1
|
Mendelsohn DH, Walter N, Cheung WH, Wong RMY, Schönmehl R, Winter L, El Khassawna T, Heiss C, Brochhausen C, Rupp M. Targeting mitochondria in bone and cartilage diseases: A narrative review. Redox Biol 2025; 83:103667. [PMID: 40354767 DOI: 10.1016/j.redox.2025.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/28/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
Mitochondria are essential regulators of bone health, controlling cell differentiation, cellular energy production, immune function, osteogenesis, and osteoclast activity. Their dysfunction is linked to orthopedic disorders such as osteoporosis, osteoarthritis, and osteomyelitis, contributing to impaired bone homeostasis and increased fracture risk. While mitochondrial research has been more advanced in fields such as cardiology and neurology, emerging therapeutic strategies from these areas are beginning to show potential for translation into orthopedics. These include mitochondrial biogenesis stimulation, mitochondrial fission inhibition, antioxidant therapies, mitochondrial transplantation, and photobiomodulation, which have demonstrated success in enhancing tissue repair, reducing oxidative stress, and improving overall cellular function in non-orthopedic applications. The novel inhibitor of mitochondrial fission and accumulation of reactive oxygen species Mdivi-1 offers potential to improve clinical outcomes of bone diseases by alleviating cellular dysfunction and preventing bone loss. While these treatments are still in the developmental phase, they present innovative approaches to address mitochondrial dysfunction in orthopedic conditions, potentially transforming bone disease management and enhancing patient outcomes. This report explores research regarding the involvement of mitochondrial health in bone and joint function and discusses possible future treatment strategies targeting mitochondria in orthopedic conditions.
Collapse
Affiliation(s)
- Daniel H Mendelsohn
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Friedrich-Baur-Institute, Department of Neurology, LMU Clinic Munich, Germany
| | - Nike Walter
- Department of Psychosomatic Medicine, University Medical Center Regensburg, Regensburg, Germany
| | - Wing-Hoi Cheung
- Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ronald Man Yeung Wong
- Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Rebecca Schönmehl
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lina Winter
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Christian Heiss
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen, Germany; Biruni University, Istanbul, Türkiye
| | - Christoph Brochhausen
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Rupp
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen, Germany.
| |
Collapse
|
2
|
Wu F, Deng Y, Sokolov EP, Falfushynska H, Glänzer A, Xie L, Sokolova IM. Nanopollutants (nZnO) amplify hypoxia-induced cellular stress in a keystone marine bivalve, Mytilus edulis. ENVIRONMENTAL RESEARCH 2025; 274:121346. [PMID: 40058547 DOI: 10.1016/j.envres.2025.121346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Zinc oxide nanoparticles (nZnO) are increasingly utilized in industrial, medical, and personal care products, particularly as the main ingredient in sunscreens, raising concerns about their environmental impact, especially in coastal ecosystems. The Baltic Sea, experiencing severe eutrophication, faces persistent hypoxia due to excessive nutrient runoff and limited water exchange. Simultaneously, coastal pollution from industrial and urban activities introduces nZnO, a highly biotoxic nanopollutant. The combined effects of hypoxia and nZnO contamination may amplify environmental stress, yet their interactions remain insufficiently studied. This study investigates the combined effects of nZnO exposure and fluctuating dissolved oxygen regimes (specifically short- and long-term hypoxia and subsequent reoxygenation) on Mytilus edulis, a sentinel species in these ecosystems. By assessing a range of cellular and molecular markers, including oxidative stress, oxygen sensing, protein quality control, stress response, apoptosis, and inflammation, we show that nZnO exacerbates hypoxia-induced oxidative stress, delaying redox recovery and prolonging oxidative damage during reoxygenation. Specifically, nZnO exposure maintains elevated LPO and PC levels after reoxygenation, indicating prolonged oxidative imbalance. While M. edulis typically recovers from hypoxia-induced stress, nZnO disrupts this process by impairing antioxidant defenses, prolonging HIF-1α activation, and dysregulating p53, JNK, and p38 expression, thereby interfering with normal hypoxia-reoxygenation response. Additionally, nZnO alters HSP70, Lon protease, and caspase-3 regulation, disrupting protein-folding and apoptotic pathways. These findings suggest a synergistic interaction between nZnO and hypoxia, heightening the organism's vulnerability to environmental stress and suggesting risks for marine organisms in nanoparticle-polluted, hypoxia-prone coastal regions.
Collapse
Affiliation(s)
- Fangli Wu
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China
| | - Yuqing Deng
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Eugene P Sokolov
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Halina Falfushynska
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Faculty of Economics, Anhalt University of Applied Sciences, 06406, Köthen, Germany; ENERTRAG SE, Gut Dauerthal, Dauerthal, 17291, Germany
| | - Aneka Glänzer
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Lingtian Xie
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
3
|
Kalykaki M, Rubio-Tomás T, Tavernarakis N. The role of mitochondria in cytokine and chemokine signalling during ageing. Mech Ageing Dev 2024; 222:111993. [PMID: 39307464 DOI: 10.1016/j.mad.2024.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Ageing is accompanied by a persistent, low-level inflammation, termed "inflammageing", which contributes to the pathogenesis of age-related diseases. Mitochondria fulfil multiple roles in host immune responses, while mitochondrial dysfunction, a hallmark of ageing, has been shown to promote chronic inflammatory states by regulating the production of cytokines and chemokines. In this review, we aim to disentangle the molecular mechanisms underlying this process. We describe the role of mitochondrial signalling components such as mitochondrial DNA, mitochondrial RNA, N-formylated peptides, ROS, cardiolipin, cytochrome c, mitochondrial metabolites, potassium efflux and mitochondrial calcium in the age-related immune system activation. Furthermore, we discuss the effect of age-related decline in mitochondrial quality control mechanisms, including mitochondrial biogenesis, dynamics, mitophagy and UPRmt, in inflammatory states upon ageing. In addition, we focus on the dynamic relationship between mitochondrial dysfunction and cellular senescence and its role in regulating the secretion of pro-inflammatory molecules by senescent cells. Finally, we review the existing literature regarding mitochondrial dysfunction and inflammation in specific age-related pathological conditions, including neurodegenerative diseases (Alzheimer's and Parkinson's disease, and amyotrophic lateral sclerosis), osteoarthritis and sarcopenia.
Collapse
Affiliation(s)
- Maria Kalykaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete GR-71003, Greece.
| |
Collapse
|
4
|
Che T, Yang X, Zhang Y, Zheng Y, Zhang Y, Zhang X, Wu Z. Mitochondria-Regulated Information Processing Nanosystem Promoting Immune Cell Communication for Liver Fibrosis Regression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400413. [PMID: 38721946 DOI: 10.1002/smll.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/23/2024] [Indexed: 10/04/2024]
Abstract
Liver fibrosis is a coordinated response to tissue injury that is mediated by immune cell interactions. A mitochondria-regulated information-processing (MIP) nanosystem that promotes immune cell communication and interactions to inhibit liver fibrosis is designed. The MIP nanosystem mimics the alkaline amino acid domain of mitochondrial precursor proteins, providing precise targeting of the mitochondria. The MIP nanosystem is driven by light to modulate the mitochondria of hepatic stellate cells, resulting in the release of mitochondrial DNA into the fibrotic microenvironment, as detected by macrophages. By activating the STING signaling pathway, the developed nanosystem-induced macrophage phenotype switches to a reparative subtype (Ly6Clow) and downstream immunostimulatory transcriptional activity, fully restoring the fibrotic liver to its normal tissue state. The MIP nanosystem serves as an advanced information transfer system, allowing precise regulation of trained immunity, and offers a promising approach for effective liver fibrosis immunotherapy with the potential for clinical translation.
Collapse
Affiliation(s)
- Tingting Che
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaopeng Yang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yuanyuan Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| |
Collapse
|
5
|
Liu X, Zhang X, Zhao L, Long J, Feng Z, Su J, Gao F, Liu J. Mitochondria as a sensor, a central hub and a biological clock in psychological stress-accelerated aging. Ageing Res Rev 2024; 93:102145. [PMID: 38030089 DOI: 10.1016/j.arr.2023.102145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
The theory that oxidative damage caused by mitochondrial free radicals leads to aging has brought mitochondria into the forefront of aging research. Psychological stress that encompasses many different experiences and exposures across the lifespan has been identified as a catalyst for accelerated aging. Mitochondria, known for their dynamic nature and adaptability, function as a highly sensitive stress sensor and central hub in the process of accelerated aging. In this review, we explore how mitochondria as sensors respond to psychological stress and contribute to the molecular processes in accelerated aging by viewing mitochondria as hormonal, mechanosensitive and immune suborganelles. This understanding of the key role played by mitochondria and their close association with accelerated aging helps us to distinguish normal aging from accelerated aging, correct misconceptions in aging studies, and develop strategies such as exercise and mitochondria-targeted nutrients and drugs for slowing down accelerated aging, and also hold promise for prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Xuyun Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Lin Zhao
- Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| |
Collapse
|
6
|
Liu Y, Weng T, Pan X, Wen Y, Yang H, Chen J, Xia L. Construction of an alanine dehydrogenase gene deletion strain for vaccine development against Nocardia seriolae in hybrid snakehead (Channa maculata ♀ × Channa argus ♂). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108827. [PMID: 37207887 DOI: 10.1016/j.fsi.2023.108827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Nocardia seriolae is the main pathogen of fish nocardiosis. In our previous study, alanine dehydrogenase was identified as a potential virulence factor of N. seriolae. On the basis of this fact, the alanine dehydrogenase gene of N. seriolae (NsAld) was knocked out to establish the strain ΔNsAld for vaccine development against fish nocardiosis in this study. The LD50 of strain ΔNsAld was 3.90 × 105 CFU/fish, higher than that of wild strain (5.28 × 104 CFU/fish) significantly (p < 0.05). When the strain ΔNsAld was used as a live vaccine to immunize hybrid snakehead (Channa maculata ♀ × Channa argus ♂) at 2.47 × 105 CFU/fish by intraperitoneal injection, the non-specific immune indexes (LZM, CAT, AKP, ACP and SOD activities), specific antibody (IgM) titers and several immune-related genes (CD4, CD8α, IL-1β, MHCIα, MHCIIα and TNFα) were up-regulated in different tissues, indicating that this vaccine could induce humoral and cell-mediated immune responses. Furthermore, the relative percentage survival (RPS) of ΔNsAld vaccine was calculated as 76.48% after wild N. seriolae challenge. All these results suggest that the strain ΔNsAld could be a potential candidate for live vaccine development to control fish nocardiosis in aquaculture.
