1
|
Wu Y, Zhao Z, Deng X, Jia J, Yuan G. Pregnancy zone protein, a potential research target in multiple diseases. Gene 2025; 935:149013. [PMID: 39433266 DOI: 10.1016/j.gene.2024.149013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Pregnancy zone protein (PZP) is an antiprotease-resistant immunosuppressant belonging to the α-macroglobulin (αM) protein family. PZP is secreted by the liver and was found to be upregulated in plasma during pregnancy. α-2-macroglobulin (Α2M) shares 71 % serial homology with PZP, but low PZP levels do not lead to increased A2M levels in pregnancy. PZP can interact with several factors such as low-density lipoprotein receptor-associated protein (LRP), transforming growth factor-β (TGF-β), 78 kDa glucose-regulated protein (GRP78), and glycoside A (GdA). PZP is involved in the development of glycolipid metabolism disorders, bronchiectasis, Alzheimer's disease (AD), rheumatoid arthritis (RA), myocardial infarction (MI) and inflammatory bowel disease (IBD). PZP is also associated with the progression of tumorigenesis such as breast cancer (BC), homologyepatocellular carcinoma (HCC), lung adenocarcinoma (LAC), and colorectal cancer (CRC). Therefore, this review analyzes the role of PZP in pathophysiology of various diseases.
Collapse
Affiliation(s)
- You Wu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Zhicong Zhao
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210033, China
| | - Xia Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| |
Collapse
|
2
|
Zgórecka W, Kranc W, Blatkiewicz M, Kamiński K, Farzaneh M, Bryja A, Mozdziak P, Antosik P, Zabel M, Podhorska-Okołów M, Dzięgiel P, Kempisty B, Bukowska D. Long-Term In Vitro Culture Alters Gene Expression Pattern of Genes Involved in Ontological Groups Representing Cellular Processes. Int J Mol Sci 2024; 25:7109. [PMID: 39000215 PMCID: PMC11241590 DOI: 10.3390/ijms25137109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
The oviduct provides an optimal environment for the final preparation, transport, and survival of gametes, the fertilization process, and early embryonic development. Most of the studies on reproduction are based on in vitro cell culture models because of the cell's accessibility. It creates opportunities to explore the complexity of directly linked processes between cells. Previous studies showed a significant expression of genes responsible for cell differentiation, maturation, and development during long-term porcine oviduct epithelial cells (POECs) in vitro culture. This study aimed at establishing the transcriptomic profile and comprehensive characteristics of porcine oviduct epithelial cell in vitro cultures, to compare changes in gene expression over time and deliver information about the expression pattern of genes highlighted in specific GO groups. The oviduct cells were collected after 7, 15, and 30 days of in vitro cultivation. The transcriptomic profile of gene expression was compared to the control group (cells collected after the first day). The expression of COL1A2 and LOX was enhanced, while FGFBP1, SERPINB2, and OVGP1 were downregulated at all selected intervals of cell culture in comparison to the 24-h control (p-value < 0.05). Adding new detailed information to the reproductive biology field about the diversified transcriptome profile in POECs may create new future possibilities in infertility treatments, including assisted reproductive technique (ART) programmes, and may be a valuable tool to investigate the potential role of oviduct cells in post-ovulation events.
Collapse
Affiliation(s)
- Wiktoria Zgórecka
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Małgorzata Blatkiewicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Kacper Kamiński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Paweł Antosik
- Department of Veterinary Surgery, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, 65-417 Zielona Góra, Poland
- Division of Histology and Embryology, Department of Human Morphology and Embryology Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Department of Veterinary Surgery, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
3
|
Yan Q, Blue NR, Truong B, Zhang Y, Guerrero RF, Liu N, Honigberg MC, Parry S, McNeil RB, Simhan HN, Chung J, Mercer BM, Grobman WA, Silver R, Greenland P, Saade GR, Reddy UM, Wapner RJ, Haas DM. Genetic Associations with Placental Proteins in Maternal Serum Identify Biomarkers for Hypertension in Pregnancy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.25.23290460. [PMID: 37398343 PMCID: PMC10312829 DOI: 10.1101/2023.05.25.23290460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background Preeclampsia is a complex syndrome that accounts for considerable maternal and perinatal morbidity and mortality. Despite its prevalence, no effective disease-modifying therapies are available. Maternal serum placenta-derived proteins have been in longstanding use as markers of risk for aneuploidy and placental dysfunction, but whether they have a causal contribution to preeclampsia is unknown. Objective We aimed to investigate the genetic regulation of serum placental proteins in early pregnancy and their potential causal links with preeclampsia and gestational hypertension. Study design This study used a nested case-control design with nulliparous women enrolled in the nuMoM2b study from eight clinical sites across the United States between 2010 and 2013. The first- and second-trimester serum samples were collected, and nine proteins were measured, including vascular endothelial growth factor (VEGF), placental growth factor, endoglin, soluble fms-like tyrosine kinase-1 (sFlt-1), a disintegrin and metalloproteinase domain-containing protein 12 (ADAM-12), pregnancy-associated plasma protein A, free beta-human chorionic gonadotropin, inhibin A, and alpha-fetoprotein. This study used genome-wide association studies to discern genetic influences on these protein levels, treating proteins as outcomes. Furthermore, Mendelian randomization was used to evaluate the causal effects of these proteins on preeclampsia and gestational hypertension, and their further causal relationship with long-term hypertension, treating proteins as exposures. Results A total of 2,352 participants were analyzed. We discovered significant associations between the pregnancy zone protein locus and concentrations of ADAM-12 (rs6487735, P= 3.03×10 -22 ), as well as between the vascular endothelial growth factor A locus and concentrations of both VEGF (rs6921438, P= 7.94×10 -30 ) and sFlt-1 (rs4349809, P= 2.89×10 -12 ). Our Mendelian randomization analyses suggested a potential causal association between first-trimester ADAM-12 levels and gestational hypertension (odds ratio=0.78, P= 8.6×10 -4 ). We also found evidence for a potential causal effect of preeclampsia (odds ratio=1.75, P =8.3×10 -3 ) and gestational hypertension (odds ratio=1.84, P =4.7×10 -3 ) during the index pregnancy on the onset of hypertension 2-7 years later. The additional mediation analysis indicated that the impact of ADAM-12 on postpartum hypertension could be explained in part by its indirect effect through gestational hypertension (mediated effect=-0.15, P= 0.03). Conclusions Our study discovered significant genetic associations with placental proteins ADAM-12, VEGF, and sFlt-1, offering insights into their regulation during pregnancy. Mendelian randomization analyses demonstrated evidence of potential causal relationships between the serum levels of placental proteins, particularly ADAM-12, and gestational hypertension, potentially informing future prevention and treatment investigations.
