s41598-018-36844-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/12/2018] [Indexed: 11/20/2022] Open
Abstract
The E3 ubiquitin ligase Itch interacts with Foxo1 and targets it for ubiquitination and degradation during follicular helper T-cell differentiation, whereas the transcription factor Foxo1 plays a critical role in B-cell development. Thus, we proposed that Itch mediates B-cell differentiation. Unexpectedly, we found that Itch deficiency downregulated Foxo1 expression in B cells. Itch cKO (conditional knock out in B cells) mice had fewer pro-B cells in the bone marrow, more small resting IgM−IgD−B cells in the periphery, and lower B-cell numbers in the lymph nodes through decreased Foxo1-mediated IL-7Rα, RAG, and CD62L expression, respectively. Importantly, Itch deficiency reduced Foxo1 mRNA expression by up-regulating JunB-mediated miR-182. Finally, Foxo1 negatively regulated JunB expression by up-regulating Itch. Thus, we have identified a novel regulatory axis between Itch and Foxo1 in B cells, suggesting that Itch is essential for B-cell development.
Collapse
|
23
|
Patten DA, Shetty S. More Than Just a Removal Service: Scavenger Receptors in Leukocyte Trafficking. Front Immunol 2018; 9:2904. [PMID: 30631321 PMCID: PMC6315190 DOI: 10.3389/fimmu.2018.02904] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Scavenger receptors are a highly diverse superfamily of proteins which are grouped by their inherent ability to bind and internalize a wide array of structurally diverse ligands which can be either endogenous or exogenous in nature. Consequently, scavenger receptors are known to play important roles in host homeostasis, with common endogenous ligands including apoptotic cells, and modified low density lipoproteins (LDLs); additionally, scavenger receptors are key regulators of inflammatory diseases, such as atherosclerosis. Also, as a consequence of their affinity for a wide range of microbial products, their role in innate immunity is also being increasingly studied. However, in this review, a secondary function of a number of endothelial-expressed scavenger receptors is discussed. There is increasing evidence that some endothelial-expressed scavenger receptors are able to directly bind leukocyte-expressed ligands and subsequently act as adhesion molecules in the trafficking of leukocytes in lymphatic and vascular tissues. Here, we cover the current literature on this alternative role for endothelial-expressed scavenger receptors and also speculate on their therapeutic potential.
Collapse
Affiliation(s)
- Daniel A Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
24
|
Borsig L. Selectins in cancer immunity. Glycobiology 2018; 28:648-655. [PMID: 29272415 DOI: 10.1093/glycob/cwx105] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
Selectins are vascular adhesion molecules that mediate physiological responses such as inflammation, immunity and hemostasis. During cancer progression, selectins promote various steps enabling the interactions between tumor cells and the blood constituents, including platelets, endothelial cells and leukocytes. Selectins are carbohydrate-binding molecules that bind to sialylated, fucosylated glycan structures. The increased selectin ligand expression on tumor cells correlates with enhanced metastasis and poor prognosis for cancer patients. While, many studies focused on the role of selectin as a mediator of tumor cell adhesion and extravasation during metastasis, there is evidence for selectins to activate signaling cascade that regulates immune responses within a tumor microenvironment. L-Selectin binding induces activation of leukocytes, which can be further modulated by selectin-mediated interactions with platelets and endothelial cells. Selectin ligand on leukocytes, PSGL-1, triggers intracellular signaling in leukocytes that are induced through platelet's P-selectin or endothelial E-selectin binding. In this review, I summarize the evidence for selectin-induced immune modulation in cancer progression that represents a possible target for controlling tumor immunity.
Collapse
Affiliation(s)
- Lubor Borsig
- Institute of Physiology, University of Zurich and Zurich Center for Integrative Human Physiology, Winterthurerstrasse 190, Zurich, Switzerland
| |
Collapse
|
25
|
Ferraro M, Silberreis K, Mohammadifar E, Neumann F, Dernedde J, Haag R. Biodegradable Polyglycerol Sulfates Exhibit Promising Features for Anti-inflammatory Applications. Biomacromolecules 2018; 19:4524-4533. [DOI: 10.1021/acs.biomac.8b01100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Magda Ferraro
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Kim Silberreis
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, and Berlin Institute of Health, CVK Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ehsan Mohammadifar
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Falko Neumann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, and Berlin Institute of Health, CVK Augustenburger Platz 1, 13353 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
26
|
Yu L, Zheng Y, Feng Y, Ma F. Role of L-selectin on leukocytes in the binding of sialic acids on sperm surface during the phagocytosis of sperm in female reproductive tract. Med Hypotheses 2018; 120:4-6. [DOI: 10.1016/j.mehy.2018.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/07/2018] [Indexed: 01/06/2023]
|
27
|
Rey-Gallardo A, Tomlins H, Joachim J, Rahman I, Kitscha P, Frudd K, Parsons M, Ivetic A. Sequential binding of ezrin and moesin to L-selectin regulates monocyte protrusive behaviour during transendothelial migration. J Cell Sci 2018; 131:jcs.215541. [PMID: 29777033 PMCID: PMC6051341 DOI: 10.1242/jcs.215541] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/02/2018] [Indexed: 01/21/2023] Open
Abstract
Leukocyte transendothelial migration (TEM) is absolutely fundamental to the inflammatory response, and involves initial pseudopod protrusion and subsequent polarised migration across inflamed endothelium. Ezrin/radixin/moesin (ERM) proteins are expressed in leukocytes and mediate cell shape changes and polarity. The spatio-temporal organisation of ERM proteins with their targets, and their individual contribution to protrusion during TEM, has never been explored. Here, we show that blocking binding of moesin to phosphatidylinositol 4,5-bisphosphate (PIP2) reduces its C-terminal phosphorylation during monocyte TEM, and that on–off cycling of ERM activity is essential for pseudopod protrusion into the subendothelial space. Reactivation of ERM proteins within transmigrated pseudopods re-establishes their binding to targets, such as L-selectin. Knockdown of ezrin, but not moesin, severely impaired the recruitment of monocytes to activated endothelial monolayers under flow, suggesting that this protein plays a unique role in the early recruitment process. Ezrin binds preferentially to L-selectin in resting cells and during early TEM. The moesin–L-selectin interaction increases within transmigrated pseudopods as TEM proceeds, facilitating localised L-selectin ectodomain shedding. In contrast, a non-cleavable L-selectin mutant binds selectively to ezrin, driving multi-pseudopodial extensions. Taken together, these results show that ezrin and moesin play mutually exclusive roles in modulating L-selectin signalling and shedding to control protrusion dynamics and polarity during monocyte TEM. Summary: Ezrin and moesin co-ordinate binding to L-selectin in monocytes to, respectively, regulate pseudopod protrusion and ectodomain shedding during transendothelial migration.