Collapse
Affiliation(s)
- Yansheng Liu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Tingting Weng
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xuhao Pan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yiming Wen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Huiyuan Yang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jianlin Chen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| | - Liqun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| |
Collapse
|
7
|
Behl T, Makkar R, Anwer MK, Hassani R, Khuwaja G, Khalid A, Mohan S, Alhazmi HA, Sachdeva M, Rachamalla M. Mitochondrial Dysfunction: A Cellular and Molecular Hub in Pathology of Metabolic Diseases and Infection. J Clin Med 2023; 12:jcm12082882. [PMID: 37109219 PMCID: PMC10141031 DOI: 10.3390/jcm12082882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Mitochondria are semiautonomous doubly membraned intracellular components of cells. The organelle comprises of an external membrane, followed by coiled structures within the membrane called cristae, which are further surrounded by the matrix spaces followed by the space between the external and internal membrane of the organelle. A typical eukaryotic cell contains thousands of mitochondria within it, which make up 25% of the cytoplasm present in the cell. The organelle acts as a common point for the metabolism of glucose, lipids, and glutamine. Mitochondria chiefly regulate oxidative phosphorylation-mediated aerobic respiration and the TCA cycle and generate energy in the form of ATP to fulfil the cellular energy needs. The organelle possesses a unique supercoiled doubly stranded mitochondrial DNA (mtDNA) which encodes several proteins, including rRNA and tRNA crucial for the transport of electrons, oxidative phosphorylation, and initiating genetic repair processors. Defects in the components of mitochondria act as the principal factor for several chronic cellular diseases. The dysfunction of mitochondria can cause a malfunction in the TCA cycle and cause the leakage of the electron respiratory chain, leading to an increase in reactive oxygen species and the signaling of aberrant oncogenic and tumor suppressor proteins, which further alter the pathways involved in metabolism, disrupt redox balance, and induce endurance towards apoptosis and several treatments which play a major role in developing several chronic metabolic conditions. The current review presents the knowledge on the aspects of mitochondrial dysfunction and its role in cancer, diabetes mellitus, infections, and obesity.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
| | - Rashita Makkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Stattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan 45142, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum 11123, Sudan
| | - Syam Mohan
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602105, India
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain P.O. Box 24162, United Arab Emirates
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
8
|
Adaptability and Evolution of Gobiidae: A Genetic Exploration. Animals (Basel) 2022; 12:ani12141741. [PMID: 35883288 PMCID: PMC9312210 DOI: 10.3390/ani12141741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The Gobiidae family occupy one of the most diverse habitat ranges of all fishes. One key reason for their successful colonization of different habitats is their ability to adapt to different energy demands. This energy requirement is related to the ability of mitochondria in cells to generate energy via oxidative phosphorylation (OXPHOS). Here, we assembled three complete mitochondrial genomes of Rhinogobius shennongensis, Rhinogobius wuyanlingensis, and Chaenogobius annularis. These mitogenomes are circular and include 13 protein-coding genes (PCGs), two rRNAs, 22 tRNAs, and one non-coding control region (CR). We used comparative mitochondrial DNA (mtDNA) genome and selection pressure analyses to explore the structure and evolutionary rates of Gobiidae mitogenomics in different environments. The CmC model showed that the ω ratios of all mtDNA PCGs were <1, and that the evolutionary rate of adenosine triphosphate 8 (atp8) was faster in Gobiidae than in other mitochondrial DNA PCGs. We also found evidence of positive selection for several sites of NADH dehydrogenase (nd) 6 and atp8 genes. Thus, divergent mechanisms appear to underlie the evolution of mtDNA PCGs, which might explain the ability of Gobiidae to adapt to diverse environments. Our study provides new insights on the adaptive evolution of Gobiidae mtDNA genome and molecular mechanisms of OXPHOS.
Collapse
|
9
|
Comprehensive analysis of protein acetylation and glucose metabolism inmouse brains infected with rabies virus. J Virol 2021; 96:e0194221. [PMID: 34878915 DOI: 10.1128/jvi.01942-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rabies, caused by rabies virus (RABV), is a widespread zoonosis that is nearly 100% fatal. Alteration of the metabolic environment affects viral replication and the immune response during viral infection. In this study, glucose uptake was increased in mouse brains at the late stage of infection with different RABV strains (lab-attenuated CVS strain and wild-type DRV strain). To illustrate the mechanism underlying glucose metabolism alteration, comprehensive analysis of lysine acetylation and target analysis of energy metabolites in mouse brains infected with CVS and DRV strains were performed. A total of 156 acetylated sites and 115 acetylated proteins were identified as significantly different during RABV infection. Compared to CVS- and mock-infected mice, the lysine acetylation levels of glycolysis and tricarboxylic acid (TCA) cycle enzymes were decreased, and enzyme activity was upregulated in DRV-infected mouse brains. Metabolomic analysis revealed that high levels of oxaloacetate (OAA) in RABV-infected mouse brains. Specifically, the OAA level in CVS-infected mouse brains was higher than that in DRV-infected mouse brains, which contributed to the enhancement of the metabolic rate at the substrate level. Finally, we confirmed that OAA could reduce excessive neuroinflammation in CVS-infected mouse brains by inhibiting JNK and P38 phosphorylation. Taken together, this study provides fresh insight into the different strategies the host adapts to regulate glucose metabolism for energy requirements after different RABV strain infection and suggest that OAA treatment could be a potential strategy to prevent neural damage during RABV infection. IMPORTANCE Both viral replication and the host immune response are highly energy-dependent. It is important to understand how the rabies virus affects energy metabolism in the brain. Glucose is the direct energy source for cell metabolism. Previous studies have revealed that there is some association between acetylation and metabolic processes. In this study, comprehensive protein acetylation and glucose metabolism analysis were conducted to compare glucose metabolism in mouse brains infected with different RABV strains. Our study demonstrates that the regulation of enzyme activity by acetylation and OAA accumulation at the substrate level are two strategies for the host to respond to the energy requirements after RABV infection. Our study also indicates the potential role OAA could play in neuronal protection by suppressing excessive neuroinflammation.
Collapse
|
10
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
11
|
Rodríguez-Tomàs E, Iftimie S, Castañé H, Baiges-Gaya G, Hernández-Aguilera A, González-Viñas M, Castro A, Camps J, Joven J. Clinical Performance of Paraoxonase-1-Related Variables and Novel Markers of Inflammation in Coronavirus Disease-19. A Machine Learning Approach. Antioxidants (Basel) 2021; 10:antiox10060991. [PMID: 34205807 PMCID: PMC8234277 DOI: 10.3390/antiox10060991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
SARS-CoV-2 infection produces a response of the innate immune system causing oxidative stress and a strong inflammatory reaction termed ‘cytokine storm’ that is one of the leading causes of death. Paraoxonase-1 (PON1) protects against oxidative stress by hydrolyzing lipoperoxides. Alterations in PON1 activity have been associated with pro-inflammatory mediators such as the chemokine (C-C motif) ligand 2 (CCL2), and the glycoprotein galectin-3. We aimed to investigate the alterations in the circulating levels of PON1, CCL2, and galectin-3 in 126 patients with COVID-19 and their interactions with clinical variables and analytical parameters. A machine learning approach was used to identify predictive markers of the disease. For comparisons, we recruited 45 COVID-19 negative patients and 50 healthy individuals. Our approach identified a synergy between oxidative stress, inflammation, and fibrogenesis in positive patients that is not observed in negative patients. PON1 activity was the parameter with the greatest power to discriminate between patients who were either positive or negative for COVID-19, while their levels of CCL2 and galectin-3 were similar. We suggest that the measurement of serum PON1 activity may be a useful marker for the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Elisabet Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - Simona Iftimie
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.I.); (M.G.-V.); (A.C.)
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - Gerard Baiges-Gaya
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - María González-Viñas
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.I.); (M.G.-V.); (A.C.)
| | - Antoni Castro
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.I.); (M.G.-V.); (A.C.)
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
- Correspondence: ; Tel.: +34-977-310-300
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| |
Collapse
|
12
|
Chen J, Wang W, Hou S, Fu W, Cai J, Xia L, Lu Y. Comparison of protective efficacy between two DNA vaccines encoding DnaK and GroEL against fish nocardiosis. FISH & SHELLFISH IMMUNOLOGY 2019; 95:128-139. [PMID: 31629062 DOI: 10.1016/j.fsi.2019.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Fish nocardiosis is a chronic granulomatous bacterial disease mainly caused by three pathogenic bacteria, including Nocardia seriolae, N. asteroids and N. salmonicida. Molecular chaperone DnaK and GroEL were identified to be the common antigens of the three pathogenic Nocardia species in our previous studies. To evaluate the immune protective effect of two DNA vaccines encoding DnaK or GroEL against fish nocardiosis, hybrid snakehead were vaccinated and the immune responses induced by these two vaccines were comparatively analyzed. The results suggested it needed at least 7 d to transport DnaK or GroEL gene from injected muscle to head kidney, spleen and liver and stimulate host's immune system for later protection after immunization by DNA vaccines. Additionally, non-specific immunity parameters (serum lysozyme (LYZ), peroxidase (POD), acid phosphatase (ACP), alkaline phosphatase (AKP) and superoxide dismutase (SOD) activities), specific antibody (IgM) production and immune-related genes (MHCIα, MHCIIα, CD4, CD8α, IL-1β and TNFα) were used to evaluate the immune responses induced in vaccinated hybrid snakehead. It proved that all the above-mentioned immune activities were significantly enhanced after immunization with these two DNA vaccines. The protective efficacy of pcDNA-DnaK and pcDNA-GroEL DNA vaccines, in terms of relative percentage survival (RPS), were 53.01% and 80.71% respectively. It demonstrated that these two DNA vaccines could increase the survival rate of hybrid snakehead against fish nocardiosis, albeit with variations in immunoprotective effects. Taken together, these results indicated that both pcDNA-DnaK and pcDNA-GroEL DNA vaccines could boost the innate, humoral and cellular immune response in hybrid snakehead and show highly protective efficacy against fish nocardiosis, suggesting that DnaK and GroEL were promising vaccine candidates. These findings will promote the development of DNA vaccines against fish nocardiosis in aquaculture.
