1
|
Hussain QM, Al-Hussainy AF, Sanghvi G, Roopashree R, Kashyap A, Anand DA, Panigrahi R, Shavazi N, Taher SG, Alwan M, Jawad M, Mushtaq H. Dual role of miR-155 and exosomal miR-155 in tumor angiogenesis: implications for cancer progression and therapy. Eur J Med Res 2025; 30:393. [PMID: 40383762 DOI: 10.1186/s40001-025-02618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/18/2025] [Indexed: 05/20/2025] Open
Abstract
Tumor angiogenesis facilitates cancer progression by supporting tumor growth and metastasis. MicroRNA-155 (miR-155) plays a pivotal role in regulating angiogenesis through both direct effects on tumor and endothelial cells and indirect modulation via exosomal communication. This review highlights miR-155's pro-angiogenic influence on endothelial cell behavior and tumor microenvironment remodeling. Additionally, exosomal miR-155 enhances intercellular communication, promoting vascularization in several cancers. Emerging therapeutic strategies include miR-155 inhibition using antagomirs, exosome-mediated delivery systems, and modulation of pathways such as JAK2/STAT3 and TGF-β/SMAD2. Targeting miR-155 represents a promising approach to hinder tumor angiogenesis and improve cancer therapy outcomes.
Collapse
Affiliation(s)
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - D Alex Anand
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Nargiz Shavazi
- Department of Obstetrics and Gynecology, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Sada Ghalib Taher
- College of Dentistry, University of Thi-Qar, Thi-Qar, 64001, Iraq
- National University of Science and Technology, Thi-Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Mahmood Jawad
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
2
|
Taghizadieh M, Kalantari M, Bakhshali R, Kobravi S, Khalilollah S, Baghi HB, Bayat M, Nahand JS, Akhavan-Sigari R. To be or not to be: navigating the influence of MicroRNAs on cervical cancer cell death. Cancer Cell Int 2025; 25:153. [PMID: 40251577 PMCID: PMC12008905 DOI: 10.1186/s12935-025-03786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
With all diagnostic and therapeutic advances, such as surgery, radiation- and chemo-therapy, cervical cancer (CC) is still ranked fourth among the most frequent cancers in women globally. New biomarkers and therapeutic targets are warranted to be discovered for the early detection, treatment, and prognosis of CC. As component of the non-coding RNA's family, microRNAs (miRNAs) participate in several cellular functions such as cell proliferation, gene expression, many signaling cascades, apoptosis, angiogenesis, etc. MiRNAs can suppress or induce programmed cell death (PCD) pathways by altering their regulatory genes. Besides, abnormal expression of miRNAs weakens or promotes various signaling pathways associated with PCD, resulting in the development of human diseases such as CC. For that reason, understanding the effects that miRNAs exert on the various modes of tumor PCD, and evaluating the potential of miRNAs to serve as targets for induction of cell death and reappearance of chemotherapy. The current study aims to define the effect that miRNAs exert on cell apoptosis, autophagy, pyroptosis, ferroptosis, and anoikis in cervical cancer to investigate possible targets for cervical cancer therapy. Manipulating the PCD pathways by miRNAs could be considered a primary therapeutic strategy for cervical cancer.
Collapse
Affiliation(s)
- Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kalantari
- Department of Biology, Tehran University of health Sciences, Tehran, Iran
| | | | - Sepehr Kobravi
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
3
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2025; 45:349-425. [PMID: 39185567 PMCID: PMC11796338 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic ScienceHigher Education Institute of Rab‐RashidTabrizIran
- Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
| | | | | | | |
Collapse
|
4
|
Zhang H, Huang Z, Zhong Y. Circular RNA Circ_0079226 Plays an Oncogenic Role in Gastric Cancer via the miR-155-5p/FOXK1/AKT Pathway. Anal Cell Pathol (Amst) 2025; 2025:6619550. [PMID: 39981141 PMCID: PMC11842135 DOI: 10.1155/ancp/6619550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025] Open
Abstract
Background: Circular RNA (circRNA) is implicated in various biological processes, including the progression of gastric cancer (GC). The specific functions and underlying mechanisms of circ_0079226 in GC are unknown. Methods: We examined cancerous and adjacent noncancerous tissues from 25 patients with GC to evaluate circ_0079226, miR-155-5p, and forkhead transcription factor K1 (FOXK1) expression. Pearson's correlation analysis was used to assess the relationships among these RNAs. We examined their functional roles utilizing in vitro (cell cytotoxicity kit-8, wound healing, and Transwell invasion assays) and in vivo (xenograft mouse models) approaches. Molecular mechanisms were investigated using bioinformatics, dual-luciferase reporter assays, and rescue experiments, while quantitative real-time PCR, western blot, immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and protein immunofluorescence (IF) were used to detect gene expression. Results: We found that circ_0079226 and FOXK1 levels were elevated, while miR-155-5p was reduced in GC tissues and cells. An inverse correlation existed between FOXK1 and miR-155-5p, while a direct correlation was observed between FOXK1 and circ_0079226. Circ_0079226 facilitated GC cell proliferation, migration, invasion, and in vivo tumor growth. It functions by sequestering miR-155-5p, which directly targets FOXK1. High miR-155-5p expression mitigated the effects of circ_0079226 on GC cells, and the reintroduction of FOXK1 reversed the inhibitory effects of miR-155-5p. Circ_0079226 boosts FOXK1 and its associated downstream signaling pathways, including FAK, AKT, and p-AKT, through competitive binding with miR-155-5p. Conclusions: In conclusion, circ_0079226 is implicated in GC cell proliferation and metastasis by modulating the miR-155-5p/FOXK1/AKT pathway, presenting it as a potential therapeutic target.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Gastroenterology, Panyu Maternal and Child Care Service Centre of Guangzhou (Panyu Hexian Memorial Hospital of Guangzhou), Guangzhou, Guangdong, China
| | - Zhisheng Huang
- Department of Gastroenterology, Panyu Maternal and Child Care Service Centre of Guangzhou (Panyu Hexian Memorial Hospital of Guangzhou), Guangzhou, Guangdong, China
| | - Yingyun Zhong
- Department of Gastroenterology, Panyu Maternal and Child Care Service Centre of Guangzhou (Panyu Hexian Memorial Hospital of Guangzhou), Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Chen S, Zhang C, Huang H, Wang Y, Lian M, Hong G. Activation of the WNT4/ β-catenin/FOXO1 pathway by PDK1 promotes cervical cancer metastasis and EMT process. J Mol Histol 2025; 56:68. [PMID: 39779500 DOI: 10.1007/s10735-024-10342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE This study aimed to elucidate the role of pyruvate dehydrogenase kinase-1 (PDK1) in cervical cancer (CC) by investigating its impact on cell proliferation, migration, and epithelial-mesenchymal transition (EMT) under hypoxic conditions. METHODS PDK1-silenced CC cell lines were established using lentiviral shRNA technology. Cell migration and invasion were assessed through scratch and Transwell assays, respectively. Cellular activity and apoptosis-related protein expression levels were evaluated using MTT assays and western blotting. Transcriptome sequencing elucidates the regulatory pathways impacted by PDK1 silencing, and rescue experiments confirmed the underlying mechanisms. Xenograft models with nude mice were used to validate the effects of PDK1 silencing on CC progression. RESULTS PDK1 silencing reduced migration, invasion, and cellular activity under hypoxic conditions while promoting apoptosis. Transcriptomic analysis revealed that PDK1 suppression downregulated the WNT4/β-catenin/FOXO1 pathway, decreasing EMT-related protein expression. Mechanistically, PDK1 enhanced β-catenin stability by inhibiting its phosphorylation through AKT-mediated GSK3β inactivation, promoting EMT and anti-apoptotic gene transcription. CONCLUSIONS Targeting PDK1 may provide novel therapeutic strategies specifically for CC by modulating the WNT4/β-catenin/FOXO1 pathway and associated EMT and apoptotic processes.
Collapse
Affiliation(s)
- Shidong Chen
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Cuixia Zhang
- Department of Pathology, Xiamen Pathology Quality Control Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Honglang Huang
- Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhuan Wang
- Department of Pathology, Xiamen Pathology Quality Control Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingjian Lian
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| |
Collapse
|
6
|
Capetini VC, Quintanilha BJ, Garcia BREV, Rogero MM. Dietary modulation of microRNAs in insulin resistance and type 2 diabetes. J Nutr Biochem 2024; 133:109714. [PMID: 39097171 DOI: 10.1016/j.jnutbio.2024.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The prevalence of type 2 diabetes is increasing worldwide. Various molecular mechanisms have been proposed to interfere with the insulin signaling pathway. Recent advances in proteomics and genomics indicate that one such mechanism involves the post-transcriptional regulation of insulin signaling by microRNA (miRNA). These noncoding RNAs typically induce messenger RNA (mRNA) degradation or translational repression by interacting with the 3' untranslated region (3'UTR) of target mRNA. Dietary components and patterns, which can either enhance or impair the insulin signaling pathway, have been found to regulate miRNA expression in both in vitro and in vivo studies. This review provides an overview of the current knowledge of how dietary components influence the expression of miRNAs related to the control of the insulin signaling pathway and discusses the potential application of these findings in precision nutrition.
Collapse
Affiliation(s)
- Vinícius Cooper Capetini
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil; Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, Department of Pharmacology, King's College London, London, United Kingdom.
| | - Bruna Jardim Quintanilha
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| | - Bruna Ruschel Ewald Vega Garcia
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| |
Collapse
|
7
|
Amiri V, Mirzaeian A, Noroozi-Aghideh A. Non-Mutational Changes of Autophagy Marker LC3A in Patients with Acute Myeloid Leukemia; Effect of DNA Methylation and Expression Level of LncRNA-GAS5 and miRNA-155-5p, A Case Control Study. Indian J Hematol Blood Transfus 2024; 40:621-628. [PMID: 39469184 PMCID: PMC11512980 DOI: 10.1007/s12288-024-01765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/29/2024] [Indexed: 10/30/2024] Open
Abstract
Clinical translation of autophagy modulators is tied to thoroughly acquainted with the precise state of this process and its regulators in a particular cancer. LC3Av1 is a marker of autophagosome membrane that has been contributed with pathobiology of myriad of human cancers. In the present study, we examined the effect of promoter methylation and miR-155 and LncRNA-GAS5 (GAS5) expression levels on transcription of LC3Av1 in AML patients. The study included 60 patients with de novo AML and 20 subjects with normal bone marrow cellular composition. Methylation-Sensitive high resolution melting (MS-HRM) was performed for analysis of LC3Av1 CpG island methylation and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for assessing LC3Av1, GAS5 and miR-155 expression levels. There was a significant elevation in the expression level of miR-155 and repression of LC3Av1 in AML samples. We found that LC3Av1 downregulation was negatively associated with its CpG island hypermethylation and miR-155 expression. Aging leads to overexpression of LC3Av1. GAS5 neither was differently expressed in AML patients compared to control samples nor has been related to LC3Av1 expression. The present study revealed that epigenetic changes like DNA methylation and alteration of miR-155 have a pivotal role in repression of autophagy marker LC3Av1, which potentially could provide the important clues of prognostic and therapeutic targets. The optimal strategies for clinical implementation of autophagy in AML is yet to be fully achieved and deserve further studies. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-024-01765-3.
Collapse
Affiliation(s)
- Vahid Amiri
- Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Mirzaeian
- HSCT Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ali Noroozi-Aghideh
- HSCT Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Hematology, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Liang Y, Chen P, Wang S, Cai L, Zhu F, Jiang Y, Li L, Zhu L, Heng Y, Zhang W, Pan Y, Wei W, Jia L. SCF FBXW5-mediated degradation of AQP3 suppresses autophagic cell death through the PDPK1-AKT-MTOR axis in hepatocellular carcinoma cells. Autophagy 2024; 20:1984-1999. [PMID: 38726865 PMCID: PMC11346525 DOI: 10.1080/15548627.2024.2353497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
AQP3 (aquaporin 3 (Gill blood group)), a member of the AQP family, is an aquaglyceroporin which transports water, glycerol and small solutes across the plasma membrane. Beyond its role in fluid transport, AQP3 plays a significant role in regulating various aspects of tumor cell behavior, including cell proliferation, migration, and invasion. Nevertheless, the underlying regulatory mechanism of AQP3 in tumors remains unclear. Here, for the first time, we report that AQP3 is a direct target for ubiquitination by the SCFFBXW5 complex. In addition, we revealed that downregulation of FBXW5 significantly induced AQP3 expression to prompt macroautophagic/autophagic cell death in hepatocellular carcinoma (HCC) cells. Mechanistically, AQP3 accumulation induced by FBXW5 knockdown led to the degradation of PDPK1/PDK1 in a lysosomal-dependent manner, thus inactivating the AKT-MTOR pathway and inducing autophagic death in HCC. Taken together, our findings revealed a previously undiscovered regulatory mechanism through which FBXW5 degraded AQP3 to suppress autophagic cell death via the PDPK1-AKT-MTOR axis in HCC cells.Abbreviation: BafA1: bafilomycin A1; CQ: chloroquine; CRL: CUL-Ring E3 ubiquitin ligases; FBXW5: F-box and WD repeat domain containing 5; HCC: hepatocellular carcinoma; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; 3-MA: 3-methyladenine; PDPK1/PDK1: 3-phosphoinositide dependent protein kinase 1; RBX1/ROC1: ring-box 1; SKP1: S-phase kinase associated protein 1; SCF: SKP1-CUL1-F-box protein.
