1
|
Schauermann M, Wang R, Pons-Kuehnemann J, Hartmann MF, Remer T, Hua Y, Bereket A, Wasniewska M, Shmoish M, Hochberg Z, Gawlik A, Wudy SA. Targeted quantitative analysis of urinary bile acids by liquid chromatography-tandem mass spectrometry: Method development and application to healthy and obese children. J Steroid Biochem Mol Biol 2025; 249:106712. [PMID: 39988143 DOI: 10.1016/j.jsbmb.2025.106712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Bile acids (BA) are C24 steroids synthesized from cholesterol in liver. Hardly any data exist on BA in the most accessible human biofluid urine. As bile acids bear great potential as future biomarkers in diagnosis and monitoring of metabolic diseases, we aimed at developing and implementing a new method for the quantification of urinary bile acids using targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS). A second goal consisted in creating first reference values of urinary bile acids during childhood and to investigate their excretion patterns in obese children and adolescents. Our method required 2 mL of urine and sample preparation consisting of protein precipitation and solid phase extraction. Stable isotopes of BA were included as internal standards (IS). Our method is capable of simultaneously determining 18 BA: the primary BA cholic acid (CA) and chenodeoxycholic acid (CDCA), and the secondary BA deoxycholic acid (DCA) and lithocholic acid (LCA) as well as glycine and taurine conjugates of these four BA. Furthermore, ursodeoxycholic acid (UDCA) and five BA in their sulfated forms (LCA-S, GLCA-S, TLCA-S, GCDCA-S, GDCA-S) were analyzed. After successful validation (intra-day precision 1.02 % - 11.07 %; inter-day precision 0.42-11.47 %.; intra-day accuracy 85.75 % - 108.90 %; inter-day accuracy 86.76 % - 110.99 %; no significant matrix effect; recovery 90.49 % - 113.99 %)., the method was applied to samples of 80 healthy children as well as 237 obese children of various age groups. Sulfated BA showed the highest concentrations, with GCDCA-S (nmol/L, medians, controls vs. obese 588.4 vs. 360.2) being the most abundant among all BA, followed by GLCA-S (353.9 vs. 344.8) and GDCA-S (319,3 vs. 323.9). CA (135.1 vs. 174.6) and GCA (100.2 vs. 92.4) were the two dominant non-sulfated BA. In conclusion, we developed a LC-MS/MS method for the simultaneous determination of 18 urinary bile acids in children and adolescents. We created reference values and investigated obese children. Sulfated bile acids dominated in both study groups. Lower bile acid sulfation and amidation in obese children point to limitations in their hepatic metabolic capacity.
Collapse
Affiliation(s)
- M Schauermann
- Steroid Research and Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - R Wang
- Steroid Research and Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - J Pons-Kuehnemann
- Institute of Medical Informatics, Department of Medical Statistics, Justus Liebig University, Giessen, Germany
| | - M F Hartmann
- Steroid Research and Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - T Remer
- DONALD Study Center, Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, Dortmund, Germany
| | - Y Hua
- DONALD Study Center, Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, Dortmund, Germany
| | - A Bereket
- Department of Pediatric Endocrinology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - M Wasniewska
- Department of Pediatric, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Italy
| | - M Shmoish
- Bioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Z Hochberg
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - A Gawlik
- Department of Pediatrics and Pediatric Endocrinology, School of Medicine in Katowice, Medical University of Silesia, Upper Silesia Children's Care Health Center, Katowice, Poland
| | - S A Wudy
- Steroid Research and Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
2
|
Wang S, Peng X, Zhu Q, Lu S, Hu P, Kim IH, Liu HY, Ennab W, Muniyappan M, Cai D. Lithocholic acid attenuates DON-induced inflammatory responses via epigenetic regulation of DUSP5 and TRAF5 in porcine intestinal epithelial cells. Front Vet Sci 2025; 12:1493496. [PMID: 40093618 PMCID: PMC11906417 DOI: 10.3389/fvets.2025.1493496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Deoxynivalenol (DON) is the most common mycotoxin that frequently contaminates human food and animal feed, resulting in intestinal diseases and systemic immunosuppression. Lithocholic acid (LCA) exhibits various pharmacological activities. RNA-seq and ChIP-qPCR analysis were used in the current study to investigate the protective mechanism of LCA for DON-induced inflammatory Responses via Epigenetic Regulation of DUSP5 and TRAF5 in porcine ileal epithelial cell lines (IPI-2I) cells. The IPI-2I cells were treated with the vehicle group, 250 ng/mL DON, 20 μmol/L LCA, 250 ng/mL DON+ 20 μmol/L LCA for 24 h could induce inflammatory Responses via Epigenetic Regulation of DUSP5 and TRAF5 in IPI-2I cells. By analyzing the transcriptional profiles of DON and LCA-treated IPI-2I, we observed significant transcriptional changes in IPI-2I cells. Further analysis of up-and down-regulated differential genes revealed the enrichment of pathways closely related to inflammation and apoptosis, such as the MAPK signaling pathway, IL17 signaling pathway, and Wnt signaling pathway. An upregulated (p < 0.05) relative mRNA expression level of RAP1B, GDNF, FGF2, IL1R1, RAPGEF2, DUSP5, TGFB3, CACNA1G, TEK and RPS6KA2 were noted in IPI-2I exposed to DON. DON-exposed IPI-2I cells dramatically enhanced (p < 0.05) histone marks associated with transcriptional activation, H3K9ac, H3K18ac, H3K27ac, H3K4me1, H3K9bhb, H3K18bhb Pol-II and Ser5 Pol-II at the enhancers of DUSP5 and TRAF5. Overall, our findings provide a theoretical basis for understanding the mechanism of action of LCA in attenuating DON-induced intestinal injury and for better understanding the potential of LCA as a treatment or prevention of mycotoxin-associated intestinal diseases in swine production.
Collapse
Affiliation(s)
- Shiqi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoxu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qi Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Sichen Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, Republic of Korea
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wael Ennab
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Madesh Muniyappan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Bintee B, Banerjee R, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Alqahtani A, Rangan L, Sethi G, Kunnumakkara AB. Exploring bile acid transporters as key players in cancer development and treatment: Evidence from preclinical and clinical studies. Cancer Lett 2025; 609:217324. [PMID: 39571783 DOI: 10.1016/j.canlet.2024.217324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Bile acid transporters (BATs) are integral membrane proteins belonging to various families, such as solute carriers, organic anion transporters, and ATP-binding cassette families. These transporters play a crucial role in bile acid transportation within the portal and systemic circulations, with expression observed in tissues, including the liver, kidney, and small intestine. Bile acids serve as signaling molecules facilitating the absorption and reabsorption of fats and lipids. Dysregulation of bile acid concentration has been implicated in tumorigenesis, yet the role of BATs in this process remains underexplored. Emerging evidence suggests that BATs may modulate various stages of cancer progression, including initiation, development, proliferation, metastasis, and tumor microenvironment regulation. Targeting BATs using siRNAs, miRNAs, and small compound inhibitors in preclinical models and their polymorphisms are well-studied for transporters like BSEP, MDR1, MRP2, OATP1A2, etc., and have shed light on their involvement in tumorigenesis, particularly in cancers such as those affecting the liver and gastrointestinal tract. While BATs' role in diseases like Alagille syndrome, biliary atresia, and cirrhosis have been extensively studied, their implications in cancer warrant further investigation. This review highlights the expression and function of BATs in cancer development and emphasizes the potential of targeting these transporters as a novel therapeutic strategy for various malignancies.
Collapse
Affiliation(s)
- Bintee Bintee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ruchira Banerjee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India; Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
4
|
Yang S, Wang Y, Sheng L, Cui W, Ma C. The effect of fecal bile acids on the incidence and risk-stratification of colorectal cancer: an updated systematic review and meta-analysis. Sci Rep 2025; 15:740. [PMID: 39753873 PMCID: PMC11698987 DOI: 10.1038/s41598-024-84801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Recent studies suggest the role of gut microbes in bile acid metabolism in the development and progression of colorectal cancer. However, the surveys of the association between fecal bile acid concentrations and colorectal cancer (CRC) have been inconsistent. We searched online to identify relevant cross-sectional and case-control studies published online in the major English language databases (Medline, Embase, Web of Science, AMED, and CINAHL) up to January 1, 2024. We selected studies according to inclusion and exclusion criteria and extracted data from them. RevMan 5.3 was used to perform the meta-analyses. In CRC risk meta-analysis, the effect size of CA (cholic acid), CDCA (chenodeoxycholic acid), DCA (deoxycholic acid), and UDCA (ursodeoxycholic acid) were significantly higher (CA: standardized mean difference [SMD] = 0.41, 95% confidence interval [CI]: 0.5-0.76, P = 0.02; CDCA: SMD = 0.35, 95% CI: 0.09-0.62, P = 0.009; DCA: SMD = 0.33,95% CI: 0.03-0.64, P = 0.03; UDCA: SMD = 0.46, 95% CI: 0.14-0.78, P = 0.005), and the combined effect size was significantly higher in the high-risk than the low-risk CRC group (SMD = 0.36, 95% CI: 0.21-0.51, P < 0.00001). In the CRC incidence meta-analysis, the effect sizes of CA and CDCA were significantly higher (CA: SMD = 0.42, 95% CI: 0.04-0.80, P = 0.03; CDCA: SMD = 0.61, 95% CI: 0.26-0.96, P = 0.00079), and their combined effect size was also significantly higher in the high-risk compared to low-risk CRC group (SMD = 0.39, 95% CI: 0.09-0.68, P = 0.01). Only one cross-sectional study suggested a higher concentration of CDCA, DCA, and UDCA in the stool of the CRC high-risk group than the low-risk group. These findings indicate that higher fecal concentrations of bile acid may be associated with a higher risk/incidence of CRC.
Collapse
Affiliation(s)
- Shaohui Yang
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Yu Wang
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Lijuan Sheng
- Gulou Street Community Health Service Center, Ningbo, 315000, China
| | - Wei Cui
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Chenyang Ma
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China.
| |
Collapse
|
5
|
Liu J, Xu F, Guo M, Song Y. Triclosan exposure causes abnormal bile acid metabolism through IL-1β-NF-κB-Fxr signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116989. [PMID: 39260212 DOI: 10.1016/j.ecoenv.2024.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Triclosan (TCS) is an eminent antibacterial agent. However, extensive usage causes potential health risks like hepatotoxicity, intestinal damage, kidney injury, etc. Existing studies suggested that TCS would disrupt bile acid (BA) enterohepatic circulation, but its toxic mechanism remains unclear. Hence, the current study established an 8-week TCS exposure model to explore its potential toxic mechanism. The results discovered 8 weeks consecutive administration of TCS induced distinct programmed cell death, inflammatory cell activation and recruitment, and excessive BA accumulation in liver. Furthermore, the expression of BA synthesis and transport associated genes were significantly dysregulated upon TCS treatment. Additional mechanism exploration revealed that Fxr inhibition induced by TCS would be the leading cause for unusual BA biosynthesis and transport. Subsequent Fxr up-stream investigation uncovered TCS exposure caused pyroptosis and its associated IL-1β would be the reason for Fxr reduction mediated by NF-κB. NF-κB blocking by dimethylaminoparthenolide ameliorated TCS induced BA disorder which confirmed the contribution of NF-κB in Fxr repression. To sum up, our findings conclud TCS-caused BA disorder is attributed to Fxr inhibition, which is regulated by the IL-1β-NF-κB signaling pathway. Hence, we suggest Fxr would be a potential target for abnormal BA stimulated by TCS and its analogs.