Collapse
Affiliation(s)
- Angela Rey-Gallardo
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Hannah Tomlins
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Justin Joachim
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Izajur Rahman
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Phoebe Kitscha
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Karen Frudd
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Maddy Parsons
- School of Basic & Medical Biosciences, Randall Division of Cell & Molecular Biophysics, New Hunt's House, London, SE1 1UL, UK
| | - Aleksandar Ivetic
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| |
Collapse
|
28
|
Ivetic A. A head-to-tail view of L-selectin and its impact on neutrophil behaviour. Cell Tissue Res 2018; 371:437-453. [PMID: 29353325 PMCID: PMC5820395 DOI: 10.1007/s00441-017-2774-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
L-selectin is a type I transmembrane cell adhesion molecule expressed on most circulating leukocytes, including neutrophils. Engagement of L-selectin with endothelial-derived ligands initiates neutrophil tethering and rolling behaviour along luminal walls of post-capillary venules, constituting the first step of the multi-step adhesion cascade. There is a large body of evidence to suggest that signalling downstream of L-selectin can influence neutrophil behaviour: adhesion, migration and priming. This review will cover aspects of L-selectin form and function and introduce the “triad of L-selectin regulation”, highlighting the inextricable links between adhesion, signalling and ectodomain shedding and also highlighting the cytosolic proteins that interconnect them. Recent advances in how L-selectin impacts priming, transendothelial migration (TEM) and cell polarity will also be discussed.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- BHF Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, James Black Centre 125, Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
29
|
Cepika AM, Banchereau R, Segura E, Ohouo M, Cantarel B, Goller K, Cantrell V, Ruchaud E, Gatewood E, Nguyen P, Gu J, Anguiano E, Zurawski S, Baisch JM, Punaro M, Baldwin N, Obermoser G, Palucka K, Banchereau J, Amigorena S, Pascual V. A multidimensional blood stimulation assay reveals immune alterations underlying systemic juvenile idiopathic arthritis. J Exp Med 2017; 214:3449-3466. [PMID: 28935693 PMCID: PMC5679164 DOI: 10.1084/jem.20170412] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/25/2017] [Accepted: 09/08/2017] [Indexed: 12/26/2022] Open
Abstract
The etiology of autoinflammation in systemic juvenile idiopathic arthritis is unclear. Cepika et al. use integrated analysis of multidimensional blood stimulation data, applied to patients while off treatment and in complete remission, to reveal underlying cellular and molecular mechanisms that might predispose to disease. The etiology of sporadic human chronic inflammatory diseases remains mostly unknown. To fill this gap, we developed a strategy that simultaneously integrates blood leukocyte responses to innate stimuli at the transcriptional, cellular, and secreted protein levels. When applied to systemic juvenile idiopathic arthritis (sJIA), an autoinflammatory disease of unknown etiology, this approach identified gene sets associated with specific cytokine environments and activated leukocyte subsets. During disease remission and off treatment, sJIA patients displayed dysregulated responses to TLR4, TLR8, and TLR7 stimulation. Isolated sJIA monocytes underexpressed the IL-1 inhibitor aryl hydrocarbon receptor (AHR) at baseline and accumulated higher levels of intracellular IL-1β after stimulation. Supporting the demonstration that AHR down-regulation skews monocytes toward macrophage differentiation, sJIA monocytes differentiated in vitro toward macrophages, away from the dendritic cell phenotype. This might contribute to the increased incidence of macrophage activation syndrome in these patients. Integrated analysis of high-dimensional data can thus unravel immune alterations predisposing to complex inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Elodie Segura
- Institut National de la Santé et de la Recherche Medicale U932, Institut Curie, PSL Research University, Paris, France
| | - Marina Ohouo
- Baylor Institute for Immunology Research, Dallas, TX
| | | | | | | | - Emily Ruchaud
- Baylor Institute for Immunology Research, Dallas, TX
| | | | - Phuong Nguyen
- Baylor Institute for Immunology Research, Dallas, TX
| | - Jinghua Gu
- Baylor Institute for Immunology Research, Dallas, TX
| | | | | | | | | | | | | | - Karolina Palucka
- Baylor Institute for Immunology Research, Dallas, TX.,The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | | | - Sebastian Amigorena
- Institut National de la Santé et de la Recherche Medicale U932, Institut Curie, PSL Research University, Paris, France
| | - Virginia Pascual
- Baylor Institute for Immunology Research, Dallas, TX .,University of Texas Southwestern Medical Center, Dallas, TX.,Texas Scottish Rite Hospital for Children, Dallas, TX
| |
Collapse
|
30
|
Wu Z, Yu Y, Alugongo G, Xiao J, Li J, Li Y, Wang Y, Li S, Cao Z. Short communication: Effects of an immunomodulatory feed additive on phagocytic capacity of neutrophils and relative gene expression in circulating white blood cells of transition Holstein cows. J Dairy Sci 2017; 100:7549-7555. [DOI: 10.3168/jds.2016-12528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/24/2017] [Indexed: 11/19/2022]
|
31
|
Aldasoro Arguinano AA, Dadé S, Stathopoulou M, Derive M, Coumba Ndiaye N, Xie T, Masson C, Gibot S, Visvikis-Siest S. TREM-1 SNP rs2234246 regulates TREM-1 protein and mRNA levels and is associated with plasma levels of L-selectin. PLoS One 2017; 12:e0182226. [PMID: 28771614 PMCID: PMC5542552 DOI: 10.1371/journal.pone.0182226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/15/2017] [Indexed: 01/01/2023] Open
Abstract
High levels of TREM-1 are associated with cardiovascular and inflammatory diseases risks and the most recent studies have showed that TREM-1 deletion or blockade is associated with up to 60% reduction of the development of atherosclerosis. So far, it is unknown whether the levels of TREM-1 protein are genetically regulated. Moreover, TREM family receptors have been suggested to regulate the cellular adhesion process. The goal of this study was to investigate whether polymorphisms within TREM-1 are regulating the variants of serum TREM-1 levels and the expression levels of their mRNA. Furthermore, we aimed to point out associations between polymorphisms on TREM-1 and blood levels of selectins. Among the 10 SNPs studied, the minor allele T of rs2234246, was associated with increased sTREM-1 in the discovery population (p-value = 0.003), explaining 33% of its variance, and with increased levels of mRNA (p-value = 0.007). The same allele was associated with increased soluble L-selectin levels (p-value = 0.011). The higher levels of sTREM-1 and L-selectin were confirmed in the replication population (p-value = 0.0007 and p-value = 0.018 respectively). We demonstrated for the first time one SNP on TREM-1, affecting its expression levels. These novel results, support the hypothesis that TREM-1 affects monocytes extravasation and accumulation processes leading to atherogenesis and atherosclerotic plaque progression, possibly through increased inflammation and subsequent higher expression of sL-selectin.