Collapse
|
4
|
Diedrich AM, Daneshgar A, Tang P, Klein O, Mohr A, Onwuegbuchulam OA, von Rueden S, Menck K, Bleckmann A, Juratli MA, Becker F, Sauer IM, Hillebrandt KH, Pascher A, Struecker B. Proteomic analysis of decellularized mice liver and kidney extracellular matrices. J Biol Eng 2024; 18:17. [PMID: 38389090 PMCID: PMC10885605 DOI: 10.1186/s13036-024-00413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The extracellular matrix (ECM) is a three-dimensional network of proteins that encases and supports cells within a tissue and promotes physiological and pathological cellular differentiation and functionality. Understanding the complex composition of the ECM is essential to decrypt physiological processes as well as pathogenesis. In this context, the method of decellularization is a useful technique to eliminate cellular components from tissues while preserving the majority of the structural and functional integrity of the ECM. RESULTS In this study, we employed a bottom-up proteomic approach to elucidate the intricate network of proteins in the decellularized extracellular matrices of murine liver and kidney tissues. This approach involved the use of a novel, perfusion-based decellularization protocol to generate acellular whole organ scaffolds. Proteomic analysis of decellularized mice liver and kidney ECM scaffolds revealed tissue-specific differences in matrisome composition, while we found a predominantly stable composition of the core matrisome, consisting of collagens, glycoproteins, and proteoglycans. Liver matrisome analysis revealed unique proteins such as collagen type VI alpha-6, fibrillin-2 or biglycan. In the kidney, specific ECM-regulators such as cathepsin z were detected. CONCLUSION The identification of distinct proteomic signatures provides insights into how different matrisome compositions might influence the biological properties of distinct tissues. This experimental workflow will help to further elucidate the proteomic landscape of decellularized extracellular matrix scaffolds of mice in order to decipher complex cell-matrix interactions and their contribution to a tissue-specific microenvironment.
Collapse
Affiliation(s)
- Anna-Maria Diedrich
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany
| | - Assal Daneshgar
- Department of Surgery, Charité Mitte | Campus Virchow-Klinikum, Charité -Universitaetsmedizin Berlin, Campus, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitaetsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Peter Tang
- Department of Surgery, Charité Mitte | Campus Virchow-Klinikum, Charité -Universitaetsmedizin Berlin, Campus, 13353, Berlin, Germany
| | - Oliver Klein
- Berlin Institute of Health at Charité - Universitaetsmedizin Berlin, Core Facility Imaging Mass Spectrometry, 13353, Berlin, Germany
| | - Annika Mohr
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany
| | - Olachi A Onwuegbuchulam
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany
| | - Sabine von Rueden
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany
| | - Kerstin Menck
- Department of Medicine A for Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Annalen Bleckmann
- Department of Medicine A for Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Mazen A Juratli
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Felix Becker
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Igor M Sauer
- Department of Surgery, Charité Mitte | Campus Virchow-Klinikum, Charité -Universitaetsmedizin Berlin, Campus, 13353, Berlin, Germany
| | - Karl H Hillebrandt
- Department of Surgery, Charité Mitte | Campus Virchow-Klinikum, Charité -Universitaetsmedizin Berlin, Campus, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitaetsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Pascher
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Benjamin Struecker
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany.
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany.
| |
Collapse
|
5
|
Medegan Fagla B, Buhimschi IA. Protein Misfolding in Pregnancy: Current Insights, Potential Mechanisms, and Implications for the Pathogenesis of Preeclampsia. Molecules 2024; 29:610. [PMID: 38338354 PMCID: PMC10856193 DOI: 10.3390/molecules29030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Protein misfolding disorders are a group of diseases characterized by supra-physiologic accumulation and aggregation of pathogenic proteoforms resulting from improper protein folding and/or insufficiency in clearance mechanisms. Although these processes have been historically linked to neurodegenerative disorders, such as Alzheimer's disease, evidence linking protein misfolding to other pathologies continues to emerge. Indeed, the deposition of toxic protein aggregates in the form of oligomers or large amyloid fibrils has been linked to type 2 diabetes, various types of cancer, and, in more recent years, to preeclampsia, a life-threatening pregnancy-specific disorder. While extensive physiological mechanisms are in place to maintain proteostasis, processes, such as aging, genetic factors, or environmental stress in the form of hypoxia, nutrient deprivation or xenobiotic exposures can induce failure in these systems. As such, pregnancy, a natural physical state that already places the maternal body under significant physiological stress, creates an environment with a lower threshold for aberrant aggregation. In this review, we set out to discuss current evidence of protein misfolding in pregnancy and potential mechanisms supporting a key role for this process in preeclampsia pathogenesis. Improving our understanding of this emerging pathophysiological process in preeclampsia can lead to vital discoveries that can be harnessed to create better diagnoses and treatment modalities for the disorder.
Collapse
Affiliation(s)
| | - Irina Alexandra Buhimschi
- Department of Obstetrics and Gynecology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
6
|
Hu Z, Zhang M, Fan J, Hu J, Lin G, Piao S, Liu P, Liu J, Fu S, Sun W, Gygi SP, Zhang J, Zhou C. High-Level Secretion of Pregnancy Zone Protein Is a Novel Biomarker of DNA Damage-Induced Senescence and Promotes Spontaneous Senescence. J Proteome Res 2023; 22:3570-3579. [PMID: 37831546 DOI: 10.1021/acs.jproteome.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Identification of unique and specific biomarkers to better detect and quantify senescent cells remains challenging. By a global proteomic profiling of senescent human skin BJ fibroblasts induced by ionizing radiation (IR), the cellular level of pregnancy zone protein (PZP), a presumable pan-protease inhibitor never been linked to cellular senescence before, was found to be decreased by more than 10-fold, while the level of PZP in the conditioned medium was increased concomitantly. This observation was confirmed in a variety of senescent cells induced by IR or DNA-damaging drugs, indicating that high-level secretion of PZP is a novel senescence-associated secretory phenotype. RT-PCR examination verified that the transcription of the PZP gene is enhanced in various cells at senescence or upregulated following DNA damage treatment in a p53-independent manner. Moreover, pretreatment with late pregnancy serum containing a high level of PZP led to inhibition of doxorubicin-induced senescence in A549 cells, and depletion of PZP in the pregnancy serum could enhance such inhibition. Finally, the addition of immuno-precipitated PZP complexes into tissue culture attenuated the growth of A549 cells and promoted the spontaneous senescence. Therefore, we revealed that high-level secretion of PZP is a novel and unique feature associated with DNA damage-induced senescence, and secreted PZP is a positive regulator of cellular senescence, particularly during the late stage of gestation.
Collapse
Affiliation(s)
- Ziqi Hu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Mingzhu Zhang
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Jiankun Fan
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Jiandong Hu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Guochao Lin
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Shengwen Piao
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Peng Liu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Jichao Liu
- The 2th Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Songbin Fu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin150081, China
| | - Wenjing Sun
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin150081, China
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jinwei Zhang
- The 2th Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Chunshui Zhou
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin150081, China
| |
Collapse
|
7
|
Ferrant J, Pontis A, Zimmermann F, Dingli F, Poullet P, Loew D, Tarte K, Dumontet E. Phenotypic and proteomic analysis of plasma extracellular vesicles highlights them as potential biomarkers of primary Sjögren syndrome. Front Immunol 2023; 14:1207545. [PMID: 37529039 PMCID: PMC10388367 DOI: 10.3389/fimmu.2023.1207545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/14/2023] [Indexed: 08/03/2023] Open
Abstract
Sjögren syndrome (SjS) is an autoimmune disease characterized by the destruction of the exocrine gland epithelia, causing a dryness of mucosa called sicca symptoms, and whose main life-threatening complication is lymphoma. There is a need for new biomarkers in this disease, notably diagnostic biomarkers for patients with genuine sicca symptoms that do not meet current criteria, and prognostic biomarkers for patients at risk of lymphoma. Plasma extracellular vesicles (EVs) are promising biomarker candidates in several diseases, but their potential has not yet been explored in SjS. In this proof-of-concept study, we characterized EVs from primary SjS patients (pSS, n=12) at the phenotypic and proteomic levels, compared to EVs from healthy donor (HD, n=8) and systemic lupus erythematosus patients (SLE, n=12). Specific plasma EVs subpopulations, derived from neutrophils, endothelial, and epithelial cells, were found increased in pSS. We also identified a pSS proteomic signature in plasma EVs, including neutrophil-, epithelial-, and endothelial-related proteins, such as integrin alpha M (ITGAM), olfactomedin-4 (OLFM4), Ras-related protein RAB10, and CD36. Overall, our results support the relevance of plasma EVs as biomarkers in SjS.