Collapse
Affiliation(s)
- Jing Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fang Xu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Mingzhu Guo
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
6
|
Zheng Y, Luo S, Xu M, He Q, Xie J, Wu J, Huang Y. Transepithelial transport of nanoparticles in oral drug delivery: From the perspective of surface and holistic property modulation. Acta Pharm Sin B 2024; 14:3876-3900. [PMID: 39309496 PMCID: PMC11413706 DOI: 10.1016/j.apsb.2024.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 09/25/2024] Open
Abstract
Despite the promising prospects of nanoparticles in oral drug delivery, the process of oral administration involves a complex transportation pathway that includes cellular uptake, intracellular trafficking, and exocytosis by intestinal epithelial cells, which are necessary steps for nanoparticles to enter the bloodstream and exert therapeutic effects. Current researchers have identified several crucial factors that regulate the interaction between nanoparticles and intestinal epithelial cells, including surface properties such as ligand modification, surface charge, hydrophilicity/hydrophobicity, intestinal protein corona formation, as well as holistic properties like particle size, shape, and rigidity. Understanding these properties is essential for enhancing transepithelial transport efficiency and designing effective oral drug delivery systems. Therefore, this review provides a comprehensive overview of the surface and holistic properties that influence the transepithelial transport of nanoparticles, elucidating the underlying principles governing their impact on transepithelial transport. The review also outlines the chosen of parameters to be considered for the subsequent design of oral drug delivery systems.
Collapse
Affiliation(s)
- Yaxian Zheng
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Shiqin Luo
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Min Xu
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin He
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiang Xie
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiawei Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Jia H, Dong N. Effects of bile acid metabolism on intestinal health of livestock and poultry. J Anim Physiol Anim Nutr (Berl) 2024; 108:1258-1269. [PMID: 38649786 DOI: 10.1111/jpn.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Bile acids are synthesised in the liver and are essential amphiphilic steroids for maintaining the balance of cholesterol and energy metabolism in livestock and poultry. They can be used as novel feed additives to promote fat utilisation in the diet and the absorption of fat-soluble substances in the feed to improve livestock performance and enhance carcass quality. With the development of understanding of intestinal health, the balance of bile acid metabolism is closely related to the composition and growth of livestock intestinal microbiota, inflammatory response, and metabolic diseases. This paper systematically reviews the effects of bile acid metabolism on gut health and gut microbiology in livestock. In addition, our paper summarised the role of bile acid metabolism in performance and disease control.
Collapse
Affiliation(s)
- Hongpeng Jia
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Ohguro H, Watanabe M, Hikage F, Sato T, Nishikiori N, Umetsu A, Higashide M, Ogawa T, Furuhashi M. Fatty Acid-Binding Protein 4-Mediated Regulation Is Pivotally Involved in Retinal Pathophysiology: A Review. Int J Mol Sci 2024; 25:7717. [PMID: 39062961 PMCID: PMC11277531 DOI: 10.3390/ijms25147717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Fatty acid-binding proteins (FABPs), a family of lipid chaperone molecules that are involved in intracellular lipid transportation to specific cellular compartments, stimulate lipid-associated responses such as biological signaling, membrane synthesis, transcriptional regulation, and lipid synthesis. Previous studies have shown that FABP4, a member of this family of proteins that are expressed in adipocytes and macrophages, plays pivotal roles in the pathogenesis of various cardiovascular and metabolic diseases, including diabetes mellitus (DM) and hypertension (HT). Since significant increases in the serum levels of FABP4 were detected in those patients, FABP4 has been identified as a crucial biomarker for these systemic diseases. In addition, in the field of ophthalmology, our group found that intraocular levels of FABP4 (ioFABP4) and free fatty acids (ioFFA) were substantially elevated in patients with retinal vascular diseases (RVDs) including proliferative diabetic retinopathy (PDR) and retinal vein occlusion (RVO), for which DM and HT are also recognized as significant risk factors. Recent studies have also revealed that ioFABP4 plays important roles in both retinal physiology and pathogenesis, and the results of these studies have suggested potential molecular targets for retinal diseases that might lead to future new therapeutic strategies.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Fumihito Hikage
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
| |
Collapse
|
9
|
Morito K, Yamagata M, Naka F, Kobayashi K, Ueda H, Morimoto H, Yasukawa T, Takayama K, Uozumi Y, Nagasawa K. Sub-chronic and mild social defeat stress exposure to C57BL/6J mice increases visceral fat mass and causes accumulation of cholesterol and bile acids in the liver. Biochem Biophys Res Commun 2024; 702:149631. [PMID: 38335703 DOI: 10.1016/j.bbrc.2024.149631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/10/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Major depressive disorder is accompanied by a high metabolic illness comorbidity and patients with atypical depression are a subgroup with particularly high risk of obesity, dyslipidemia, and metabolic syndrome; however, the underlying mechanisms have not been fully elucidated. In this study, we examined visceral fat deposition, lipid profiles in the liver, and gut microbiota in sub-chronic and mild social defeat stress (sCSDS)-exposed C57BL/6J mice, which exhibit atypical depression-like phenotypes, i.e., increased body weight and food and water intake. We found that visceral fat mass and levels of hepatic cholesterol and bile acids in sCSDS-exposed mice were significantly increased compared to those in controls. The expression of hepatic small heterodimer partner, a negative regulator of cholesterol metabolism, was significantly elevated in sCSDS-exposed mice. We also found that gut microbial diversity and composition including lower relative abundance of Bacteroides spp. and Bifidobacterium spp. in sCSDS-exposed mice were different from those in controls. In addition, relative abundance of Bacteroides spp. and Bifidobacterium spp. was significantly and negatively correlated with body weight, visceral fat mass, and hepatic cholesterol and bile acids levels. These results indicate that sCSDS-exposure induces dysbiosis, and thereby contributes to metabolic disorder development.
Collapse
Affiliation(s)
- Katsuya Morito
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Mayu Yamagata
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Futaba Naka
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Kayo Kobayashi
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Hikari Ueda
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Hirotoshi Morimoto
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako, 678-0193, Japan
| | - Takeshi Yasukawa
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako, 678-0193, Japan
| | - Kentaro Takayama
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yoshinobu Uozumi
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako, 678-0193, Japan
| | - Kazuki Nagasawa
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
10
|
Németh K, Sterczer Á, Kiss DS, Lányi RK, Hemző V, Vámos K, Bartha T, Buzás A, Lányi K. Determination of Bile Acids in Canine Biological Samples: Diagnostic Significance. Metabolites 2024; 14:178. [PMID: 38668306 PMCID: PMC11052161 DOI: 10.3390/metabo14040178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The comprehensive examination of bile acids is of paramount importance across various fields of health sciences, influencing physiology, microbiology, internal medicine, and pharmacology. While enzymatic reaction-based photometric methods remain fundamental for total BA measurements, there is a burgeoning demand for more sophisticated techniques such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) for comprehensive BA profiling. This evolution reflects a need for nuanced diagnostic assessments in clinical practice. In canines, a BA assessment involves considering factors, such as food composition, transit times, and breed-specific variations. Multiple matrices, including blood, feces, urine, liver tissue, and gallbladder bile, offer insights into BA profiles, yet interpretations remain complex, particularly in fecal analysis due to sampling challenges and breed-specific differences. Despite ongoing efforts, a consensus regarding optimal matrices and diagnostic thresholds remains elusive, highlighting the need for further research. Emphasizing the scarcity of systematic animal studies and underscoring the importance of ap-propriate sampling methodologies, our review advocates for targeted investigations into BA alterations in canine pathology, promising insights into pathomechanisms, early disease detection, and therapeutic avenues.
Collapse
Affiliation(s)
- Krisztián Németh
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Ágnes Sterczer
- Department of Internal Medicine, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary;
| | - Dávid Sándor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Réka Katalin Lányi
- Faculty of Pharmacy, University of Szeged, Zrínyi u. 9, H-6720 Szeged, Hungary;
| | - Vivien Hemző
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Kriszta Vámos
- Department of Internal Medicine, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary;
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Anna Buzás
- Institute of Food Chain Science, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (A.B.); (K.L.)
| | - Katalin Lányi
- Institute of Food Chain Science, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (A.B.); (K.L.)
| |
Collapse
|
11
|
Agellon LB. Importance of fatty acid binding proteins in cellular function and organismal metabolism. J Cell Mol Med 2024; 28:e17703. [PMID: 36876733 PMCID: PMC10902576 DOI: 10.1111/jcmm.17703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Fatty acid binding proteins (Fabps) are small soluble proteins that are abundant in the cytosol. These proteins are known to bind a myriad of small hydrophobic molecules and have been postulated to serve a variety of roles, yet their precise functions have remained an enigma over half a century of study. Here, we consider recent findings, along with the cumulative findings contributed by many laboratories working on Fabps over the last half century, to synthesize a new outlook for what functions Fabps serve in cells and organisms. Collectively, the findings illustrate that Fabps function as versatile multi-purpose devices serving as sensors, conveyors and modulators to enable cells to detect and handle a specific class of metabolites, and to adjust their metabolic capacity and efficiency.