Collapse
Affiliation(s)
- Jianlin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Wenji Wang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Suying Hou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Weixuan Fu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China
| | - Jia Cai
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, Guangdong, China.
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Chen J, Xia L, Wang W, Wang Z, Hou S, Xie C, Cai J, Lu Y. Identification of a mitochondrial-targeting secretory protein from Nocardia seriolae which induces apoptosis in fathead minnow cells. JOURNAL OF FISH DISEASES 2019; 42:1493-1507. [PMID: 31482589 DOI: 10.1111/jfd.13062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Nocardia seriolae is the main pathogen responsible for fish nocardiosis. A mitochondrial-targeting secretory protein (MTSP) 3141 with an N-terminal transit peptide (TP) from N. seriolae was predicted by bioinformatic analysis based on the genomic sequence of the N. seriolae strain ZJ0503. However, the function of the MTSP3141 and its homologs remains totally unknown. In this study, mass spectrometry analysis of the extracellular products from N. seriolae proved that MTSP3141 was a secretory protein, subcellular localization research showed the MTSP3141-GFP fusion protein co-localized with mitochondria in fathead minnow (FHM) cells, the TP played an important role in mitochondria targeting, and only the TP located at N-terminus but not C-terminus can lead to mitochondria directing. Moreover, quantitative assays of mitochondrial membrane potential (ΔΨm) value, caspase-3 activity and apoptosis-related gene (Bcl-2, Bax, Bad, Bid and p53) mRNA expression suggested that cell apoptosis was induced in FHM cells by the overexpression of both MTSP3141 and MTSP3141ΔTP (with the N-terminal TP deleted) proteins. Taken together, the results of this study indicated that the MTSP3141 of N. seriolae was a secretory protein, might target mitochondria, induce apoptosis in host cells and function as a virulence factor.
Collapse
Affiliation(s)
- Jianlin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| | - Wenji Wang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| | - Zhiwen Wang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| | - Suying Hou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| | - Caixia Xie
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| | - Jia Cai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| |
Collapse
|
14
|
Dreier DA, Mello D, Meyer J, Martyniuk CJ. Linking Mitochondrial Dysfunction to Organismal and Population Health in the Context of Environmental Pollutants: Progress and Considerations for Mitochondrial Adverse Outcome Pathways. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1625-1634. [PMID: 31034624 PMCID: PMC6961808 DOI: 10.1002/etc.4453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 05/19/2023]
Abstract
Mitochondria are key targets of many environmental contaminants, because specific chemicals can interact directly with mitochondrial proteins, lipids, and ribonucleic acids. These direct interactions serve as molecular initiating events that impede adenosine triphosphate production and other critical functions that mitochondria serve within the cell (e.g., calcium and metal homeostasis, apoptosis, immune signaling, redox balance). A limited but growing number of adverse outcome pathways (AOPs) have been proposed to associate mitochondrial dysfunction with effects at organismal and population levels. These pathways involve key events such as altered membrane potential, mitochondrial fission/fusion, and mitochondrial DNA damage, among others. The present critical review and analysis reveals current progress on AOPs involving mitochondrial dysfunction, and, using a network-based computational approach, identifies the localization of mitochondrial molecular initiating events and key events within multiple existing AOPs. We also present 2 case studies, the first examining the interaction between mitochondria and immunotoxicity, and the second examining the role of early mitochondrial dysfunction in the context of behavior (i.e., locomotor activity). We discuss limitations in our current understanding of mitochondrial AOPs and highlight opportunities for clarifying their details. Advancing our knowledge of key event relationships within the AOP framework will require high-throughput datasets that permit the development and testing of chemical-agnostic AOPs, as well as high-resolution research that will enhance the mechanistic testing and validation of these key event relationships. Given the wide range of chemicals that affect mitochondria, and the centrality of energy production and signaling to ecologically important outcomes such as pathogen defense, homeostasis, growth, and reproduction, a better understanding of mitochondrial AOPs is expected to play a significant, if not central, role in environmental toxicology. Environ Toxicol Chem 2019;38:1625-1634. © 2019 SETAC.
Collapse
Affiliation(s)
- David A. Dreier
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
| | - Danielle Mello
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328 USA
| | - Joel Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328 USA
| | - Christopher J. Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
- University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611 USA
- Address correspondence to
| |
Collapse
|
15
|
Prajapati P, Dalwadi P, Gohel D, Singh K, Sripada L, Bhatelia K, Joshi B, Roy M, Wang WX, Springer JE, Singh R, Singh R. Enforced lysosomal biogenesis rescues erythromycin- and clindamycin-induced mitochondria-mediated cell death in human cells. Mol Cell Biochem 2019; 461:23-36. [PMID: 31309409 DOI: 10.1007/s11010-019-03585-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 07/04/2019] [Indexed: 12/23/2022]
Abstract
Antibiotics are the front-line treatment against many bacterial infectious diseases in human. The excessive and long-term use of antibiotics in human cause several side effects. It is important to understand the underlying molecular mechanisms of action of antibiotics in the host cell to avoid the side effects due to the prevalent uses. In the current study, we investigated the crosstalk between mitochondria and lysosomes in the presence of widely used antibiotics: erythromycin (ERM) and clindamycin (CLDM), which target the 50S subunit of bacterial ribosomes. We report here that both ERM and CLDM induced caspase activation and cell death in several different human cell lines. The activity of the mitochondrial respiratory chain was compromised in the presence of ERM and CLDM leading to bioenergetic crisis and generation of reactive oxygen species. Antibiotics treatment impaired autophagy flux and lysosome numbers, resulting in decreased removal of damaged mitochondria through mitophagy, hence accumulation of defective mitochondria. We further show that over-expression of transcription factor EB (TFEB) increased the lysosome number, restored mitochondrial function and rescued ERM- and CLDM-induced cell death. These studies indicate that antibiotics alter mitochondria and lysosome interactions leading to apoptotsis and may develop a novel approach for targeting inter-organelle crosstalk to limit deleterious antibiotic-induced side effects.
Collapse
Affiliation(s)
- Paresh Prajapati
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.,Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Pooja Dalwadi
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Dhruv Gohel
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Kritarth Singh
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Lakshmi Sripada
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Khyati Bhatelia
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Bhavana Joshi
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Milton Roy
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Wang-Xia Wang
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.,Sanders Brown Center on Aging Center, University of Kentucky, Lexington, KY, 40536, USA.,Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Joe E Springer
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.,Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Rochika Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382007, India.
| | - Rajesh Singh
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
16
|
Wang W, Chen J, Liao B, Xia L, Hou S, Wang Z, Lu Y. Identification and functional characterization of Histone-like DNA-binding protein in Nocardia seriolae (NsHLP) involved in cell apoptosis. JOURNAL OF FISH DISEASES 2019; 42:657-666. [PMID: 30854666 DOI: 10.1111/jfd.12962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Nocardia seriolae, a facultative intracellular bacterium, is the main pathogen of fish nocardiosis. Bioinformatic analysis showed that the histone-like DNA-binding protein (HLP) gene of N. seriolae (nshlp) encoded a secreted protein and might target the mitochondria in the host cell. To further study the preliminary function of HLP in N. seriolae (NsHLP), the gene cloning, extracellular products identification, subcellular localization, overexpression and apoptosis detection assay were carried out in this study. Mass spectrometry analysis of the extracellular products from N. seriolae showed that NsHLP was a secreted protein. Subcellular localization of HLP-GFP fusion proteins mainly assembled in the nucleus, which indicated that the NsHLP was co-located with the nucleus rather than mitochondria in fathead minnow (FHM) cells. Notably, the expression of NsHLP had changed the distribution of mitochondria into lumps in the FHM cell. In addition, apoptotic features were found in the transfected FHM cells by overexpression of NsHLP. Quantitative assays of mitochondrial membrane potential value, caspase-3 activity and pro-apoptotic genes mRNA (Bad, Bid and Bax) expression level demonstrated that the cell apoptosis was induced in the transfected FHM cells. All the results presented in this study provided insight on the function of NsHLP, which suggested that it may participate in the cell apoptosis regulation and play an important role in the pathogenesis of N. seriolae.
Collapse
Affiliation(s)
- Wenji Wang
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, China
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Jianlin Chen
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, China
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Baoshan Liao
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Liqun Xia
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, China
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Suying Hou
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, China
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Zhiwen Wang
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, China
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Yishan Lu
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, China
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| |
Collapse
|
17
|
Sokolova I. Mitochondrial Adaptations to Variable Environments and Their Role in Animals' Stress Tolerance. Integr Comp Biol 2019; 58:519-531. [PMID: 29701785 DOI: 10.1093/icb/icy017] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are the key organelles involved in energy and redox homeostasis, cellular signaling, and survival. Animal mitochondria are exquisitely sensitive to environmental stress, and stress-induced changes in the mitochondrial integrity and function have major consequences for the organismal performance and fitness. Studies in the model organisms such as terrestrial mammals and insects showed that mitochondrial dysfunction is a major cause of injury during pathological conditions and environmental insults such as hypoxia, ischemia-reperfusion, and exposure to toxins. However, animals from highly stressful environments (such as the intertidal zone of the ocean) can maintain mitochondrial integrity and function despite intense and rapid fluctuations in abiotic conditions and associated changes in the intracellular milieu. Recent studies demonstrate that mitochondria of intertidal organisms (including mollusks, crustaceans, and fish) are capable of maintaining activity of mitochondrial electron transport system (ETS), ATP synthesis, and mitochondrial coupling in a broad range of temperature, osmolarity, and ion content. Mitochondria of intertidal organisms such as mollusks are also resistant to hypoxia-reoxygenation injury and show stability or even upregulation of the mitochondrial ETS activity and ATP synthesis capacity during intermittent hypoxia. In contrast, pH optima for mitochondrial ATP synthesis and respiration are relatively narrow in intertidal mollusks and may reflect adaptation to suppress metabolic rate during pH shifts caused by extreme stress. Sensitivity to anthropogenic pollutants (such as trace metals) in intertidal mollusks appears similar to that of other organisms (including mammals) and may reflect the lack of adaptation to these evolutionarily novel stressors. The mechanisms of the exceptional mitochondrial resilience to temperature, salinity, and hypoxic stress are not yet fully understood in intertidal organisms, yet recent studies demonstrate that they may involve rapid modulation of the ETS capacity (possibly due to post-translation modification of mitochondrial proteins), upregulation of antioxidant defenses in anticipation of oxidative stress, and high activity of mitochondrial proteases involved in degradation of damaged mitochondrial proteins. With rapidly developing molecular tools for non-model organisms, future studies of mitochondrial adaptations should pinpoint the molecular sites associated with the passive tolerance and/or active regulation of mitochondrial activity during stress exposures in intertidal organisms, investigate the roles of mitochondria in transduction of stress signals, and explore the interplay between bioenergetics and mitochondrial signaling in facilitating survival in these highly stressful environments.