Collapse
Affiliation(s)
- Juliette Ferrant
- Pôle Biologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
- UMR, Université Rennes, INSERM, Établissement Français du Sang, Rennes, France
| | - Adeline Pontis
- Pôle Biologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - François Zimmermann
- Département de Médecine Interne et Immunologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Florent Dingli
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, Paris, France
| | - Patrick Poullet
- Institut Curie, PSL Research University, INSERM, Mines Paris Tech, Bioinformatics core facility (CUBIC), Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, Paris, France
| | - Karin Tarte
- Pôle Biologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
- UMR, Université Rennes, INSERM, Établissement Français du Sang, Rennes, France
| | - Erwan Dumontet
- Pôle Biologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
- UMR, Université Rennes, INSERM, Établissement Français du Sang, Rennes, France
| |
Collapse
|
8
|
Isaksson GL, Nielsen LH, Palarasah Y, Jensen DM, Andersen LLT, Madsen K, Bistrup C, Jørgensen JS, Ovesen PG, Jensen BL. Urine excretion of C3dg and sC5b-9 coincide with proteinuria and development of preeclampsia in pregnant women with type-1 diabetes. J Hypertens 2023; 41:223-232. [PMID: 36583350 DOI: 10.1097/hjh.0000000000003288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Pregnant women with type-1 diabetes have an increased risk of preeclampsia with kidney injury and cardiovascular complications. Urine excretion of plasmin and soluble membrane attack complex (sC5b-9) is elevated in severe preeclampsia. We hypothesized a coupling between these events and that active plasmin promotes intratubular complement activation and membrane deposition. METHODS Stored urine and plasma samples from pregnant women with type-1 diabetes (n = 88) collected at gestational weeks 12, 20, 28, 32, 36 and 38 were used. In the cohort, 14 women developed preeclampsia and were compared with 16 nonpreeclampsia controls. RESULTS Urine C3dg and sC5b-9-associated C9 neoantigen/creatinine ratios increased and were significantly higher in women who developed preeclampsia. Plasma concentrations did not change with gestation. Urine plasmin(ogen) correlated to urine C3dg (r = 0.51, P < 0.001) and C9 neoantigen (r = 0.68, P < 0.001); urine albumin correlated to C3dg (r = 0.44, P < 0.001) and C9 (r = 0.59, P < 0.001). Membrane-associated C3dg and C9 neoantigen was detected in urinary extracellular vesicles from patients but not controls at 36 weeks. Receiver operating characteristic curves showed that C3dg and C9 neoantigen were inferior to albumin as predictive biomarkers for preeclampsia. CONCLUSION In preeclampsia, urinary excretion of activated complement relates significantly to albuminuria and to plasmin(ogen) but not to activation in plasma. Intratubular complement activation in preeclampsia is a postfiltration event tightly related to proteinuria/plasminogenuria and a possible mechanistic link to cellular damage and kidney injury.
Collapse
Affiliation(s)
- Gustaf L Isaksson
- Department of Nephrology, Odense University Hospital, Odense
- Department of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark
| | - Lise H Nielsen
- Department of Clinical Medicine - Obstetrics and Gynecology, Aarhus University, Aarhus
| | - Yaseelan Palarasah
- Department of Molecular Medicine - Cancer and Inflammation, University of Southern Denmark
| | - Dorte M Jensen
- Steno Diabetes Center Odense, Odense University Hospital
- Department of Clinical Research, University of Southern Denmark
| | - Lise L T Andersen
- Department of Clinical Research, University of Southern Denmark
- Department of Obstetrics and Gynecology, Odense University Hospital
| | - Kirsten Madsen
- Department of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, Odense
- Department of Clinical Research, University of Southern Denmark
| | - Jan S Jørgensen
- Department of Clinical Research, University of Southern Denmark
- Department of Obstetrics and Gynecology, Odense University Hospital
| | - Per G Ovesen
- Department of Clinical Medicine - Obstetrics and Gynecology, Aarhus University, Aarhus
| | - Boye L Jensen
- Department of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark
| |
Collapse
|
9
|
Fosheim IK, Jacobsen DP, Sugulle M, Alnaes-Katjavivi P, Fjeldstad HES, Ueland T, Lekva T, Staff AC. Serum amyloid A1 and pregnancy zone protein in pregnancy complications and correlation with markers of placental dysfunction. Am J Obstet Gynecol MFM 2023; 5:100794. [PMID: 36334725 DOI: 10.1016/j.ajogmf.2022.100794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/06/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Hypertensive disorders of pregnancy (preeclampsia, gestational hypertension, and chronic hypertension), diabetes mellitus, and placental dysfunction confer an increased risk of long-term maternal cardiovascular disease. Preeclampsia is also associated with acute atherosis that involves lesions of uteroplacental spiral arteries, resembling early stages of atherosclerosis. Serum amyloid A1 is involved in hypercoagulability and atherosclerosis and may aggregate into amyloid-aggregations of misfolded proteins. Pregnancy zone protein may inhibit amyloid aggregation. Amyloid is involved in Alzheimer's disease and cardiovascular disease; it has been identified in preeclampsia, but its role in preeclampsia pathophysiology is unclear. OBJECTIVE We hypothesized that serum amyloid A1 would be increased and pregnancy zone protein decreased in hypertensive disorders of pregnancy and diabetic pregnancies and that serum amyloid A1 and pregnancy zone protein would correlate with placental dysfunction markers (fetal growth restriction and dysregulated angiogenic biomarkers) and acute atherosis. STUDY DESIGN Serum amyloid A1 is measurable in both the serum and plasma. In our study, plasma from 549 pregnancies (normotensive, euglycemic controls: 258; early-onset preeclampsia: 71; late-onset preeclampsia: 98; gestational hypertension: 30; chronic hypertension: 9; diabetes mellitus: 83) was assayed for serum amyloid A1 and pregnancy zone protein. The serum levels of angiogenic biomarkers soluble fms-like tyrosine kinase-1 and placental growth factor were available for 547 pregnancies, and the results of acute atherosis evaluation were available for 313 pregnancies. The clinical characteristics and circulating biomarkers were compared between the pregnancy groups using the Mann-Whitney U, chi-squared, or Fisher exact test as appropriate. Spearman's rho was calculated for assessing correlations. RESULTS In early-onset preeclampsia, serum amyloid A1 was increased compared with controls (17.1 vs 5.1 µg/mL, P<.001), whereas pregnancy zone protein was decreased (590 vs 892 µg/mL, P=.002). Pregnancy zone protein was also decreased in diabetes compared with controls (683 vs 892 µg/mL, P=.01). Serum amyloid A1 was associated with placental dysfunction (fetal growth restriction, elevated soluble fms-like tyrosine kinase-1 to placental growth factor ratio). Pregnancy zone protein correlated negatively with soluble fms-like tyrosine kinase-1 to placental growth factor ratio in all study groups. Acute atherosis was not associated with serum amyloid A1 or pregnancy zone protein. CONCLUSION Proteins involved in atherosclerosis, hypercoagulability, and protein misfolding are dysregulated in early-onset preeclampsia and placental dysfunction, which links them and potentially contributes to future maternal cardiovascular disease.