Collapse
Affiliation(s)
- Yupei Liang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Zhu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongqing Heng
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Wenjuan Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongfu Pan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Guo M, Guo D, Liao L, Zhang X, Wang Z, Zhou Q, Chen P, Li R, Han B, Bao G, Zhang B. Ethanolic extract from Sophora moorcroftiana inhibit cell proliferation and alter the mechanical properties of human cervical cancer. BMC Complement Med Ther 2024; 24:212. [PMID: 38831394 PMCID: PMC11149180 DOI: 10.1186/s12906-024-04502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Cervical cancer is one of the most common gynecological malignancies. Previous studies have shown that the ethanol extract of Sophora moorcroftiana seeds (EESMS) possesses an antiproliferative effect on several tumors in vitro. Therefore, in this study, we assessed the impact of EESMS on human cervical carcinoma (HeLa) cell proliferation. METHODS The proliferation and apoptotic effects of HeLa cells treated with EESMS were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay, dual acridine orange/ethidium bromide double staining, flow cytometry, and western blotting. Single-cell level atomic force microscopy (AFM) was conducted to detect the mechanical properties of HeLa cells, and proteomics and bioinformatics methods were used to elucidate the molecular mechanisms of EESMS. RESULTS EESMS treatment inhibited HeLa cell proliferation by blocking the G0/G1 phase, increasing the expression of Caspase-3 and affecting its mechanical properties, and the EESMS indicated no significant inhibitory effect on mouse fibroblasts L929 cell line. In total, 218 differentially expressed proteins were identified using two-dimensional electrophoresis, and eight differentially expressed proteins were successfully identified using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The differentially expressed proteins were involved in various cellular and biological processes. CONCLUSION This study provides a perspective on how cells change through biomechanics and a further theoretical foundation for the future application of Sophora moorcroftiana as a novel low-toxicity chemotherapy medication for treating human cervical cancer.
Collapse
Affiliation(s)
- Manli Guo
- Key Lab of Oral Diseases of Gansu Province, Northwest Minzu University, Northwest new village No.1, Lanzhou, 730030, PR China
| | - Dingcheng Guo
- School (Hospital) of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou, 730000, PR China
| | - Lingzi Liao
- School (Hospital) of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou, 730000, PR China
| | - Xiao Zhang
- School (Hospital) of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou, 730000, PR China
| | - Zhilong Wang
- School (Hospital) of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou, 730000, PR China
| | - Qiaozhen Zhou
- School (Hospital) of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou, 730000, PR China
| | - Ping Chen
- Chengdu Stomatological Hospital, NO. 17, South Section of Chunxi Road, Jinjiang District, Chengdu, 610020, PR China
| | - Ruiping Li
- School (Hospital) of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou, 730000, PR China
- Gansu Province Key Lab of Maxillofacial Reconstruction and Intelligent Manufacturing, Donggang West Road 199, Lanzhou, 730000, PR China
| | - Bing Han
- Key Lab of Oral Diseases of Gansu Province, Northwest Minzu University, Northwest new village No.1, Lanzhou, 730030, PR China
| | - Guangjie Bao
- Key Lab of Oral Diseases of Gansu Province, Northwest Minzu University, Northwest new village No.1, Lanzhou, 730030, PR China.
| | - Baoping Zhang
- School (Hospital) of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou, 730000, PR China.
- Gansu Province Key Lab of Maxillofacial Reconstruction and Intelligent Manufacturing, Donggang West Road 199, Lanzhou, 730000, PR China.
| |
Collapse
|
10
|
Xu J, Xue B, Gong M, Ling L, Nie S, Li F, Wang M, Fang M, Chen C, Liu Q, Han Y. circ_0000337 Promotes the Progression of Cervical Cancer by miR-155-5p/RAB3B Axis. Biochem Genet 2024; 62:2195-2209. [PMID: 37882923 DOI: 10.1007/s10528-023-10534-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Current study aims to investigate the biological function of circular RNA (circRNA, circ_0000337) in cervical cancer (CC). Bioinformatic analyses were used to predict targets for circ_0000337 and miR-155-5p, and analyze the gene expression differences between cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tissues and normal tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were applied to assess mRNA and protein expressions of circ_0000337, microRNA-155-5p (miR-155-5p) and member RAS oncogene family (RAB3B), respectively. Following the establishment of gain/loss-of-function models, CCK-8 was performed to evaluate cell proliferation. Bioinformatics analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) were used to identify the interaction in circ_0000337, miR-155-5p, and RAB3B. Circ_0000337 and RAB3B were upregulated, while miR-155-5p was downregulated in CC tissues and cell lines. circ_0000337 overexpression promoted cell proliferation, circ_0000337 knock down inhibited cell proliferation by sponging miR-155-5p. RAB3B was a target of miR-155-5p which was positively regulated by circ_0000337. In the collected CC tissues, there was a negative correlation between miR-155-5p and circ_0000337 or RAB3B, and a positive correlation between circ_0000337 and RAB3B. miR-155-5p was positively, while RAB3B was negatively correlated with OS in patients with CC, and they were negatively correlated. In conclusion, circ_0000337 upregulates RAB3B by sponging miR-155-5p to promote CC cell proliferation.
Collapse
Affiliation(s)
- Jiqin Xu
- Department of Obstetrics and Gynecology, Nanjing Jiangning Hospital Affiliated to Nanjing Medical University, No. 169 Hushan Road, Nanjing, 211100, Jiangsu, China
| | - Bai Xue
- Department of Obstetrics and Gynecology, Nanjing Jiangning Hospital Affiliated to Nanjing Medical University, No. 169 Hushan Road, Nanjing, 211100, Jiangsu, China
| | - Min Gong
- Department of Obstetrics and Gynecology, Nanjing Jiangning Hospital Affiliated to Nanjing Medical University, No. 169 Hushan Road, Nanjing, 211100, Jiangsu, China
| | - Ling Ling
- Department of Obstetrics and Gynecology, Nanjing Jiangning Hospital Affiliated to Nanjing Medical University, No. 169 Hushan Road, Nanjing, 211100, Jiangsu, China
| | - Sipei Nie
- Department of Obstetrics and Gynecology, Nanjing Jiangning Hospital Affiliated to Nanjing Medical University, No. 169 Hushan Road, Nanjing, 211100, Jiangsu, China
| | - Fujun Li
- Department of Obstetrics and Gynecology, Nanjing Jiangning Hospital Affiliated to Nanjing Medical University, No. 169 Hushan Road, Nanjing, 211100, Jiangsu, China
| | - Meixia Wang
- Department of Gynaecology and Obstetrics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang, China
| | - Miao Fang
- Department of Obstetrics and Gynecology, Nanjing Jiangning Hospital Affiliated to Nanjing Medical University, No. 169 Hushan Road, Nanjing, 211100, Jiangsu, China
| | - Chen Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, No. 666 Shengli Road, Nantong, 226000, Jiangsu, China
| | - Qiaoling Liu
- Department of Obstetrics and Gynecology, Nanjing Jiangning Hospital Affiliated to Nanjing Medical University, No. 169 Hushan Road, Nanjing, 211100, Jiangsu, China.
| | - Yun Han
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, No. 666 Shengli Road, Nantong, 226000, Jiangsu, China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
11
|
Peng Y, Xiao S, Zuo W, Xie Y, Xiao Y. Potential diagnostic value of miRNAs in sexually transmitted infections. Gene 2024; 895:147992. [PMID: 37977319 DOI: 10.1016/j.gene.2023.147992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
MiRNAs are small endogenous non-coding RNAs that have been demonstrated to be involved in post-transcriptional gene silencing, regulating a number of metabolic functions in the human body, including immune response, cellular physiology, organ development, angiogenesis, signaling, and other aspects. As popular molecules that have been studied in previous years, given their extensive regulatory functions, miRNAs hold considerable promise as non-invasive biomarkers. Sexually transmitted infections(STIs) are still widespread and have an adverse effect on individuals, communities, and society worldwide. miRNAs in the regulatory networks are generally involved in their molecular processes of formation and development. In this review, we discuss the value of miRNAs for the diagnosis of STIs.
Collapse
Affiliation(s)
- Yunchi Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuangwen Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wei Zuo
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
12
|
Mobinikhaledi M, Faridzadeh A, Farkhondeh T, Pourhanifeh MH, Samarghandian S. The Roles of Autophagy-related miRNAs in Gynecologic Tumors: A Review of Current Knowledge for Possible Targeted Therapy. Curr Mol Med 2024; 24:1269-1281. [PMID: 39300715 DOI: 10.2174/0115665240263059231002093454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2024]
Abstract
Gynecological cancers are the leading cause of malignancy-related death and disability in the world. These cancers are diagnosed at end stages, and unfortunately, the standard therapeutic strategies available for the treatment of affected women [including chemotherapy, radiotherapy and surgery] are not safe and effective enough. Moreover, the unwanted side-effects lowering the patients' life quality is another problem for these therapies. Therefore, researchers should search for better alternative/complementary treatments. The involvement of autophagy in the pathogenesis of various cancers has been demonstrated. Recently, a novel crosstalk between microRNAs, small non-coding RNAs with important regulatory functions, and autophagy machinery has been highlighted. In this review, we indicate the importance of this interaction for targeted therapy in the treatment of cancers including gynecological cancers, with a focus on underlying mechanisms.
Collapse
Affiliation(s)
- Mahya Mobinikhaledi
- Department of Pediatrics, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
13
|
Zheng N, Wei J, Wu D, Xu Y, Guo J. Master kinase PDK1 in tumorigenesis. Biochim Biophys Acta Rev Cancer 2023; 1878:188971. [PMID: 37640147 DOI: 10.1016/j.bbcan.2023.188971] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
3-phosphoinositide-dependent protein kinase 1 (PDK1) is considered as master kinase regulating AGC kinase family members such as AKT, SGK, PLK, S6K and RSK. Although autophosphorylation regulates PDK1 activity, accumulating evidence suggests that PDK1 is manipulated by many other mechanisms, including S6K-mediated phosphorylation, and the E3 ligase SPOP-mediated ubiquitination and degradation. Dysregulation of these upstream regulators or downstream signals involves in cancer development, as PDK1 regulating cell growth, metastasis, invasion, apoptosis and survival time. Meanwhile, overexpression of PDK1 is also exposed in a plethora of cancers, whereas inhibition of PDK1 reduces cell size and inhibits tumor growth and progression. More importantly, PDK1 also modulates the tumor microenvironments and markedly influences tumor immunotherapies. In summary, we comprehensively summarize the downstream signals, upstream regulators, mouse models, inhibitors, tumor microenvironment and clinical treatments for PDK1, and highlight PDK1 as a potential cancer therapeutic target.
Collapse
Affiliation(s)
- Nana Zheng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Jiaqi Wei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China.
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China.