Collapse
Affiliation(s)
- Luis B. Agellon
- School of Human NutritionMcGill UniversitySte. Anne de BellevueQuebecCanada
| |
Collapse
|
12
|
Lai J, Li F, Li H, Huang R, Ma F, Gu X, Cai Y, Huang D, Li S, Xiao S, Hao H. Melatonin alleviates necrotizing enterocolitis by reducing bile acid levels through the SIRT1/FXR signalling axis. Int Immunopharmacol 2024; 128:111360. [PMID: 38176339 DOI: 10.1016/j.intimp.2023.111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Bile acids (BAs) have increasingly been implicated in the onset and progression of necrotizing enterocolitis (NEC); multiple findings have demonstrated their ability to induce damage to the intestinal epithelium, thereby exacerbating disease severity. Although we previously showed that melatonin was able to treat NEC by correcting the Treg/Th17 imbalance, the modulatory effect of melatonin on BAs remains unclear. In this study, we conducted transcriptome analysis on intestinal tissues from patients with NEC and validated these findings. Subsequently, we treated mice with melatonin alone or in combination with an agonist/inhibitor of Sirtuin 1 (SIRT1) to assess faecal and serum BA levels, the expression levels of BA transporters and regulators, and the extent of intestinal injury. Our transcriptome results indicated dysregulation of BA metabolism and abnormal expression of BA transporters in patients with NEC, which were also observed in our NEC mouse model. Furthermore, exogenous BAs were found to aggravate NEC severity in mice. Notably, melatonin effectively restored the aberrant expression of BA transporters, such as apical membrane sodium-dependent bile acid transporters (ASBT), ileal bile acid-binding protein (IBABP), and organic solute transporter-alpha (OST-α), by upregulating SIRT1 expression while reducing farnesoid X receptor (FXR) acetylation, consequently leading to decreased serum and faecal BA levels and mitigated NEC severity. Thus, we propose a potential mechanism through which melatonin reduces BA levels via the SIRT1/FXR signalling axis in an NEC mouse model. Collectively, these results highlight that melatonin holds promise for reducing BA levels and represents a promising therapeutic strategy for treating NEC.
Collapse
Affiliation(s)
- Jiahao Lai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Fei Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China
| | - Hongfu Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rong Huang
- Department of neonatal surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Fei Ma
- Maternal & Child Health Research Institute, Zhuhai Women and Children's Hospital, Zhuhai 519001, China
| | - Xia Gu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China
| | - Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China
| | - Dabin Huang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China.
| | - Shangjie Xiao
- Department of neonatal surgery, Guangdong Women and Children Hospital, Guangzhou, China.
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China.
| |
Collapse
|
13
|
Shibo C, Sili W, Yanfang Q, Shuxiao G, Susu L, Xinlou C, Yongsheng Z. Emerging trends and hotspots in the links between the bile acids and NAFLD from 2002 to 2022: A bibliometric analysis. Endocrinol Diabetes Metab 2024; 7:e460. [PMID: 37941122 PMCID: PMC10782058 DOI: 10.1002/edm2.460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a metabolic syndrome of the liver, and its incidence is increasing worldwide. Accumulating evidence suggests that bile acids are associated with NAFLD. Although many studies on bile acids and NAFLD have been published over the past 20 years, the authors of this study have not found a relevant bibliometric analysis in this field. Therefore, this study aimed to evaluate the trend of publications, summarize current research hotspots and predict future research directions through bibliometric analysis in this field. METHOD Articles related to bile acids and NAFLD published between 2002 and 2022 were obtained from the Science Citation Index-Expanded of Web of Science Core Collection. Microsoft Excel, CiteSpace, VOSviewer and Bibliometric Online Analysis Platform were used to analyse the publication trends and research hotspots in this field. RESULTS Among the articles published between 2002 and 2022, we retrieved 1284 articles related to bile acids and NAFLD, and finally included 568 articles. The USA was dominant until 2020, after which China surpassed the USA to become the dominant force. These two countries cooperate the most closely, and are also the most active in international cooperation. The University of California (UCL) was the most published institution, with a total of 31 publications. There were six authors who have published nine articles and ranked first. The keywords cluster labels show the 10 main clusters: #0fatty liver, #1obeticholic acid, #2oxidative stress, #37 alpha hydroxy 4 cholesten 3 one, #4deoxycholic acid, #5nonalcoholic fatty liver disease, #6mouse model, #7fibroblast growth factor 21, #8animal models, #9high-fat diet. Keywords burst analysis revealed a higher intensity of study for the nuclear receptor, FXR, and metabolic syndrome. CONCLUSION Bile acids have become an important research direction in the field of NAFLD, and the intervention of gut microbiota in NAFLD by acting on bile acids may become a potential hotspot for future research. This study provides reference and guidance for future research, and will help scholars better explore the field and innovatively discover the mechanisms and treatments of NAFLD.
Collapse
Affiliation(s)
- Cong Shibo
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Wang Sili
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Qiao Yanfang
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Gu Shuxiao
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Liu Susu
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Chai Xinlou
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Zhang Yongsheng
- Beijing University of Chinese Medicine, Dongfang HospitalBeijingChina
| |
Collapse
|
14
|
Kim KS, Na K, Bae YH. Nanoparticle oral absorption and its clinical translational potential. J Control Release 2023; 360:149-162. [PMID: 37348679 DOI: 10.1016/j.jconrel.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/04/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Oral administration of pharmaceuticals is the most preferred route of administration for patients, but it is challenging to effectively deliver active ingredients (APIs) that i) have extremely high or low solubility in intestinal fluids, ii) are large in size, iii) are subject to digestive and/or metabolic enzymes present in the gastrointestinal tract (GIT), brush border, and liver, and iv) are P-glycoprotein substrates. Over the past decades, efforts to increase the oral bioavailability of APIs have led to the development of nanoparticles (NPs) with non-specific uptake pathways (M cells, mucosal, and tight junctions) and target-specific uptake pathways (FcRn, vitamin B12, and bile acids). However, voluminous findings from preclinical models of different species rarely meet practical standards when translated to humans, and API concentrations in NPs are not within the adequate therapeutic window. Various NP oral delivery approaches studied so far show varying bioavailability impacted by a range of factors, such as species, GIT physiology, age, and disease state. This may cause difficulty in obtaining similar oral delivery efficacy when research results in animal models are translated into humans. This review describes the selection of parameters to be considered for translational potential when designing and developing oral NPs.
Collapse
Affiliation(s)
- Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - You Han Bae
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
15
|
Ramos-Garcia V, Ten-Doménech I, Vento M, Bullich-Vilarrubias C, Romaní-Pérez M, Sanz Y, Nobili A, Falcone M, Di Stefano M, Quintás G, Kuligowski J. Fast profiling of primary, secondary, conjugated, and sulfated bile acids in human urine and murine feces samples. Anal Bioanal Chem 2023; 415:4961-4971. [PMID: 37338567 DOI: 10.1007/s00216-023-04802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Bile acids (BAs) are a complex class of metabolites that have been described as specific biomarkers of gut microbiota activity. The development of analytical methods allowing the quantification of an ample spectrum of BAs in different biological matrices is needed to enable a wider implementation of BAs as complementary measures in studies investigating the functional role of the gut microbiota. This work presents results from the validation of a targeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the determination of 28 BAs and six sulfated BAs, covering primary, secondary, and conjugated BAs. The analysis of 73 urine and 20 feces samples was used to test the applicability of the method. Concentrations of BAs in human urine and murine feces were reported, ranging from 0.5 to 50 nmol/g creatinine and from 0.012 to 332 nmol/g, respectively. Seventy-nine percent of BAs present in human urine samples corresponded to secondary conjugated BAs, while 69% of BAs present in murine feces corresponded to primary conjugated BAs. Glycocholic acid sulfate (GCA-S) was the most abundant BA in human urine samples, while taurolithocholic acid was the lowest concentrated compound detected. In murine feces, the most abundant BAs were α-murocholic, deoxycholic, dehydrocholic, and β-murocholic acids, while GCA-S was the lowest concentrated BA. The presented method is a non-invasive approach for the simultaneous assessment of BAs and sulfated BAs in urine and feces samples, and the results will serve as a knowledge base for future translational studies focusing on the role of the microbiota in health.
Collapse
Affiliation(s)
- Victoria Ramos-Garcia
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Isabel Ten-Doménech
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Máximo Vento
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
- Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Clara Bullich-Vilarrubias
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Marina Romaní-Pérez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Angelica Nobili
- Autoimmune Pathogenesis Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marika Falcone
- Autoimmune Pathogenesis Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marina Di Stefano
- Maternal and Child Health Area, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Carrer de la Innovació, 2, 08225, Terrassa, Spain
| | - Julia Kuligowski
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain.
| |
Collapse
|
16
|
Abdo A, Zhang C, Al-Dalali S, Hou Y, Gao J, Yahya MA, Saleh A, Aleryani H, Al-Zamani Z, Sang Y. Marine Chitosan-Oligosaccharide Ameliorated Plasma Cholesterol in Hypercholesterolemic Hamsters by Modifying the Gut Microflora, Bile Acids, and Short-Chain Fatty Acids. Nutrients 2023; 15:2923. [PMID: 37447249 PMCID: PMC10346597 DOI: 10.3390/nu15132923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
This study evaluated the cholesterol-alleviating effect and underlying mechanisms of chitosan-oligosaccharide (COS) in hypercholesterolemic hamsters. Male hamsters (n = 24) were divided into three groups in a random fashion, and each group was fed one particular diet, namely a non-cholesterol diet (NCD), a high-cholesterol diet (HCD), and an HCD diet substituting 5% of the COS diet for six weeks. Subsequently, alterations in fecal bile acids (BAs), short-chain fatty acids (SCFAs), and gut microflora (GM) were investigated. COS intervention significantly reduced and increased the plasma total cholesterol (TC) and high-density lipoprotein-cholesterol (HDL-C) levels in hypercholesteremic hamsters. Furthermore, Non-HDL-C and total triacylglycerols (TG) levels were also reduced by COS supplementation. Additionally, COS could reduce and increase food intake and fecal SCFAs (acetate), respectively. Moreover, COS had beneficial effects on levels of BAs and GM related to cholesterol metabolism. This study provides novel evidence for the cholesterol-lowering activity of COS.
Collapse
Affiliation(s)
- Abdullah Abdo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (A.A.); (Y.H.); (J.G.)
- Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, Ibb 70270, Yemen; (S.A.-D.); (A.S.); (Z.A.-Z.)
| | - Chengnan Zhang
- School of Food Science and Health, Beijing Technology and Business University, Beijing 100048, China;
| | - Sam Al-Dalali
- Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, Ibb 70270, Yemen; (S.A.-D.); (A.S.); (Z.A.-Z.)
| | - Yakun Hou
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (A.A.); (Y.H.); (J.G.)
| | - Jie Gao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (A.A.); (Y.H.); (J.G.)
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ali Saleh
- Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, Ibb 70270, Yemen; (S.A.-D.); (A.S.); (Z.A.-Z.)
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hamzah Aleryani
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (A.A.); (Y.H.); (J.G.)
- Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, Ibb 70270, Yemen; (S.A.-D.); (A.S.); (Z.A.-Z.)
| | - Zakarya Al-Zamani
- Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, Ibb 70270, Yemen; (S.A.-D.); (A.S.); (Z.A.-Z.)