Collapse
Affiliation(s)
- Alex-Ander Aldasoro Arguinano
- UMR INSERM U1122; IGE-PCV ‘Interactions Gène-Environnement en Physiopathologie Cardiovasculaire’, Faculté de Pharmacie–Université de Lorraine, Nancy, France
| | - Sébastien Dadé
- UMR INSERM U1122; IGE-PCV ‘Interactions Gène-Environnement en Physiopathologie Cardiovasculaire’, Faculté de Pharmacie–Université de Lorraine, Nancy, France
| | - Maria Stathopoulou
- UMR INSERM U1122; IGE-PCV ‘Interactions Gène-Environnement en Physiopathologie Cardiovasculaire’, Faculté de Pharmacie–Université de Lorraine, Nancy, France
| | | | - Ndeye Coumba Ndiaye
- UMR INSERM U1122; IGE-PCV ‘Interactions Gène-Environnement en Physiopathologie Cardiovasculaire’, Faculté de Pharmacie–Université de Lorraine, Nancy, France
| | - Ting Xie
- UMR INSERM U1122; IGE-PCV ‘Interactions Gène-Environnement en Physiopathologie Cardiovasculaire’, Faculté de Pharmacie–Université de Lorraine, Nancy, France
| | - Christine Masson
- UMR INSERM U1122; IGE-PCV ‘Interactions Gène-Environnement en Physiopathologie Cardiovasculaire’, Faculté de Pharmacie–Université de Lorraine, Nancy, France
| | | | - Sophie Visvikis-Siest
- UMR INSERM U1122; IGE-PCV ‘Interactions Gène-Environnement en Physiopathologie Cardiovasculaire’, Faculté de Pharmacie–Université de Lorraine, Nancy, France
- Department of Internal Medicine and Geriatrics, CHU Technopôle Nancy-Brabois, Rue du Morvan, Vandoeuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
32
|
Wedepohl S, Dernedde J, Vahedi-Faridi A, Tauber R, Saenger W, Bulut H. Reducing Macro- and Microheterogeneity of N-Glycans Enables the Crystal Structure of the Lectin and EGF-Like Domains of Human L-Selectin To Be Solved at 1.9 Å Resolution. Chembiochem 2017; 18:1338-1345. [PMID: 28489325 DOI: 10.1002/cbic.201700220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 01/07/2023]
Abstract
L-Selectin, a cell-adhesion receptor on the surface of most leukocytes, contains seven N-glycosylation sites. In order to obtain the crystal structure of human L-selectin, we expressed a shortened version of L-selectin comprising the C-type lectin and EGF-like domains (termed LE) and systematically analysed mutations of the three glycosylation sites (Asn22, Asn66 and Asn139) in order to reduce macroheterogeneity. After we further removed microheterogeneity, we obtained crystals that diffracted X-rays up to 1.9 Å from a variant (LE010) with exchanges N22Q and N139Q and one GlcNAc2 Man5 N-glycan chain attached to Asn66. Crystal-structure analysis showed that the terminal mannose of GlcNAc2 Man5 of one LE010 molecule was coordinated to Ca2+ in the binding site of a symmetry-related LE010. The orientation of the lectin and EGF-like domain was similar to the described "bent" conformation of E- and P-selectins. The Ca2+ -binding site reflects the binding mode seen in E- and P-selectin structures co-crystallised with ligands.
Collapse
Affiliation(s)
- Stefanie Wedepohl
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité Universitätsmedizin Berlin, CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité Universitätsmedizin Berlin, CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ardeschir Vahedi-Faridi
- Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195, Berlin, Germany
| | - Rudolf Tauber
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité Universitätsmedizin Berlin, CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wolfram Saenger
- Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195, Berlin, Germany
| | - Haydar Bulut
- Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195, Berlin, Germany
| |
Collapse
|
33
|
Abstract
Natalizumab is a monoclonal antibody that acts as an α4 integrin antagonist to prevent leukocyte trafficking into the central nervous system. It is US Food and Drug Administration (FDA) approved for the treatment of relapsing-remitting multiple sclerosis (RRMS). Natalizumab demonstrated high efficacy in Phase III trials by reducing the annualized relapse rate, preventing multiple sclerosis (MS) lesion accumulation on magnetic resonance imaging, and decreasing the probability of sustained progression of disability. The leading safety concern with natalizumab is its association with progressive multifocal leukoencephalopathy (PML), a rare brain infection typically seen only in severely immunocompromised patients caused by reactivation of the John Cunningham virus (JCV). Careful analysis of risk factors for PML in natalizumab-treated MS patients, specifi-cally the presence of anti-JCV antibodies, has led to risk mitigation strategies to improve safety. Additional biomarkers are under investigation to further aid risk stratification. Natalizumab's high efficacy and favorable tolerability profile have led to a broad use by MS physicians, as both first-and second-line treatments. This review discusses the natalizumab efficacy, safety, and tolerability and finishes with pragmatic considerations regarding its use in clinical practice.
Collapse
Affiliation(s)
- Rachel Brandstadter
- Department of Neurology, Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilana Katz Sand
- Department of Neurology, Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
34
|
Giraldo DM, Hernandez JC, Urcuqui-Inchima S. HIV-1-derived single-stranded RNA acts as activator of human neutrophils. Immunol Res 2016; 64:1185-1194. [PMID: 27718110 DOI: 10.1007/s12026-016-8876-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neutrophils are key effector cells of the innate immune system and are involved in the host defense against invading pathogens such as viruses. Recently, it was reported that HIV-1-neutrophil interaction triggers neutrophil activation and promotes expression of Toll-like receptors (TLRs). Here, we assessed the role of single-stranded RNA40 (ssRNA40) derived from HIV-1 in neutrophil activation. We observed functional activation of neutrophils in response to HIV-1-derived ssRNA40 based on the expression of TLR7/8, RIG-I, and MDA5, induction of cytokines (IL-6 and TNF-α), and the production of reactive oxygen species (ROS). Additionally, ssRNA40 promoted the expression of CD62L and TNF-α and the production of ROS in the presence of the TLR2 agonist Pam2CSK4. ssRNA40 together with R848 (a TLR7/8 agonist) increased CD11b expression but decreased CD62L expression. Furthermore, decreased IL-6 expression was observed in the presence of the TLR4 agonist LPS. Finally, we found that ssRNA40 promotes RIG-I and MDA5 expression in the presence of the TLR2, TLR4 and TLR7/8 agonists. This study demonstrates a functional response of TLRs in neutrophils challenged with ssRNA40, suggesting that TLRs could be involved in the innate immune response observed during HIV infection, which might be mediated by its genome.