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
14
|
Jiang F, Du L, Chen ZJ, Wang X, Ge D, Liu N. LNP-miR-155 cy5 Inhibitor Regulates the Copper Transporter via the β-Catenin/TCF4/SLC31A1 Signal for Colorectal Cancer Therapy. Mol Pharm 2023; 20:4138-4152. [PMID: 37358225 DOI: 10.1021/acs.molpharmaceut.3c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Lipid nanoparticle (LNP) delivery systems are widely used in the delivery of small-molecule drugs and nucleic acids. In this study, we prepared LNP-miR-155 by lipid nanomaterial technology and investigated the effects of LNP-miR-155 on β-catenin/transcription factor 4 (TCF4)/solute carrier family 31 member 1/copper transporter 1 (SLC31A1/CTR1) signaling and copper transport in colorectal cancer. For this, we used an LNP-miR-155 cy5 inhibitor and LNP-miR-155 cy5 mimics for the transfection of HT-29/SW480 cells. The transfection efficiency and uptake efficiency were detected by immunofluorescence. Relevant cell assays confirmed that the LNP-miR-155 cy5 inhibitor mediates the regulation of copper transport through the β-catenin/TCF4/SLC31A1 axis. The LNP-miR-155 cy5 inhibitor reduced cell proliferation, migration, and colony formation and promoted cell apoptosis. We also confirmed that miR-155 downregulates HMG box-containing protein 1 (HBP1) and adenomatous polyposis coli (APC) in cells and activates the function of β-catenin/TCF4 signaling. In addition, we found that the copper transporter, SLC31A1, is highly expressed in colorectal cancer cells. Furthermore, we also found that the complex β-catenin/TCF4 promotes the transcription of SLC31A1 by binding to its promoter region, which sustains the transport of copper from the extracellular region to the intracellular region and increases the activities of Cu2+-ATPase and superoxide dismutase (SOD). In summary, the LNP-miR-155 cy5 inhibitor regulates β-catenin/TCF4 by downregulating SLC31A1-mediated copper transport and intracellular copper homeostasis.
Collapse
Affiliation(s)
- Fan Jiang
- Department of the Center of Gerontology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P. R. China
| | - Le Du
- Department of Biology, Hainan Medical University, Haikou, Hainan 570100, P. R. China
| | - Zhi-Ju Chen
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P. R. China
| | - Xiang Wang
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P. R. China
| | - Dongsheng Ge
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P. R. China
| | - Ning Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P. R. China
| |
Collapse
|
15
|
Kordaß T, Chao TY, Osen W, Eichmüller SB. Novel microRNAs modulating ecto-5'-nucleotidase expression. Front Immunol 2023; 14:1199374. [PMID: 37409119 PMCID: PMC10318900 DOI: 10.3389/fimmu.2023.1199374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction The expression of immune checkpoint molecules (ICMs) by cancer cells is known to counteract tumor-reactive immune responses, thereby promoting tumor immune escape. For example, upregulated expression of ecto-5'-nucleotidase (NT5E), also designated as CD73, increases extracellular levels of immunosuppressive adenosine, which inhibits tumor attack by activated T cells. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Thus, the binding of miRNAs to the 3'-untranslated region of target mRNAs either blocks translation or induces degradation of the targeted mRNA. Cancer cells often exhibit aberrant miRNA expression profiles; hence, tumor-derived miRNAs have been used as biomarkers for early tumor detection. Methods In this study, we screened a human miRNA library and identified miRNAs affecting the expression of ICMs NT5E, ENTPD1, and CD274 in the human tumor cell lines SK-Mel-28 (melanoma) and MDA-MB-231 (breast cancer). Thereby, a set of potential tumor-suppressor miRNAs that decreased ICM expression in these cell lines was defined. Notably, this study also introduces a group of potential oncogenic miRNAs that cause increased ICM expression and presents the possible underlying mechanisms. The results of high-throughput screening of miRNAs affecting NT5E expression were validated in vitro in 12 cell lines of various tumor entities. Results As result, miR-1285-5p, miR-155-5p, and miR-3134 were found to be the most potent inhibitors of NT5E expression, while miR-134-3p, miR-6859-3p, miR-6514-3p, and miR-224-3p were identified as miRNAs that strongly enhanced NT5E expression levels. Discussion The miRNAs identified might have clinical relevance as potential therapeutic agents and biomarkers or therapeutic targets, respectively.
Collapse
Affiliation(s)
- Theresa Kordaß
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Tsu-Yang Chao
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfram Osen
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B. Eichmüller
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
16
|
Chen J, Huang S, Li H, Li Y, Zeng H, Hu J, Lin Y, Cai H, Deng P, Song T, Guan T, Zeng H, Liu M. STAT3 inhibitor BBI608 reduces patient-specific primary cell viability of cervical and endometrial cancer at a clinical-relevant concentration. Clin Transl Oncol 2023; 25:662-672. [PMID: 36422798 DOI: 10.1007/s12094-022-02970-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Aberrant activation of STAT3 signal pathway promotes tumor progression in many solid tumor types, including cervical cancer and endometrial cancer. BBI608, the STAT3 inhibitor had been reported in previous studies for restraining cancer stem cells. However, whether BBI608 is available for inhibiting the proliferation of cervical cancer or endometrial cancer remains poorly understood. This study investigated the anti-tumor effect and molecular mechanism of BBI608 on the patient-specific primary cells (PSPC) generated from cervical and endometrial cancer in vitro. METHODS PSPCs were obtained from four patients via biopsy. The cell viability was analyzed by the CCK8 assay. The PSPCs were treated with various concentrations of BBI608 or/and paclitaxel; and then, western blot was applied to investigate the expression of phosphorylated STAT3 (pSTAT3). RESULTS The PSPCs cell viability was reduced after treated with BBI608 at a lower concentration. Western blot results showed a reduction trend of pSTAT3 after PSPCs treated with BBI608. Our results demonstrated that BBI608 at the certain concentrations worked well in reducing the cell viability of PSPC from the patients who suffered from cervical cancer and endometrial cancer. CONCLUSIONS In this study, the patient-specific primary cell (PSPC) was used as the pre-clinical model for investigating the efficiency of BBI608 in reducing cancer cells viability. BBI608, at a clinical-relevant concentration, had valid efficiency in PSPCs from the patients. The dose of drugs treatment and the measured results were more valuable for further guiding clinical trials.
Collapse
Affiliation(s)
- Jing Chen
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Shuting Huang
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Huawen Li
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, Guangdong, People's Republic of China
| | - Yun Li
- Guangdong Procapzoom Biosciences, Inc, Guangzhou, Guangdong, China
| | - Haishan Zeng
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Jiemei Hu
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Yanchun Lin
- Guangdong Procapzoom Biosciences, Inc, Guangzhou, Guangdong, China
| | - Huihua Cai
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Pengfei Deng
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, Guangdong, People's Republic of China
| | - Ting Song
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, Guangdong, People's Republic of China
| | - Tian Guan
- Guangdong Procapzoom Biosciences, Inc, Guangzhou, Guangdong, China
| | - Haoyu Zeng
- Guangdong Procapzoom Biosciences, Inc, Guangzhou, Guangdong, China
| | - Mubiao Liu
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China. .,Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Avila JP, Carvalho BM, Coimbra EC. A Comprehensive View of the Cancer-Immunity Cycle (CIC) in HPV-Mediated Cervical Cancer and Prospects for Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:1333. [PMID: 36831674 PMCID: PMC9954575 DOI: 10.3390/cancers15041333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common cancer in women worldwide, with more than 500,000 new cases each year and a mortality rate of around 55%. Over 80% of these deaths occur in developing countries. The most important risk factor for CC is persistent infection by a sexually transmitted virus, the human papillomavirus (HPV). Conventional treatments to eradicate this type of cancer are accompanied by high rates of resistance and a large number of side effects. Hence, it is crucial to devise novel effective therapeutic strategies. In recent years, an increasing number of studies have aimed to develop immunotherapeutic methods for treating cancer. However, these strategies have not proven to be effective enough to combat CC. This means there is a need to investigate immune molecular targets. An adaptive immune response against cancer has been described in seven key stages or steps defined as the cancer-immunity cycle (CIC). The CIC begins with the release of antigens by tumor cells and ends with their destruction by cytotoxic T-cells. In this paper, we discuss several molecular alterations found in each stage of the CIC of CC. In addition, we analyze the evidence discovered, the molecular mechanisms and their relationship with variables such as histological subtype and HPV infection, as well as their potential impact for adopting novel immunotherapeutic approaches.
Collapse
Affiliation(s)
| | | | - Eliane Campos Coimbra
- Institute of Biological Sciences, University of Pernambuco (ICB/UPE), Rua Arnóbio Marques, 310, Santo Amaro, Recife 50100-130, PE, Brazil
| |
Collapse
|
18
|
González-López P, Ares-Carral C, López-Pastor AR, Infante-Menéndez J, González Illaness T, Vega de Ceniga M, Esparza L, Beneit N, Martín-Ventura JL, Escribano Ó, Gómez-Hernández A. Implication of miR-155-5p and miR-143-3p in the Vascular Insulin Resistance and Instability of Human and Experimental Atherosclerotic Plaque. Int J Mol Sci 2022; 23:ijms231810253. [PMID: 36142173 PMCID: PMC9499612 DOI: 10.3390/ijms231810253] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Cardiovascular diseases (CVDs) are the main cause of death in developed countries, being atherosclerosis, a recurring process underlying their apparition. MicroRNAs (miRNAs) modulate the expression of their targets and have emerged as key players in CVDs; (2) Methods: 18 miRNAs were selected (Pubmed and GEO database) for their possible role in promoting atherosclerosis and were analysed by RT-qPCR in the aorta from apolipoprotein E-deficient (ApoE−/−) mice. Afterwards, the altered miRNAs in the aorta from 18 weeks-ApoE−/− mice were studied in human aortic and carotid samples; (3) Results: miR-155-5p was overexpressed and miR-143-3p was downregulated in mouse and human atherosclerotic lesions. In addition, a significant decrease in protein kinase B (AKT), target of miR-155-5p, and an increase in insulin-like growth factor type II receptor (IGF-IIR), target of miR-143-3p, were noted in aortic roots from ApoE−/− mice and in carotid plaques from patients with advanced carotid atherosclerosis (ACA). Finally, the overexpression of miR-155-5p reduced AKT levels and its phosphorylation in vascular smooth muscle cells, while miR-143-3p overexpression decreased IGF-IIR reducing apoptosis in vascular cells; (4) Conclusions: Our results suggest that miR-155-5p and miR-143-3p may be implicated in insulin resistance and plaque instability by the modulation of their targets AKT and IGF-IIR, contributing to the progression of atherosclerosis.
Collapse
Affiliation(s)
- Paula González-López
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Carla Ares-Carral
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Andrea R. López-Pastor
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Infante-Menéndez
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Tamara González Illaness
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Melina Vega de Ceniga
- Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, 48960 Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Leticia Esparza
- Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, 48960 Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Nuria Beneit
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Luis Martín-Ventura
- IIS-Fundation Jimenez-Diaz, Autonoma University of Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Óscar Escribano
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (Ó.E.); (A.G.-H.); Tel.: +34-91-3941853 (Ó.E. & A.G.-H.)
| | - Almudena Gómez-Hernández
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (Ó.E.); (A.G.-H.); Tel.: +34-91-3941853 (Ó.E. & A.G.-H.)
| |
Collapse
|
19
|
Mahbubfam S, Rezaie J, Nejati V. Crosstalk between exosomes signaling pathway and autophagy flux in senescent human endothelial cells. Tissue Cell 2022; 76:101803. [DOI: 10.1016/j.tice.2022.101803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022]
|
20
|
Lagunas-Martínez A, Madrid-Marina V, Gómez-Cerón C, Deas J, Peralta-Zaragoza O. The Autophagy Process in Cervical Carcinogenesis: Role of Non-Coding-RNAs, Molecular Mechanisms, and Therapeutic Targets. Cells 2022; 11:cells11081323. [PMID: 35456001 PMCID: PMC9028856 DOI: 10.3390/cells11081323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Autophagy is a highly conserved multistep lysosomal degradation process in which cellular components are localized to autophagosomes, which subsequently fuse with lysosomes to degrade the sequestered contents. Autophagy serves to maintain cellular homeostasis. There is a close relationship between autophagy and tumor progression, which provides opportunities for the development of anticancer therapeutics that target the autophagy pathway. In this review, we analyze the effects of human papillomavirus (HPV) E5, E6, and E7 oncoproteins on autophagy processes in cervical cancer development. Inhibition of the expression or the activity of E5, E6, and E7 can induce autophagy in cells expressing HPV oncogenes. Thus, E5, E6, and E7 oncoproteins target autophagy during HPV-associated carcinogenesis. Furthermore, noncoding RNA (ncRNA) expression profiling in cervical cancer has allowed the identification of autophagy-related ncRNAs associated with HPV. Autophagy-related genes are essential drivers of autophagy and are regulated by ncRNAs. We review the existing evidence regarding the role of autophagy-related proteins, the function of HPV E5, E6, and E7 oncoproteins, and the effects of noncoding RNA on autophagy regulation in the setting of cervical carcinogenesis. By characterizing the mechanisms behind the dysregulation of these critical factors and their impact on host cell autophagy, we advance understanding of the relationship between autophagy and progression from HPV infection to cervical cancer, and highlight pathways that can be targeted in preventive and therapeutic strategies against cervical cancer.