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (A.A.); (Y.H.); (J.G.)
| |
Collapse
|
17
|
Osuna-Prieto FJ, Xu H, Ortiz-Alvarez L, Di X, Kohler I, Jurado-Fasoli L, Rubio-Lopez J, Plaza-Díaz J, Vilchez-Vargas R, Link A, Gil A, Ruiz JR, Rensen PCN, Martinez-Tellez B. The relative abundance of fecal bacterial species belonging to the Firmicutes and Bacteroidetes phyla is related to plasma levels of bile acids in young adults. Metabolomics 2023; 19:54. [PMID: 37278866 PMCID: PMC10244271 DOI: 10.1007/s11306-023-02016-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/05/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Gut bacteria play a crucial role in the metabolism of bile acids (BA). Whether an association exists between the fecal microbiota composition and circulating BA levels in humans is poorly understood. Here, we investigated the relationship between fecal microbiota diversity and composition with plasma levels of BA in young adults. METHODS Fecal microbiota diversity/composition was analyzed with 16S rRNA sequencing in 80 young adults (74% women; 21.9 ± 2.2 years old). Plasma levels of BA were measured using liquid chromatography-tandem mass spectrometry. PERMANOVA and Spearman correlation analyses were used to investigate the association between fecal microbiota parameters and plasma levels of BA. RESULTS Fecal microbiota beta (P = 0.025) and alpha diversity indexes of evenness (rho = 0.237, P = 0.033), Shannon (rho = 0.313, P = 0.004), and inverse Simpson (rho = 0.283, P = 0.010) were positively associated with plasma levels of the secondary BA glycolithocholic acid (GLCA). The relative abundance of genera belonging to the Firmicutes and Bacteroidetes phyla was positively correlated with plasma levels of GLCA (all rho ≥ 0.225, P ≤ 0.049). However, the relative abundance of species from Firmicutes and Bacteroidetes phyla were negatively correlated with plasma levels of primary and secondary BA (all rho ≤ - 0.220, P ≤ 0.045), except for the relative abundance of Bacteroides vulgatus, Alistipes onderdonkii, and Bacteroides xylanisolvens species (Bacteroidetes phylum) that were positively correlated with the plasma levels of GLCA. CONCLUSIONS The relative abundance of specific fecal bacteria species is associated with plasma levels of BA in young adults. However, further investigations are required to validate whether the composition of the gut microbiota can regulate the plasma concentrations of BA in humans.
Collapse
Affiliation(s)
- Francisco J. Osuna-Prieto
- Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain
| | - Huiwen Xu
- Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Center for Biomedical Research, University of Granada, Granada, Spain
| | - Lourdes Ortiz-Alvarez
- Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Center for Biomedical Research, University of Granada, Granada, Spain
| | - Xinyu Di
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam, Amsterdam, The Netherlands
| | - Lucas Jurado-Fasoli
- Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Physiology. Faculty of Medicine, University of Granada, Av.Conocimiento S/N, 18011 Granada, Spain
| | - Jose Rubio-Lopez
- Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Cirugía General Y del Aparato Digestivo, Complejo Hospitalario de Jaen, Jaén, Spain
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Center for Biomedical Research, University of Granada, Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1 Canada
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Center for Biomedical Research, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs. Granada, Granada, Spain
- CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, Madrid, Spain
| | - Jonatan R. Ruiz
- Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs. Granada, Granada, Spain
- CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, Madrid, Spain
| | - Patrick C. N. Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Borja Martinez-Tellez
- Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, Madrid, Spain
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| |
Collapse
|
18
|
Lu ZN, He HW, Zhang N. Advances in understanding the regulatory mechanism of organic solute transporter α-β. Life Sci 2022; 310:121109. [DOI: 10.1016/j.lfs.2022.121109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
|
19
|
Plaza-Díaz J, Manzano M, Ruiz-Ojeda FJ, Giron MD, Salto R, López-Pedrosa JM, Santos-Fandila A, Garcia-Corcoles MT, Rueda R, Gil Á. Intake of slow-digesting carbohydrates is related to changes in the microbiome and its functional pathways in growing rats with obesity induced by diet. Front Nutr 2022; 9:992682. [PMID: 36532542 PMCID: PMC9748084 DOI: 10.3389/fnut.2022.992682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/02/2022] [Indexed: 08/17/2023] Open
Abstract
INTRODUCTION The main cause of insulin resistance in childhood is obesity, which contributes to future comorbidities as in adults. Although high-calorie diets and lack of exercise contribute to metabolic disease development, food quality rather than the quantity of macronutrients is more important than food density. The purpose of the present study was to examine the effects of changing the quality of carbohydrates from rapidly to slowly digestible carbohydrates on the composition of the gut microbiota and the profiles of the functional pathways in growing rats with obesity due to a high-fat diet (HFD). METHODS During the course of 4 weeks, rats growing on an HFD-containing carbohydrates with different digestive rates were fed either HFD-containing carbohydrates with a rapid digestion rate (OBE group) or HFD-containing carbohydrates with a slow digestion rate (OBE-ISR group). A non-obese group (NOB) was included as a reference, and rats were fed on a rodent standard diet (AIN93G). An analysis of gut microbiota was conducted using 16S rRNA-based metagenomics; a linear mixed-effects model (LMM) was used to determine changes in abundance between baseline and 4 weeks of treatment, and functional pathways were identified. Gut microbiota composition at bacterial diversity and relative abundance, at phylum and genus levels, and functional profiles were analyzed by integrating the Integrated Microbial Genomes (IMG) database. RESULTS The groups showed comparable gut microbiota at baseline. At the end of the treatment, animals from the ISR group exhibited differences at the phylum levels by decreasing the diversity of Fisher's index and Firmicutes (newly named as Bacillota), and increasing the Pielou's evenness and Bacteroidetes (newly named as Bacteroidota); at the genus level by increasing Alistipes, Bifidobacterium, Bacteroides, Butyricimonas, Lachnoclostridium, Flavonifractor, Ruminiclostridium 5, and Faecalibaculum and decreasing Muribaculum, Blautia, and Ruminiclostridium 9. Remarkably, relative abundances of genera Tyzzerella and Angelakisella were higher in the OBE group compared to NOB and OBE-ISR groups. In addition, some microbiota carbohydrate metabolism pathways such as glycolysis, glucuronic acid degradation, pentose phosphate pathway, methanogenesis, and fatty acid biosynthesis exhibited increased activity in the OBE-ISR group after the treatment. Higher levels of acetate and propionate were found in the feces of the ISR group compared with the NOB and OBE groups. CONCLUSION The results of this study demonstrate that replacing rapidly digestible carbohydrates with slowly digestible carbohydrates within an HFD improve the composition of the gut microbiota. Consequently, metabolic disturbances associated with obesity may be prevented.
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Complejo Hospitalario Universitario de Granada, Granada, Spain
| | | | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Complejo Hospitalario Universitario de Granada, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Centre, University of Granada, Granada, Spain
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Munich, Germany
| | - Maria D. Giron
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | | | | | | | | | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Complejo Hospitalario Universitario de Granada, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Centre, University of Granada, Granada, Spain
- CIBER Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
20
|
Shansky Y, Bespyatykh J. Bile Acids: Physiological Activity and Perspectives of Using in Clinical and Laboratory Diagnostics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227830. [PMID: 36431930 PMCID: PMC9692537 DOI: 10.3390/molecules27227830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Bile acids play a significant role in the digestion of nutrients. In addition, bile acids perform a signaling function through their blood-circulating fraction. They regulate the activity of nuclear and membrane receptors, located in many tissues. The gut microbiota is an important factor influencing the effects of bile acids via enzymatic modification. Depending on the rate of healthy and pathogenic microbiota, a number of bile acids may support lipid and glucose homeostasis as well as shift to more toxic compounds participating in many pathological conditions. Thus, bile acids can be possible biomarkers of human pathology. However, the chemical structure of bile acids is similar and their analysis requires sensitive and specific methods of analysis. In this review, we provide information on the chemical structure and the biosynthesis of bile acids, their regulation, and their physiological role. In addition, the review describes the involvement of bile acids in various diseases of the digestive system, the approaches and challenges in the analysis of bile acids, and the prospects of their use in omics technologies.
Collapse
Affiliation(s)
- Yaroslav Shansky
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Correspondence:
| | - Julia Bespyatykh
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Department of Expertise in Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
- Department of Public Health and Health Care, Federal Scientific State Budgetary Institution «N.A. Semashko National Research Institute of Public Health», Vorontsovo Pole Str., 12-1, 105064 Moscow, Russia
| |
Collapse
|
21
|
The altered lipidome of hepatocellular carcinoma. Semin Cancer Biol 2022; 86:445-456. [PMID: 35131480 DOI: 10.1016/j.semcancer.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Alterations in metabolic pathways are a hallmark of cancer. A deeper understanding of the contribution of different metabolites to carcinogenesis is thus vitally important to elucidate mechanisms of tumor initiation and progression to inform therapeutic strategies. Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide and its altered metabolic landscape is beginning to unfold with the advancement of technologies. In particular, characterization of the lipidome of human HCCs has accelerated, and together with biochemical analyses, are revealing recurrent patterns of alterations in glycerophospholipid, sphingolipid, cholesterol and bile acid metabolism. These widespread alterations encompass a myriad of lipid species with numerous roles affecting multiple hallmarks of cancer, including aberrant growth signaling, metastasis, evasion of cell death and immunosuppression. In this review, we summarize the current trends and findings of the altered lipidomic landscape of HCC and discuss their potential biological significance for hepatocarcinogenesis.