Collapse
Affiliation(s)
- Diana M Giraldo
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia UdeA, calle 70 No. 52-21, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia UdeA, calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
35
|
Rigo-Adrover MDM, Franch À, Castell M, Pérez-Cano FJ. Preclinical Immunomodulation by the Probiotic Bifidobacterium breve M-16V in Early Life. PLoS One 2016; 11:e0166082. [PMID: 27820846 PMCID: PMC5098803 DOI: 10.1371/journal.pone.0166082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/21/2016] [Indexed: 01/16/2023] Open
Abstract
This study aimed to investigate the effect of supplementation with the probiotic Bifidobacterium breve M-16V on the maturation of the intestinal and circulating immune system during suckling. In order to achieve this purpose, neonatal Lewis rats were supplemented with the probiotic strain from the 6th to the 18th day of life. The animals were weighed during the study, and faecal samples were obtained and evaluated daily. On day 19, rats were euthanized and intestinal wash samples, mesenteric lymph node (MLN) cells, splenocytes and intraepithelial lymphocytes (IEL) were obtained. The probiotic supplementation in early life did not modify the growth curve and did not enhance the systemic immune maturation. However, it increased the proportion of cells bearing TLR4 in the MLN and IEL, and enhanced the percentage of the integrin αEβ7+ and CD62L+ cells in the MLN and that of the integrin αEβ7+ cells in the IEL, suggesting an enhancement of the homing process of naïve T lymphocytes to the MLN, and the retention of activated lymphocytes in the intraepithelial compartment. Interestingly, B. breve M-16V enhanced the intestinal IgA synthesis. In conclusion, supplementation with the probiotic strain B. breve M-16V during suckling improves the development of mucosal immunity in early life.
Collapse
Affiliation(s)
- Maria del Mar Rigo-Adrover
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, University of Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Santa Coloma de Gramenet, Barcelona, Spain
| | - Àngels Franch
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, University of Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Santa Coloma de Gramenet, Barcelona, Spain
| | - Margarida Castell
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, University of Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Santa Coloma de Gramenet, Barcelona, Spain
| | - Francisco José Pérez-Cano
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, University of Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Santa Coloma de Gramenet, Barcelona, Spain
| |
Collapse
|
36
|
Monocytic thrombomodulin promotes cell adhesion through interacting with its ligand, Lewis y. Immunol Cell Biol 2016; 95:372-379. [PMID: 27808085 PMCID: PMC5415637 DOI: 10.1038/icb.2016.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022]
Abstract
The leukocyte adhesion cascade involves multiple events that efficiently localize circulating leukocytes into the injured sites to mediate inflammatory responses. From rolling to firm adhesion, the interactions between adhesion molecules have pivotal roles in increasing the avidity of leukocytes to endothelial cells. Thrombomodulin (TM), an essential anticoagulant protein in the vasculature, is also expressed on leukocytes. We previously demonstrated that Lewisy (Ley), a specific ligand of TM, is upregulated in inflamed endothelium and is involved in leukocyte adhesion. The current study aimed to investigate whether leukocyte-expressed TM promotes cell adhesion by interacting with Ley. Using human monocytic THP-1 cells as an in vitro cell model, we showed that TM increases THP-1 cell adhesion to inflamed endothelium as well as to Ley-immobilized surface. When THP-1 adhered to activated endothelium and Ley-immobilized surface, the TM distribution became polarized. Addition of soluble Ley to a suspension of THP-1 cells with TM expression triggered an increase in the level of phosphorylated p38 mitogen-activated protein kinase (MAPK), which enabled THP-1 to adhere firmly to intercellular adhesion molecule (ICAM)-1 by activating β2 integrins. In vivo, macrophage infiltration and neointima formation following arterial ligation-induced vascular injury were higher in wild-type TM (TMflox/flox) than in myeloid-specific TM-deficient (LysMcre/TMflox/flox) mice. Taken together, these results suggest a novel function for TM as an adhesion molecule in monocytes, where it enhances cell adhesion by binding Ley, leading to β2 integrin activation via p38 MAPK.
Collapse
|
37
|
Pasternak Y, Yarden-Bilavsky H, Kodman Y, Zoldan M, Tamary H, Ashkenazi S. Inhaled corticosteroids increase blood neutrophil count by decreasing the expression of neutrophil adhesion molecules Mac-1 and L-selectin. Am J Emerg Med 2016; 34:1977-1981. [PMID: 27498916 DOI: 10.1016/j.ajem.2016.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/02/2016] [Accepted: 07/05/2016] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The objective was to investigate the effect of commonly used inhaled corticosteroids on white blood cell count (WBC) and to examine the mechanisms involved. METHODS This randomized comparative study comprised 60 healthy adults. We measured the effects of budesonide (by face mask inhalation or aerosol inhaler), fluticasone (by inhaler), and saline inhalation (control) on WBC and the differential leukocyte count, especially the absolute neutrophil count (ANC). To elucidate the mechanisms involved, we measured the expression of the adhesion neutrophil ligands Mac-1 (CD11b) and L-selectin (CD62L), and granulocyte colony-stimulating factor serum levels. RESULTS Six hours after a single-dose inhalation of budesonide, mean increases of 23.4% in WBC (95% confidence interval [CI], 11.3-35.4) and 30.1% in ANC (95% CI, 7.2-53.0) were noted. The percentage of neutrophils increased from 54.6% to 58.1% (P< .001). Inhaled fluticasone increased WBC and ANC by 12.6% (95% CI, 1.5-23.7) and 22.7% (95% CI, 6.2-39.2), respectively (P< .01 for both). The absolute lymphocyte and eosinophil counts did not change significantly from baseline. The expression of Mac-1 and L-selectin decreased by 51.0% (P< .01) and 30.9% (P= .02), respectively, following face mask inhalation of budesonide and by 39.8% (P= .01) and 17.4% (P= .17), respectively, following inhalation of fluticasone. No significant changes in granulocyte colony-stimulating factor levels were noted. CONCLUSIONS Glucocorticoid inhalation increases WBC by increasing ANC. Reduced neutrophil adhesion to the endothelial surface, mediated by decreased adhesion molecule expression on neutrophils, is a plausible mechanism. Physicians should be aware of the effect of inhaled corticosteroids on WBC, as it may influence clinical decisions, especially in the emergency department.