Collapse
Affiliation(s)
- Alfredo Lagunas-Martínez
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
| | - Vicente Madrid-Marina
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
| | - Claudia Gómez-Cerón
- Research Center in Population Health, Department of Cancer Epidemiology, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico;
| | - Jessica Deas
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
- Correspondence: ; Tel.: +52-777-3293000
| |
Collapse
|
21
|
Khatami A, Nahand JS, Kiani SJ, Khoshmirsafa M, Moghoofei M, Khanaliha K, Tavakoli A, Emtiazi N, Bokharaei-Salim F. Human papilloma virus (HPV) and prostate cancer (PCa): The potential role of HPV gene expression and selected cellular MiRNAs in PCa development. Microb Pathog 2022; 166:105503. [DOI: 10.1016/j.micpath.2022.105503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/09/2023]
|
22
|
Yan J, Deng Y, Cai Y, Cong W. LncRNA MIR17HG
promotes the proliferation, migration, and invasion of retinoblastoma cells by up‐regulating
HIF
‐1α expression via sponging
miR
‐155‐5p. Kaohsiung J Med Sci 2022; 38:554-564. [PMID: 35253975 DOI: 10.1002/kjm2.12523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jian Yan
- Department of Ophthalmology Longgang District Central Hospital Shenzhen China
| | - Yi‐Xuan Deng
- Department of Ophthalmology Longgang District Central Hospital Shenzhen China
| | - Yu‐Lian Cai
- Department of Ophthalmology Longgang District Central Hospital Shenzhen China
| | - Wen‐Dong Cong
- Department of Neurology Longgang District Central Hospital Shenzhen China
| |
Collapse
|
23
|
miR-155-5p in Extracellular Vesicles Derived from Choroid Plexus Epithelial Cells Promotes Autophagy and Inflammation to Aggravate Ischemic Brain Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8603427. [PMID: 35222806 PMCID: PMC8865969 DOI: 10.1155/2022/8603427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/08/2022] [Indexed: 12/12/2022]
Abstract
Ischemic stroke is a common disease of the central nervous system, and ischemic brain injury (IBI) is its main manifestation. Recently, extracellular vesicles (EVs) have been strongly related to the diagnosis and treatment of IBI. However, the underlying mechanism of their effects remains enigmatic. In the present study, we aimed to study how miR-155-5p plays a role in choroid plexus epithelial (CPE) cell-derived EVs in IBI pathology. We found that miR-155-5p expression was enriched in CPE cell-derived EVs, which were subsequently internalized by neurons, enabling the delivery of miR-155-5p into neurons. An inducible oxygen and glucose deprivation and reoxygenation (OGD/R) cell model was developed to mimic ischemic neuronal injury in vitro. miR-155-5p overexpression led to reduced neuron viability, promoted apoptosis, elevated autophagic proteins' expression, and activated NLR family pyrin domain-containing 3- (NLRP3-) related inflammasomes, thereby aggravating OGD-induced neuronal injury. A dual-luciferase reporter assay exhibited that miR-155-5p could inhibit the Ras homolog enriched in brain (Rheb) expression, a mechanism critical for miR-155-5p-mediated neuronal injury. Furthermore, a mouse IBI model was developed using the transient middle cerebral artery occlusion (tMCAO) method. Animal experiments verified that miR-155p delivery via CPE cell-derived EVs aggravated IBI by suppressing Rheb expression. In conclusion, miR-155-5p in CPE-derived EVs can aggravate IBI pathology by suppressing Rheb expression and promoting NLRP3-mediated inflammasomes, suggesting its role as a potential therapeutic target in IBI.
Collapse
|
24
|
Salinas-Montalvo AM, Supramaniam A, McMillan NA, Idris A. RNA-based gene targeting therapies for human papillomavirus driven cancers. Cancer Lett 2021; 523:111-120. [PMID: 34627949 DOI: 10.1016/j.canlet.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
While platinum-based chemotherapy, radiation therapy and or surgery are effective in reducing human papillomavirus (HPV) driven cancer tumours, they have some significant drawbacks, including low specificity for tumour, toxicity, and severe adverse effects. Though current therapies for HPV-driven cancers are effective, severe late toxicity associated with current treatments contributes to the deterioration of patient quality of life. This warrants the need for novel therapies for HPV derived cancers. In this short review, we examined RNA-based therapies targeting the major HPV oncogenes, including short-interfering RNAs (siRNAs) and clustered regularly interspaced short palindromic repeats (CRISPR) as putative treatment modalities. We also explore other potential RNA-based targeting approaches such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and mRNA vaccines as future treatment modalities for HPV cancers. Some of these technologies have already been approved for clinical use for a range of other human diseases but not for HPV cancers. Here we explore the emerging evidence supporting the effectiveness of some of these gene-based therapies for HPV malignancies. In short, the evidence sheds promising light on the feasibility of translating these technologies into a clinically relevant treatment modality for HPV derived cancers and potentially other virally driven human cancers.
Collapse
Affiliation(s)
- Ana María Salinas-Montalvo
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Aroon Supramaniam
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Nigel Aj McMillan
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Adi Idris
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
25
|
The role of microRNAs in diseases and related signaling pathways. Mol Biol Rep 2021; 49:6789-6801. [PMID: 34718938 DOI: 10.1007/s11033-021-06725-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs) are epigenetic regulators of the gene expression and act through posttranslational modification. They bind to 3'-UTR of target mRNAs to inhibit translation or increase the degradation mRNA in many tissues. Any alteration in the level of miRNA expression in many human diseases indicates their involvement in the pathogenesis of many diseases. On the other hand, the regulation of the signaling pathways is necessary for the maintenance of natural and physiological characteristics of any cell. It is worth mentioning that dysfunction of the signaling pathways manifests itself as a disorder or disease. The significant evidence report that miRNAs regulate the several signaling pathways in many diseases. Base on previous studies, miRNAs can be used for therapeutic or diagnostic purposes. According to the important role of miRNAs on the cell signaling pathways, this article reviews miRNAs involvement in incidence of diseases by changing signaling pathways.
Collapse
|
26
|
de León-Martínez LD, López-Mendoza C, Terán-Figueroa Y, Flores-Ramírez R, Díaz-Barriga F, Alcántara-Quintana L. Detection of aflatoxin B1 adducts in Mexican women with cervical lesions. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cervical cancer (CC) is one of the most serious threats to the lives of women; co-factors in addition to oncogenic human papillomavirus (HPV) infection may be important in causing CC. Women in Mexico are exposed to dietary aflatoxin B1, a potent carcinogen, which may act as a co-factor, in inducing progression to CC. Scarce studies are addressing environmental risks associated with the development of CC, thus the study aimed to establish a relationship between the presence of AFB1 and the detection of human papillomavirus in the genome of Mexican women. Forty samples from cervical tissue of women infected with HPV were obtained; positive results regarding the HPV type (16 and/or 18) were found in 92.5% women and the presence of AFB1-DNA adducts were detected in 77.5% of the same positive HPV samples. Detection of AFB1-DNA adducts and genomic concentrations were correlated with the detection of two oncogenic types of HPV 16 and 18. AFB1-DNA positivity and higher genomic concentrations of AFB1-DNA adducts were correlated with an increased risk of oncogenic detection of HPV in cervical samples from women in Mexico. As a secondary objective, a hypothetical interaction of the adducts with the NRF2 pathway has been proposed, therefore activation of p62 and in turn E6 and E7 (HPV proteins) would inhibit the formation of autophagosomes, which would result in a presence or recurrence of CC.
Collapse
Affiliation(s)
- L. Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona 7 No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - C.M. López-Mendoza
- Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí. Av. Niño Artillero 130 Zona Universitaria, 78240, SLP, México
| | - Y. Terán-Figueroa
- Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí. Av. Niño Artillero 130 Zona Universitaria, 78240, SLP, México
| | - R. Flores-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona 7 No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - F. Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona 7 No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - L.E. Alcántara-Quintana
- Cátedra CONACYT, Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí. Av. Niño Artillero 130 Zona Universitaria, 78240, SLP, México
| |
Collapse
|
27
|
Shi M, Zhao Y, Sun Y, Xin D, Xu W, Zhou B. Therapeutic effect of co-culture of rat bone marrow mesenchymal stem cells and degenerated nucleus pulposus cells on intervertebral disc degeneration. Spine J 2021; 21:1567-1579. [PMID: 34000376 DOI: 10.1016/j.spinee.2021.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND After non-contact co-culture of bone marrow mesenchymal stem cells (BMSCs) with nucleus pulposus cells (NPCs), exosomes secreted by BMSCs were able to ameliorate the degree of disc degeneration. The reason for this is, at least in part, that exosomes from BMSCs achieve by affecting the level of autophagy in NPCs, while the components in exosomes are diverse and their specific mechanism of action is still unclear. PURPOSE Here, we aimed to explore the therapeutic effect of co-culture of BMSCs and NPCs on NPCs and explore its specific mechanism of action. STUDY DESIGN/SETTING In vitro study. METHODS Rat NPCs and BMSCs were isolated and cultured in vitro. The serum deprivation experiment (using oxygen, glucose, and serum deprivation [OGD]) simulates the pathological state of low blood supply of the intervertebral disc in vivo. We used apoptotic cell staining and flow cytometry to study the effect of BMSCs on the apoptosis rate of rat NPCs, and the apoptotic proteins active-caspase-3, active-caspase-9, autophagy marker proteins LC3 and Beclin 1 were further detected using Western blot analysis. The expression levels of the pro-apoptotic protein Bax and the apoptosis-inhibiting protein Bcl2 were measured. The differentially expressed miRNAs were screened in a gene expression profiling chip. Then qRT-PCR was used to detect the effect of different treatment methods on miR-155 expression. The effect of anti-miR-155 antibodies on autophagy was studied by flow cytometry and transmission electron microscopy. A luciferase reporter assay was used to study the direct interaction between miR-155 and BACH1 mRNA, which was analyzed by TargetScan software, and the results were verified by Western blotting. RESULTS Compared with the OGD group, the expression level of miR-155 and the NPC autophagy level significantly increased; the HO-1 protein expression increased; and the Bach1 protein expression, degeneration index, and apoptosis index all significantly decreased in the co-culture group. After BMSCs transfected with anti-miR-155 were co-cultured with NPCs, the miR-155 expression in the cells was significantly reduced, the HO-1 protein expression and the level of cell autophagy was reduced. However, Bach1 protein expression, NPC degeneration index, and apoptosis index increased. After being inhibited by the autophagy inhibitor wortmannin, the cell degeneration index and apoptosis rate significantly improved. CONCLUSION In the OGD model, BMSCs can significantly increase the viability, the level of autophagy, and reduce the level of apoptosis in rat NPCs. BMSC exosomes increase miR-155 expression in NPCs, which targets Bach1 and in turn upregulates HO-1 expression, activates autophagy in NPCs, inhibits the apoptosis level, and improves intervertebral disc degeneration. CLINICAL SIGNIFICANCE Our experiment shows that it is maybe feasible to treat disc degeneration with drugs. At the same time, compared with BMSC injection method of treatment, side effects of drug therapy are smaller, and can be controlled, it also provides a new way for intervertebral disc degeneration drug treatment.
Collapse
Affiliation(s)
- Ming Shi
- Thoracic Lumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Yan Zhao
- Thoracic Lumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China.
| | - Yue Sun
- Orthopedics, Inner Mongolia Autonomous Region People's Hospital, Inner Mongolia, China
| | - Daqi Xin
- Thoracic Lumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Weilong Xu
- Thoracic Lumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Boyuan Zhou
- Thoracic Lumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| |
Collapse
|
28
|
Role of microRNAs (MiRNAs) as biomarkers of cervical carcinogenesis: a systematic review. Obstet Gynecol Sci 2021; 64:419-436. [PMID: 34384196 PMCID: PMC8458608 DOI: 10.5468/ogs.21123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
We performed a systematic review to identify the role of microRNAs (miRNAs) as biomarkers in the progression of cervical precancerous lesions. A comprehensive search of the Cochrane Controlled Register of Trials, PubMed, ScienceDirect, and Embase databases was performed for articles published between January 2010 and June 2020. The following Medical Subject Headings (MeSH) terms were searched: “microRNA” and “cervical” and “lesion.” All study designs that aimed to evaluate the correlation of miRNA expression with different precancerous cervical staging and/ or cervical cancer were included, except for case reports and case series. Approximately 82 individual miRNAs were found to be significant in differentiating the stages of cervical carcinogenesis. Among the miRNAs, miR-21 is the most prevalent, and it is consistently upregulated progressively from normal cervical to worsening cervical lesion stages in both cell and serum samples. miR-205 has been shown to have a higher specificity than human papilloma virus testing in predicting the absence of high-grade squamous intraepithelial lesions (HSILs) in exfoliated cell samples. The tumor suppressor miRNAs miR-34, let-7, miR-203 miR-29, and miR-375 were significantly downregulated in low-grade squamous intraepithelial lesions, HSILs, and cervical cancer. We found significant dysregulated miRNAs in cervical carcinogenesis with their dynamic expression changes and ability to detect viral persistency, risk prediction of low-grade lesions (cervical intraepithelial neoplasia [CIN] 2) to high-grade lesions (CIN 3), and progression of CIN 3 to cancer. Their ability to discriminate HSILs from non-dysplastic lesions has potential implications in early diagnosis and reducing overtreatment of otherwise regressive early preinvasive lesions.