Collapse
|
22
|
Ghanem CI, Manautou JE. Role and Regulation of Hepatobiliary ATP-Binding Cassette Transporters during Chemical-Induced Liver Injury. Drug Metab Dispos 2022; 50:1376-1388. [PMID: 35914951 PMCID: PMC9513844 DOI: 10.1124/dmd.121.000450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Severity of drug-induced liver injury (DILI) ranges from mild, asymptomatic, and transient elevations in liver function tests to irreversible liver damage, often needing transplantation. Traditionally, DILI is classified mechanistically as high-frequency intrinsic DILI, commonly dose dependent or DILI that rarely occurs and is idiosyncratic in nature. This latter form is not dose dependent and has a pattern of histopathological manifestation that is not always uniform. Currently, a third type of DILI called indirect hepatotoxicity has been described that is associated with the pharmacological action of the drug. Historically, DILI was primarily linked to drug metabolism events; however, the impact of transporter-mediated rates of drug uptake and excretion has gained greater prominence in DILI research. This review provides a comprehensive view of the major findings from studies examining the contribution of hepatic ATP-binding cassette transporters as key contributors to DILI and how changes in their expression and function influence the development, severity, and overall toxicity outcome. SIGNIFICANCE STATEMENT: Drug-induced liver injury (DILI) continues to be a focal point in drug development research. ATP-binding cassette (ABC) transporters have emerged as important determinants of drug detoxification, disposition, and safety. This review article provides a comprehensive analysis of the literature addressing: (a) the role of hepatic ABC transporters in DILI, (b) the influence of genetic mutations in ABC transporters on DILI, and (c) new areas of research emphasis, such as the influence of the gut microbiota and epigenetic regulation, on ABC transporters.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET) (C.I.G.) and Cátedra de Fisiopatología (C.I.G.), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina; and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (J.E.M.)
| | - Jose E Manautou
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET) (C.I.G.) and Cátedra de Fisiopatología (C.I.G.), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina; and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (J.E.M.)
| |
Collapse
|
23
|
Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther 2022; 237:108238. [PMID: 35792223 DOI: 10.1016/j.pharmthera.2022.108238] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
The diversity, composition, and function of the bacterial community inhabiting the human gastrointestinal tract contributes to host health through its role in producing energy or signaling molecules that regulate metabolic and immunologic functions. Bile acids are potent metabolic and immune signaling molecules synthesized from cholesterol in the liver and then transported to the intestine where they can undergo metabolism by gut bacteria. The combination of host- and microbiota-derived enzymatic activities contribute to the composition of the bile acid pool and thus there can be great diversity in bile acid composition that depends in part on the differences in the gut bacteria species. Bile acids can profoundly impact host metabolic and immunological functions by activating different bile acid receptors to regulate signaling pathways that control a broad range of complex symbiotic metabolic networks, including glucose, lipid, steroid and xenobiotic metabolism, and modulation of energy homeostasis. Disruption of bile acid signaling due to perturbation of the gut microbiota or dysregulation of the gut microbiota-host interaction is associated with the pathogenesis and progression of metabolic disorders. The metabolic and immunological roles of bile acids in human health have led to novel therapeutic approaches to manipulate the bile acid pool size, composition, and function by targeting one or multiple components of the microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
| | - John Y L Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
24
|
Effect of Weaning at 21 Days of Age on the Content of Bile Acids in Chyme of Cecum. Animals (Basel) 2022; 12:ani12162138. [PMID: 36009728 PMCID: PMC9405307 DOI: 10.3390/ani12162138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/25/2022] Open
Abstract
This experiment was conducted to investigate the effects of weaning at 21 days of age on cecal chyme bile acids (BAs) in piglets. According to a 2 × 3 factorial design, the main factors were lactation and weaning, and the other factor was 22, 24, and 28 days of age, respectively. Piglets were randomly divided into two groups of eighteen piglets each and six piglets were selected for slaughter at 22, 24, and 28 days of age, respectively, to determine the content of different types of Bas in the intestinal lumen of the cecum. Results: (1) There was a significant interaction between weaning and age on intestinal primary Bas hyocholic acid (HCA) and chenodeoxycholic acid (CDCA) (p < 0.05), and weaning significantly increased the content of primary BAs in piglets’ intestines, which showed a trend of decreasing and then increasing with the increase in piglets’ age. (2) There was a significant interaction between weaning and age on intestinal secondary BAs deoxycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) (p < 0.05). DCA and LCA in piglets’ intestines tended to decrease with increasing age, while UDCA showed a trend of decreasing and then increasing with increasing piglets’ age; weaning significantly increased the content of secondary BAs in piglets’ intestines. (3) There was a significant interaction between weaning and age on intestinal glycine chenodeoxycholic acid (GCDCA), taurochenodeoxycholic acid (TCDCA), and taurolithocholic acid (TLCA), but not on taurohyocholic acid (THCA), taurohyodeoxycholic acid (THDCA), and taurineursodeoxycholic acid (TUDCA) (p > 0.05). Weaning significantly increased the contents of GCDCA, TCDCA, TLCA, THDCA, and TUDCA in the intestinal tract (p < 0.05), while THCA content was not significant. In conclusion, weaning can increase the BAs content in the cecum of piglets, and there is an interaction between group and weaning age on BAs content.
Collapse
|
25
|
Kang L, Li D, Jiang X, Zhang Y, Pan M, Hu Y, Si L, Zhang Y, Huang J. Hepatotoxicity of the Major Anthraquinones Derived From Polygoni Multiflori Radix Based on Bile Acid Homeostasis. Front Pharmacol 2022; 13:878817. [PMID: 35662717 PMCID: PMC9157432 DOI: 10.3389/fphar.2022.878817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/15/2022] [Indexed: 01/22/2023] Open
Abstract
Polygoni Multiflori Radix (PMR), the dried root of Polygonum Multiflorum Thunb., has been widely used as traditional Chinese medicines in clinical practice for centuries. However, the frequently reported hepatotoxic adverse effects hindered its safe use in clinical practice. This study aims to explore the hepatotoxic effect of PMR extract and the major PMR derived anthraquinones including emodin, chrysophanol, and physcion in mice and the underlying mechanisms based on bile acid homeostasis. After consecutively treating the ICR mice with PMR extract or individual anthraquinones for 14 or 28 days, the liver function was evaluated by measuring serum enzymes levels and liver histological examination. The compositions of bile acids (BAs) in the bile, liver, and plasma were measured by LC-MS/MS, followed by Principal Component Analysis (PCA) and Partial Least Squares Discriminate Analysis (PLS-DA). Additionally, gene and protein expressions of BA efflux transporters, bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2), were examined to investigate the underlying mechanisms. After 14-day administration, mild inflammatory cell infiltration in the liver was observed in the physcion- and PMR-treated groups, while it was found in all the treated groups after 28-day treatment. Physcion and PMR extract induced hepatic BA accumulation after 14-day treatment, but such accumulation was attenuated after 28-day treatment. Based on the PLS-DA results, physcion- and PMR-treated groups were partially overlapping and both groups showed a clear separation with the control group in the mouse liver. The expression of Bsep and Mrp2 in the physcion- and PMR-treated mouse liver was decreased after 14-day treatment, while the downregulation was abrogated after 28-day treatment. Our study, for the first time, demonstrated that both PMR extract and tested anthraquinones could alter the disposition of either the total or individual BAs in the mouse bile, liver, and plasma via regulating the BA efflux transporters and induce liver injury, which provide a theoretical basis for the quality control and safe use of PMR in practice.
Collapse
Affiliation(s)
- Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan, China.,School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan, China
| | - Dan Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Xin Jiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhang
- College of Pharmacy, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, China
| | - Minhong Pan
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Yixin Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luqin Si
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjun Zhang
- The Third Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, China
| | - Jiangeng Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Glucosylceramide Changes Bacterial Metabolism and Increases Gram-Positive Bacteria through Tolerance to Secondary Bile Acids In Vitro. Int J Mol Sci 2022; 23:ijms23105300. [PMID: 35628110 PMCID: PMC9141989 DOI: 10.3390/ijms23105300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Glucosylceramide is present in many foods, such as crops and fermented foods. Most glucosylceramides are not degraded or absorbed in the small intestine and pass through the large intestine. Glucosylceramide exerts versatile effects on colon tumorigenesis, skin moisture, cholesterol metabolism and improvement of intestinal microbes in vivo. However, the mechanism of action has not yet been fully elucidated. To gain insight into the effect of glucosylceramide on intestinal microbes, glucosylceramide was anaerobically incubated with the dominant intestinal microbe, Blautia coccoides, and model intestinal microbes. The metabolites of the cultured broth supplemented with glucosylceramide were significantly different from those of broth not treated with glucosylceramide. The number of Gram-positive bacteria was significantly increased upon the addition of glucosylceramide compared to that in the control. Glucosylceramide endows intestinal microbes with tolerance to secondary bile acid. These results first demonstrated that glucosylceramide plays a role in the modification of intestinal microbes.
Collapse
|
27
|
The Multi-Omics Analysis Revealed a Metabolic Regulatory System of Cecum in Rabbit with Diarrhea. Animals (Basel) 2022; 12:ani12091194. [PMID: 35565618 PMCID: PMC9099945 DOI: 10.3390/ani12091194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/05/2023] Open
Abstract
With the comprehensive prohibition of antibiotics in the feed industry in China, the incidence of diarrhea in rabbits increased, such as loss of appetite, vomiting, and excretion of atheromatous feces. In order to explore the pathological and the molecular mechanisms of the diarrhea in the rabbitry fed with antibiotic-free diet, we used microbial metagenomics, transcriptome, and non-targeted metabolomics sequencing. The results showed that the Firmicutes level was significantly decreased (p < 0.001) and the Proteobacteria level was significantly increased (p < 0.05). The functional enrichment of cecum revealed that most differentially expressed genes (DEGs) were expressed in immune, inflammatory, and metabolic processes. The enrichment of the cecal fecal metabolites focused on the bile secretion, antifolate resistance, and tryptophan metabolism pathways, which are mainly associated with inflammation. The results of correlation analysis showed that Fournierella was positively correlated with myricetin, ursolic acid, and furtherly might cause bile secretion and tryptophan metabolism disorder, aggravate intestinal inflammation, change intestinal permeability, and reduce host immunity, leading to diarrhea in rabbits. This study provides a theoretical basis for illustrating the reason for diarrhea and developing new feeds for the health of rabbits.
Collapse
|
28
|
Durník R, Šindlerová L, Babica P, Jurček O. Bile Acids Transporters of Enterohepatic Circulation for Targeted Drug Delivery. Molecules 2022; 27:molecules27092961. [PMID: 35566302 PMCID: PMC9103499 DOI: 10.3390/molecules27092961] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Bile acids (BAs) are important steroidal molecules with a rapidly growing span of applications across a variety of fields such as supramolecular chemistry, pharmacy, and biomedicine. This work provides a systematic review on their transport processes within the enterohepatic circulation and related processes. The focus is laid on the description of specific or less-specific BA transport proteins and their localization. Initially, the reader is provided with essential information about BAs′ properties, their systemic flow, metabolism, and functions. Later, the transport processes are described in detail and schematically illustrated, moving step by step from the liver via bile ducts to the gallbladder, small intestine, and colon; this description is accompanied by descriptions of major proteins known to be involved in BA transport. Spillage of BAs into systemic circulation and urine excretion are also discussed. Finally, the review also points out some of the less-studied areas of the enterohepatic circulation, which can be crucial for the development of BA-related drugs, prodrugs, and drug carrier systems.