Collapse
Affiliation(s)
| | - Havatzelet Yarden-Bilavsky
- Department of Pediatrics A, Schneider Children Medical Center, Israel; Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Yona Kodman
- Division of Hematology Oncology, Schneider Children Medical Center, Israel
| | - Meira Zoldan
- Division of Hematology Oncology, Schneider Children Medical Center, Israel
| | - Hannah Tamary
- Division of Hematology Oncology, Schneider Children Medical Center, Israel; Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Shai Ashkenazi
- Department of Pediatrics A, Schneider Children Medical Center, Israel; Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
38
|
Tuohy JL, Lascelles BDX, Griffith EH, Fogle JE. Association of Canine Osteosarcoma and Monocyte Phenotype and Chemotactic Function. J Vet Intern Med 2016; 30:1167-78. [PMID: 27338235 PMCID: PMC5094498 DOI: 10.1111/jvim.13983] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 02/26/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
Background Monocytes/macrophages are likely key cells in immune modulation in dogs with osteosarcoma (OSA). Increased peripheral monocyte counts are negatively correlated with shorter disease‐free intervals in dogs with OSA. Understanding the monocyte/macrophage's modulatory role in dogs with OSA can direct further studies in immunotherapy development for OSA. Hypothesis/Objectives That OSA evades the immune response by down‐regulating monocyte chemokine receptor expression and migratory function, and suppresses host immune responses. Animals Eighteen dogs with OSA that have not received definitive treatment and 14 healthy age‐matched controls Methods Clinical study—expression of peripheral blood monocyte cell surface receptors, monocyte mRNA expression and cytokine secretion, monocyte chemotaxis, and survival were compared between clinical dogs with OSA and healthy control dogs. Results Cell surface expression of multiple chemokine receptors is significantly down‐regulated in peripheral blood monocytes of dogs with OSA. The percentage expression of CCR2 (median 58%, range 2–94%) and CXCR2 expression (median 54%, range 2–92%) was higher in control dogs compared to dogs with OSA (CCR2 median 29%, range 3–45%, P = 0.0006; CXCR2 median 23%, range 0.2–52%, P = 0.0007). Prostaglandin E2 (PGE2) (OSA, median 347.36 pg/mL, range 103.4–1268.5; control, 136.23 pg/mL, range 69.93–542.6, P = .04) and tumor necrosis factor‐alpha (TNF‐α) (P = .02) levels are increased in OSA monocyte culture supernatants compared to controls. Peripheral blood monocytes of dogs with OSA exhibit decreased chemotactic function when compared to control dogs (OSA, median 1.2 directed to random migration, range 0.8–1.25; control, 1.6, range of 0.9–1.8, P = .018). Conclusions and Clinical Importance Dogs with OSA have decreased monocyte chemokine receptor expression and monocyte chemotaxis, potential mechanisms by which OSA might evade the immune response. Reversal of monocyte dysfunction using immunotherapy could improve survival in dogs with OSA.
Collapse
Affiliation(s)
- J L Tuohy
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - B D X Lascelles
- Comparative Pain Research Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC.,Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC.,Center for Pain Research and Innovation, University of North Carolina School of Dentistry, Chapel Hill, NC
| | - E H Griffith
- Department of Statistics, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC
| | - J E Fogle
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC.,Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
39
|
Timmerman I, Daniel AE, Kroon J, van Buul JD. Leukocytes Crossing the Endothelium: A Matter of Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:281-329. [PMID: 26940521 DOI: 10.1016/bs.ircmb.2015.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leukocytes cross the endothelial vessel wall in a process called transendothelial migration (TEM). The purpose of leukocyte TEM is to clear the causing agents of inflammation in underlying tissues, for example, bacteria and viruses. During TEM, endothelial cells initiate signals that attract and guide leukocytes to sites of tissue damage. Leukocytes react by attaching to these sites and signal their readiness to move back to endothelial cells. Endothelial cells in turn respond by facilitating the passage of leukocytes while retaining overall integrity. In this review, we present recent findings in the field and we have endeavored to synthesize a coherent picture of the intricate interplay between endothelial cells and leukocytes during TEM.
Collapse
Affiliation(s)
- Ilse Timmerman
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Anna E Daniel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Shimada ALB, Cruz WS, Loiola RA, Drewes CC, Dörr F, Figueiredo NG, Pinto E, Farsky SHP. Absorption of PCB126 by upper airways impairs G protein-coupled receptor-mediated immune response. Sci Rep 2015; 5:14917. [PMID: 26449762 PMCID: PMC4598834 DOI: 10.1038/srep14917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/07/2015] [Indexed: 01/02/2023] Open
Abstract
PCB126 is a dioxin-like polychlorinated biphenyl (PCB) environmental pollutant with a significant impact on human health, as it bioaccumulates and causes severe toxicity. PCB126-induced immune toxicity has been described, although the mechanisms have not been fully elucidated. In this study, an in vivo protocol of PCB126 intoxication into male Wistar rats by intranasal route was used, which has not yet been described. The intoxication was characterised by PCB126 accumulation in the lungs and liver, and enhanced aryl hydrocarbon receptor expression in the liver, lungs, kidneys, and adipose tissues. Moreover, an innate immune deficiency was characterised by impairment of adhesion receptors on blood leukocytes and by reduced blood neutrophil locomotion and oxidative burst activation elicited by ex vivo G protein-coupled receptor (GPCR) activation. Specificity of PCB126 actions on the GPCR pathway was shown by normal burst oxidative activation evoked by Toll-like receptor 4 and protein kinase C direct activation. Moreover, in vivo PCB180 intoxication did not alter adhesion receptors on blood leukocytes either blood neutrophil locomotion, and only partially reduced the GPCR-induced burst oxidative activation on neutrophils. Therefore, a novel mechanism of in vivo PCB126 toxicity is described which impairs a pivotal inflammatory pathway to the host defence against infections.
Collapse
Affiliation(s)
- Ana Lúcia B Shimada
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| | - Wesley S Cruz
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| | - Rodrigo A Loiola
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| | - Carine C Drewes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| | - Fabiane Dörr
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| | - Natália G Figueiredo
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| | - Ernani Pinto
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| |
Collapse
|
41
|
Muller WA. The regulation of transendothelial migration: new knowledge and new questions. Cardiovasc Res 2015; 107:310-20. [PMID: 25987544 PMCID: PMC4592322 DOI: 10.1093/cvr/cvv145] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/13/2015] [Accepted: 04/01/2015] [Indexed: 12/14/2022] Open
Abstract
Leucocyte transendothelial migration (TEM) involves a co-operative series of interactions between surface molecules on the leucocyte and cognate counter-ligands on the endothelial cell. These interactions set up a cascade of signalling events inside the endothelial cell that both allow for the junctions to loosen and for membrane to be recruited from the lateral border recycling compartment (LBRC). The LBRC is thought to provide an increased surface area and unligated receptors to the leucocyte to continue the process. The relative importance of the individual adhesion/signalling molecules that promote transmigration may vary depending on the type of leucocyte, the vascular bed, the inflammatory stimulus, and the stage of the inflammatory response. However, the molecular interactions between leucocyte and endothelial cell activate signalling pathways that disengage the adherens and tight junctions and recruit the LBRC to the site of transmigration. With the exception of disengaging the junctions, similar molecules and mechanisms promote transcellular migration as paracellular migration of leucocytes. This review will discuss the molecular interactions and signalling pathways that regulate transmigration, and the common themes that emerge from studying TEM of different leucocyte subsets under different inflammatory conditions. We will also raise some unanswered questions in need of future research.