Collapse
Affiliation(s)
- Ingrid K Fosheim
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, Ueland, and Staff); Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, and Staff).
| | - Daniel P Jacobsen
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, and Staff)
| | - Meryam Sugulle
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, Ueland, and Staff); Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, and Staff)
| | - Patji Alnaes-Katjavivi
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, Ueland, and Staff); Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, and Staff)
| | - Heidi E S Fjeldstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, Ueland, and Staff); Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, and Staff)
| | - Thor Ueland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, Ueland, and Staff); Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway (Drs Ueland and Lekva); K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway (Dr Ueland)
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway (Drs Ueland and Lekva)
| | - Anne C Staff
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, Ueland, and Staff); Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, and Staff)
| |
Collapse
|
10
|
The Pregnancy Zone Protein (PZP) is significantly downregulated in the placenta of preeclampsia and HELLP syndrome patients. J Reprod Immunol 2022; 153:103663. [PMID: 35843132 DOI: 10.1016/j.jri.2022.103663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/16/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
Preeclampsia is characterized by maternal hypertension and multi-organ injury. Elongation factor Tu GTP binding domain containing 2 (EFTUD 2) and the Pregnancy Zone Protein (PZP) seem to be important immunomodulatory factors in early gestation. Little is known about the role of EFTUD2 and PZP in disorders of late pregnancy like preeclampsia, HELLP syndrome and intrauterine growth restriction (IUGR). PZP, EFTUD2 and hCG expression was investigated by immunohistochemistry in the placenta of healthy pregnancies (n = 13), preeclampsia (n = 11), HELLP syndrome (n = 12) and IUGR (n = 8). Correlation analysis of protein expression was performed via Spearman correlation coefficient. The characterization of EFTUD2 and PZP expressing cells was evaluated by double-immunofluorescence. After cultivation of the chorion carcinoma cell line BeWo with hCG the expression of PZP and EFTUD2 was investigated by immunocytochemistry. PZP expression was significantly downregulated in the syncytiotrophoblast (ST) and extravillous trophoblast (EVT) of preeclampsia (ST: p 0.001, EVT:p = 0.019) and HELLP syndrome (ST: p = 0.004, EVT: p = 0.035). The expression of EFTUD2 was significantly lower in preeclampsia (ST: p = 0.003, EVT: p 0.001), HELLP syndrome (ST: p = 0.021, EVT: = 0.001, EVT: p = 0.001). EVTs were identified as EFTUD2 and PZP expressing cells by double-immunofluorescence. Stimulation of BeWo chorion carcinoma cells with hCG 1000 IU/mL for 48 h resulted in a significant upregulation of PZP expression (p = 0.027). Our results indicate that PZP and EFTUD2 might be involved in the development of placental dysfunction in preeclampsia and HELLP syndrome.
Collapse
|
11
|
Thant L, Kaku M, Kakihara Y, Mizukoshi M, Kitami M, Arai M, Kitami K, Kobayashi D, Yoshida Y, Maeda T, Saito I, Uoshima K, Saeki M. Extracellular Matrix-Oriented Proteomic Analysis of Periodontal Ligament Under Mechanical Stress. Front Physiol 2022; 13:899699. [PMID: 35669581 PMCID: PMC9163570 DOI: 10.3389/fphys.2022.899699] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
The periodontal ligament (PDL) is a specialized connective tissue that provides structural support to the tooth and is crucial for oral functions. The mechanical properties of the PDL are mainly derived from the tissue-specific composition and structural characteristics of the extracellular matrix (ECM). The ECM also plays key roles in determining cell fate in the cellular microenvironment thus crucial in the PDL tissue homeostasis. In the present study, we determined the comprehensive ECM profile of mouse molar PDL using laser microdissection and mass spectrometry-based proteomic analysis with ECM-oriented data curation. Additionally, we evaluated changes in the ECM proteome under mechanical loading using a mouse orthodontic tooth movement (OTM) model and analyzed potential regulatory networks using a bioinformatics approach. Proteomic changes were evaluated in reference to the novel second harmonic generation (SHG)-based fiber characterization. Our ECM-oriented proteomics approach succeeded in illustrating the comprehensive ECM profile of the mouse molar PDL. We revealed the presence of type II collagen in PDL, possibly associated with the load-bearing function upon occlusal force. Mechanical loading induced unique architectural changes in collagen fibers along with dynamic compositional changes in the matrisome profile, particularly involving ECM glycoproteins and matrisome-associated proteins. We identified several unique matrisome proteins which responded to the different modes of mechanical loading in PDL. Notably, the proportion of type VI collagen significantly increased at the mesial side, contributing to collagen fibrogenesis. On the other hand, type XII collagen increased at the PDL-cementum boundary of the distal side. Furthermore, a multifaceted bioinformatics approach illustrated the potential molecular cues, including PDGF signaling, that maintain ECM homeostasis under mechanical loading. Our findings provide fundamental insights into the molecular network underlying ECM homeostasis in PDL, which is vital for clinical diagnosis and development of biomimetic tissue-regeneration strategies.
Collapse
Affiliation(s)
- Lay Thant
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- *Correspondence: Masaru Kaku,
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Mizukoshi
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Megumi Kitami
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Moe Arai
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kohei Kitami
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Daiki Kobayashi
- Omics Unit, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Isao Saito
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsumi Uoshima
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
12
|
Wang M, Silva T, Toothaker JM, McCourt BT, Shugrue C, Desir G, Gorelick F, Konnikova L. Renalase and its receptor, PMCA4b, are expressed in the placenta throughout the human gestation. Sci Rep 2022; 12:4953. [PMID: 35322081 PMCID: PMC8943056 DOI: 10.1038/s41598-022-08817-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/07/2022] [Indexed: 01/03/2023] Open
Abstract
Placental function requires organized growth, transmission of nutrients, and an anti-inflammatory milieu between the maternal and fetal interface, but placental factors important for its function remain unclear. Renalase is a pro-survival, anti-inflammatory flavoprotein found to be critical in other tissues. We examined the potential role of renalase in placental development. PCR, bulk RNA sequencing, immunohistochemistry, and immunofluorescence for renalase and its binding partners, PMCA4b and PZP, were performed on human placental tissue from second-trimester and full-term placentas separated into decidua, placental villi and chorionic plates. Quantification of immunohistochemistry was used to localize renalase across time course from 17 weeks to term. Endogenous production of renalase was examined in placental tissue and organoids. Renalase and its receptor PMCA4b transcripts and proteins were present in all layers of the placenta. Estimated RNLS protein levels did not change with gestation in the decidual samples. However, placental villi contained more renalase immunoreactive cells in fetal than full-term placental samples. RNLS co-labeled with markers for Hofbauer cells and trophoblasts within the placental villi. Endogenous production of RNLS, PMCA4b, and PZP by trophoblasts was validated in placental organoids. Renalase is endogenously expressed throughout placental tissue and specifically within Hofbauer cells and trophoblasts, suggesting a potential role for renalase in placental development and function. Future studies should assess renalase's role in normal and diseased human placenta.