Collapse
Affiliation(s)
- Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, A.-Einstein Str., 3, Rostock 18055, Germany.,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
18
|
Liang X, Adamovsky O, Souders CL, Martyniuk CJ. Biological effects of the benzotriazole ultraviolet stabilizers UV-234 and UV-320 in early-staged zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:272-281. [PMID: 30439637 DOI: 10.1016/j.envpol.2018.10.130] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 05/25/2023]
Abstract
Among the benzotriazole ultraviolet stabilizers (BUVSs), UV-234 and UV-320 are frequently detected in aquatic ecosystem. Despite the fact that these chemicals are present in low ng/L levels in surface water, they show high bio-accumulation potential and pose exposure risks to aquatic organisms. However, there are limited toxicological data available in fish. In this study, zebrafish embryos were exposed to 0.01, 0.1 and 1 μM UV-234 or UV-320 for up to 6 days. Developmental toxicity as well as effects on mitochondrial bioenergetics, immune system responses, and locomotor activity in zebrafish were measured. After UV-234 treatment (0.1-1 μM), hatching time of embryos was increased compared to controls. There was also a ∼20-40% reduction in non-mitochondrial respiration and oligomycin-dependent mitochondrial respiration in embryos treated with 1 μM UV-234 for 24 and 48 h respectively; conversely basal respiration and non-mitochondrial respiration were increased ∼20-30% in embryos treated with 1 μM UV-320 at 48 h. Transcript levels of sod1 were down-regulated with BUVSs while sod2 mRNA was highly up-regulated with both UV-234 and UV-320, suggesting an oxidative damage response. Considering that mitochondrial signaling regulates innate immune pathways, we measured the expression of immune related transcripts (tlr5a, tlr5b, mmp9, il8, tnfa, cxcl-C1c, nfkb1, and ifng). Of these, only il8 and cxcl-C1c mRNA were decreased in response to 0.1 μM UV-320. To associate early molecular events with behavior, locomotor activity was assessed. UV-234 reduced larval activity in a dark photokinesis assay by ∼15%, however behavioral responses at environmentally-relevant concentrations of BUVSs were not consistent across experiments nor BUVSs. These data suggest that BUVSs can perturb mitochondrial bioenergetics, embryonic development, and locomotor activity of zebrafish, but these responses appear to be dose-, time- and BUVSs dependent, suggesting these chemicals may have unique modes of action.
Collapse
Affiliation(s)
- Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Ondrej Adamovsky
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
19
|
Gene-metabolite profile integration to understand the cause of spaceflight induced immunodeficiency. NPJ Microgravity 2018; 4:4. [PMID: 29387784 PMCID: PMC5788863 DOI: 10.1038/s41526-017-0038-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 11/06/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022] Open
Abstract
Spaceflight presents a spectrum of stresses very different from those associated with terrestrial conditions. Our previous study (BMC Genom. 15: 659, 2014) integrated the expressions of mRNAs, microRNAs, and proteins and results indicated that microgravity induces an immunosuppressive state that can facilitate opportunistic pathogenic attack. However, the existing data are not sufficient for elucidating the molecular drivers of the given immunosuppressed state. To meet this knowledge gap, we focused on the metabolite profile of spaceflown human cells. Independent studies have attributed cellular energy deficiency as a major cause of compromised immunity of the host, and metabolites that are closely associated with energy production could be a robust signature of atypical energy fluctuation. Our protocol involved inoculation of human endothelial cells in cell culture modules in spaceflight and on the ground concurrently. Ten days later, the cells in space and on the ground were exposed to lipopolysaccharide (LPS), a ubiquitous membrane endotoxin of Gram-negative bacteria. Nucleic acids, proteins, and metabolites were collected 4 and 8 h post-LPS exposure. Untargeted profiling of metabolites was followed by targeted identification of amino acids and knowledge integration with gene expression profiles. Consistent with the past reports associating microgravity with increased energy expenditure, we identified several markers linked to energy deficiency, including various amino acids such as tryptophan, creatinine, dopamine, and glycine, and cofactors such as lactate and pyruvate. The present study revealed a molecular architecture linking energy metabolism and immunodeficiency in microgravity. The energy-deficient condition potentially cascaded into dysregulation of protein metabolism and impairment of host immunity. This project is limited by a small sample size. Although a strict statistical screening was carefully implemented, the present results further emphasize the need for additional studies with larger sample sizes. Validating this hypothesis using an in vivo model is essential to extend the knowledge towards identifying markers of diagnostic and therapeutic value. Human cells challenged with a bacterial toxin show more signs of energy deficiency when flown in space than when cultured on the ground. Rasha Hammamieh from the US Army Center for Environmental Health Research in Frederick, Maryland, and colleagues exposed human endothelial cells in spaceflight to lipopolysaccharide, an immune response-triggering part of the bacterial membrane. They then collected nucleic acids, proteins and metabolites 4 and 8 h later, and saw a molecular architecture consistent with increased energy expenditure compared to matched control cells grown on Earth. Combined with the researchers’ previous finding that microgravity can induce an immunosuppressive state, the results suggest that energy imbalances potentially lead to problems with protein metabolism that ultimately impair the immune system. The authors propose that reversing this energy depletion could help enhance the immune health of astronauts.
Collapse
|
20
|
Wang Y, Deng GG, Davies KP. Urothelial MaxiK-activity regulates mucosal and detrusor metabolism. PLoS One 2017; 12:e0189387. [PMID: 29281667 PMCID: PMC5744919 DOI: 10.1371/journal.pone.0189387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/26/2017] [Indexed: 01/07/2023] Open
Abstract
There is increasing evidence for a role of MaxiK potassium channel-activity in regulating the metabolism and intracellular signaling of non-contractile bladder mucosal tissues. At present however no studies have determined the impact of urothelial MaxiK-activity on overall bladder metabolism. To address this we have investigated the effect of bladder lumen instillation of the MaxiK inhibitor, iberiotoxin (IBTX), on mucosal and detrusor metabolism using metabolomics. Since IBTX does not cross plasma membranes, when instilled into the bladder lumen it would only effect urothelially expressed MaxiK-activity. Surprisingly IBTX treatment caused more effect on the metabolome of the detrusor than mucosa (the levels of 17% of detected detrusor metabolites were changed in comparison to 6% of metabolites in mucosal tissue following IBTX treatment). In mucosal tissues, the major effects can be linked to mitochondrial-associated metabolism whereas in detrusor there were additional changes in energy generating pathways (such as glycolysis and the TCA cycle). In the detrusor, changes in metabolism are potentially a result of IBTX effecting MaxiK-linked signaling pathways between the mucosa and detrusor, secondary to changes in physiological activity or a combination of both. Overall we demonstrate that urothelial MaxiK-activity plays a significant role in determining mitochondrially-associated metabolism in mucosal tissues, which effects the metabolism of detrusor tissue. Our work adds further evidence that the urothelium plays a major role in determining overall bladder physiology. Since decreased MaxiK-activity is associated with several bladder pathophysiology's, the changes in mucosal metabolism reported here may represent novel downstream targets for therapeutic interventions.
Collapse
Affiliation(s)
- Yi Wang
- Department of Urology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gary G. Deng
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Kelvin P. Davies
- Department of Urology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
21
|
Contis A, Mitrovic S, Lavie J, Douchet I, Lazaro E, Truchetet ME, Goizet C, Contin-Bordes C, Schaeverbeke T, Blanco P, Rossignol R, Faustin B, Richez C, Duffau P. Neutrophil-derived mitochondrial DNA promotes receptor activator of nuclear factor κB and its ligand signalling in rheumatoid arthritis. Rheumatology (Oxford) 2017; 56:1200-1205. [PMID: 28340056 DOI: 10.1093/rheumatology/kex041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Indexed: 12/31/2022] Open
Abstract
Objectives Mitochondrial DNA (mtDNA) contains sequestered damage-associated molecular patterns that might be involved in osteoimmunological pathogenesis of RA. Here, we aimed to investigate the cellular source of mtDNA and its role in RANK ligand (RANKL) expression by RA SF neutrophils. Methods The gene expression signature of SF neutrophils was examined by proteomic quantitative analysis. Levels of mtDNA in circulating and SF neutrophils from RA patients and OA control subjects were assessed by real-time PCR. Purified neutrophils were challenged in vitro with Toll-like receptor agonists as well as mtDNA. RANKL expression by neutrophils was studied by flow cytometry. Results SF neutrophils from RA patients displayed a gene expression signature of oxidative stress. This stress signature was associated with the release of mtDNA in SF as observed by a significant increase of mtDNA in the SF of RA patients compared with OA patients. mtDNA in RA SF was correlated with systemic inflammation as assessed by CRP concentrations. We also showed that mtDNA drives neutrophil RANKL expression to the same extent as Toll-like receptor agonists. Conclusion Our data identify SF neutrophils as a cellular source of mtDNA that leads to a subsequent expression of RANKL. This highlights the important role of neutrophils in RA osteoimmunology.