Collapse
Affiliation(s)
- William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Ward Building 3-140, 303 East Chicago Avenue, Chicago, IL 60611, USA
| |
Collapse
|
42
|
Bazzi S, Modjtahedi H, Mudan S, Akle C, Bahr GM. Analysis of the immunomodulatory properties of two heat-killed mycobacterial preparations in a human whole blood model. Immunobiology 2015; 220:1293-304. [PMID: 26253276 DOI: 10.1016/j.imbio.2015.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022]
Abstract
The significant role played by mycobacteria in modulating immune responses through enhancing the crosstalk between innate and adaptive immunity has been highlighted in several studies. Owing to their unique antigenic profile, heat killed (HK) preparations of rapid-growing mycobacteria, currently undergoing clinical development, have been assessed as adjuvant therapy in various diseases. The purpose of this study is to investigate the regulation of leukocyte surface receptors, in whole blood from healthy donors, following in vitro stimulation with HK Mycobacterium vaccae (M. vaccae) or M. obuense. We have demonstrated the ability of both mycobacterial preparations to target monocytes and neutrophils and to regulate the surface expression of selected adhesion receptors, antigen-presenting and costimulatory receptors, pattern recognition receptors, complement and Fc receptors, as well as cytokine/chemokine receptors. Toll-like receptors (TLRs) 1 and 2 were also shown to be involved in mediating the M. obuense-induced upregulation of selected surface receptors on monocytes. Whole blood stimulation with M. vaccae or M. obuense resulted in a significant increase in the secretion of a specific set of cytokines and chemokines. Both mycobacterial preparations induced strong antigen-specific proliferative responses in peripheral blood mononuclear cells. Collectively, our data shows that M. vaccae and M. obuense have the potential to act as potent immunomodulators. Future research based on these findings may reveal novel immune pathways induced by these preparations with potential implication for their use in diverse immunotherapeutic approaches.
Collapse
Affiliation(s)
- Samer Bazzi
- School of Life Sciences, Faculty of Science, Engineering and Computing, Kingston University, Kingston upon Thames, Surrey KT1 2EE, United Kingdom; Faculty of Medicine and Medical Sciences, University of Balamand, 33 Amioun, Al Kurah, Lebanon.
| | - Helmout Modjtahedi
- School of Life Sciences, Faculty of Science, Engineering and Computing, Kingston University, Kingston upon Thames, Surrey KT1 2EE, United Kingdom.
| | - Satvinder Mudan
- Division of Clinical Sciences, St George's, University of London, London SW170RE, United Kingdom; Department of Academic Surgery, Royal Marsden Hospital, London SW3 6JJ, United Kingdom.
| | - Charles Akle
- The London Clinic, London W1G 6JA, United Kingdom.
| | - Georges M Bahr
- Faculty of Medicine and Medical Sciences, University of Balamand, 33 Amioun, Al Kurah, Lebanon.
| |
Collapse
|
43
|
Basnyat P, Hagman S, Kolasa M, Koivisto K, Verkkoniemi-Ahola A, Airas L, Elovaara I. Association between soluble L-selectin and anti-JCV antibodies in natalizumab-treated relapsing-remitting MS patients. Mult Scler Relat Disord 2015. [DOI: 10.1016/j.msard.2015.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Steiner JL, Pruznak AM, Navaratnarajah M, Lang CH. Alcohol Differentially Alters Extracellular Matrix and Adhesion Molecule Expression in Skeletal Muscle and Heart. Alcohol Clin Exp Res 2015; 39:1330-40. [PMID: 26108259 DOI: 10.1111/acer.12771] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/01/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND The production of fibrosis in response to chronic alcohol abuse is well recognized in liver but has not been fully characterized in striated muscle and may contribute to functional impairment. Therefore, the purpose of this study was to use an unbiased discovery-based approach to determine the effect of chronic alcohol consumption on the expression profile of genes important for cell-cell and cell-extracellular matrix (ECM) interactions in both skeletal and cardiac muscle. METHODS Adult male rats were pair-fed an alcohol-containing liquid diet or control diet for 24 weeks, and skeletal muscle (gastrocnemius) and heart were collected in the freely fed state. A pathway-focused gene expression polymerase chain reaction array was performed on these tissues to assess mRNA content for 84 ECM proteins, and selected proteins were confirmed by Western blot analysis. RESULTS In gastrocnemius, alcohol feeding up-regulated the expression of 11 genes and down-regulated the expression of 1 gene. Alcohol increased fibrosis as indicated by increased mRNA and/or protein for collagens α1(I), α2(I), α1(III), and α2(IV) as well as hydroxyproline. Alcohol also increased α-smooth muscle actin protein, an index of myofibroblast activation, but no concomitant change in transforming growth factor-β was detected. The mRNA and protein content for other ECM components, such as integrin-α5, L-selectin, PECAM, SPARC, and ADAMTS2, were also increased by alcohol. Only laminin-α3 mRNA was decreased in gastrocnemius from alcohol-fed rats, while 66 ECM- or cell adhesion-related mRNAs were unchanged by alcohol. For heart, expression of 16 genes was up-regulated, expression of 3 genes was down-regulated, and 65 mRNAs were unchanged by alcohol; there were no common alcohol-induced gene expression changes between heart and skeletal muscle. Finally, alcohol increased tumor necrosis factor-α and interleukin (IL)-12 mRNA in both skeletal and cardiac muscle, but IL-6 mRNA was increased and IL-10 mRNA decreased only in skeletal muscle. CONCLUSIONS These data demonstrate a fibrotic response in striated muscle from chronic alcohol-fed rats which is tissue specific in nature, suggesting different regulatory mechanisms.