Collapse
Affiliation(s)
- Melinda Wang
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA
| | - Tatiana Silva
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA
| | - Jessica M Toothaker
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Blake T McCourt
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA
- Department of Pediatrics, Yale University, New Haven, CT, 06520, USA
| | - Christine Shugrue
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA
- Department of Internal Medicine, Yale University, New Haven, CT, 06520, USA
| | - Gary Desir
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA
- Department of Internal Medicine, Yale University, New Haven, CT, 06520, USA
- VA CT Medical Center, Yale University, New Haven, CT, 06520, USA
| | - Fred Gorelick
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA
- Department of Internal Medicine, Yale University, New Haven, CT, 06520, USA
- VA CT Medical Center, Yale University, New Haven, CT, 06520, USA
- Department of Cell Biology, Yale University, New Haven, CT, 06520, USA
| | - Liza Konnikova
- Yale University School of Medicine, 375 Congress Ave, LSOG 405B, New Haven, CT, 06519, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Pediatrics, Yale University, New Haven, CT, 06520, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT, 06520, USA.
- Program in Human and Translational Immunology, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
13
|
Lin J, Jiang X, Dong M, Liu X, Shen Q, Huang Y, Zhang H, Ye R, Zhou H, Yan C, Yuan S, Wu X, Chen L, Wang Y, He M, Tao Y, Zhang Z, Jin W. Hepatokine Pregnancy Zone Protein Governs the Diet-Induced Thermogenesis Through Activating Brown Adipose Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101991. [PMID: 34514733 PMCID: PMC8564441 DOI: 10.1002/advs.202101991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Indexed: 05/06/2023]
Abstract
Intermittent fasting (IF), as a dietary intervention for weight loss, takes effects primarily through increasing energy expenditure. However, whether inter-organ systems play a key role in IF remains unclear. Here, a novel hepatokine, pregnancy zone protein (PZP) is identified, which has significant induction during the refeeding stage of IF. Further, loss of function studies and protein therapeutic experiment in mice revealed that PZP promotes diet-induced thermogenesis through activating brown adipose tissue (BAT). Mechanistically, circulating PZP can bind to cell surface glucose-regulated protein of 78 kDa (GRP78) to promote uncoupling protein 1 (UCP1) expression via a p38 MAPK-ATF2 signaling pathway in BAT. These studies illuminate a systemic regulation in which the IF promotes BAT thermogenesis through the endocrinal system and provide a novel potential target for treating obesity and related disorders.
Collapse
Affiliation(s)
- Jun Lin
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Xiaoxiao Jiang
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational MedicineCollege of Life Science and AgronomyZhoukou Normal UniversityZhoukou466000China
| | - Qiwei Shen
- Department of General SurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Yuanyuan Huang
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Rongcai Ye
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Huiqiao Zhou
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chunlong Yan
- College of AgricultureYanbian UniversityYanji133000China
| | - Shouli Yuan
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiangnan Wu
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Li Chen
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yanfang Wang
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193China
| | - Min He
- Division of Endocrinology and MetabolismHuashan HospitalFudan UniversityShanghaiChina
| | - Yi Tao
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Zhaoyun Zhang
- Division of Endocrinology and MetabolismHuashan HospitalFudan UniversityShanghaiChina
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
14
|
Gonias SL. Plasminogen activator receptor assemblies in cell signaling, innate immunity, and inflammation. Am J Physiol Cell Physiol 2021; 321:C721-C734. [PMID: 34406905 DOI: 10.1152/ajpcell.00269.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) are serine proteases and major activators of fibrinolysis in mammalian systems. Because fibrinolysis is an essential component of the response to tissue injury, diverse cells, including cells that participate in the response to injury, have evolved receptor systems to detect tPA and uPA and initiate appropriate cell-signaling responses. Formation of functional receptor systems for the plasminogen activators requires assembly of diverse plasma membrane proteins, including but not limited to: the urokinase receptor (uPAR); integrins; N-formyl peptide receptor-2 (FPR2), receptor tyrosine kinases (RTKs), the N-methyl-d-aspartate receptor (NMDA-R), and low-density lipoprotein receptor-related protein-1 (LRP1). The cell-signaling responses elicited by tPA and uPA impact diverse aspects of cell physiology. This review describes rapidly evolving knowledge regarding the structure and function of plasminogen activator receptor assemblies. How these receptor assemblies regulate innate immunity and inflammation is then considered.
Collapse
Affiliation(s)
- Steven L Gonias
- Department of Pathology, University of California, San Diego, California
| |
Collapse
|
15
|
Löb S, Vattai A, Kuhn C, Schmoeckel E, Mahner S, Wöckel A, Kolben T, Keil C, Jeschke U, Vilsmaier T. Pregnancy Zone Protein (PZP) is significantly upregulated in the decidua of recurrent and spontaneous miscarriage and negatively correlated to Glycodelin A (GdA). J Reprod Immunol 2020; 143:103267. [PMID: 33388716 DOI: 10.1016/j.jri.2020.103267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pregnancy Zone Protein (PZP) is an immunosuppressive protein that is expressed by the placenta and has also been identified in immune cells. When PZP and Glycodelin A (GdA) are combined, they act synergistically to inhibit Th-1 immune response. Little is known about its combined expression and role in normal and disturbed first trimester pregnancy. PATIENTS AND METHODS We investigated the expression of PZP and GdA in placental tissue obtained from spontaneous miscarriage (SM) (n = 19) and recurrent miscarriage (RM) (n = 17) at gestational weeks 6-13 by immunohistochemistry and on mRNA-level by either TaqMan PCR or in situ hybridization. Placental tissue from legal terminations of healthy pregnancies (n = 15) served as control group. Immunofluorescence double staining was used to analyse the combined expression of PZP and GdA in decidual tissue. RESULTS The protein level of PZP was significantly increased in decidual stroma of SM samples compared to the decidua of control specimens and also significantly upregulated in the decidual stroma cells in the RM group. Concerning GdA, the decidual stroma revealed a significantly decreased protein level in the group with spontaneous abortions than in the group with healthy pregnancies. There was also a significant downregulation of GdA in the decidual stroma of RM samples compared to the control group. We observed a significant negative correlation of PZP and GdA in decidual stromal tissue of recurrent abortion. We could confirm the staining results for PZP as well as for GdA on mRNA level. Both proteins are co-localized in decidual stroma as analysed by immunofluorescence double staining. CONCLUSION A balanced expression of GdA and its carrier protein PZP in the decidua seems crucial for a successful ongoing pregnancy. According to our data, these immunosuppressive proteins are co-localized in the decidual tissue and show a negative correlation only in patients suffering from recurrent abortion.
Collapse
Affiliation(s)
- Sanja Löb
- Department of Obstetrics and Gynecology, University Hospital, University of Wuerzburg, Josef-Schneider-Str. 4, 97080, Würzburg, Germany; Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337, Munich, Germany
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337, Munich, Germany; Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Marchioninistr. 27, 81377, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337, Munich, Germany
| | - Achim Wöckel
- Department of Obstetrics and Gynecology, University Hospital, University of Wuerzburg, Josef-Schneider-Str. 4, 97080, Würzburg, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337, Munich, Germany
| | - Christiane Keil
- Department of Orthodontics, Universitätsklinikum Carl Gustav Carus, Fetscherstraße 74, 01307, Dresden, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337, Munich, Germany; Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany.