Collapse
Affiliation(s)
- Anne Contis
- ImmunoConcept, UMR CNRS 5164, Université de Bordeaux.,Service de médecine interne et immunologie clinique
| | - Stéphane Mitrovic
- ImmunoConcept, UMR CNRS 5164, Université de Bordeaux.,Service de rhumatologie, CHU de Bordeaux
| | - Julie Lavie
- INSERM EA4576, laboratoire MRGM, Université de Bordeaux
| | | | - Estibaliz Lazaro
- ImmunoConcept, UMR CNRS 5164, Université de Bordeaux.,Service de médecine interne, CHU de Bordeaux
| | | | - Cyril Goizet
- INSERM U1211, laboratoire MRGM, Université de Bordeaux.,Service de génétique médicale
| | - Cécile Contin-Bordes
- ImmunoConcept, UMR CNRS 5164, Université de Bordeaux.,Laboratoire d'immunologie, CHU de Bordeaux, Bordeaux, France
| | | | - Patrick Blanco
- ImmunoConcept, UMR CNRS 5164, Université de Bordeaux.,Laboratoire d'immunologie, CHU de Bordeaux, Bordeaux, France
| | | | | | - Christophe Richez
- ImmunoConcept, UMR CNRS 5164, Université de Bordeaux.,Service de rhumatologie, CHU de Bordeaux
| | - Pierre Duffau
- ImmunoConcept, UMR CNRS 5164, Université de Bordeaux.,Service de médecine interne et immunologie clinique
| |
Collapse
|
22
|
Xia L, Liang H, Xu L, Chen J, Bekaert M, Zhang H, Lu Y. Subcellular localization and function study of a secreted phospholipase C from Nocardia seriolae. FEMS Microbiol Lett 2017; 364:3934650. [DOI: 10.1093/femsle/fnx143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/05/2017] [Indexed: 12/19/2022] Open
|
23
|
Rieusset J. Mitochondria-associated membranes (MAMs): An emerging platform connecting energy and immune sensing to metabolic flexibility. Biochem Biophys Res Commun 2017. [PMID: 28647358 DOI: 10.1016/j.bbrc.2017.06.097] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Living organisms have the capacity to sense both nutrients and immune signals in order to adapt their metabolism to the needs, and both metabolic inflexibility and exacerbated immune responses are associated with metabolic diseases. Over the past decade, mitochondria emerged as key nutrient and immune sensors regulating numerous signalling pathways, and mitochondria dysfunction has been extensively implicated in metabolic diseases. Interestingly, mitochondria interact physically and functionally with the endoplasmic reticulum (ER, in contact sites named mitochondria-associated membranes (MAMs), in order to exchange metabolites and calcium and regulate cellular homeostasis. Emerging evidences suggest that MAMs provide a platform for hormone and nutrient signalling pathways and for innate immune responses, then regulating mitochondrial bioenergetics and apoptosis. Here, I thus propose the concept that MAMs could be attractive nutrient and immune sensors that regulate mitochondria physiology in order to adapt metabolism and cell fate, and that organelle miscommunication could be involved in the metabolic inflexibility and the pro-inflammatory status associated with metabolic diseases.
Collapse
Affiliation(s)
- Jennifer Rieusset
- Laboratoire CarMeN, INSERM U1060, INRA U1235, Université Claude Bernard Lyon1, INSA-Lyon, F-69600 Oullins, France.
| |
Collapse
|
24
|
Ng GZ, Ke BX, Laskowski A, Thorburn DR, Sutton P. No evidence of a role for mitochondrial complex I in Helicobacter pylori pathogenesis. Helicobacter 2017; 22. [PMID: 28181350 DOI: 10.1111/hel.12378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Complex I is the first enzyme complex in the mitochondrial respiratory chain, responsible for generating a large fraction of energy during oxidative phosphorylation. Recently, it has been identified that complex I deficiency can result in increased inflammation due to the generation of reactive oxygen species by innate immune cells. As a reduction in complex I activity has been demonstrated in human stomachs with atrophic gastritis, we investigated whether complex I deficiency could influence Helicobacter pylori pathogenesis. MATERIALS AND METHODS Ndufs6gt/gt mice have a partial complex I deficiency. Complex I activity was quantified in the stomachs and immune cells of Ndufs6gt/gt mice by spectrophotometric assays. Ndufs6gt/gt mice were infected with H. pylori and bacterial colonization assessed by colony-forming assay, gastritis assessed histologically, and H. pylori -specific humoral response quantified by ELISA. RESULTS The immune cells and stomachs of Ndufs6gt/gt mice were found to have significantly decreased complex I activity, validating the model for assessing the effects of complex I deficiency in H. pylori infection. However, there was no observable effect of complex I deficiency on either H. pylori colonization, the resulting gastritis, or the humoral response. CONCLUSIONS Although complex I activity is described to suppress innate immune responses and is decreased during atrophic gastritis in humans, our data suggest it does not affect H. pylori pathogenesis.
Collapse
Affiliation(s)
- Garrett Z Ng
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia.,Centre for Animal Biotechnology, School of Veterinary and Agricultural Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bi-Xia Ke
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Adrienne Laskowski
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - David R Thorburn
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia.,Victorian Clinical Genetics Services, The Royal Children's Hospital, Parkville, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Philip Sutton
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia.,Centre for Animal Biotechnology, School of Veterinary and Agricultural Science, University of Melbourne, Parkville, VIC 3010, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
25
|
Tubbs E, Rieusset J. Metabolic signaling functions of ER-mitochondria contact sites: role in metabolic diseases. J Mol Endocrinol 2017; 58:R87-R106. [PMID: 27965371 DOI: 10.1530/jme-16-0189] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022]
Abstract
Beyond the maintenance of cellular homeostasis and the determination of cell fate, ER-mitochondria contact sites, defined as mitochondria-associated membranes (MAM), start to emerge as an important signaling hub that integrates nutrient and hormonal stimuli and adapts cellular metabolism. Here, we summarize the established structural and functional features of MAM and mainly focus on the latest breakthroughs highlighting a crucial role of organelle crosstalk in the control of metabolic homeostasis. Lastly, we discuss recent studies that have revealed the importance of MAM in not only metabolic diseases but also in other pathologies with disrupted metabolism, shedding light on potential common molecular mechanisms and leading hopefully to novel treatment strategies.
Collapse
Affiliation(s)
- Emily Tubbs
- Department of Clinical SciencesLund University Diabetes Centre, Malmö, Sweden
| | - Jennifer Rieusset
- INSERM UMR-1060CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Charles Merieux Lyon-Sud medical Universities, Lyon, France
| |
Collapse
|
26
|
Mitochondria as Molecular Platforms Integrating Multiple Innate Immune Signalings. J Mol Biol 2016; 429:1-13. [PMID: 27923767 DOI: 10.1016/j.jmb.2016.10.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 12/14/2022]
Abstract
The immune system of vertebrates confers protective mechanisms to the host through the sensing of stress-induced agents expressed during infection or cell stress. Among them, the first line of host defense composed of the innate immune sensing of these agents by pattern recognition receptors enables downstream adaptive immunity to be primed, mediating the body's appropriate response to clear infection and tissue damage. Mitochondria are «bacteria within» that allowed the emergence of functional eukaryotic cells by positioning themselves as the cell powerhouse and an initiator of cell death programs. It is striking to consider that such ancestral bacteria, which had to evade host defense at some point to develop evolutionary endosymbiosis, have become instrumental for the modern eukaryotic cell in alerting the immune system against various insults including infection by other pathogens. Mitochondria have indeed become critical regulators of innate immune responses to both pathogens and cell stress. They host numerous modulators, which play a direct role into the assembly of innate sensing machineries that trigger host immune response in both sterile and non-sterile conditions. Several lines of evidence indicate the existence of a complex molecular interplay between mechanisms involved in inflammation and metabolism. Mitochondrial function seems to participate in innate immunity at various stages as diverse as the transcriptional regulation of inflammatory cytokines and chemokines and their maturation by inflammasomes. Here, we review the mechanisms by which mitochondria orchestrate innate immune responses at different levels by promoting a cellular metabolic reprogramming and the cytosolic immune signaling cascades.
Collapse
|
27
|
The Mitochondria-Regulated Immune Pathway Activated in the C. elegans Intestine Is Neuroprotective. Cell Rep 2016; 16:2399-414. [PMID: 27545884 PMCID: PMC7780887 DOI: 10.1016/j.celrep.2016.07.077] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/25/2016] [Accepted: 07/27/2016] [Indexed: 01/03/2023] Open
Abstract
Immunological mediators that originate outside the nervous system can affect neuronal health. However, their roles in neurodegeneration remain largely unknown. Here, we show that the p38MAPK-mediated immune pathway activated in intestinal cells of Caenorhabditis elegans upon mitochondrial dysfunction protects neurons in a cell-non-autonomous fashion. Specifically, mitochondrial complex I dysfunction induced by rotenone activates the p38MAPK/CREB/ATF-7-dependent innate immune response pathway in intestinal cells of C. elegans. Activation of p38MAPK in the gut is neuroprotective. Enhancing the p38MAPK-mediated immune pathway in intestinal cells alone suppresses rotenone-induced dopaminergic neuron loss, while downregulating it in the intestine exacerbates neurodegeneration. The p38MAPK/ATF-7 immune pathway modulates autophagy and requires autophagy and the PTEN-induced putative kinase PINK-1 for conferring neuroprotection. Thus, mitochondrial damage induces the clearance of mitochondria by the immune pathway, protecting the organism from the toxic effects of mitochondrial dysfunction. We propose that mitochondria are subject to constant surveillance by innate immune mechanisms. Chikka et al. find that mitochondrial complex I damage activates the p38MAPK/ATF-7 signaling pathway in the intestine of C. elegans. Activation of the p38MAPK/ATF-7 immune pathway in the intestine is neuroprotective and sufficient to prevent rotenone-induced degeneration of dopaminergic neurons.