Collapse
Affiliation(s)
- Robin Durník
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Lenka Šindlerová
- Department of Biophysics of Immune System, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic;
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic;
| | - Ondřej Jurček
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
29
|
Zhang H, Chen Y, Wang Z, Xie G, Liu M, Yuan B, Chai H, Wang W, Cheng P. Implications of Gut Microbiota in Neurodegenerative Diseases. Front Immunol 2022; 13:785644. [PMID: 35237258 PMCID: PMC8882587 DOI: 10.3389/fimmu.2022.785644] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
The morbidity associated with neurodegenerative diseases (NDs) is increasing, posing a threat to the mental and physical quality of life of humans. The crucial effect of microbiota on brain physiological processes is mediated through a bidirectional interaction, termed as the gut–brain axis (GBA), which is being investigated in studies. Many clinical and laboratory trials have indicated the importance of microbiota in the development of NDs via various microbial molecules that transmit from the gut to the brain across the GBA or nervous system. In this review, we summarize the implications of gut microbiota in ND, which will be beneficial for understanding the etiology and progression of NDs that may in turn help in developing ND interventions and clinical treatments for these diseases.
Collapse
Affiliation(s)
- Haoming Zhang
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yijia Chen
- School of Life Science, Fudan University, Shanghai, China
| | - Zifan Wang
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gaijie Xie
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mingming Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Boyu Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongxia Chai
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Wang
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Wei Wang, ; Ping Cheng,
| | - Ping Cheng
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- *Correspondence: Wei Wang, ; Ping Cheng,
| |
Collapse
|
30
|
Peng SS, Li Y, Chen Q, Hu Q, He Y, Che L, Jiang PP. Intestinal and Mucosal Microbiome Response to Oral Challenge of Enterotoxigenic Escherichia coli in Weaned Pigs. Pathogens 2022; 11:pathogens11020160. [PMID: 35215105 PMCID: PMC8879466 DOI: 10.3390/pathogens11020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/10/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is closely associated with diarrhoea in children in resource-limited countries. This study aims to investigate the change of the mucosal microbiome and protein expression in the ileum induced by E. coli K88 (ETEC) using pigs as a model. Seven weaned male pigs were orally given ETEC (1 × 109 CFU, n = 7), and the other seven received saline (CON, n = 7). Ileal tissues were obtained 48 hours after the ETEC challenge for both proteomic and mucosal microbiome analyses. Nine proteins were found with altered abundance between the two groups, including a decrease in FABP1 and FABP6, involved in bile acid circulation. The TLR-9 mediated pathway was also affected showing increased transcription of genes SIGIRR and MyD88. Correlations between the ileal proteins and mucosal bacterial taxa found included a positive correlation between Lactobacilllus and PPP3CA (r = 0.9, p < 0.001) and a negative correlation between Prevotella with CTNND1 (r = −0.7, p < 0.01). In conclusion, ETEC infection caused inflammation and impaired the circulation of bile acids and the mucosal microbiome may affect the expression of intestinal proteins. Further studies are needed to explain the exact roles of these affected processes in the pathogenesis of ETEC-triggered diarrhoea.
Collapse
Affiliation(s)
- Shan-Shan Peng
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
| | - Yingjie Li
- Key Laboratory for Animal Disease Resistance and Nutrition of the Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Q.C.); (Y.H.)
| | - Qiuhong Chen
- Key Laboratory for Animal Disease Resistance and Nutrition of the Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Q.C.); (Y.H.)
| | - Qi Hu
- The Neomics Institute, Shenzhen 518122, China;
| | - Ying He
- Key Laboratory for Animal Disease Resistance and Nutrition of the Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Q.C.); (Y.H.)
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance and Nutrition of the Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Q.C.); (Y.H.)
- Correspondence: (L.C.); (P.-P.J.)
| | - Ping-Ping Jiang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
- Correspondence: (L.C.); (P.-P.J.)
| |
Collapse
|
31
|
Microbiomes in the Intestine of Developing Pigs: Implications for Nutrition and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:161-176. [PMID: 34807442 DOI: 10.1007/978-3-030-85686-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The past decade has seen an expansion of studies on the role of gut microbiome in piglet nutrition and health. With the help of culture-independent sequencing techniques, the colonization of gut microbiota and their implication in physiology are being investigated in depth. Immediately after birth, the microbes begin to colonize following an age-dependent trajectory, which can be modified by maternal environment, diet, antibiotics, and fecal microbiota transplantation. The early-life gut microbiome is relatively simple but enriched with huge metabolic potential to utilize milk oligosaccharides and affect the epithelial function. After weaning, the gut microbiome develops towards a gradual adaptation to the introduction of solid food, with an enhanced ability to metabolize amino acids, fibers, and bile acids. Here we summarize the compositional and functional difference of the gut microbiome in the keystone developing phases, with a specific focus on the use of different nutritional approaches based on the phase-specific gut microbiome.
Collapse
|
32
|
Hu T, Wang H. Hepatic Bile Acid Transporters in Drug‐Induced Cholestasis. TRANSPORTERS AND DRUG‐METABOLIZING ENZYMES IN DRUG TOXICITY 2021:307-337. [DOI: 10.1002/9781119171003.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Onizuka S, Tanaka M, Mishima R, Nakayama J. Cultivation of Spore-Forming Gut Microbes Using a Combination of Bile Acids and Amino Acids. Microorganisms 2021; 9:1651. [PMID: 34442730 PMCID: PMC8401671 DOI: 10.3390/microorganisms9081651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
Spores of certain species belonging to Firmicutes are efficiently germinated by nutrient germinators, such as amino acids, in addition to bile acid. We attempted to culture difficult-to-culture or yet-to-be cultured spore-forming intestinal bacteria, using a combination of bile acids and amino acids. The combination increased the number of colonies that formed on agar medium plated with ethanol-treated feces. The operational taxonomic units of these colonized bacteria were classified into two types. One type was colonized only by the bile acid (BA) mixture and the other type was colonized using amino acids, in addition to the BA mixture. The latter contained 13 species, in addition to 14 species of the former type, which mostly corresponds to anaerobic difficult-to-culture Clostridiales species, including several new species candidates. The use of a combination of BAs and amino acids effectively increased the culturability of spore-forming intestinal bacteria.
Collapse
Affiliation(s)
| | | | | | - Jiro Nakayama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan; (S.O.); (M.T.); (R.M.)
| |
Collapse
|
34
|
Yuan C, Yuan M, Chen M, Ouyang J, Tan W, Dai F, Yang D, Liu S, Zheng Y, Zhou C, Cheng Y. Prognostic Implication of a Novel Metabolism-Related Gene Signature in Hepatocellular Carcinoma. Front Oncol 2021; 11:666199. [PMID: 34150630 PMCID: PMC8213025 DOI: 10.3389/fonc.2021.666199] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the main causes of cancer-associated deaths globally, accounts for 90% of primary liver cancers. However, further studies are needed to confirm the metabolism-related gene signature related to the prognosis of patients with HCC. Methods Using the “limma” R package and univariate Cox analysis, combined with LASSO regression analysis, a metabolism-related gene signature was established. The relationship between the gene signature and overall survival (OS) of HCC patients was analyzed. RT-qPCR was used to evaluate the expression of metabolism-related genes in clinical samples. GSEA and ssGSEA algorithms were used to evaluate differences in metabolism and immune status, respectively. Simultaneously, data downloaded from ICGC were used as an external verification set. Results From a total of 1,382 metabolism-related genes, a novel six-gene signature (G6PD, AKR1B15, HMMR, CSPG5, ELOVL3, FABP6) was constructed based on data from TCGA. Patients were divided into two risk groups based on risk scores calculated for these six genes. Survival analysis showed a significant correlation between high-risk patients and poor prognosis. ROC analysis demonstrated that the gene signature had good predictive capability, and the mRNA expression levels of the six genes were upregulated in HCC tissues than those in adjacent normal liver tissues. Independent prognosis analysis confirmed that the risk score and tumor grade were independent risk factors for HCC. Furthermore, a nomogram of the risk score combined with tumor stage was constructed. The calibration graph results demonstrated that the OS probability predicted by the nomogram had almost no deviation from the actual OS probability, especially for 3-year OS. Both the C-index and DCA curve indicated that the nomogram provides higher reliability than the tumor stage and risk scores. Moreover, the metabolic and immune infiltration statuses of the two risk groups were significantly different. In the high-risk group, the expression levels of immune checkpoints, TGF-β, and C-ECM genes, whose functions are related to immune escape and immunotherapy failure, were also upregulated. Conclusions In summary, we developed a novel metabolism-related gene signature to provide more powerful prognostic evaluation information with potential ability to predict the immunotherapy efficiency and guide early treatment for HCC.
Collapse
Affiliation(s)
- Chaoyan Yuan
- Department of Gynecology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingqian Chen
- Department of Gynecology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Jinhua Ouyang
- Department of Gynecology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenliang Zhou
- Department of Intensive Care Unit, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Yan Q, Zheng W, Wang B, Ye B, Luo H, Yang X, Zhang P, Wang X. A prognostic model based on seven immune-related genes predicts the overall survival of patients with hepatocellular carcinoma. BioData Min 2021; 14:29. [PMID: 33962640 PMCID: PMC8106157 DOI: 10.1186/s13040-021-00261-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a disease with a high incidence and a poor prognosis. Growing amounts of evidence have shown that the immune system plays a critical role in the biological processes of HCC such as progression, recurrence, and metastasis, and some have discussed using it as a weapon against a variety of cancers. However, the impact of immune-related genes (IRGs) on the prognosis of HCC remains unclear. METHODS Based on The Cancer Gene Atlas (TCGA) and Immunology Database and Analysis Portal (ImmPort) datasets, we integrated the ribonucleic acid (RNA) sequencing profiles of 424 HCC patients with IRGs to calculate immune-related differentially expressed genes (DEGs). Survival analysis was used to establish a prognostic model of survival- and immune-related DEGs. Based on genomic and clinicopathological data, we constructed a nomogram to predict the prognosis of HCC patients. Gene set enrichment analysis further clarified the signalling pathways of the high-risk and low-risk groups constructed based on the IRGs in HCC. Next, we evaluated the correlation between the risk score and the infiltration of immune cells, and finally, we validated the prognostic performance of this model in the GSE14520 dataset. RESULTS A total of 100 immune-related DEGs were significantly associated with the clinical outcomes of patients with HCC. We performed univariate and multivariate least absolute shrinkage and selection operator (Lasso) regression analyses on these genes to construct a prognostic model of seven IRGs (Fatty Acid Binding Protein 6 (FABP6), Microtubule-Associated Protein Tau (MAPT), Baculoviral IAP Repeat Containing 5 (BIRC5), Plexin-A1 (PLXNA1), Secreted Phosphoprotein 1 (SPP1), Stanniocalcin 2 (STC2) and Chondroitin Sulfate Proteoglycan 5 (CSPG5)), which showed better prognostic performance than the tumour/node/metastasis (TNM) staging system. Moreover, we constructed a regulatory network related to transcription factors (TFs) that further unravelled the regulatory mechanisms of these genes. According to the median value of the risk score, the entire TCGA cohort was divided into high-risk and low-risk groups, and the low-risk group had a better overall survival (OS) rate. To predict the OS rate of HCC, we established a gene- and clinical factor-related nomogram. The receiver operating characteristic (ROC) curve, concordance index (C-index) and calibration curve showed that this model had moderate accuracy. The correlation analysis between the risk score and the infiltration of six common types of immune cells showed that the model could reflect the state of the immune microenvironment in HCC tumours. CONCLUSION Our IRG prognostic model was shown to have value in the monitoring, treatment, and prognostic assessment of HCC patients and could be used as a survival prediction tool in the near future.