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337, Munich, Germany
| |
Collapse
|
16
|
Bastida-Ruiz D, Wuillemin C, Pederencino A, Yaron M, Martinez de Tejada B, Pizzo SV, Cohen M. Activated α 2-macroglobulin binding to cell surface GRP78 induces trophoblastic cell fusion. Sci Rep 2020; 10:9666. [PMID: 32541810 PMCID: PMC7295802 DOI: 10.1038/s41598-020-66554-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/12/2020] [Indexed: 12/02/2022] Open
Abstract
The villous cytotrophoblastic cells have the ability to fuse and differentiate, forming the syncytiotrophoblast (STB). The syncytialisation process is essential for placentation. Nevertheless, the mechanisms involved in cell fusion and differentiation are yet to be fully elucidated. It has been suggested that cell surface glucose-regulated protein 78 (GRP78) was involved in this process. In multiple cancer cells, cell membrane-located GRP78 has been reported to act as a receptor binding to the active form of α2-macroglobulin (α2M*), activating thus several cellular signalling pathways implicated in cell growth and survival. We hypothesised that GRP78 interaction with α2M* may also activate signalling pathways in trophoblastic cells, which, in turn, may promote cell fusion. Here, we observed that α2M mRNA is highly expressed in trophoblastic cells, whereas it is not expressed in the choriocarcinoma cell line BeWo. We thus took advantage of forskolin-induced syncytialisation of BeWo cells to study the effect of exogenous α2M* on syncytialisation. We first demonstrated that α2M* induced trophoblastic cell fusion. This effect is dependent on α2M*-GRP78 interaction, ERK1/2 and CREB phosphorylation, and unfolded protein response (UPR) activation. Overall, these data provide novel insights into the signalling molecules and mechanisms regulating trophoblastic cell fusion.
Collapse
Affiliation(s)
- Daniel Bastida-Ruiz
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Christine Wuillemin
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Aude Pederencino
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Michal Yaron
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Begoña Martinez de Tejada
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland
| | | | - Marie Cohen
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland.
| |
Collapse
|
17
|
Perspectives of Pitocin administration on behavioral outcomes in the pediatric population: recent insights and future implications. Heliyon 2020; 6:e04047. [PMID: 32509991 PMCID: PMC7264063 DOI: 10.1016/j.heliyon.2020.e04047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/18/2020] [Accepted: 05/19/2020] [Indexed: 01/23/2023] Open
Abstract
Oxytocin plays an important role in the regulation of parturition as this peptide hormone promotes uterine smooth muscle contractility in gravid women undergoing labor. Here, we review the impact of Pitocin administration on behavioral outcomes in the pediatric population. Pitocin is a synthetic preparation of oxytocin widely used in the obstetric practice for the management of labor and postpartum hemorrhage. We begin by tracing the neuroanatomy of oxytocin-containing cells from an evolutionary perspective and then summarize key findings on behavioral and neural activity reported from offspring dosed with Pitocin during vaginal delivery. Finally, we discuss future directions that are experimentally tractable for understanding the developmental consequences of Pitocin administration on a small but growing subset of children worldwide. Given that fetal past experiences can shape the future behavior of the adult, further work on oxytocin signaling pathways will provide valuable references and insights for early-brain development and state-dependent regulation of behavioral outcome.
Collapse
|
18
|
Human PZP and common marmoset A2ML1 as pregnancy related proteins. Sci Rep 2020; 10:5088. [PMID: 32198464 PMCID: PMC7083932 DOI: 10.1038/s41598-020-61714-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/24/2020] [Indexed: 11/18/2022] Open
Abstract
While pregnancy-related proteins (PRP) are known to contribute to immunotolerance during pregnancy, their significance to development of invasive placenta is unclear. We compared PRP expression in humans and the common marmoset (Callithrix jacchus), a new-world monkey. Invasive placenta was observed at the maternal-foetal interface of marmoset placenta from green fluorescent protein (GFP)-expressing foetus and wild type mother. The pregnancy zone protein (PZP) and alpha-2 macroglobulin-like 1 (A2ML1) proteins exhibited the most prominent increase in expression during the second trimester in humans and marmoset, respectively. In humans, PZP accumulated at the maternal-foetal interface and A2ML1 accumulated in the amnion. Similarly, A2ML1 mRNA was detected in marmoset placenta. These proteins belong to the A2M family of protease inhibitors, and both PZP and A2ML1 share around 90% homology between human and marmoset and have highly conserved structures. However, the protease-reacting bait regions of the proteins had lower homology (56.8–60.7% in proteins) relative to the rest of the sequence. Notably, the cleavage site of a proinflammatory proline-endopeptidase was preserved in human PZP and marmoset A2ML1. These proteins contain multiple sites that are cleaved by proteases involving proline-endopeptidase. Systemic regulation of these A2M family proteins may be important in animals with invasive placenta.
Collapse
|
19
|
Kuligina ES, Sokolenko AP, Bizin IV, Romanko AA, Zagorodnev KA, Anisimova MO, Krylova DD, Anisimova EI, Mantseva MA, Varma AK, Hasan SK, Ni VI, Koloskov AV, Suspitsin EN, Venina AR, Aleksakhina SN, Sokolova TN, Milanović AM, Schürmann P, Prokofyeva DS, Bermisheva MA, Khusnutdinova EK, Bogdanova N, Dörk T, Imyanitov EN. Exome sequencing study of Russian breast cancer patients suggests a predisposing role for USP39. Breast Cancer Res Treat 2019; 179:731-742. [DOI: 10.1007/s10549-019-05492-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
|
20
|
Vaher H, Kivihall A, Runnel T, Raam L, Prans E, Maslovskaja J, Abram K, Kaldvee B, Mrowietz U, Weidinger S, Kingo K, Rebane A. SERPINB2 and miR-146a/b are coordinately regulated and act in the suppression of psoriasis-associated inflammatory responses in keratinocytes. Exp Dermatol 2019; 29:51-60. [PMID: 31630447 DOI: 10.1111/exd.14049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/13/2019] [Accepted: 10/16/2019] [Indexed: 01/04/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease with numerous involved factors. miR-146a and miR-146b (miR-146a/b) are anti-inflammatory miRNAs that are increased in psoriatic skin. SERPINB2 has been shown to be upregulated in the inflammation and infections. Here we aimed to study the relationship between miR-146a/b and SERPINB2 and to delineate the role of SERPINB2 in association of plaque psoriasis. We report increased SERPINB2 expression in the skin of psoriasis patients, which was in a positive relationship with psoriasis severity and in a negative relationship with miR-146a/b in psoriatic lesions. In cultured keratinocytes, both cellular and secreted SERPINB2 levels were strongly induced in response to IFN-γ and TNF-α. Interestingly, SERPINB2 mRNA was downregulated by IL-17A and the combination of TNF-α and IL-17A at time points when miR-146a was increased. The predicted binding site for miR-146a/b in 3' untranslated region of SERPINB2 revealed no activity in luciferase assay, while siRNA silencing of miR-146a/b direct targets IRAK1 and CARD10 resulted in reduced expression of SERPINB2, suggesting that miR-146a/b indirectly control SERPINB2 expression in the skin. The siRNA silencing of SERPINB2 increased the expression of IL-8, CXCL5 and CCL5 and migration of neutrophils revealing its anti-inflammatory role in keratinocytes. Our data together suggest that SERPINB2 and miR-146a/b are part of disease-related network of molecules that are coordinately regulated and act in controlling the inflammatory responses in psoriatic skin.