Collapse
|
29
|
The Role of miR-155 in Nutrition: Modulating Cancer-Associated Inflammation. Nutrients 2021; 13:nu13072245. [PMID: 34210046 PMCID: PMC8308226 DOI: 10.3390/nu13072245] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Nutrition plays an important role in overall human health. Although there is no direct evidence supporting the direct involvement of nutrition in curing disease, for some diseases, good nutrition contributes to disease prevention and our overall well-being, including energy level, optimum internal function, and strength of the immune system. Lately, other major, but more silent players are reported to participate in the body’s response to ingested nutrients, as they are involved in different physiological and pathological processes. Furthermore, the genetic profile of an individual is highly critical in regulating these processes and their interactions. In particular, miR-155, a non-coding microRNA, is reported to be highly correlated with such nutritional processes. In fact, miR-155 is involved in the orchestration of various biological processes such as cellular signaling, immune regulation, metabolism, nutritional responses, inflammation, and carcinogenesis. Thus, this review aims to highlight those critical aspects of the influence of dietary components on gene expression, primarily on miR-155 and its role in modulating cancer-associated processes.
Collapse
|
30
|
Zhang J, Zhu L, Shi H, Zheng H. Protective effects of miR-155-5p silencing on IFN-γ-induced apoptosis and inflammation in salivary gland epithelial cells. Exp Ther Med 2021; 22:882. [PMID: 34194560 PMCID: PMC8237265 DOI: 10.3892/etm.2021.10314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/08/2021] [Indexed: 12/28/2022] Open
Abstract
Previous studies have demonstrated that microRNAs (miRNAs/miRs) serve a vital role in the pathogenesis of Sjögren's syndrome (SS). The present study aimed to investigate the role of miR-155-5p in SS and determine its underlying molecular mechanism. An inflammatory lesion model was established by stimulating salivary gland epithelial cells (SGECs) with interferon-γ (IFN-γ). The apoptosis of SGECs was measured by using flow cytometry. Levels of proinflammatory factors were detected by reverse transcription-quantitative PCR and ELISA, respectively. Immunofluorescence was used for p65 staining. Dual-luciferase reporter assay was performed to verify the interaction between miR-155-5p and arrestin β2 (ARRB2). The protein levels in the NF-κB signaling pathway were assessed by western blotting. The results of the present study demonstrated that treatment with IFN-γ increased miR-155-5p expression, in addition to inducing apoptosis and inflammation in SGECs. Furthermore, overexpression of miR-155-5p promoted IFN-γ-induced apoptosis and inflammation in SGECs. Overexpression of miR-155-5p also increased Bax protein expression, enzyme activities of caspase 3 and caspase 9, release of inflammatory cytokines interleukin-6 and tumor necrosis factor-α, and decreased Bcl-2 protein expression in IFN-γ-treated SGECs. By contrast, all of the effects aforementioned were reversed following miR-155-5p knockdown. These results demonstrated that miR-155-5p activated the NF-κB signaling pathway, where treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate, reversed the effects of miR-155-5p overexpression on the inflammatory factors in IFN-γ-induced SGECs. miR-155-5p was demonstrated to target ARRB2 and negatively regulated its expression levels, such that overexpression of ARRB2 reversed the effects of miR-155-5p overexpression on the inflammatory response, apoptosis and the NF-κB signaling pathway in IFN-γ-treated SGECs. Collectively, results from the present study suggest that miR-155-5p may activate the NF-κB signaling pathway by negatively regulating ARRB2 to promote salivary gland damage during SS pathogenesis. This suggests that miR-155-5p may serve to be a potential target for the treatment of SS.
Collapse
Affiliation(s)
- Jingli Zhang
- Department of Rheumatology and Immunology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Lingling Zhu
- Department of Hematology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Hong Shi
- Department of Rheumatology and Immunology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Huizhe Zheng
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
31
|
Zhang X, Zhong S. PDK1 Inhibitor GSK-470 Exhibits Potent Anticancer Activity in a Pheochromocytoma PC12 Cell Tumor Model via Akt/mTOR Pathway. Anticancer Agents Med Chem 2021; 20:828-833. [PMID: 32188393 DOI: 10.2174/1871520620666200318100701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/09/2020] [Accepted: 02/20/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Phosphoinositide-Dependent Kinase 1 (PDK1) is now widely studied in malignant solid tumors. Researchers have previously revealed that targeting PDK1 is thought of as a promising anticancer treatment strategy. The aim of this study was designed to evaluate the anticancer activity of GSK-470, a novel and highly specific inhibitor of PDK1, in Pheochromocytoma (PCC) tumor model. METHODS PC12 cells were xenografted into nude mice to build PCC tumor model. Animals were treated with GSK-470 vs vehicle. Mean tumor volume was calculated and compared across groups. TUNEL was used to detect apoptosis. The effects of PDK1 inhibitor GSK-470 on activation of the Akt signaling and its downstream Akt/mTOR pathway in xenotransplant tumor tissues were examined by western bolt. RESULTS The mean tumor volume in GSK-470 group was significantly less than that in control group. TUNEL results found that cell apoptosis was markedly increased in GSK-470 group compared with the control group. The western bolt analysis showed that the phosphorylation of Akt at threonine 308 was significantly reduced in GSK-470 group. Also, GSK-470 strongly inhibited phosphorylation of mTOR on Ser2448, a marker for mTORC1 activity, as well as phosphorylation of p70S6K, best characterized targets of mTOR. CONCLUSION Our results showed that GSK-470 exhibited potent anticancer activity in PC12 tumor-bearing mice. Also, we found that this effect appeared to be mediated by the inhibition of the Akt/mTOR pathway. The present study once again provides new insights into the therapeutic effects of inhibiting PDK1 in the treatment of malignant PCC. Therefore, we propose that GSK-470 might be an effective therapeutic agent for the treatment of malignant PCC.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shan Zhong
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Shensu IV prevents glomerular podocyte injury in nephrotic rats via promoting lncRNA H19/DIRAS3-mediated autophagy. Biosci Rep 2021; 41:228425. [PMID: 33881140 PMCID: PMC8112846 DOI: 10.1042/bsr20203362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Shensu IV is a Chinese prescription well-known for its function in treating chronic kidney diseases. However, the potential mechanisms underlying how Shensu IV exerts its effects remain unclear. In the present study, we investigated the effects of Shensu IV on glomerular podocyte injury in nephrotic rats and puromycin-induced injury in cultured podocytes, and assessed the associated molecular mechanisms. Liquid chromatography-mass spectrometry (LC-MS) results showed that the main components of Shensu IV were l-Carnitine, P-lysoPC (LPC) 16:0, Coumaroyl tyramine, Tetramethylpyrazine, LPC 18:1, Choline, (S,S)-Butane-2,3-diol, and Scopoletin. We further found that nephrotic rats displayed pathological alterations in kidney tissues and ultrastructural changes in glomerular podocytes; however, these effects were reversed with Shensu IV treatment. Compared with the control, the numbers of autophagosomes were markedly reduced in the model group, but not in the Shensu IV treatment group. Furthermore, the expression of p62 was significantly higher in the model group than in the controls, whereas the LC3-II/I ratio was significantly lower; however, these changes were not observed when Shensu IV was administered. The protective effects of Shensu IV were further confirmed in podocytes displaying puromycin-induced injury. Compared with control group, the expression of long non-coding RNA (lncRNA) H19, mTOR, p-mTOR, and p62 was significantly increased in the puromycin group, whereas that of distinct subgroup of the RAS family member 3 (DIRAS3) was significantly decreased, as was the LC3-II/I ratio. The opposite results were obtained for both shH19- and Shensu IV-treated cells. Collectively, our data demonstrated that Shensu IV can prevent glomerular podocyte injury in nephrotic rats and puromycin-treated podocytes, likely via promoting lncRNA H19/DIRAS3-regulated autophagy.
Collapse
|
33
|
Wu S, Lu D, Zheng X, Xu J, Li Z, Deng L, Hu Y. Dysregulation of autophagy-associated microRNAs in condyloma acuminatum. INFECTION GENETICS AND EVOLUTION 2021; 93:104878. [PMID: 33905885 DOI: 10.1016/j.meegid.2021.104878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023]
Abstract
Condyloma acuminatum, which is caused by low-risk human papillomavirus (lrHPV) infection, is one of the most common sexually transmitted diseases. Autophagy is thought to be associated with condyloma acuminatum, but how the autophagy process is regulated remains unclear. MicroRNAs (miRNAs) are important regulators of gene transcription that play a central role in many biological processes, including autophagy and viral infection. This study was designed to identify autophagy-related miRNAs and their targets in condyloma acuminatum and to validate their expression. The levels of the autophagy proteins microtubule-associated protein 1 light chain 3 (LC3) and P62/SQSTM1 (P62) were abnormally increased in the local lesion tissue of condyloma acuminatum patients compared with healthy controls. MiRNAs and their target mRNAs in condyloma acuminatum patients were analyzed by bioinformatics. Eighty-one differentially expressed miRNAs were identified, of which 56 were downregulated and 25 were upregulated. Two of the differentially expressed miRNAs associated with autophagy, miRNA-30a-5p and miRNA-514a-3p, were analyzed further, and their target genes were identified as autophagy-related protein (Atg) 5 and Atg12 and Atg3 and Atg12, respectively. The expression levels of miRNA-30a-5p and miRNA-514a-3p were decreased and those of Atg5, Atg12 and Atg3 were increased in condyloma acuminatum patients compared with healthy controls. In addition, miRNA-30a-5p and miRNA-514a-3p expression correlated with the proliferation index Ki-67 in condyloma acuminatum. Taken together, our results suggest that the changes in autophagy levels in patients with condyloma acuminatum may be related to the changes in miRNA-30a-5p and miRNA-514a-3p expression. This study provides a theoretical basis for identifying new mechanisms that link miRNAs, HPV infection and host autophagy in vivo.
Collapse
Affiliation(s)
- Shi Wu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China; Dermatology Institute of Jinan University, Jinan University, Guangzhou 510630, China
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China; Clinical Neuroscience Institute of Jinan University, Jinan University, Guangzhou 510630, China
| | - Xinkai Zheng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China; Dermatology Institute of Jinan University, Jinan University, Guangzhou 510630, China
| | - Jin Xu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China; Dermatology Institute of Jinan University, Jinan University, Guangzhou 510630, China
| | - Zhen Li
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China; Department of Laser Cosmetology, The fifth people's hospital of Hainan Province, Haikou 570100, China
| | - Liehua Deng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China; Dermatology Institute of Jinan University, Jinan University, Guangzhou 510630, China.
| | - Yunfeng Hu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China; Dermatology Institute of Jinan University, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
34
|
Guo T, Wang W, Ji Y, Zhang M, Xu G, Lin S. LncRNA PROX1-AS1 Facilitates Gastric Cancer Progression via miR-877-5p/PD-L1 Axis. Cancer Manag Res 2021; 13:2669-2680. [PMID: 33776485 PMCID: PMC7989960 DOI: 10.2147/cmar.s275352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Growing evidences imply that multiple long non-coding RNAs (lncRNAs) play a significant role in the treatment of cancer. Therefore, it is of great significance to discover new biomarkers or therapeutic targets of gastric cancer (GC). However, the potential molecular mechanism of lncPROX1-AS1 in GC remains unknown. The objective of current study is to investigate the effect of PROX1-AS1 in GC. Methods Thus, we detect that PROX1-AS1 is over-expressed in tissues and cell lines of GC using qRT-PCR analysis. CCK-8, colony formation, flow cytometry, wounding healing and transwell analyses were performed to explore the effect of PROX1-AS1 on GC malignant behaviors. Results It is further disclosed that silencing of PROX1-AS1 represses cell proliferation, migration, and invasion, whereas promotes cell apoptosis in GC. Bioinformatics analysis suggests that miR-877-5p is negatively regulated by PROX1-AS1 and ectopic of miR-877-5p alleviates the malignant behaviors of GC. Subsequently, miR-877-5p suppresses the activity of PD-L1-3ʹ UTR. At last, rescue assays demonstrated that the GC progression is suppressed by sh-PROX1-AS1 and facilitated on account of miR-877-5p inhibitors and then is retrieved by sh-PD-L1. Discussion Our findings reveal that PROX1-AS1 exerts its role via miR-877-5p/PD-L1 axis in the GC progression, suggesting that PROX1-AS1 may represent a new therapeutic target for the diagnosis and treatment of GC patients.