Collapse
Affiliation(s)
- Qian Yan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjiang Zheng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Boqing Wang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baoqian Ye
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiyan Luo
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinqian Yang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiongwen Wang
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
36
|
Abdulaziz Abbod Abdo A, Zhang C, Lin Y, Liang X, Kaddour B, Wu Q, Li X, Fan G, Yang R, Teng C, Xu Y, Li W. Xylo-oligosaccharides ameliorate high cholesterol diet induced hypercholesterolemia and modulate sterol excretion and gut microbiota in hamsters. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
37
|
Habib SM, Zwicker BL, Wykes L, Agellon LB. Sexually dimorphic response of mice to the Western-style diet caused by deficiency of fatty acid binding protein 6 (Fabp6). Physiol Rep 2021; 9:e14733. [PMID: 33527741 PMCID: PMC7851434 DOI: 10.14814/phy2.14733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022] Open
Abstract
Bile acids are natural detergents that aid in the absorption of dietary lipids. Fatty acid binding protein 6 (Fabp6) is a component of the bile acid recovery system that operates in the small intestine. The aim of this study was to determine if Fabp6 deficiency causes dietary fat malabsorption. Wild-type and Fabp6-deficient mice were fed a Western-style diet (WSD) or a reference low-fat diet (LFD) for 10 weeks. The body weight gain, bile acid excretion, fat excretion, energy metabolism, and major gut microbial phyla of the mice were assessed at the end of the controlled diet period. Fabp6-/- mice exhibited enhanced excretion of both bile acids and fat on the WSD but not on the LFD diet. Paradoxically, male Fabp6-/- mice, but not female Fabp6-/- mice, had greater adiposity despite increased fat excretion. Analysis of energy intake and of expenditure by indirect calorimetry revealed sex differences in physical activity level and respiratory quotient, but these did not account for the enhanced adiposity displayed by male Fabp6-/- mice. Analysis of stool DNA showed sex-specific changes in the abundance of major phyla of bacteria in response to Fabp6 deficiency and WSD feeding. The results obtained indicate that the malabsorption of bile acids that occurs in Fabp6-/- mice is associated with dietary fat malabsorption on the high-fat diet but not on the low-fat diet. The WSD induced a sexually dimorphic increase in adiposity displayed by Fabp6-/- mice and sexually distinct pattern of change in gut microbiota composition.
Collapse
Affiliation(s)
- Salam M. Habib
- School of Human NutritionMcGill UniversityMontrealQCCanada
| | - Brittnee L. Zwicker
- School of Human NutritionMcGill UniversityMontrealQCCanada
- Present address:
McGill University Health CentreMontrealQCH4A 3J1Canada
| | - Linda Wykes
- School of Human NutritionMcGill UniversityMontrealQCCanada
| | | |
Collapse
|
38
|
Grant SM, DeMorrow S. Bile Acid Signaling in Neurodegenerative and Neurological Disorders. Int J Mol Sci 2020; 21:E5982. [PMID: 32825239 PMCID: PMC7503576 DOI: 10.3390/ijms21175982] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Bile acids are commonly known as digestive agents for lipids. The mechanisms of bile acids in the gastrointestinal track during normal physiological conditions as well as hepatic and cholestatic diseases have been well studied. Bile acids additionally serve as ligands for signaling molecules such as nuclear receptor Farnesoid X receptor and membrane-bound receptors, Takeda G-protein-coupled bile acid receptor and sphingosine-1-phosphate receptor 2. Recent studies have shown that bile acid signaling may also have a prevalent role in the central nervous system. Some bile acids, such as tauroursodeoxycholic acid and ursodeoxycholic acid, have shown neuroprotective potential in experimental animal models and clinical studies of many neurological conditions. Alterations in bile acid metabolism have been discovered as potential biomarkers for prognosis tools as well as the expression of various bile acid receptors in multiple neurological ailments. This review explores the findings of recent studies highlighting bile acid-mediated therapies and bile acid-mediated signaling and the roles they play in neurodegenerative and neurological diseases.
Collapse
Affiliation(s)
- Stephanie M. Grant
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sharon DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Research Division, Central Texas Veterans Healthcare System, Austin, TX 78712, USA
| |
Collapse
|
39
|
Wiciński M, Gębalski J, Gołębiewski J, Malinowski B. Probiotics for the Treatment of Overweight and Obesity in Humans-A Review of Clinical Trials. Microorganisms 2020; 8:microorganisms8081148. [PMID: 32751306 PMCID: PMC7465252 DOI: 10.3390/microorganisms8081148] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
The World Health Organization (WHO) reports that 400 million people are obese, and over 1.6 billion adults are overweight worldwide. Annually, over 2.8 million people die from obesity-related diseases. The incidence of overweight and obesity is steadily increasing, and this phenomenon is referred to as a 21st-century pandemic. The main reason for this phenomenon is an easy access to high-energy, processed foods, and a low-activity lifestyle. These changes lead to an energy imbalance and, as a consequence, to the development of body fat. Weight gain contributes to the development of heart diseases, skeletal system disorders, metabolic disorders such as diabetes, and certain types of cancer. In recent years, there have been many works linking obesity with intestinal microbiota. Experiments on germ-free animals (GFs) have provided much evidence for the contribution of bacteria to obesity. The composition of the gut microbiota (GM) changes in obese people. These changes affect the degree of energy obtained from food, the composition and secretory functions of adipose tissue, carbohydrate, and lipid metabolism in the liver, and the activity of centers in the brain. The study aimed to present the current state of knowledge about the role of intestinal microbiota in the development of obesity and the impact of supplementation with probiotic bacteria on the health of overweight and obese patients.
Collapse
|
40
|
Bile acid transporter-mediated oral drug delivery. J Control Release 2020; 327:100-116. [PMID: 32711025 DOI: 10.1016/j.jconrel.2020.07.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Bile acids are synthesized in the liver, stored in the gallbladder, and secreted into the duodenum at meals. Apical sodium-dependent bile acid transporter (ASBT), an ileal Na+-dependent transporter, plays the leading role of bile acid absorption into enterocytes, where bile acids are delivered to basolateral side by ileal bile acid binding protein (IBABP) and then released by organic solute transporter OSTα/β. The absorbed bile acids are delivered to the liver via portal vein. In this process called "enterohepatic recycling", only 5% of the bile acid pool (~3 g in human) is excreted in feces, indicating the large recycling capacity and high transport efficacy of ASBT-mediated absorption. Therefore, bile acid transporter-mediated oral drug delivery has been regarded as a feasible and potential strategy to improve the oral bioavailability. This review introduces the key factors in enterohepatic recycling, especially the mechanism of bile acid uptake by ASBT, and the development of bile acid-based oral drug delivery for ASBT-targeting, including bile acid-based prodrugs, bile acid/drug electrostatic complexation and bile acid-containing nanocarriers. Furthermore, the specific transport pathways of bile acid in enterocytes are described and the recent finding of lymphatic delivery of bile acid-containing nanocarriers is discussed.
Collapse
|
41
|
Meng Q, Luo Z, Cao C, Sun S, Ma Q, Li Z, Shi B, Shan A. Weaning Alters Intestinal Gene Expression Involved in Nutrient Metabolism by Shaping Gut Microbiota in Pigs. Front Microbiol 2020; 11:694. [PMID: 32362884 PMCID: PMC7181064 DOI: 10.3389/fmicb.2020.00694] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Weaning transition usually impairs intestinal architecture and functions and results in gut-associated disorders in pigs. Understanding the changes in intestinal transcriptome and gut microbiota during weaning transition is important for elucidating the underlying mechanism of weaning stress. In the present study, we performed RNA-seq to determine the changes in intestinal transcriptome and 16S rRNA sequencing to measure the gut microbiota changes in the weaning transition. Transcriptome results indicated that weaning transition altered intestinal gene expression involved in nutrient transport and metabolism. Regarding fatty metabolism, fatty acid-binding protein 1 (FABP1), acyl-CoA dehydrogenase (ACADSB), and carnitine palmitoyltransferase 2 (CPT2) expression in the intestine was decreased by weaning. Genes related to bile acid metabolism were increased by weaning, including FABP6, farnesoid X receptor (FXR or NR1H4) and organic solute transporter-α (SLC51A). In addition, genes associated with oxidative stress were altered by weaning transition, including decreased catalase (CAT) and lactate dehydrogenase (LDHA) and increased glutathione peroxidase 2 (GPX2) and superoxide dismutase 3 (SOD3). Results of microbiota composition showed that the Firmicutes abundance and Firmicutes/Bacteroidetes ratio were increased and that the Proteobacteria abundance in the fecal microbiota was decreased by the weaning process; during the weaning transition, the Bacteroides and Fusobacterium abundances decreased markedly, and these bacteria nearly disappeared, while the Prevotella abundance showed a marked increase. Moreover, the levels of the microbial metabolites butyrate and acetate increased with changes in gut microbiota composition. In addition, predictive metagenome by PICRUSt analysis showed that the pathways related to D-glutamine and D-glutamate metabolism, citrate cycle (TCA cycle), peroxisome proliferators-activated receptor (PPAR) signaling, alpha-linolenic acid metabolism were decreased and the pathway related to retinol metabolism was increased in the gut microbiota of piglets during weaning transition. Our results showed that early weaning alters intestinal gene expression involved in nutrient metabolism, which may be due to the changes in microbiota composition.
Collapse
Affiliation(s)
- Qingwei Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Zhang Luo
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chunyu Cao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Shishuai Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Qingquan Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Zhongyu Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
42
|
Garzel B, Zhang L, Huang SM, Wang H. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Curr Drug Metab 2020; 20:621-632. [PMID: 31288715 DOI: 10.2174/1389200220666190709170256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drug-induced Liver Injury (DILI) has received increasing attention over the past decades, as it represents the leading cause of drug failure and attrition. One of the most prevalent and severe forms of DILI involves the toxic accumulation of bile acids in the liver, known as Drug-induced Cholestasis (DIC). Traditionally, DIC is studied by exploring the inhibition of hepatic transporters such as Bile Salt Export Pump (BSEP) and multidrug resistance-associated proteins, predominantly through vesicular transport assays. Although this approach has identified numerous drugs that alter bile flow, many DIC drugs do not demonstrate prototypical transporter inhibition, but rather are associated with alternative mechanisms. METHODS We undertook a focused literature search on DIC and biliary transporters and analyzed peer-reviewed publications over the past two decades or so. RESULTS We have summarized the current perception regarding DIC, biliary transporters, and transcriptional regulation of bile acid homeostasis. A growing body of literature aimed to identify alternative mechanisms in the development of DIC has been evaluated. This review also highlights current in vitro approaches used for prediction of DIC. CONCLUSION Efforts have continued to focus on BSEP, as it is the primary route for hepatic biliary clearance. In addition to inhibition, drug-induced BSEP repression or the combination of these two has emerged as important alternative mechanisms leading to DIC. Furthermore, there has been an evolution in the approaches to studying DIC including 3D cell cultures and computational modeling.