Collapse
Affiliation(s)
- Helen Vaher
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anet Kivihall
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Toomas Runnel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liisi Raam
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ele Prans
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Julia Maslovskaja
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kristi Abram
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Bret Kaldvee
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ulrich Mrowietz
- Department of Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, Venerology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Külli Kingo
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
21
|
Alterations in fibrin formation and fibrinolysis in early onset-preeclampsia: Association with disease severity. Eur J Obstet Gynecol Reprod Biol 2019; 241:19-23. [PMID: 31415952 DOI: 10.1016/j.ejogrb.2019.07.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/12/2019] [Accepted: 07/24/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE ; Early-onset preeclampsia is a rare pregnancy-specific disorder associated with significantly increased maternal and fetal morbidity and mortality. Whilst it is known that even normotensive pregnancies are associated with changes in clot formation and dissolution, the nature of how these changes differ in those with early onset preeclampsia has not been well established. We sought to evaluate parameters of fibrin formation and fibrinolysis in individuals with early onset preeclampsia in comparison to both pregnant and non-pregnant controls. Furthermore, such parameters were correlated with markers of disease severity in this patient cohort, including the presence of multiorgan involvement, the rate of disease progression and the extent of the anti-angiogenic state in this condition. STUDY DESIGN ; Patients with early onset preeclampsia (N = 20) and both pregnant (N = 16) and non -pregnant (N = 16) controls were recruited from the cohort at a large urban maternity hospital which saw over 15,000 deliveries during the study period. Platelet poor plasma was prepared from collected whole blood and analysed for parameters of fibrin formation and fibrinolysis (lagtime to and rate of fibrin formation; PAI-1; PAI-2; D-dimer; plasmin-antiplasmin; tPA) in addition to markers of angiogenesis (sFLT-1; Endoglin) using commercially available specific immunoassays. RESULTS ; The maximum rate of fibrin formation as well as PAI-1, PAI-2 and D-dimer levels were all significantly increased in those with early onset preeclampsia and pregnant controls when compared to non-pregnant controls without significant differences between the 2 former groups. Plasmin-antiplasmin levels were significantly reduced in a similar manner. tPA levels were significantly elevated in EOP compared to both pregnant and non-pregnant controls. EOP was associated with significantly increased anti-angiogenic factors (sFLT-1; Endoglin) when compared to both pregnant and non-pregnant controls. CONCLUSION ; Markers of fibrin formation and fibrinolysis are significantly alerted in early onset preeclampsia; furthermore, certain markers correlate with disease severity in this patient cohort.
Collapse
|
22
|
Human pregnancy zone protein stabilizes misfolded proteins including preeclampsia- and Alzheimer's-associated amyloid beta peptide. Proc Natl Acad Sci U S A 2019; 116:6101-6110. [PMID: 30850528 PMCID: PMC6442606 DOI: 10.1073/pnas.1817298116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Pregnancy is a unique physiological state involving biological stresses that promote protein damage (misfolding) within the maternal body. Currently, little is known regarding how the maternal body copes with elevated protein misfolding in pregnancy. This is important, because the accumulation of misfolded proteins underlies many human disorders, including preeclampsia, a serious complication of pregnancy. In this study, we show that pregnancy zone protein (PZP) efficiently inhibits the aggregation of misfolded proteins, including the amyloid beta peptide, which forms plaques in preeclampsia and in Alzheimer’s disease. We propose that up-regulation of PZP is a major maternal adaptation that helps to maintain protein homeostasis during pregnancy. Moreover, pregnancy-independent up-regulation of PZP indicates that its chaperone function could be broadly important in humans. Protein misfolding underlies the pathology of a large number of human disorders, many of which are age-related. An exception to this is preeclampsia, a leading cause of pregnancy-associated morbidity and mortality in which misfolded proteins accumulate in body fluids and the placenta. We demonstrate that pregnancy zone protein (PZP), which is dramatically elevated in maternal plasma during pregnancy, efficiently inhibits in vitro the aggregation of misfolded proteins, including the amyloid beta peptide (Aβ) that is implicated in preeclampsia as well as with Alzheimer’s disease. The mechanism by which this inhibition occurs involves the formation of stable complexes between PZP and monomeric Aβ or small soluble Aβ oligomers formed early in the aggregation pathway. The chaperone activity of PZP is more efficient than that of the closely related protein alpha-2-macroglobulin (α2M), although the chaperone activity of α2M is enhanced by inducing its dissociation into PZP-like dimers. By immunohistochemistry analysis, PZP is found primarily in extravillous trophoblasts in the placenta. In severe preeclampsia, PZP-positive extravillous trophoblasts are adjacent to extracellular plaques containing Aβ, but PZP is not abundant within extracellular plaques. Our data support the conclusion that the up-regulation of PZP during pregnancy represents a major maternal adaptation that helps to maintain extracellular proteostasis during gestation in humans. We propose that overwhelming or disrupting the chaperone function of PZP could underlie the accumulation of misfolded proteins in vivo. Attempts to characterize extracellular proteostasis in pregnancy will potentially have broad-reaching significance for understanding disease-related protein misfolding.
Collapse
|
23
|
García-Calzón S, Perfilyev A, de Mello VD, Pihlajamäki J, Ling C. Sex Differences in the Methylome and Transcriptome of the Human Liver and Circulating HDL-Cholesterol Levels. J Clin Endocrinol Metab 2018; 103:4395-4408. [PMID: 29846646 PMCID: PMC6212806 DOI: 10.1210/jc.2018-00423] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022]
Abstract
Context Epigenetics may contribute to sex-specific differences in human liver metabolism. Objective To study the impact of sex on DNA methylation and gene expression in human liver. Design/Setting Cross-sectional, Kuopio Obesity Surgery Study. Participants/Intervention We analyzed DNA methylation with the Infinium HumanMethylation450 BeadChip in liver of an obese population (34 males, 61 females). Females had a higher high-density lipoprotein (HDL)-cholesterol levels compared with males. Gene expression was measured with the HumanHT-12 Expression BeadChip in a subset of 42 participants. Results Females displayed higher average methylation in the X-chromosome, whereas males presented higher methylation in autosomes. We found 9455 CpG sites in the X-chromosome and 33,205 sites in autosomes with significant methylation differences in liver between sexes (q < 0.05). When comparing our findings with published studies, 95% of the sex-specific differences in liver methylation in the X-chromosome were also found in pancreatic islets and brain, and 26 autosomal sites showed sex-specific methylation differences in the liver as well as in other human tissues. Furthermore, this sex-specific methylation profile in liver was associated with hepatic gene expression changes between males and females. Notably, females showed higher HDL-cholesterol levels, which were associated with higher KDM6A expression and epigenetic differences in human liver. Accordingly, silencing of KDM6A in cultured liver cells reduced HDL-cholesterol levels and APOA1 expression, which is a major component of HDL particles. Conclusions Human liver has a sex-specific methylation profile in both the X-chromosome and autosomes, which associates with hepatic gene expression changes and HDL-cholesterol. We identified KDM6A as a novel target that regulates HDL-cholesterol levels.