Collapse
Affiliation(s)
- Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Anne M Pruznak
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Maithili Navaratnarajah
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
45
|
HIV-1 Nef and Vpu Interfere with L-Selectin (CD62L) Cell Surface Expression To Inhibit Adhesion and Signaling in Infected CD4+ T Lymphocytes. J Virol 2015; 89:5687-700. [PMID: 25822027 DOI: 10.1128/jvi.00611-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Leukocyte recirculation between blood and lymphoid tissues is required for the generation and maintenance of immune responses against pathogens and is crucially controlled by the L-selectin (CD62L) leukocyte homing receptor. CD62L has adhesion and signaling functions and initiates the capture and rolling on the vascular endothelium of cells entering peripheral lymph nodes. This study reveals that CD62L is strongly downregulated on primary CD4(+) T lymphocytes upon infection with human immunodeficiency virus type 1 (HIV-1). Reduced cell surface CD62L expression was attributable to the Nef and Vpu viral proteins and not due to increased shedding via matrix metalloproteases. Both Nef and Vpu associated with and sequestered CD62L in perinuclear compartments, thereby impeding CD62L transport to the plasma membrane. In addition, Nef decreased total CD62L protein levels. Importantly, infection with wild-type, but not Nef- and Vpu-deficient, HIV-1 inhibited the capacity of primary CD4(+) T lymphocytes to adhere to immobilized fibronectin in response to CD62L ligation. Moreover, HIV-1 infection impaired the signaling pathways and costimulatory signals triggered in primary CD4(+) T cells by CD62L ligation. We propose that HIV-1 dysregulates CD62L expression to interfere with the trafficking and activation of infected T cells. Altogether, this novel HIV-1 function could contribute to virus dissemination and evasion of host immune responses. IMPORTANCE L-selectin (CD62L) is an adhesion molecule that mediates the first steps of leukocyte homing to peripheral lymph nodes, thus crucially controlling the initiation and maintenance of immune responses to pathogens. Here, we report that CD62L is downmodulated on the surfaces of HIV-1-infected T cells through the activities of two viral proteins, Nef and Vpu, that prevent newly synthesized CD62L molecules from reaching the plasma membrane. We provide evidence that CD62L downregulation on HIV-1-infected primary T cells results in impaired adhesion and signaling functions upon CD62L triggering. Removal of cell surface CD62L may predictably keep HIV-1-infected cells away from lymph nodes, the privileged sites of both viral replication and immune response activation, with important consequences, such as systemic viral spread and evasion of host immune surveillance. Altogether, we propose that Nef- and Vpu-mediated subversion of CD62L function could represent a novel determinant of HIV-1 pathogenesis.
Collapse
|
46
|
L-selectin shedding is activated specifically within transmigrating pseudopods of monocytes to regulate cell polarity in vitro. Proc Natl Acad Sci U S A 2015; 112:E1461-70. [PMID: 25775539 DOI: 10.1073/pnas.1417100112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
L-selectin is a cell adhesion molecule that tethers free-flowing leukocytes from the blood to luminal vessel walls, facilitating the initial stages of their emigration from the circulation toward an extravascular inflammatory insult. Following shear-resistant adhesion to the vessel wall, L-selectin has frequently been reported to be rapidly cleaved from the plasma membrane (known as ectodomain shedding), with little knowledge of the timing or functional consequence of this event. Using advanced imaging techniques, we observe L-selectin shedding occurring exclusively as primary human monocytes actively engage in transendothelial migration (TEM). Moreover, the shedding was localized to transmigrating pseudopods within the subendothelial space. By capturing monocytes in midtransmigration, we could monitor the subcellular distribution of L-selectin and better understand how ectodomain shedding might contribute to TEM. Mechanistically, L-selectin loses association with calmodulin (CaM; a negative regulator of shedding) specifically within transmigrating pseudopods. In contrast, L-selectin/CaM interaction remained intact in nontransmigrated regions of monocytes. We show phosphorylation of L-selectin at Ser 364 is critical for CaM dissociation, which is also restricted to the transmigrating pseudopod. Pharmacological or genetic inhibition of L-selectin shedding significantly increased pseudopodial extensions in transmigrating monocytes, which potentiated invasive behavior during TEM and prevented the establishment of front/back polarity for directional migration persistence once TEM was complete. We conclude that L-selectin shedding directly regulates polarity in transmigrated monocytes, which affirms an active role for this molecule in driving later stages of the multistep adhesion cascade.
Collapse
|
47
|
Gong X, Qin B, Ma Q. Relationship between adhesion molecules and virological response to pegylated interferon-alpha-2a treatment in patients with chronic hepatitis B: A pilot study. Hepatol Res 2014; 44:1172-8. [PMID: 24118968 DOI: 10.1111/hepr.12251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 09/06/2013] [Accepted: 09/24/2013] [Indexed: 02/08/2023]
Abstract
AIM We performed a clinical study to investigate potential association between serum levels of soluble adhesion molecules and virological response to pegylated interferon-alpha-2a (PEG IFN-α-2a) treatment in patients with chronic hepatitis B (CHB). METHODS Thirty-two patients with chronic hepatitis B virus genotype B were recruited in this study, who were treated with PEG IFN-α-2a 180 μg every week and then followed up for 24 weeks. Thirty healthy control subjects were recruited from volunteer blood donors. Serum concentrations of soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin), soluble L-selectin (sL-selectin) in patients were investigated by enzyme-linked immunoassay before and after treatment. RESULTS Serum concentrations of sICAM-1, sVCAM-1, sE-selectin and sL-selectin in CHB patients were significantly higher compared to the control group before treatment (P < 0.00001, respectively). In CHB patients responding to the PEG IFN-α-2a treatment, serum levels of sICAM-1, sVCAM-1, sE-selectin and sL-selectin were higher than those in non-responders before treatment (PI = 0.001, PV = 0.002, PE = 0.02, PL = 0.004). The levels of sICAM-1, sVCAM-1, sE-selectin and sL-selectin decreased in virological responders of treatment at 12 and 24 weeks (PI = 0.0001, PV = 0.00004, PE = 0.002, PL = 0.0004; PI = 0.00007, PV = 0.00001, PE = 0.0003, PL = 0.00003), while no obvious changes were observed in non-responders (P > 0.05, respectively). CONCLUSION Results obtained indicated increased levels of sICAM-1, sVCAM-1, sE-selectin and sL-selectin could be related to virological response to PEG IFN-α-2a treatment in CHB patients, and have a prognostic effect on virological response.
Collapse
Affiliation(s)
- Xueyan Gong
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | |
Collapse
|
48
|
González-Navajas JM, Corr MP, Raz E. The immediate protective response to microbial challenge. Eur J Immunol 2014; 44:2536-49. [PMID: 24965684 DOI: 10.1002/eji.201344291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 06/02/2014] [Accepted: 06/20/2014] [Indexed: 03/20/2024]
Abstract
The innate immune system detects infection and tissue injury through different families of pattern-recognition receptors (PRRs), such as Toll-like receptors. Most PRR-mediated responses initiate elaborate processes of signaling, transcription, translation, and secretion of effector mediators, which together require time to achieve. Therefore, PRR-mediated processes are not active in the early phases of infection. These considerations raise the question of how the host limits microbial replication and invasion during this critical period. Here, we examine the crucial defense mechanisms, such as antimicrobial peptides or extracellular traps, typically activated within minutes of the initial infection phase, which we term the "immediate protective response". Deficiencies in different components of the immediate protective response are often associated with severe and recurrent infectious diseases in humans, highlighting their physiologic importance.