Collapse
Affiliation(s)
- TianWei Guo
- Department of Pathology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu, People's Republic of China
| | - Wei Wang
- Department of Pathology, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - YueXia Ji
- Department of Pathology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu, People's Republic of China
| | - Min Zhang
- Department of Pathology, Children's Hospital Affiliated to Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - GuoYing Xu
- School of Medical Technology, Jiangsu College of Nursing, Huai'an, Jiangsu, People's Republic of China
| | - Sen Lin
- The Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'an, Huai'an, Jiangsu, People's Republic of China
| |
Collapse
|
35
|
Yang J, Jia Y, Wang B, Yang S, Du K, Luo Y, Li Y, Zhu B. Circular RNA CHST15 Sponges miR-155-5p and miR-194-5p to Promote the Immune Escape of Lung Cancer Cells Mediated by PD-L1. Front Oncol 2021; 11:595609. [PMID: 33777742 PMCID: PMC7991744 DOI: 10.3389/fonc.2021.595609] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Background The effects of up-regulated CircCHST15 on lung cancer remained unclear. In this study, the role of CircCHST15 in lung cancer was investigated. Methods Dual-luciferase reporter verified the bioinformatics prediction that CircCHST15 targeted miR-155-5p and miR-194-5p. The correlation between CircCHST15 and PD-L1 was analyzed by Pearson analysis. CCK-8 and colony formation was performed to determine the viability and proliferation of lung cancer cells. After the lung cancer (subcutaneous-xenotransplant) model was established in mice, the T cell subtype and related cytokines in mouse tumor tissues were detected by flow cytometry and ELISA. Moreover, the expressions of CircCHST15, miR-155-5p, miR-194-5p, immune-related, and proliferation-related factors of the lung cancer cells or mice tumor tissues were detected by immunohistochemistry, RT-qPCR, or Western blot. Results CircCHST15 and PD-L1 were high-expressed in lung cancer, and the two was positively correlated. CircCHST15 targeted miR-155-5p and miR-194-5p, the later further targeted PD-L1. Lung cancer cell viability and proliferation were increased by miR-155-5p and inhibited by miR-194-5p. CircCHST15 located in the cytoplasm promoted tumor growth, down-regulated the expressions of miR-155-5p and miR-194-5p, and up-regulated the expressions of PD-L1, Ki-67, PCNA, CCL17, CCL22, IFN-γ, TNF-β, and IL-10. Also, CircCHST15 decreased the CD8+ cells in mouse blood and tumor, but increased the Tregs in mouse tumor. PD-L1 inhibitor showed an opposite effect to CircCHST15 on mouse tumors. Conclusion CircCHST15 sponged miR-155-5p and miR-194-5p to promote the PD-L1-mediated immune escape of lung cancer cells.
Collapse
Affiliation(s)
- Jianru Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Jia
- Department of Plastic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bing Wang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengrong Yang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun Du
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujie Luo
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunhe Li
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bing Zhu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Chen LJ, Li JM, Zhang WD, Liu W, Li XY, Ouyang B, Tan JL, Li Y, Chen JC, Liu ZG. LncRNA NEAT1 activates MyD88/NF-κB pathway in bronchopneumonia through targeting miR-155-5p. Autoimmunity 2021; 54:104-113. [PMID: 33719773 DOI: 10.1080/08916934.2021.1891534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bronchopneumonia is a disease of the respiratory tract. It leads to other complications and endangers life and health. Long non-coding RNA (lncRNA) participates in the occurrence and development of bronchopneumonia. Nuclear paraspeckle assembly transcript 1 (NEAT1) plays a key role in inflammatory diseases, but the function of NEAT1 in bronchopneumonia remains unclear. METHODS RT-qPCR and Western blotting were performed to determine genes and proteins expressions. MTT was applied to test cell viability. Cell apoptosis was detected by flow cytometry. RIP was used to investigate the correlation between NEAT1 and miR-155-5p. The interaction between miR-155-5p and NEAT1 or MyD88 was evaluated by the dual-luciferase reporter gene. RESULTS NEAT1 and MyD88 were upregulated in BEAS-2B cells by LPS, while miR-155-5p was downregulated. Knockdown of NEAT1 inhibited LPS-induced BEAS-2B cells growth inhibition by inhibiting the apoptosis. In addition, NEAT1 silencing suppressed LPS-induced inflammatory responses in BEAS-2B cells via suppression of TNF-α, IL-1β, IL-6, and IL-18. Meanwhile, NEAT1 is directly bound to miR-155-5p to regulate MyD88/NF-κB axis, and overexpression of miR-155-5p increased cell proliferation and suppressed inflammatory factors expression levels and cell apoptosis. Furthermore, sh-NEAT1-induced inhibition of BEAS-2B cells injury was partially reversed by miR-155-5p inhibitor or MyD88 overexpression. CONCLUSION NEAT1 silencing suppressed LPS-induced BEAS-2B cells injury and inflammation by the mediation of miR-155-5p/MyD88/NF-κB axis. Thus, our study might shed new light on exploring the new strategies for the treatment of bronchopneumonia.
Collapse
Affiliation(s)
- Ling-Jia Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, P. R. China
| | - Jian-Min Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, P. R. China
| | - Wei-Dong Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, P. R. China
| | - Wei Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, P. R. China
| | - Xiu-Ying Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, P. R. China
| | - Bin Ouyang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, P. R. China
| | - Jian-Long Tan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, P. R. China
| | - Yun Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, P. R. China
| | - Jiang-Chuan Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, P. R. China
| | - Zhi-Guang Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, P. R. China
| |
Collapse
|
37
|
Wang J, Che J. CircTP63 promotes hepatocellular carcinoma progression by sponging miR-155-5p and upregulating ZBTB18. Cancer Cell Int 2021; 21:156. [PMID: 33685441 PMCID: PMC7938576 DOI: 10.1186/s12935-021-01753-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/02/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading cause of tumor-related death worldwide due to high morbidity and mortality, yet lacking effective biomarkers and therapies. Circular RNAs (circRNAs) are a group of non-coding RNAs that regulate gene expression through interacting with miRNAs, implicating in the tumorigenesis and progression. A novel circRNA, circTP63, was reported to be an oncogene in HCC. However, its role in HCC remains unclear. METHODS qRT-PCR was used to assess the mRNA levels of CircTP63 in 90 pairs of tumor and adjacent normal tissues from HCC patients, one human normal hepatic epithelial cell line and HCC cell lines. CCK-8, colony formation, transwell, and flow cytometry assays were performed to detect the cellular function of circTP63/miR-155-5p/ZBTB18 in HCC cells. HCC xenograft mice models were established to assess the in vivo effect of circTP63. Bioinformatic analysis, RNA pull-down and luciferase assays were used to determine the interaction among circTP63/miR-155-5p/ZBTB18. RESULTS circTP63 was significantly upregulated in HCC tissues and cell lines. High circTP63 expression is closely associated with the tumor stages, lymph node metastasis, and poor prognosis of HCC patients. Functionally, knockdown of circTP63 inhibited cell proliferation, migration, invasion, and promoted cell apoptosis of HCC. Meanwhile, overexpression of circTP63 enhanced HCC progression. Mechanically, circTP63 was a sponge of miR-155-5p to facilitate the ZBTB18 expression, and the ZBTB18 expression in HCC tissues was negatively associated with the survival rate of HCC patients. Furthermore, rescued assays revealed that the reduced tumor-promoting effect on HCC cells induced by knockdown of circTP63 can be reversed by miR-155-5p inhibitor or ZBTB18 overexpression. CONCLUSION Our data highlight a critical circTP63-miR-155-5p-ZBTB18 regulatory network involved in the HCC progression, gaining mechanistic insights into the function of circRNAs in HCC progression, and providing effective biomarkers and therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Jiantao Wang
- Department of Hepatobiliary Surgery, Yantaishan Hospital, Jiefang Road, Zhifu District, Yantai, 264000, Shandong Province, China
| | - Jinbiao Che
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong Province, China.
| |
Collapse
|
38
|
Wu D, Ma Z, Ma D, Li Q. Long non-coding RNA maternally expressed gene 3 affects cell proliferation, apoptosis and migration by targeting the microRNA-9-5p/midkine axis and activating the phosphoinositide-dependent kinase/AKT pathway in hepatocellular carcinoma. Oncol Lett 2021; 21:345. [PMID: 33747202 PMCID: PMC7967927 DOI: 10.3892/ol.2021.12606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/02/2020] [Indexed: 01/05/2023] Open
Abstract
Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) is a tumor suppressor in several cancers, such as glioma, prostate cancer and esophageal cancer. However, the role of MEG3 in hepatocellular carcinoma (HCC) and the related molecular mechanisms are not well understood. The present study aimed to determine the biological function of MEG3 in regulating HCC cell viability, apoptosis and migration. In addition, the interaction between MEG3, microRNA (miR)-9-5p and Midkine (MDK), and the activation of the phosphoinositide-dependent kinase (PDK)/AKT pathway in HCC cell line MHCC-97L were examined. Luciferase reporter assays, reverse transcription-quantitative PCR and western blotting were used to determine the interaction between MEG3, miR-9-5p and MDK and the activation of the PDK/AKT pathway. Cell viability was determined by the CCK8 assay and the cell cycle analysis using flow cytometry analysis. Cell apoptosis was examined by flow cytometry analysis and caspase 3/9 activity. Wound healing assays and western blotting were used to investigate cell migration. The present study demonstrated that MEG3 suppressed HCC cell viability and migration, and induced cell apoptosis. In addition, it was also found that MEG3 targets the miR-9-5p/MDK axis and modulates the PDK/AKT pathway in HCC. In conclusion, the findings of the present study demonstrated that lncRNA MEG3 affects HCC cell viability, apoptosis and migration through its targeting of miR-9-5p/MDK and regulation of the PDK/AKT pathway. The MEG3/miR-9-5p/MDK axis may be a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Dezhi Wu
- School of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, P.R. China
| | - Zheng Ma
- Faculty of Pharmaceutical Sciences, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Deyu Ma
- Department of Pharmacy, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qiquan Li
- GCP Center, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
39
|
Abstract
Objectives
This study aims to explore the mechanism by which osteoblast autophagy participated in glucocorticoid-induced femoral head necrosis (FHN). Materials and methods
Thirty male specific-pathogen-free C57 mice (age, one month; weighing 20-25 g) were randomly divided into blank control, dexamethasone and rapamycin-dexamethasone groups (n=10). After six weeks of intervention, right femoral head was obtained to observe morphology and to calculate percentage of empty lacunae. MC3T3-E1 cells were randomly divided into normal, dexamethasone, rapamycin and dexamethasone-rapamycin groups, and cultured for 24 h. Microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, mammalian target of rapamycin (mTOR) and Beclin-1 protein expressions were detected by Western blot. Results
In rapamycin-dexamethasone group, some bone trabeculae in medullary cavity ruptured and atrophied, and subchondral bone underwent local necrosis. The total apoptosis rates of dexamethasone and rapamycin-dexamethasone groups surpassed that of blank control group, and the former two groups had significantly different rates (p<0.001). LC3-II/LC3-I of dexamethasone group was lower than those of rapamycin and dexamethasone-rapamycin groups (p<0.001), and the ratio of rapamycin group surpassed that of dexamethasone-rapamycin group (p<0.001). Dexamethasone group had higher mTOR protein expression than those of rapamycin and dexamethasone- rapamycin groups (p<0.001), and the expression of rapamycin group was lower than that of dexamethasone-rapamycin group (p<0.001). The Beclin-1 protein expression of dexamethasone group was lower than those of rapamycin and dexamethasone- rapamycin groups (p<0.001), and the expression of rapamycin group exceeded that of dexamethasone-rapamycin group (p<0.05). Conclusion Osteoblast autophagy may play a crucial protective role in dexamethasone-induced FHN. The attenuation of autophagy may be related to the affected expressions of key autophagy regulators mTOR and Beclin-1.