Collapse
|
28
|
Koch RE, Josefson CC, Hill GE. Mitochondrial function, ornamentation, and immunocompetence. Biol Rev Camb Philos Soc 2016; 92:1459-1474. [DOI: 10.1111/brv.12291] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Rebecca E. Koch
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| | - Chloe C. Josefson
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| | - Geoffrey E. Hill
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| |
Collapse
|
29
|
Mitochondrial DNA disturbances and deregulated expression of oxidative phosphorylation and mitochondrial fusion proteins in sporadic inclusion body myositis. Clin Sci (Lond) 2016; 130:1741-51. [PMID: 27413019 DOI: 10.1042/cs20160080] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is one of the most common myopathies in elderly people. Mitochondrial abnormalities at the histological level are present in these patients. We hypothesize that mitochondrial dysfunction may play a role in disease aetiology. We took the following measurements of muscle and peripheral blood mononuclear cells (PBMCs) from 30 sIBM patients and 38 age- and gender-paired controls: mitochondrial DNA (mtDNA) deletions, amount of mtDNA and mtRNA, mitochondrial protein synthesis, mitochondrial respiratory chain (MRC) complex I and IV enzymatic activity, mitochondrial mass, oxidative stress and mitochondrial dynamics (mitofusin 2 and optic atrophy 1 levels). Depletion of mtDNA was present in muscle from sIBM patients and PBMCs showed deregulated expression of mitochondrial proteins in oxidative phosphorylation. MRC complex IV/citrate synthase activity was significantly decreased in both tissues and mitochondrial dynamics were affected in muscle. Depletion of mtDNA was significantly more severe in patients with mtDNA deletions, which also presented deregulation of mitochondrial fusion proteins. Imbalance in mitochondrial dynamics in muscle was associated with increased mitochondrial genetic disturbances (both depletion and deletions), demonstrating that proper mitochondrial turnover is essential for mitochondrial homoeostasis and muscle function in these patients.
Collapse
|
30
|
Luciano JA, Kautza B, Darwiche S, Martinez S, Stratimirovic S, Waltz P, Sperry J, Rosengart M, Shiva S, Zuckerbraun BS. Sirtuin 1 Agonist Minimizes Injury and Improves the Immune Response Following Traumatic Shock. Shock 2016; 44 Suppl 1:149-55. [PMID: 26009827 DOI: 10.1097/shk.0000000000000412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Survival from traumatic injury requires a coordinated and controlled inflammatory and immune response. Mitochondrial and metabolic responses to stress have been shown to play a role in these inflammatory and immune responses. We hypothesized that increases in mitochondrial biogenesis via a sirtuin 1 agonist would decrease tissue injury and partially ameliorate the immunosuppression seen following trauma. C57Bl/6 mice were subjected to a multiple trauma model. Mice were pretreated with either 100 mg/kg per day of the sirtuin 1 agonist, Srt1720, via oral gavage for 2 days prior to trauma and extended until the day the animals were killed, or they were pretreated with peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) siRNA via hydrodynamic tail vein injection 48 h prior to trauma. Markers for mitochondrial function and biogenesis were measured in addition to splenocyte proliferative capacity and bacterial clearance. Srt1720 was noted to improve mitochondrial biogenesis, mitochondrial function, and complex IV activity following traumatic injury (P < 0.05), whereas knockdown of PGC1α resulted in exacerbation of mitochondrial dysfunction (P < 0.05). These changes in mitochondrial function were associated with altered severity of hepatic injury with significant reductions in serum alanine aminotransferase levels seen in mice treated with srt1720. Splenocyte proliferative capacity and intraperitoneal bacterial clearance were evaluated as markers for overall immune function following trauma-hemorrhage. Treatment with Srt1720 minimized the trauma-induced decreases in splenocyte proliferation (P < 0.05), whereas treatment with PGC1α siRNA led to diminished bacterial clearance. The PGC1α signaling pathway is an important regulator of mitochondrial function and biogenesis, which can potentially be harnessed to protect against hepatic injury and minimize the immunosuppression that is seen following trauma-hemorrhage.
Collapse
Affiliation(s)
- Jason A Luciano
- *Department of Surgery, University of Pittsburgh; †VA Pittsburgh Healthcare System; Departments of ‡Critical Care Medicine and §Pharmacology & Chemical Biology, ∥Vascular Medicine Institute, and ¶The Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bandyopadhaya A, Constantinou C, Psychogios N, Ueki R, Yasuhara S, Martyn JAJ, Wilhelmy J, Mindrinos M, Rahme LG, Tzika AA. Bacterial-excreted small volatile molecule 2-aminoacetophenone induces oxidative stress and apoptosis in murine skeletal muscle. Int J Mol Med 2016; 37:867-78. [PMID: 26935176 PMCID: PMC4790710 DOI: 10.3892/ijmm.2016.2487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress induces mitochondrial dysfunction and facilitates apoptosis, tissue damage or metabolic alterations following infection. We have previously discovered that the Pseudomonas aeruginosa (PA) quorum sensing (QS)-excreted small volatile molecule, 2-aminoacetophenone (2-AA), which is produced in infected human tissue, promotes bacterial phenotypes that favor chronic infection, while also compromising muscle function and dampens the pathogen-induced innate immune response, promoting host tolerance to infection. In this study, murine whole-genome expression data have demonstrated that 2-AA affects the expression of genes involved in reactive oxygen species (ROS) homeostasis, thus producing an oxidative stress signature in skeletal muscle. The results of the present study demonstrated that the expression levels of genes involved in apoptosis signaling pathways were upregulated in the skeletal muscle of 2-AA-treated mice. To confirm the results of our transcriptome analysis, we used a novel high-resolution magic-angle-spinning (HRMAS), proton (1H) nuclear magnetic resonance (NMR) method and observed increased levels of bisallylic methylene fatty acyl protons and vinyl protons, suggesting that 2-AA induces skeletal muscle cell apoptosis. This effect was corroborated by our results demonstrating the downregulation of mitochondrial membrane potential in vivo in response to 2-AA. The findings of the present study indicate that the bacterial infochemical, 2-AA, disrupts mitochondrial functions by inducing oxidative stress and apoptosis signaling and likely promotes skeletal muscle dysfunction, which may favor chronic/persistent infection.
Collapse
Affiliation(s)
- Arunava Bandyopadhaya
- Department of Surgery, Microbiology and Immunobiology, Harvard Medical School and Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - Caterina Constantinou
- Department of Surgery, Microbiology and Immunobiology, Harvard Medical School and Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - Nikolaos Psychogios
- NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - Ryusuke Ueki
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shingo Yasuhara
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - J A Jeevendra Martyn
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Julie Wilhelmy
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Mindrinos
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laurence G Rahme
- Department of Surgery, Microbiology and Immunobiology, Harvard Medical School and Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - A Aria Tzika
- NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
32
|
Williams PB, Barnes CS, Portnoy JM. Innate and Adaptive Immune Response to Fungal Products and Allergens. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2016; 4:386-95. [PMID: 26755096 DOI: 10.1016/j.jaip.2015.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/05/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Exposure to fungi and their products is practically ubiquitous, yet most of this is of little consequence to most healthy individuals. This is because there are a number of elaborate mechanisms to deal with these exposures. Most of these mechanisms are designed to recognize and neutralize such exposures. However, in understanding these mechanisms it has become clear that many of them overlap with our ability to respond to disruptions in tissue function caused by trauma or deterioration. These responses involve the innate and adaptive immune systems usually through the activation of nuclear factor kappa B and the production of cytokines that are considered inflammatory accompanied by other factors that can moderate these reactivities. Depending on different genetic backgrounds and the extent of activation of these mechanisms, various pathologies with resulting symptoms can ensue. Complicating this is the fact that these mechanisms can bias toward type 2 innate and adaptive immune responses. Thus, to understand what we refer to as allergens from fungal sources, we must first understand how they influence these innate mechanisms. In doing so it has become clear that many of the proteins that are described as fungal allergens are essentially homologues of our own proteins that signal or cause tissue disruptions.
Collapse
Affiliation(s)
- P Brock Williams
- Division of Allergy/Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Charles S Barnes
- Division of Allergy/Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Jay M Portnoy
- Division of Allergy/Immunology, Children's Mercy Hospital, Kansas City, Mo.