Collapse
Affiliation(s)
- José M González-Navajas
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Hospital General de Alicante, Alicante, Spain; Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
49
|
Wang P, Liu Z, Liu X, Teng H, Zhang C, Hou L, Zou X. Anti-metastasis effect of fucoidan from Undaria pinnatifida sporophylls in mouse hepatocarcinoma Hca-F cells. PLoS One 2014; 9:e106071. [PMID: 25162296 PMCID: PMC4146566 DOI: 10.1371/journal.pone.0106071] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/28/2014] [Indexed: 01/10/2023] Open
Abstract
Metastasis is one of the major causes of cancer-related death. It is a complex biological process involving multiple genes, steps, and phases. It is also closely connected to many biological activities of cancer cells, such as growth, invasion, adhesion, hematogenous metastasis, and lymphatic metastasis. Fucoidan derived from Undaria pinnatifida sporophylls (Ups-fucoidan) is a sulfated polysaccharide with more biological activities than other fucoidans. However, there is no information on the effects of Ups-fucoidan on tumor invasion and metastasis. We used the mouse hepatocarcinoma Hca-F cell line, which has high invasive and lymphatic metastasis potential in vitro and in vivo, to examine the effect of Ups-fucoidan on cancer cell invasion and metastasis. Ups-fucoidan exerted a concentration- and time-dependent inhibitory effect on tumor metastasis in vivo and inhibited Hca-F cell growth, migration, invasion, and adhesion capabilities in vitro. Ups-fucoidan inhibited growth and metastasis by downregulating vascular endothelial growth factor (VEGF) C/VEGF receptor 3, hepatocyte growth factor/c-MET, cyclin D1, cyclin-dependent kinase 4, phosphorylated (p) phosphoinositide 3-kinase, p-Akt, p-extracellular signal regulated kinase (ERK) 1/2, and nuclear transcription factor-κB (NF-κB), and suppressed adhesion and invasion by downregulating L-Selectin, and upregulating protein levels of tissue inhibitor of metalloproteinases (TIMPs). The results suggest that Ups-fucoidan suppresses Hca-F cell growth, adhesion, invasion, and metastasis capabilities and that these functions are mediated through the mechanism involving inactivation of the NF-κB pathway mediated by PI3K/Akt and ERK signaling pathways.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Adhesion/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cyclin D1/antagonists & inhibitors
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Cyclin-Dependent Kinase 4/genetics
- Cyclin-Dependent Kinase 4/metabolism
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Neoplastic
- Hepatocyte Growth Factor/antagonists & inhibitors
- Hepatocyte Growth Factor/genetics
- Hepatocyte Growth Factor/metabolism
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Lymphatic Metastasis
- MAP Kinase Signaling System
- Male
- Mice
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Plant Extracts/chemistry
- Polysaccharides/isolation & purification
- Polysaccharides/pharmacology
- Proto-Oncogene Proteins c-met/antagonists & inhibitors
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/metabolism
- Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
- Receptors, Vascular Endothelial Growth Factor/genetics
- Receptors, Vascular Endothelial Growth Factor/metabolism
- Undaria/chemistry
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Peisheng Wang
- Department of Biotechnology, Dalian Medical University, Dalian, PR China
| | - Zhichao Liu
- Department of Biotechnology, Dalian Medical University, Dalian, PR China
| | - Xianli Liu
- Department of Biotechnology, Dalian Medical University, Dalian, PR China
| | - Hongming Teng
- Department of Biotechnology, Dalian Medical University, Dalian, PR China
| | - Cuili Zhang
- Department of Biotechnology, Dalian Medical University, Dalian, PR China
| | - Lin Hou
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
| | - Xiangyang Zou
- Department of Biotechnology, Dalian Medical University, Dalian, PR China
| |
Collapse
|
50
|
Gjurich BN, Taghavie-Moghadam PL, Ley K, Galkina EV. L-selectin deficiency decreases aortic B1a and Breg subsets and promotes atherosclerosis. Thromb Haemost 2014; 112:803-11. [PMID: 24989887 DOI: 10.1160/th13-10-0865] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/29/2014] [Indexed: 12/18/2022]
Abstract
There is a significant recruitment of leucocytes into aortas during atherogenesis. L-selectin regulates leucocyte migration into secondary lymphoid and peripheral tissues and was proposed to play a role in leucocyte homing into aortas. Here, we determine the role of L-selectin in atherosclerosis. L-selectin-deficient Apoe-/- (Sell-/-Apoe-/-) mice had a 74% increase in plaque burden compared to Apoe-/- mice fed a chow diet for 50 weeks. Elevated atherosclerosis was accompanied by increased aortic leucocyte content, but a 50% reduction in aortic B cells despite elevated B cell counts in the blood. Follicular B cells represented 65%, whereas B1a and regulatory B cells (Breg) comprised 5% of aortic B cells. B1a and Breg cell subsets were reduced in Sell-/-Apoe-/- aortas with accompanied two-fold decrease in aortic T15 antibody and 1.2-fold decrease of interleukin-10 (IL-10) levels. L-selectin was required for B1 cell homing to the atherosclerotic aorta, as demonstrated by a 1.5-fold decrease in the migration of Sell-/-Apoe-/- vs Apoe-/- cells. Notably, we found a 1.6-fold increase in CD68hi macrophages in Sell-/-Apoe-/- compared to Apoe-/- aortas, despite comparable blood monocyte numbers and L-selectin-dependent aortic homing. L-selectin had no effect on neutrophil migration into aorta, but led to elevated blood neutrophil numbers, suggesting a potential involvement of neutrophils in atherogenesis of Sell-/-Apoe-/- mice. Thus, L-selectin deficiency increases peripheral blood neutrophil and lymphocyte numbers, decreases aortic B1a and Breg populations, T15 antibody and IL-10 levels, and increases aortic macrophage content of Sell-/-Apoe-/- mice. Altogether, these data provide evidence for an overall atheroprotective role of L-selectin.
Collapse
Affiliation(s)
| | | | | | - Elena V Galkina
- Elena V. Galkina, PhD, Associate Professor, Dept. Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23507-1696, USA, Tel.: +1 757 446 5019, Fax: +1 757 624 2255, E-mail:
| |
Collapse
|