Collapse
Affiliation(s)
- Sonia García-Calzón
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Vanessa D de Mello
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
24
|
Dixon CL, Sheller-Miller S, Saade GR, Fortunato SJ, Lai A, Palma C, Guanzon D, Salomon C, Menon R. Amniotic Fluid Exosome Proteomic Profile Exhibits Unique Pathways of Term and Preterm Labor. Endocrinology 2018; 159:2229-2240. [PMID: 29635386 PMCID: PMC6963707 DOI: 10.1210/en.2018-00073] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
Our objective was to determine the amniotic fluid-derived exosomal proteomic profile in patients who had spontaneous preterm birth (PTB) or preterm premature rupture of membranes (pPROM) compared with those who delivered at term. A cross-sectional study of a retrospective cohort was used to quantify and determine the protein content of exosomes present in amniotic fluid, in PTB or pPROM, and normal term labor (TL) or term not in labor (TNIL) pregnancies. Exosomes were isolated by differential centrifugation and quantified using nanocrystals (Qdot) coupled to CD63 and placental alkaline phosphatase (PLAP) by fluorescence nanoparticle tracking analysis. The exosomal proteomic profile was identified by liquid chromatography-tandem mass spectrometry, and a small ion library was constructed to quantify the proteomic data by Sequential Window Acquisition of All Theoretical analysis. Ingenuity Pathway Analysis determined canonical pathways and biofunctions associated with dysregulated proteins. Amniotic fluid exosomes have similar shape and quantity regardless of the conditions; however, the PLAP/CD63 ratios for TL, PTB, and pPROM were significantly higher (∼3.8-, ∼4.4-, and ∼3.5-fold, respectively) compared with TNIL. The PLAP/CD63 ratio was also significantly higher (∼1.3-fold) in PTB compared with pPROM. Biological functions primarily indicated nonspecific inflammatory response regardless of condition, but unique profiles were also identified in cases (PTB and pPROM) compared with term. Amniotic fluid exosomes provide information specific to normal and abnormal parturition. Inflammatory marker enrichment and its uniqueness in term and preterm pregnancies support the value of exosomes in determining underlying physiology associated with term and preterm parturition.
Collapse
Affiliation(s)
- C Luke Dixon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - George R Saade
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Stephen J Fortunato
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Carlos Palma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Carlos Salomon
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepción, Chile
- Correspondence: Ramkumar Menon, PhD, Department of Obstetrics and Gynecology, Perinatal Research Division, MRB 11.138, 301 University Boulevard, The University of Texas Medical Branch, Galveston, Texas 77555. E-mail: ; or Carlos Salomon, PhD, Exosome Biology Laboratory, Centre for Clincal Diagnostics, University of Queensland Centre for Clinical Research, Faculty of Health Sciences, University of Queensland, Building 71/918, Royal Brisbane and Women’s Hospital, Brisbane, Queensland 4029, Australia. E-mail:
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
- Correspondence: Ramkumar Menon, PhD, Department of Obstetrics and Gynecology, Perinatal Research Division, MRB 11.138, 301 University Boulevard, The University of Texas Medical Branch, Galveston, Texas 77555. E-mail: ; or Carlos Salomon, PhD, Exosome Biology Laboratory, Centre for Clincal Diagnostics, University of Queensland Centre for Clinical Research, Faculty of Health Sciences, University of Queensland, Building 71/918, Royal Brisbane and Women’s Hospital, Brisbane, Queensland 4029, Australia. E-mail:
| |
Collapse
|
25
|
Glass LL, Calero-Nieto FJ, Jawaid W, Larraufie P, Kay RG, Göttgens B, Reimann F, Gribble FM. Single-cell RNA-sequencing reveals a distinct population of proglucagon-expressing cells specific to the mouse upper small intestine. Mol Metab 2017; 6:1296-1303. [PMID: 29031728 PMCID: PMC5641633 DOI: 10.1016/j.molmet.2017.07.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES To identify sub-populations of intestinal preproglucagon-expressing (PPG) cells producing Glucagon-like Peptide-1, and their associated expression profiles of sensory receptors, thereby enabling the discovery of therapeutic strategies that target these cell populations for the treatment of diabetes and obesity. METHODS We performed single cell RNA sequencing of PPG-cells purified by flow cytometry from the upper small intestine of 3 GLU-Venus mice. Cells from 2 mice were sequenced at low depth, and from the third mouse at high depth. High quality sequencing data from 234 PPG-cells were used to identify clusters by tSNE analysis. qPCR was performed to compare the longitudinal and crypt/villus locations of cluster-specific genes. Immunofluorescence and mass spectrometry were used to confirm protein expression. RESULTS PPG-cells formed 3 major clusters: a group with typical characteristics of classical L-cells, including high expression of Gcg and Pyy (comprising 51% of all PPG-cells); a cell type overlapping with Gip-expressing K-cells (14%); and a unique cluster expressing Tph1 and Pzp that was predominantly located in proximal small intestine villi and co-produced 5-HT (35%). Expression of G-protein coupled receptors differed between clusters, suggesting the cell types are differentially regulated and would be differentially targetable. CONCLUSIONS Our findings support the emerging concept that many enteroendocrine cell populations are highly overlapping, with individual cells producing a range of peptides previously assigned to distinct cell types. Different receptor expression profiles across the clusters highlight potential drug targets to increase gut hormone secretion for the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Leslie L Glass
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Fernando J Calero-Nieto
- Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Wajid Jawaid
- Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Pierre Larraufie
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Richard G Kay
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Berthold Göttgens
- Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Frank Reimann
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Fiona M Gribble
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
26
|
Charkoftaki G, Chen Y, Han M, Sandoval M, Yu X, Zhao H, Orlicky DJ, Thompson DC, Vasiliou V. Transcriptomic analysis and plasma metabolomics in Aldh16a1-null mice reveals a potential role of ALDH16A1 in renal function. Chem Biol Interact 2017; 276:15-22. [PMID: 28254523 DOI: 10.1016/j.cbi.2017.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/23/2017] [Indexed: 01/24/2023]
Abstract
ALDH16A1 is a novel member of the ALDH superfamily that is enzymatically-inactive and highly expressed in the kidney. Recent studies identified an association between a rare missense single nucleotide variant (SNV) in the ALDH16A1 gene and elevated serum uric acid levels and gout. The present study explores the mechanisms by which ALDH16A1 influences uric acid homeostasis in the kidney. We generated and validated a mouse line with global disruption of the Aldh16a1 gene through gene targeting and performed RNA-seq analyses in the kidney of wild-type (WT) and Aldh16a1 knockout (KO) mice, along with plasma metabolomics. We found that ALDH16A1 is expressed in proximal and distal convoluted tubule cells in the cortex of the kidney and in zone 3 hepatocytes. RNA-seq and gene ontology enrichment analyses showed that cellular lipid and lipid metabolic processes are up-regulated. Three transporters localized in the apical membrane of the proximal convoluted tubule of the kidney known to influence urate/uric acid homeostasis were found to be up-regulated (Abcc4, Slc16a9) or down-regulated (Slc17a3). An initial metabolomics analysis in plasma revealed an altered lipid profile in KO mice that is in agreement with our RNA-seq analysis. This is the first study demonstrating a functional role of ALDH16A1 in the kidney.
Collapse
Affiliation(s)
- Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale School of Medicine, New Haven, CT 06520, United States
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale School of Medicine, New Haven, CT 06520, United States
| | - Ming Han
- Department of Environmental Health Sciences, Yale School of Public Health, Yale School of Medicine, New Haven, CT 06520, United States; College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Monica Sandoval
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, United States
| | - Xiaoqing Yu
- Department of Biostatistics, Yale School of Public Health, Yale School of Medicine, New Haven, CT 06520, United States
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, Yale School of Medicine, New Haven, CT 06520, United States
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Center, University of Colorado, Aurora, CO, 80045, United States
| | - David C Thompson
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, United States
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|