Collapse
|
40
|
Zhou X, Li J, Teng J, Liu Y, Zhang D, Liu L, Zhang W. microRNA-155-3p attenuates intervertebral disc degeneration via inhibition of KDM3A and HIF1α. Inflamm Res 2021; 70:297-308. [PMID: 33486545 DOI: 10.1007/s00011-021-01434-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Intervertebral disc degeneration (IDD) is a key element resulting in low back pain, but the mechanisms underlying IDD remain largely unknown. The purpose of the study was to investigate the influence of microRNA-155-3p (miR-155-3p) on proliferation and autophagy of nucleus pulposus (NP) cells in IDD with the involvement of hypoxia-inducible factor 1 α (HIF1α)/histone lysine demethylase 3A (KDM3A) axis. METHODS IDD NP tissues of patients with lumbar disc herniation and traumatic intervertebral disc NP tissues from patients with traumatic lumbar fracture were collected. Apoptosis in NP tissues was observed, and autophagy marker proteins in NP tissues were detected. NP cells in IDD were transfected with miR-155-3p mimic or KDM3A-siRNA to explore their roles in cell proliferation, autophagy and apoptosis. MiR-155-3p, KDM3A and HIF1α expression in NP tissues and cells were detected. RESULTS Decreased miR-155-3p, and elevated HIF1α and KDM3A were presented in NP tissues and cells of IDD. Elevated miR-155-3p or silenced KDM3A promoted the proliferation and autophagy, and inhibited the apoptosis of NP cells of IDD. Moreover, elevated miR-155-3p decreased KDM3A and HIF1α expression, while silenced KDM3A decreased HIF1α expression in NP cells with IDD. CONCLUSION The study concludes that up-regulated miR-155-3p or silenced KDM3A promotes the proliferation, autophagy, and restrains the apoptosis of NP cells of IDD via inhibition of HIF1α, which may be a promising approach for the treatment of IDD.
Collapse
Affiliation(s)
- Xianwei Zhou
- Spine Surgery, Luoyang Orthopedic Hospital of Henan Province, No. 100 Yongping Road, Henan, 450000, Zhengzhou, China
| | - Jitian Li
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province, Henan, 450000, Zhengzhou, China
| | - Junyan Teng
- Department of Osteoarthrosis and Health Management Center, Luoyang Orthopedic Hospital of Henan Province, Henan, 450000, Zhengzhou, China
| | - Yufeng Liu
- Spine Surgery, Luoyang Orthopedic Hospital of Henan Province, No. 100 Yongping Road, Henan, 450000, Zhengzhou, China
| | - Di Zhang
- Spine Surgery, Luoyang Orthopedic Hospital of Henan Province, No. 100 Yongping Road, Henan, 450000, Zhengzhou, China
| | - Linyun Liu
- Department of Osteoarthrosis and Health Management Center, Luoyang Orthopedic Hospital of Henan Province, Henan, 450000, Zhengzhou, China
| | - Wenming Zhang
- Spine Surgery, Luoyang Orthopedic Hospital of Henan Province, No. 100 Yongping Road, Henan, 450000, Zhengzhou, China.
| |
Collapse
|
41
|
Bai Y, Zhang Q, Chen Q, Zhou Q, Zhang Y, Shi Z, Nong H, Liu M, Zeng G, Zong S. Conditional knockout of the PDK-1 gene in osteoblasts affects osteoblast differentiation and bone formation. J Cell Physiol 2020; 236:5432-5445. [PMID: 33377210 DOI: 10.1002/jcp.30249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022]
Abstract
Osteoblasts are the main functional cells of bone formation, and they are responsible for the synthesis, secretion, and mineralization of the bone matrix. Phosphatidylinositol-3-kinase/Akt is an important signaling pathway involved in the regulation of cell proliferation, death, and survival. Some studies have shown that 3-phosphoinositide-dependent protein kinase-1 (PDK-1) plays an important role in the phosphorylation of Akt. In the present study, an osteocalcin (OCN) promoter-driven Cre-LoxP system was established to specifically delete the PDK-1 gene in osteoblasts. It was found that the size and weight of PDK-1 conditional gene knockout (cKO) mice were significantly reduced. von Kossa staining and microcomputed tomography showed that the trabecular thickness, trabecular number, and bone volume were significantly decreased, whereas trabecular separation was increased, as compared with wide-type littermates, which were characterized by a decreased bone mass. A model of distal femoral defect was established, and it was found that cKO mice delayed bone defect repair. In osteoblasts derived from PDK-1 cKO mice, the alkaline phosphatase (ALP) secretion and ability of calcium mineralization were significantly decreased, and the expressions of osteoblast-related proteins, runt-related transcription factor 2, OCN, and ALP were also clearly decreased. Moreover, the phosphorylation level of Akt and downstream factor GSK3β and their response to insulin-like growth factor-1 (IGF-1) decreased clearly. Therefore, we believe that PDK-1 plays a very important role in osteoblast differentiation and bone formation by regulating the PDK-1/Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Yiguang Bai
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiong Zhang
- Department of Nutrition and Food Hygiene, College of Public Hygiene of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiaoling Chen
- Department of Oncology, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Quan Zhou
- Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Emergency, The Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yanan Zhang
- Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhuohua Shi
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haibin Nong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Mingfu Liu
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Gaofeng Zeng
- Department of Nutrition and Food Hygiene, College of Public Hygiene of Guangxi Medical University, Nanning, Guangxi, China
| | - Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
42
|
Lei QQ, Huang Y, Li B, Han L, Lv C. MiR-155-5p promotes metastasis and epithelial-mesenchymal transition of renal cell carcinoma by targeting apoptosis-inducing factor. Int J Biol Markers 2020; 36:20-27. [PMID: 33325278 DOI: 10.1177/1724600820978229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although renal cell carcinoma remains one of the most malignant cancers, our understanding of progression and recurrence of this disease is limited. The present study explored the precise role of miR-155-5p in renal cancer metastasis. METHODS The expression of miR-155-5p in renal carcinoma clinical tissues and cells was determined using quantitative real time-polymerase chain reaction. The role of miR-155-5p on tumor cell growth were examined using CCK-8 and colony formation assays. Transwell assay was utilized to identify the role of miR-155-5p on the invasion and migration of renal cancer cells. Markers of epithelial-mesenchymal transition were determined using western blot. The in vivo effects of miR-155-5p on renal cancer cell growth, apoptosis, and metastasis were explored using xenograft mice. Luciferase reporter assay was performed to identify the potential target of miR-155-5p. RESULTS Levels of miR-155-5p were significantly elevated in renal cancer tissues and cell lines. Suppression of miR-155-5p decreased the growth, colony formation, migration, and invasiveness of renal cancer cells. In contrast, overexpression of miR-155-5p led to opposite effects on renal cancer cells. Mechanically, the apoptosis-inducing factor was identified as the target of miR-155-5p. Interference of miR-155-5p significantly increased mRNA and protein expression of the apoptosis-inducing factor, whereas overexpression of miR-155-5p remarkably suppressed the apoptosis-inducing factor levels in renal cancer cells. The xenograft model identified that suppression of miR-155-5p restrained tumor growth and promoted apoptosis, whereas overexpression of miR-155-5p decreased apoptosis and accelerated tumor growth. Moreover, the number of lung metastasis nodules were decreased following injection with anti-miR-155-5p transfected cells, whereas the nodules were remarkably increased after overexpression of miR-155-5p. In addition, in vitro and in vivo assays both confirmed that suppression of miR-155-5p increased the expression of E-cadherin and decreased levels of N-cadherin and Snail, whereas overexpression of miR-155-5p accelerated epithelial-mesenchymal transition progression in renal cancer cells. CONCLUSION These findings demonstrate that miR-155-5p enhances metastasis and epithelial-mesenchymal transition by targeting the apoptosis-inducing factor, suggesting that miR-155-5p represents a novel therapeutic target for renal cancer.
Collapse
Affiliation(s)
- Qing-Qing Lei
- Department of Urology, Haikou Municipal Hospital, Haikou, Hainan, China
| | - Yuan Huang
- Department of Neurology, Haikou Municipal Hospital, Haikou, Hainan, China
| | - Bin Li
- Department of Urology, Haikou Municipal Hospital, Haikou, Hainan, China
| | - Lu Han
- Department of Urology, Haikou Municipal Hospital, Haikou, Hainan, China
| | - Cai Lv
- Department of Urology, Haikou Municipal Hospital, Haikou, Hainan, China
| |
Collapse
|
43
|
Bai Y, Zhang Q, Zhou Q, Zhang Y, Nong H, Liu M, Shi Z, Zeng G, Zong S. Effects of inhibiting PDK‑1 expression in bone marrow mesenchymal stem cells on osteoblast differentiation in vitro. Mol Med Rep 2020; 23:118. [PMID: 33300048 PMCID: PMC7751487 DOI: 10.3892/mmr.2020.11757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/02/2020] [Indexed: 01/22/2023] Open
Abstract
Osteoblasts are the main functional cells in bone formation, which are responsible for the synthesis, secretion and mineralization of bone matrix. The PI3K/AKT signaling pathway is strongly associated with the differentiation and survival of osteoblasts. The 3-phosphoinositide-dependent protein kinase-1 (PDK-1) protein is considered the master upstream lipid kinase of the PI3K/AKT cascade. The present study aimed to investigate the role of PDK-1 in the process of mouse osteoblast differentiation in vitro. In the BX-912 group, BX-912, a specific inhibitor of PDK-1, was added to osteoblast induction medium (OBM) to treat bone marrow mesenchymal stem cells (BMSCs), whereas the control group was treated with OBM alone. Homozygote PDK1flox/flox mice were designed and generated, and were used to obtain BMSCsPDK1flox/flox. Subsequently, an adenovirus containing Cre recombinase enzyme (pHBAd-cre-EGFP) was used to disrupt the PDK-1 gene in BMSCsPDK1flox/flox; this served as the pHBAd-cre-EGFP group and the efficiency of the disruption was verified. Western blot analysis demonstrated that the protein expression levels of phosphorylated (p)-PDK1 and p-AKT were gradually increased during the osteoblast differentiation process. Notably, BX-912 treatment and disruption of the PDK-1 gene with pHBAd-cre-EGFP effectively reduced the number of alkaline phosphatase (ALP)-positive cells and the optical density value of ALP activity, as well as the formation of cell mineralization. The mRNA expression levels of PDK-1 in the pHBAd-cre-EGFP group were significantly downregulated compared with those in the empty vector virus group on days 3–7. The mRNA expression levels of the osteoblast-related genes RUNX2, osteocalcin and collagen I were significantly decreased in the BX-912 and pHBAd-cre-EGFP groups on days 7 and 21 compared with those in the control and empty vector virus groups. Overall, the results indicated that BX-912 and disruption of the PDK-1 gene in vitro significantly inhibited the differentiation and maturation of osteoblasts. These experimental results provided an experimental and theoretical basis for the role of PDK-1 in osteoblasts.