| | | |
Collapse
|
33
|
Shahni R, Cale CM, Anderson G, Osellame LD, Hambleton S, Jacques TS, Wedatilake Y, Taanman JW, Chan E, Qasim W, Plagnol V, Chalasani A, Duchen MR, Gilmour KC, Rahman S. Signal transducer and activator of transcription 2 deficiency is a novel disorder of mitochondrial fission. Brain 2015; 138:2834-46. [PMID: 26122121 PMCID: PMC5808733 DOI: 10.1093/brain/awv182] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/28/2015] [Indexed: 01/17/2023] Open
Abstract
Defects of mitochondrial dynamics are emerging causes of neurological disease. In two children presenting with severe neurological deterioration following viral infection we identified a novel homozygous STAT2 mutation, c.1836 C>A (p.Cys612Ter), using whole exome sequencing. In muscle and fibroblasts from these patients, and a third unrelated STAT2-deficient patient, we observed extremely elongated mitochondria. Western blot analysis revealed absence of the STAT2 protein and that the mitochondrial fission protein DRP1 (encoded by DNM1L) is inactive, as shown by its phosphorylation state. All three patients harboured decreased levels of DRP1 phosphorylated at serine residue 616 (P-DRP1(S616)), a post-translational modification known to activate DRP1, and increased levels of DRP1 phosphorylated at serine 637 (P-DRP1(S637)), associated with the inactive state of the DRP1 GTPase. Knockdown of STAT2 in SHSY5Y cells recapitulated the fission defect, with elongated mitochondria and decreased P-DRP1(S616) levels. Furthermore the mitochondrial fission defect in patient fibroblasts was rescued following lentiviral transduction with wild-type STAT2 in all three patients, with normalization of mitochondrial length and increased P-DRP1(S616) levels. Taken together, these findings implicate STAT2 as a novel regulator of DRP1 phosphorylation at serine 616, and thus of mitochondrial fission, and suggest that there are interactions between immunity and mitochondria. This is the first study to link the innate immune system to mitochondrial dynamics and morphology. We hypothesize that variability in JAK-STAT signalling may contribute to the phenotypic heterogeneity of mitochondrial disease, and may explain why some patients with underlying mitochondrial disease decompensate after seemingly trivial viral infections. Modulating JAK-STAT activity may represent a novel therapeutic avenue for mitochondrial diseases, which remain largely untreatable. This may also be relevant for more common neurodegenerative diseases, including Alzheimer's, Huntington's and Parkinson's diseases, in which abnormalities of mitochondrial morphology have been implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Rojeen Shahni
- 1 Mitochondrial Research Group, Genetics and Genomic Medicine, UCL Institute of Child Health, Guilford Street, London, UK
| | - Catherine M Cale
- 2 Molecular Immunology Unit, Great Ormond Street Hospital, London, UK
| | - Glenn Anderson
- 3 Histopathology Unit, Great Ormond Street Hospital, London, UK
| | - Laura D Osellame
- 4 Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Australia
| | - Sophie Hambleton
- 5 Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, UK
| | - Thomas S Jacques
- 3 Histopathology Unit, Great Ormond Street Hospital, London, UK 6 Developmental Neurosciences, UCL Institute of Child Health, London, UK
| | - Yehani Wedatilake
- 1 Mitochondrial Research Group, Genetics and Genomic Medicine, UCL Institute of Child Health, Guilford Street, London, UK
| | - Jan-Willem Taanman
- 7 Department of Clinical Neurosciences, UCL Institute of Neurology, Rowland Hill Street, London, UK
| | - Emma Chan
- 2 Molecular Immunology Unit, Great Ormond Street Hospital, London, UK
| | - Waseem Qasim
- 2 Molecular Immunology Unit, Great Ormond Street Hospital, London, UK
| | | | - Annapurna Chalasani
- 9 Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael R Duchen
- 10 Cell and Developmental Biology, University College London, UK
| | | | - Shamima Rahman
- 1 Mitochondrial Research Group, Genetics and Genomic Medicine, UCL Institute of Child Health, Guilford Street, London, UK 1 Mitochondrial Research Group, Genetics and Genomic Medicine, UCL Institute of Child Health, Guilford Street, London, UK
| |
Collapse
|
34
|
Kilbaugh TJ, Lvova M, Karlsson M, Zhang Z, Leipzig J, Wallace DC, Margulies SS. Peripheral Blood Mitochondrial DNA as a Biomarker of Cerebral Mitochondrial Dysfunction following Traumatic Brain Injury in a Porcine Model. PLoS One 2015; 10:e0130927. [PMID: 26098565 PMCID: PMC4476697 DOI: 10.1371/journal.pone.0130927] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/27/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) has been shown to activate the peripheral innate immune system and systemic inflammatory response, possibly through the central release of damage associated molecular patterns (DAMPs). Our main purpose was to gain an initial understanding of the peripheral mitochondrial response following TBI, and how this response could be utilized to determine cerebral mitochondrial bioenergetics. We hypothesized that TBI would increase peripheral whole blood relative mtDNA copy number, and that these alterations would be associated with cerebral mitochondrial bioenergetics triggered by TBI. METHODOLOGY Blood samples were obtained before, 6 h after, and 25 h after focal (controlled cortical impact injury: CCI) and diffuse (rapid non-impact rotational injury: RNR) TBI. PCR primers, unique to mtDNA, were identified by aligning segments of nuclear DNA (nDNA) to mtDNA, normalizing values to nuclear 16S rRNA, for a relative mtDNA copy number. Three unique mtDNA regions were selected, and PCR primers were designed within those regions, limited to 25-30 base pairs to further ensure sequence specificity, and measured utilizing qRT-PCR. RESULTS Mean relative mtDNA copy numbers increased significantly at 6 and 25 hrs after following both focal and diffuse traumatic brain injury. Specifically, the mean relative mtDNA copy number from three mitochondrial-specific regions pre-injury was 0.84 ± 0.05. At 6 and 25 h after diffuse non-impact TBI, mean mtDNA copy number was significantly higher: 2.07 ± 0.19 (P < 0.0001) and 2.37 ± 0.42 (P < 0.001), respectively. Following focal impact TBI, relative mtDNA copy number was also significantly higher, 1.35 ± 0.12 (P < 0.0001) at 25 hours. Alterations in mitochondrial respiration in the hippocampus and cortex post-TBI correlated with changes in the relative mtDNA copy number measured in peripheral blood. CONCLUSIONS Alterations in peripheral blood relative mtDNA copy numbers may be a novel biosignature of cerebral mitochondrial bioenergetics with exciting translational potential for non-invasive diagnostic and interventional studies.
Collapse
Affiliation(s)
- Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maria Lvova
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael Karlsson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Zhe Zhang
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jeremy Leipzig
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Susan S. Margulies
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
35
|
Currais A. Ageing and inflammation - A central role for mitochondria in brain health and disease. Ageing Res Rev 2015; 21:30-42. [PMID: 25684584 DOI: 10.1016/j.arr.2015.02.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 02/08/2023]
Abstract
To develop successful therapies that prevent or treat neurodegenerative diseases requires an understanding of the upstream events. Ageing is by far the greatest risk factor for most of these diseases, and to clarify their causes will require an understanding of the process of ageing itself. Starting with the question Why do we age as individual organisms, but the line of pluripotent embryonic stem cells and germ cells carried by individuals and transmitted to descendants is immortal? this review discusses how the process of cellular differentiation leads to the accumulation of biological imperfections with ageing, and how these imperfections may be the cause of chronic inflammatory responses to stress that undermine cellular function. Both differentiation and inflammation involve drastic metabolic changes associated with alterations in mitochondrial dynamics that shift the balance between aerobic glycolysis and oxidative phosphorylation. With ageing, mitochondrial dysfunction can be both the cause and consequence of inflammatory processes and elicit metabolic adaptations that might be either protective or become progressively detrimental. It is argued here that an understanding of the relationship between metabolism, differentiation and inflammation is essential to understand the pathological mechanisms governing brain health and disease during ageing.
Collapse
|
36
|
Neospora caninum Recruits Host Cell Structures to Its Parasitophorous Vacuole and Salvages Lipids from Organelles. EUKARYOTIC CELL 2015; 14:454-73. [PMID: 25750213 DOI: 10.1128/ec.00262-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii and Neospora caninum, which cause the diseases toxoplasmosis and neosporosis, respectively, are two closely related apicomplexan parasites. They have similar heteroxenous life cycles and conserved genomes and share many metabolic features. Despite these similarities, T. gondii and N. caninum differ in their transmission strategies and zoonotic potential. Comparative analyses of the two parasites are important to identify the unique biological features that underlie the basis of host preference and pathogenicity. T. gondii and N. caninum are obligate intravacuolar parasites; in contrast to T. gondii, events that occur during N. caninum infection remain largely uncharacterized. We examined the capability of N. caninum (Liverpool isolate) to interact with host organelles and scavenge nutrients in comparison to that of T. gondii (RH strain). N. caninum reorganizes the host microtubular cytoskeleton and attracts endoplasmic reticulum (ER), mitochondria, lysosomes, multivesicular bodies, and Golgi vesicles to its vacuole though with some notable differences from T. gondii. For example, the host ER gathers around the N. caninum parasitophorous vacuole (PV) but does not physically associate with the vacuolar membrane; the host Golgi apparatus surrounds the N. caninum PV but does not fragment into ministacks. N. caninum relies on plasma lipoproteins and scavenges cholesterol from NPC1-containing endocytic organelles. This parasite salvages sphingolipids from host Golgi Rab14 vesicles that it sequesters into its vacuole. Our data highlight a remarkable degree of conservation in the intracellular infection program of N. caninum and T. gondii. The minor differences between the two parasites related to the recruitment and rearrangement of host organelles around their vacuoles likely reflect divergent evolutionary paths.
Collapse
|
37
|
Guerville F, Daburon S, Marlin R, Lartigue L, Loizon S, Pitard V, Couzi L, Moreau JF, Déchanet-Merville J, Faustin B. TCR-dependent sensitization of human γδ T cells to non-myeloid IL-18 in cytomegalovirus and tumor stress surveillance. Oncoimmunology 2015; 4:e1003011. [PMID: 26155394 PMCID: PMC4485801 DOI: 10.1080/2162402x.2014.1003011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/23/2014] [Accepted: 12/23/2014] [Indexed: 11/25/2022] Open
Abstract
Human γδ T cells contribute to tissue homeostasis under normal conditions and participate in lymphoid stress surveillance against infection and tumors. However, the molecular mechanisms underlying the recognition of complex cell stress signatures by γδ T cells are still unclear. Tumor cells and human cytomegalovirus (HCMV)-infected cells are known targets of γδ T cells. We show here that many tumor and CMV-infected cells express caspase-1 inflammasomes and release interleukin (IL)-18. Engagement of the T-cell receptor (TCR) on Vδ2neg γδ T cells controlled the direct innate immune sensing of IL-18 that enhanced cytotoxicity and interferon gamma (IFNγ) production. This TCR-dependent sensitization to IL-18 was mediated by the upregulation of the innate IL-18 receptor β chain (IL-18Rβ) expression. These findings shed light on inflammasomes as a unified stress signal of tumor and infected cells to alert γδ T cells. Moreover, uncovering the TCR-mediated sensitization of γδ T cells to inflammatory mediators establishes a molecular link between the innate and adaptive immune functions of γδ T cells that could fine tune the commitment of antigen-experienced γδ T cells to inflammatory responses.
Collapse
Affiliation(s)
- Florent Guerville
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France ; Nephrology and Renal Transplantation Department; Bordeaux University Hospital ; Bordeaux, France
| | - Sophie Daburon
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France
| | - Romain Marlin
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France
| | - Lydia Lartigue
- INSERM U916 VINCO , Institut Bergonié , Bordeaux, France
| | - Severine Loizon
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France
| | - Vincent Pitard
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France
| | - Lionel Couzi
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France ; Nephrology and Renal Transplantation Department; Bordeaux University Hospital ; Bordeaux, France
| | - Jean-François Moreau
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France ; Immunology and Immunogenetics Laboratory, Bordeaux University Hospital , Bordeaux, France
| | | | - Benjamin Faustin
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France
| |
Collapse
|
38
|
Heixuedian (heix), a potential melanotic tumor suppressor gene, exhibits specific spatial and temporal expression pattern during Drosophila hematopoiesis. Dev Biol 2014; 398:218-30. [PMID: 25530181 DOI: 10.1016/j.ydbio.2014.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 12/27/2022]
Abstract
The Drosophila heixuedian (heix) is the ortholog of human UBIAD1 gene (a.k.a TERE1). The protein product of UBIAD1/heix has multiple enzymatic activities, including the vitamin K2 and the non-mitochondrial CoQ10 biosynthesis. However, the expression pattern of UBIAD1/Heix during metazoan development has not been systematically studied. In this paper, we found that loss of function of heix resulted in pathological changes of larval hematopoietic system, including lymph gland hypertrophy, hemocyte overproliferation and aberrant differentiation, and melanin mass formation. Overexpression of heix cDNA under the tubulin Gal4 driver rescued the above hematopoietic defects. Interestingly, Heix was specifically expressed in plasmatocyte/macrophage lineage in srp driven EGFP positive cells on the head mesoderm during embryogenesis, while it was highly expressed in crystal cells in the primary lobes of the third instar larval lymph gland. Using qRT-PCR analysis, loss of function of heix caused aberrant activation of multiple hemocyte proliferation-related as well as immune-related pathways, including JAK/STAT pathway, Ras/MAPK pathway, IMD pathway and Toll pathway. These data suggested that heix is a potential melanotic tumor suppressor gene and plays a pivotal role in both hemocytes proliferation and differentiation in Drosophila.