Collapse
Affiliation(s)
- Brandy Garzel
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Becton Dickinson, 54 Loveton Circle, Sparks, MD 21152, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
43
|
Duan Y, Zhang F, Yuan W, Wei Y, Wei M, Zhou Y, Yang Y, Chang Y, Wu X. Hepatic cholesterol accumulation ascribed to the activation of ileum Fxr-Fgf15 pathway inhibiting hepatic Cyp7a1 in high-fat diet-induced obesity rats. Life Sci 2019; 232:116638. [DOI: 10.1016/j.lfs.2019.116638] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022]
|
44
|
Different modes of barrel opening suggest a complex pathway of ligand binding in human gastrotropin. PLoS One 2019; 14:e0216142. [PMID: 31075121 PMCID: PMC6510414 DOI: 10.1371/journal.pone.0216142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/15/2019] [Indexed: 11/19/2022] Open
Abstract
Gastrotropin, the intracellular carrier of bile salts in the small intestine, binds two ligand molecules simultaneously in its internal cavity. The molecular rearrangements required for ligand entry are not yet fully clear. To improve our understanding of the binding process we combined molecular dynamics simulations with previously published structural and dynamic NMR parameters. The resulting ensembles reveal two distinct modes of barrel opening with one corresponding to the transition between the apo and holo states, whereas the other affecting different protein regions in both ligation states. Comparison of the calculated structures with NMR-derived parameters reporting on slow conformational exchange processes suggests that the protein undergoes partial unfolding along a path related to the second mode of the identified barrel opening motion.
Collapse
|
45
|
Abstract
Bile acids have important roles in the regulation of lipid, glucose and energy metabolism. Metabolic diseases linked to obesity, including type 2 diabetes mellitus and non-alcoholic fatty liver disease, are associated with dysregulation of bile acid homeostasis. Here, the basic chemistry and regulation of bile acids as well as their metabolic effects will be reviewed. Changes in circulating bile acids associated with obesity and related diseases will be reviewed. Finally, pharmaceutical manipulation of bile acid homeostasis as therapy for metabolic diseases will be outlined.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| |
Collapse
|
46
|
Srinivasan K, Buys EM. Insights into the role of bacteria in vitamin A biosynthesis: Future research opportunities. Crit Rev Food Sci Nutr 2019; 59:3211-3226. [PMID: 30638045 DOI: 10.1080/10408398.2018.1546670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significant efforts have been made to address the hidden hunger challenges due to iron, zinc, iodine, and vitamin A since the beginning of the 21st century. Prioritizing the vitamin A deficiency (VAD) disorders, many countries are looking for viable alternative strategies such as biofortification. One of the leading causes of VAD is the poor bioconversion of β-carotene into retinoids. This review is focused on the opportunities of bacterial biosynthesis of retinoids, in particular, through the gut microbiota. The proposed hypothesis starts with the premise that an animal can able to store and timely convert carotenoids into retinoids in the liver and intestinal tissues. This theory is experimental with many scientific insights. The syntrophic metabolism, potential crosstalk of bile acids, lipocalins and lipopolysaccharides of gut microbiota are reported to contribute significantly to the retinoid biosynthesis. The gut bacteria respond to these kinds of factors by genetic restructuring driven mainly by events like horizontal gene transfer. A phylogenetic analysis of β-carotene 15, 15'-mono (di) oxygenase enzymes among a selected group of prokaryotes and eukaryotes was carried out to validate the hypotheses. Shedding light on the probiotic strategies through non-genetically modified organism such as gut bacteria capable of synthesizing vitamin A would address the VAD disorders.
Collapse
Affiliation(s)
- K Srinivasan
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|
47
|
Ðanić M, Stanimirov B, Pavlović N, Goločorbin-Kon S, Al-Salami H, Stankov K, Mikov M. Pharmacological Applications of Bile Acids and Their Derivatives in the Treatment of Metabolic Syndrome. Front Pharmacol 2018; 9:1382. [PMID: 30559664 PMCID: PMC6287190 DOI: 10.3389/fphar.2018.01382] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Apart from well-known functions of bile acids in digestion and solubilization of lipophilic nutrients and drugs in the small intestine, the emerging evidence from the past two decades identified the role of bile acids as signaling, endocrine molecules that regulate the glucose, lipid, and energy metabolism through complex and intertwined pathways that are largely mediated by activation of nuclear receptor farnesoid X receptor (FXR) and cell surface G protein-coupled receptor 1, TGR5 (also known as GPBAR1). Interactions of bile acids with the gut microbiota that result in the altered composition of circulating and intestinal bile acids pool, gut microbiota composition and modified signaling pathways, are further extending the complexity of biological functions of these steroid derivatives. Thus, bile acids signaling pathways have become attractive targets for the treatment of various metabolic diseases and metabolic syndrome opening the new potential avenue in their treatment. In addition, there is a significant effort to unveil some specific properties of bile acids relevant to their intrinsic potency and selectivity for particular receptors and to design novel modulators of these receptors with improved pharmacokinetic and pharmacodynamic profiles. This resulted in synthesis of few semi-synthetic bile acids derivatives such as 6α-ethyl-chenodeoxycholic acid (obeticholic acid, OCA), norursodeoxycholic acid (norUDCA), and 12-monoketocholic acid (12-MKC) that are proven to have positive effect in metabolic and hepato-biliary disorders. This review presents an overview of the current knowledge related to bile acids implications in glucose, lipid and energy metabolism, as well as a potential application of bile acids in metabolic syndrome treatment with future perspectives.
Collapse
Affiliation(s)
- Maja Ðanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Biosciences Research Precinct, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
48
|
Takae K, Nakata M, Watanabe T, Sasada H, Fujii H, Tomioka I. Evidence for the involvement of FXR signaling in ovarian granulosa cell function. J Reprod Dev 2018; 65:47-55. [PMID: 30449821 PMCID: PMC6379767 DOI: 10.1262/jrd.2018-054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Farnesoid X receptor (FXR) is mainly present in enterohepatic tissues and regulates cholesterol, lipid, and glucose homeostasis in coordination with target genes such as
SHP and FABP6. Although FXR has been revealed to be expressed in reproductive tissues, FXR function and expression levels in the ovary remain unknown. In
this study, we investigated FXR expression in mouse ovaries and its target genes in ovarian granulosa cells. In situ hybridization and immunohistochemical staining showed
that FXR was mainly distributed in secondary and tertiary follicles. The agonist-induced activation of FXR in cultured granulosa cells induced the expression of SHP and
FABP6, while siRNA targeting of FXR decreased CYP19a1 and HSD17b1 expression. Upon examination of the roles of SHP and
FABP6 in granulosa cells, we found that SHP overexpression significantly decreased StAR, CYP11a1, and HSD3b gene
expression. In addition, siRNA targeting of FABP6 decreased CYP19a1 and HSD17b1 expression, while FABP6 overexpression
increased CYP19a1 expression. In conclusion, the present study demonstrates the presence of FXR signaling in the ovary and reveals that FXR signaling may have a role in
function of granulosa cells.
Collapse
Affiliation(s)
- Kentaro Takae
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Mizuho Nakata
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Takafumi Watanabe
- Laboratory of Animal Functional Anatomy, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Hiroshi Sasada
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
| | - Hiroshi Fujii
- Laboratory of Biochemistry, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan.,Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| | - Ikuo Tomioka
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan.,Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| |
Collapse
|
49
|
Potential mechanism of cholagogic effect about Gardenia Jasminoides Ellis (Zhizi)-mediated increase of bile acids urinary excretion in normal rats. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
Wang M, Wu Q, Xie H, Shao Y, Zhong M, Zhang X, Liu S, He X, Hu S, Zhang G. Effects of Sleeve Gastrectomy on Serum 12α-Hydroxylated Bile Acids in a Diabetic Rat Model. Obes Surg 2018; 27:2912-2918. [PMID: 28508276 DOI: 10.1007/s11695-017-2714-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Diabetes mellitus is a prevalent disease that endangers human health. Bariatric surgery can effectively relieve insulin resistance with elevated serum bile acids (BAs). 12α-Hydroxylated BAs were previously reported to be associated with insulin resistance. The aim of this study was to analyze changes in 12α-hydroxylated BA composition and possible associated mechanisms in diabetic rats following sleeve gastrectomy (SG). METHODS SG and sham operations were performed in diabetic rats induced by high-fat diet feeding and streptozotocin. Body weight, food intake, oral glucose tolerance test (OGTT), insulin tolerance test (ITT), and serum BAs were analyzed at corresponding time points. Cholesterol 12α-hydroxylase (CYP8B1) and transcription factor V-Maf Avian Musculoaponeurotic Fibrosarcoma Oncogene Homolog G (MAFG) expression levels were assessed by RT-PCR and western blotting. RESULTS Compared with the SHAM group, the SG group displayed significant weight loss from 6 weeks postoperatively, accompanied by decreased food intake from 4 weeks after the operation. At 2 and 12 weeks postoperatively, the areas under the curve of OGTT and ITT were significantly decreased in the SG group. At 12 weeks post-operation, the SG group displayed elevated serum BAs, but the percentage of 12α-hydroxylated BAs was reduced. Furthermore, SG rats exhibited higher MAFG and lower CYP8B1 protein and mRNA levels in the liver (P < 0.05). CONCLUSION The percentage of 12α-hydroxylated bile acids was reduced after SG, which was relevant with the inhibition of CYP8B1 and overexpression of MAFG. These outcomes may play an important role in the improvement of insulin sensitivity following SG.
Collapse
Affiliation(s)
- Minggang Wang
- Department of Hernia and Abdominal Wall Surgery, Beijing Chao-Yang Hospital, Capital Medical University, 100043, Beijing, People's Republic of China
| | - Qunzheng Wu
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Haibin Xie
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yi Shao
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Mingwei Zhong
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xiang Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Shaozhuang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xiao He
- Department of Cardiology, Affiliated Hospital of Taishan Medical University, Taian, 271000, Shandong, People's Republic of China
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Guangyong Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|