Collapse
Affiliation(s)
- Yiguang Bai
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiong Zhang
- Department of Nutrition and Food Hygiene, College of Public Hygiene of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Quan Zhou
- Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yanan Zhang
- Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Haibin Nong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Mingfu Liu
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhuohua Shi
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gaofeng Zeng
- Department of Nutrition and Food Hygiene, College of Public Hygiene of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
44
|
Aranda-Rivera AK, Cruz-Gregorio A, Briones-Herrera A, Pedraza-Chaverri J. Regulation of autophagy by high- and low-risk human papillomaviruses. Rev Med Virol 2020; 31:e2169. [PMID: 33590566 DOI: 10.1002/rmv.2169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
While high-risk human papillomavirus (HR-HPV) infection is related to the development of cervical, vulvar, anal, penile and oropharyngeal cancer, low-risk human papillomavirus (LR-HPV) infection is implicated in about 90% of genital warts, which rarely progress to cancer. The carcinogenic role of HR-HPV is due to the overexpression of HPV E5, E6 and E7 oncoproteins which target and modify cellular proteins implicated in cell proliferation, apoptosis and immortalization. LR-HPV proteins also target and modify some of these processes; however, their oncogenic potential is lower than that of HR-HPV. HR-HPVs have substantial differences with LR-HPVs such as viral integration into the cell genome, induction of p53 and retinoblastoma protein degradation, alternative splicing in HR-HPV E6-E7 open reading frames, among others. In addition, LR-HPV can activate the autophagy process in infected cells while HR-HPV infection deactivates it. However, in cancer HR-HPV might reactivate autophagy in advance stages. Autophagy is a catabolic process that maintains cell homoeostasis by lysosomal degradation and recycling of damaged macromolecules and organelles; nevertheless, depending upon cellular context autophagy may also induce cell death. Therefore, autophagy can contribute either as a promotor or as a suppressor of tumours. In this review, we focus on the role of HR-HPV and LR-HPV in autophagy during viral infection and cancer development. Additionally, we review key regulatory molecules such as microRNAs in HPV present during autophagy, and we emphasize the potential use of cancer treatments associated with autophagy in HPV-related cancers.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratorio 315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
| | - Alfredo Cruz-Gregorio
- Laboratorio 225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| | - Alfredo Briones-Herrera
- Laboratorio 315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México.,Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
| | - José Pedraza-Chaverri
- Laboratorio 315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| |
Collapse
|
45
|
Sun X, Klinger FG, Liu J, De Felici M, Shen W, Sun X. miR-378-3p maintains the size of mouse primordial follicle pool by regulating cell autophagy and apoptosis. Cell Death Dis 2020; 11:737. [PMID: 32913213 PMCID: PMC7483766 DOI: 10.1038/s41419-020-02965-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Primordial follicle pool provides all available oocytes throughout the whole reproductive life span. Abnormal regulation in primordial follicle assembly leads to abnormal size of primordial follicle pool, even causes infertility. Here, miR-378-3p was proved to regulate mouse primordial follicle assembly both in vivo and in vitro. The expression of miR-378-3p significantly increased in mice ovaries from 17.5 dpc (days post coitum) up to 3 dpp (day post partum) compared with the expression of 16.5 dpc ovaries, which suggested that miR-378-3p was involved in primordial follicle assembly. To uncover the underlying mechanism, newborn mice ovaries were cultured in vitro in the presence of rapamycin and 3-methyladenine, which showed that the expression of miR-378-3p changed together with the percentage of primordial follicle. Moreover, during the normal process of primordial follicle assembly between 17.6 dpc and 3 dpp, autophagy is activated, while, apoptosis is inhibited. The in vivo results showed that newborn mice starved for 1.5 days showing the increased miR-378-3p, activated autophagy and inhibited apoptosis in the ovaries, had more percentage of primordial follicles. Over-expression of miR-378-3p using miR-378-3p agomir caused increased percentage of primordial follicle, increased level of autophagy, and decreased level of apoptosis. Knockdown of miR-378-3p by miR-378-3p antiagomir had the opposite results. Using pmirGLO Dual-Luciferase miRNA Target Expression system, we confirmed both PDK1 and Caspase9 were targets of miR-378-3p, which suggested that miR-378-3p activated autophagy by targeting PDK1 and inhibited apoptosis by targeting Caspase9. MiR-378-3p could be used as a biomarker of diseases caused by abnormal size of primordial follicle pool for diagnosis, prevention, or therapy.
Collapse
Affiliation(s)
- Xiaowen Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.,College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Francesca Gioia Klinger
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Jing Liu
- Central laboratory of Qingdao Agricultural University, Qingdao, 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaofeng Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
46
|
Li C, Zhao W, Pan X, Li X, Yan F, Liu S, Feng J, Lu J. LncRNA KTN1-AS1 promotes the progression of non-small cell lung cancer via sponging of miR-130a-5p and activation of PDPK1. Oncogene 2020; 39:6157-6171. [PMID: 32820252 DOI: 10.1038/s41388-020-01427-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/01/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the major cause of cancer-associated death worldwide, but its underlying mechanisms remain to be fully elucidated. Long noncoding RNAs (lncRNAs) are known to play an important role in the aberrant regulation of gene expression in many cancers, including NSCLC. Here, we investigated the involvement of the lncRNA KTN1-AS1 in NSCLC. We found that KTN1-AS1 expression was upregulated in NSCLC tissue and was positively associated with poor prognosis. KTN1-AS1 knockdown inhibited cell growth and proliferation, increased apoptosis, and modulated the expression of cell cycle- and apoptosis-related proteins (cyclin A1, cyclin-dependent kinase 2, Bcl2, and Bax) in NSCLC cell lines and tumour xenografts in nude mice. KTN1-AS1 bound to and directly regulated the expression of miR-130a-5p. Notably, miR-130a-5p overexpression suppressed NSCLC cell proliferation and increased apoptosis in vitro and in vivo, and this effect was reversed by KTN1-AS1 overexpression. Finally, we showed that KTN1-AS1 modulated the expression of 3-phosphoinositide-dependent protein kinase 1 (PDPK1), a miR-130a-5p target and key regulator of autophagy in NSCLC cells. Taken together, our results suggest that the KTN1-AS1/miR-130a-5p/PDPK1 pathway may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Chenchen Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital& Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| | - Wei Zhao
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xuan Pan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital& Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| | - Xiaoyou Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital& Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| | - Fei Yan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital& Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| | - Siwen Liu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital& Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China
| | - Jifeng Feng
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital& Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China.
| | - Jianwei Lu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital& Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China.
| |
Collapse
|
47
|
Pulakat L, Chen HH. Pro-Senescence and Anti-Senescence Mechanisms of Cardiovascular Aging: Cardiac MicroRNA Regulation of Longevity Drug-Induced Autophagy. Front Pharmacol 2020; 11:774. [PMID: 32528294 PMCID: PMC7264109 DOI: 10.3389/fphar.2020.00774] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Chronological aging as well as biological aging accelerated by various pathologies such as diabetes and obesity contribute to cardiovascular aging, and structural and functional tissue damage of the heart and vasculature. Cardiovascular aging in humans is characterized by structural pathologic remodeling including cardiac and vascular fibrosis, hypertrophy, stiffness, micro- and macro-circulatory impairment, left ventricular diastolic dysfunction precipitating heart failure with either reduced or preserved ejection fraction, and cardiovascular cell death. Cellular senescence, an important hallmark of aging, is a critical factor that impairs repair and regeneration of damaged cells in cardiovascular tissues whereas autophagy, an intracellular catabolic process is an essential inherent mechanism that removes senescent cells throughout life time in all tissues. Several recent reviews have highlighted the fact that all longevity treatment paradigms to mitigate progression of aging-related pathologies converge in induction of autophagy, activation of AMP kinase (AMPK) and Sirtuin pathway, and inhibition of mechanistic target of rapamycin (mTOR). These longevity treatments include health style changes such as caloric restriction, and drug treatments using rapamycin, the first FDA-approved longevity drug, as well as other experimental longevity drugs such as metformin, rapamycin, aspirin, and resveratrol. However, in the heart tissue, autophagy induction has to be tightly regulated since evidence show excessive autophagy results in cardiomyopathy and heart failure. Here we discuss emerging evidence for microRNA-mediated tight regulation of autophagy in the heart in response to treatment with rapamycin, and novel approaches to monitor autophagy progression in a temporal manner to diagnose and regulate autophagy induction by longevity treatments.
Collapse
Affiliation(s)
- Lakshmi Pulakat
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| | - Howard H Chen
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
48
|
Zhang L, Liu Y, Chen XG, Zhang Y, Chen J, Hao ZY, Fan S, Zhang LG, Du HX, Liang CZ. MicroRNA expression profile in chronic nonbacterial prostatitis revealed by next-generation small RNA sequencing. Asian J Androl 2020; 21:351-359. [PMID: 30604696 PMCID: PMC6628738 DOI: 10.4103/aja.aja_97_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are considered to be involved in the pathogenic initiation and progression of chronic nonbacterial prostatitis (CNP); however, the comprehensive expression profile of dysregulated miRNAs, relevant signaling pathways, and core machineries in CNP have not been fully elucidated. In the current research, CNP rat models were established through the intraprostatic injection of carrageenan into the prostate. Then, next-generation sequencing was performed to explore the miRNA expression profile in CNP. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) bioinformatical analyses were conducted to reveal the enriched biological processes, molecular functions, and cellular components and signaling pathways. As a result, 1224, 1039, and 1029 known miRNAs were annotated in prostate tissues from the blank control (BC), normal saline injection (NS), and carrageenan injection (CAR) groups (n = 3 for each group), respectively. Among them, 84 miRNAs (CAR vs BC) and 70 miRNAs (CAR vs NS) with significantly different expression levels were identified. Compared with previously reported miRNAs with altered expression in various inflammatory diseases, the majority of deregulated miRNAs in CNP, such as miR-146b-5p, miR-155-5p, miR-150-5p, and miR-139-5p, showed similar expression patterns. Moreover, bioinformatics analyses have enriched mitogen-activated protein kinase (MAPK), cyclic adenosine monophosphate (cAMP), endocytosis, mammalian target of rapamycin (mTOR), and forkhead box O (FoxO) signaling pathways. These pathways were all involved in immune response, which indicates the critical regulatory role of the immune system in CNP initiation and progression. Our investigation has presented a global view of the differentially expressed miRNAs and potential regulatory networks containing their target genes, which may be helpful for identifying the novel mechanisms of miRNAs in immune regulation and effective target-specific theragnosis for CNP.
Collapse
Affiliation(s)
- Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Institute of Urology, Anhui Medical University, Hefei 230022, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Institute of Urology, Anhui Medical University, Hefei 230022, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Xian-Guo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Institute of Urology, Anhui Medical University, Hefei 230022, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Yong Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Zong-Yao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Institute of Urology, Anhui Medical University, Hefei 230022, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Institute of Urology, Anhui Medical University, Hefei 230022, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Li-Gang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - He-Xi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Institute of Urology, Anhui Medical University, Hefei 230022, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| |
Collapse
|
49
|
Chen Y, Liu C, Xie B, Chen S, Zhuang Y, Zhang S. miR‑96 exerts an oncogenic role in the progression of cervical cancer by targeting CAV‑1. Mol Med Rep 2020; 22:543-550. [PMID: 32377722 DOI: 10.3892/mmr.2020.11101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/30/2020] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer is the 4th most common malignant tumor type affecting women worldwide; however, its molecular mechanisms are not fully understood. Previous studies have indicated that microRNAs (miRs) serve crucial roles in the cellular functions of tumors. miR‑96 is involved in the tumorigenesis of many cancer types. The aim of the present study was to investigate the role and mechanism of miR‑96 in the progression of cervical cancer. The present results suggested that overexpression of miR‑96 significantly enhanced the proliferative, migratory and invasive abilities of cervical cancer cells, while inhibiting miR‑96 had the opposite effects. Additionally, activation of the Akt/mTOR signaling pathway was enhanced by miR‑96 overexpression, while it was inhibited by the miR‑96 inhibitor. Moreover, it was identified that miR‑96 may directly target caveolin‑1 (CAV‑1) to decrease its expression level. Furthermore, overexpression of CAV‑1 could reverse the increase in cell proliferation, migration and invasion induced by miR‑96, as well as the upregulation of the Akt/mTOR signaling pathway. In conclusion, the present results suggested that miR‑96 may have an oncogenic role in the progression of cervical cancer by targeting CAV‑1. Therefore, miR‑96 may be a potential target for cervical cancer therapy.
Collapse
Affiliation(s)
- Yong Chen
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat‑sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Changqing Liu
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat‑sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Bingfan Xie
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat‑sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Shangqiu Chen
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat‑sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Yuan Zhuang
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat‑sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Shaoxia Zhang
- Department of Ultrasonography, The Fifth Affiliated Hospital of Sun Yat‑sen University, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
50
|
Effect of gga-miR-155 on cell proliferation, apoptosis and invasion of Marek's disease virus (MDV) transformed cell line MSB1 by targeting RORA. BMC Vet Res 2020; 16:23. [PMID: 31992293 PMCID: PMC6988224 DOI: 10.1186/s12917-020-2239-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/09/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Marek's disease (MD) is caused by the oncogenic Marek's disease virus (MDV), and is a highly contagious avian infection with a complex underlying pathology that involves lymphoproliferative neoplasm formation. MicroRNAs (miRNAs) act as oncogenes or tumor suppressors in most cancers. The gga-miR-155 is downregulated in the MDV-infected chicken tissues or lymphocyte lines, although its exact role in tumorigenesis remains unclear. The aim of this study was to analyze the effects of gga-miR-155 on the proliferation, apoptosis and invasiveness of an MDV-transformed lymphocyte line MSB1 and elucidate the underlying mechanisms. RESULTS The expression level of gga-miR-155 was manipulated in MSB1 cells using specific mimics and inhibitors. While overexpression of gga-miR-155 increased proliferation, decreased the proportion of G1 phase cells relative to that in S and G2 phases, reduced apoptosis rates and increased invasiveness. However, its downregulation had the opposite effects. Furthermore, gga-miR-155 directly targeted the RORA gene and downregulated its expression in the MSB1 cells. CONCLUSION The gga-miR-155 promotes the proliferation and invasiveness of the MDV-transformed lymphocyte line MSB1 and inhibits apoptosis by targeting the RORA gene.
Collapse
|