Collapse
|
39
|
Kankotia S, Stacpoole PW. Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta Rev Cancer 2014; 1846:617-29. [PMID: 25157892 DOI: 10.1016/j.bbcan.2014.08.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 02/06/2023]
Abstract
We reviewed the anti-cancer effects of DCA, an orphan drug long used as an investigational treatment for various acquired and congenital disorders of mitochondrial intermediary metabolism. Inhibition by DCA of mitochondrial pyruvate dehydrogenase kinases and subsequent reactivation of the pyruvate dehydrogenase complex and oxidative phosphorylation is the common mechanism accounting for the drug's anti-neoplastic effects. At least two fundamental changes in tumor metabolism are induced by DCA that antagonize tumor growth, metastases and survival: the first is the redirection of glucose metabolism from glycolysis to oxidation (reversal of the Warburg effect), leading to inhibition of proliferation and induction of caspase-mediated apoptosis. These effects have been replicated in both human cancer cell lines and in tumor implants of diverse germ line origin. The second fundamental change is the oxidative removal of lactate, via pyruvate, and the co-incident buffering of hydrogen ions by dehydrogenases located in the mitochondrial matrix. Preclinical studies demonstrate that DCA has additive or synergistic effects when used in combination with standard agents designed to modify tumor oxidative stress, vascular remodeling, DNA integrity or immunity. These findings and limited clinical results suggest that potentially fruitful areas for additional clinical trials include 1) adult and pediatric high grade astrocytomas; 2) BRAF-mutant cancers, such as melanoma, perhaps combined with other pro-oxidants; 3) tumors in which resistance to standard platinum-class drugs alone may be overcome with combination therapy; and 4) tumors of endodermal origin, in which extensive experimental research has demonstrated significant anti-proliferative, pro-apoptotic effects of DCA, leading to improved host survival.
Collapse
Affiliation(s)
- Shyam Kankotia
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States
| | - Peter W Stacpoole
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States; Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
40
|
Abstract
Antiviral innate immune responses and apoptosis are the two major factors limiting viral infections. Successful viral infection requires the virus to take advantage of the cellular machinery to bypass cellular defenses. Accumulated evidences show that autophagy plays a crucial role in cell-to-virus interaction. Here, we focus on how viruses subvert mitophagy to favor viral replication by mitigating innate immune responses and apoptotic signaling.
Collapse
Affiliation(s)
- Mao Xia
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | | | | | | |
Collapse
|
41
|
Hill GE. Cellular respiration: the nexus of stress, condition, and ornamentation. Integr Comp Biol 2014; 54:645-57. [PMID: 24791751 DOI: 10.1093/icb/icu029] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A fundamental hypothesis for the evolution and maintenance of ornamental traits is that ornaments convey information to choosing females about the quality of prospective mates. A diverse array of ornaments (e.g., colors, morphological features, and behaviors) has been associated with a wide range of measures of individual quality, but decades of study of such indicator traits have failed to produce general mechanisms of honest signaling. Here, I propose that efficiency of cellular respiration, as a product of mitochondrial function, underlies the associations between ornamentation and performance for a broad range of traits across taxa. A large biomedical literature documents the fundamental biochemical links between oxidative phosphorylation (OXPHOS) and the production of reactive oxygen species (ROS), the process of metabolism, the function of the immune system, the synthesis of proteins, and the development and function of the nervous system. The production of virtually all ornaments whose expressions have been demonstrated to be condition-dependent is directly affected by the efficiency of cellular respiration, suggesting that the signaling of respiratory efficiency may be the primary function of such traits. Furthermore, the production of ornaments links to stress-response systems, including particularly the neuroendocrine system, through mitochondrial function, thereby makes ornamental traits effective signals of the capacity to withstand environmental perturbations. The identification of a unifying mechanism of honest signaling holds the potential to connect many heretofore-disparate fields of study related to stress and ornamentation, including neuroendocrinology, respiratory physiology, metabolic physiology, and immunology.
Collapse
Affiliation(s)
- Geoffrey E Hill
- Department of Biological Sciences, 331 Funchess Hall, Auburn University, Auburn, AL 36849-5414, USA
| |
Collapse
|
42
|
Meier JA, Larner AC. Toward a new STATe: the role of STATs in mitochondrial function. Semin Immunol 2014; 26:20-8. [PMID: 24434063 PMCID: PMC4321820 DOI: 10.1016/j.smim.2013.12.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/23/2013] [Indexed: 12/11/2022]
Abstract
Signal Transducers and Activators of Transcription (STATs) have been studied extensively and have been associated with virtually every biochemical pathway. Until recently, however, they were thought to exert these effects solely as a nuclear transcription factor. The finding that STAT3 localizes to the mitochondria and modulates respiration has opened up a new avenue through which STATs may regulate the cell. Recently, other members of the STAT family (STAT1, STAT2, STAT5, and STAT6) have also been shown to be present in the mitochondria. Coordinate regulation at the nucleus and mitochondria by these proteins places them in a unique position to drive cellular processes to achieve a specific response. This review summarizes recent findings that have led to our current understanding of how STATs influence mitochondrial function in health and disease.
Collapse
Affiliation(s)
- Jeremy A. Meier
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA,Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrew C. Larner
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA,Corresponding author at: Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA. Tel.: +1 804 828 2903; fax: +1 804 827 1657. (A.C. Larner)
| |
Collapse
|
43
|
He YH, Lu X, Wu H, Cai WW, Yang LQ, Xu LY, Sun HP, Kong QP. Mitochondrial DNA content contributes to healthy aging in Chinese: a study from nonagenarians and centenarians. Neurobiol Aging 2014; 35:1779.e1-4. [PMID: 24524965 DOI: 10.1016/j.neurobiolaging.2014.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/20/2013] [Accepted: 01/12/2014] [Indexed: 12/18/2022]
Abstract
Mitochondrial DNA (mtDNA) content plays an important role in energy production and sustaining normal physiological function. A decline in the mtDNA content and subsequent dysfunction cause various senile diseases, with decreasing mtDNA content observed in the elderly individuals with age-related diseases. In contrast, the oldest old individuals, for example, centenarians, have a delayed or reduced prevalence of these diseases, suggesting centenarians may have a different pattern of the mtDNA content, enabling them to keep normal mitochondrial functions to help delay or escape senile diseases. To test this hypothesis, a total of 961 subjects, consisting of 424 longevity subjects and 537 younger control subjects from Hainan and Sichuan provinces of China, were recruited for this study. The mtDNA content was found to be inversely associated with age among the age of group 40-70 years. Surprisingly, no reduction of mtDNA content was observed in nonagenarians and centenarians; instead, these oldest old showed a significant increase than the elderly people aged between 50 and 70 years. The results suggest the higher mtDNA content may convey a beneficial effect to the longevity of people through assuring sufficient energy supply.
Collapse
Affiliation(s)
- Yong-Han He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Xiang Lu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Huan Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Wang-Wei Cai
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, China.
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Liang-You Xu
- Dujiangyan Longevity Research Centre, Dujiangyan, China
| | - Hong-Peng Sun
- Department of Social Medicine, School of Public Health, Soochow University, Suzhou, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China.
| |
Collapse
|
44
|
Gottschalk WK, Lutz MW, He YT, Saunders AM, Burns DK, Roses AD, Chiba-Falek O. The Broad Impact of TOM40 on Neurodegenerative Diseases in Aging. ACTA ACUST UNITED AC 2014; 1. [PMID: 25745640 DOI: 10.13188/2376-922x.1000003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial dysfunction is an important factor in the pathogenesis of age-related diseases, including neurodegenerative diseases like Alzheimer's and Parkinson's spectrum disorders. A polymorphism in Translocase of the Outer Mitochondrial Membrane - 40 kD (TOMM40) is associated with risk and age-of onset of late-onset AD, and is the only nuclear- encoded gene identified in genetic studies to date that presumably contributes to LOAD-related mitochondria dysfunction. In this review, we describe the TOM40-mediated mitochondrial protein import mechanism, and discuss the evidence linking TOM40 with Alzheimer's (AD) and Parkinson's (PD) diseases. All but 36 of the >~1,500 mitochondrial proteins are encoded by the nucleus and are synthesized on cytoplasmic ribosomes, and most of these are imported into mitochondria through the TOM complex, of which TOM40 is the central pore, mediating communication between the cytoplasm and the mitochondrial interior. APP enters and obstructs the TOM40 pore, inhibiting import of OXPHOS-related proteins and disrupting the mitochondrial redox balance. Other pathogenic proteins, such as Aβ and alpha-synuclein, readily pass through the pore and cause toxic effects by directly inhibiting mitochondrial enzymes. Healthy mitochondria normally import and degrade the PD-related protein Pink1, but Pink1 exits mitochondria if the membrane potential collapses and initiates Parkin-mediated mitophagy. Under normal circumstances, this process helps clear dysfunctional mitochondria and contributes to cellular health, but PINK1 mutations associated with PD exit mitochondria with intact membrane potentials, disrupting mitochondrial dynamics, leading to pathology. Thus, TOM40 plays a central role in the mitochondrial dysfunction that underlies age-related neurodegenerative diseases. Learning about the factors that control TOM40 levels and activity, and how TOM40, specifically, and the TOM complex, generally, interacts with potentially pathogenic proteins, will provide deeper insights to AD and PD pathogenesis, and possibly new targets for preventative and/or therapeutic treatments.
Collapse
Affiliation(s)
- William K Gottschalk
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA ; Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael W Lutz
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA ; Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yu Ting He
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ann M Saunders
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA ; Zinfandel Pharmaceuticals, Chapel Hill, NC, USA
| | | | - Allen D Roses
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA ; Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA ; Zinfandel Pharmaceuticals, Chapel Hill, NC, USA
| | - Ornit Chiba-Falek
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA ; Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|