1
|
Yang T, Sha H, Bi W, Zeng J, Su D. Transcriptomic and metabolomic analysis of the antibacterial mechanism of sanguinarine against Enterobacter cloacae in vitro. BMC Microbiol 2025; 25:269. [PMID: 40329217 PMCID: PMC12054291 DOI: 10.1186/s12866-025-03992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Enterobacter cloacae (E. cloacae) is a notorious pathogen that poses serious threat to both human and animal health, causing severe gut infections and contributing to food spoilage. Traditional chemical treatment have led to increased drug resistance and environmental pollution. This study investigates the potential of Sanguinarine (SAN), a natural plant extract, as an alternative to chemical antibiotics. RESULTS In light of the escalating issue of antibiotic resistance, we examined the antibacterial efficacy and mechanisms of SAN against E. cloacae in vitro. Our findings revealed a minimum inhibitory concentration (MIC) of 100 µg/mL for SAN. Scanning electron microscopy (SEM) demonstrated substantial morphological disruptions in E. cloacae cells treated with SAN. Concurrently, a significant increase in absorbance at 260 nm suggested nucleic acid leakage, indicative of compromised cell membrane integrity. Comprehensive transcriptomic and metabolomic analyses revealed that SAN primarily disrupts amino acid synthesis and energy metabolism pathway in E. cloacae. CONCLUSIONS SAN exhibited potential antibacterial activity against E. cloacae, which can effectively inhibit its growth and disrupt its bacterial morphology and exert antibacterial effect through multiple pathways, and can be used as a potential substitute for antibiotics.
Collapse
Affiliation(s)
- Ting Yang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 262113, China
| | - Haojie Sha
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 262113, China
| | - Wenlu Bi
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 262113, China
| | - Jianguo Zeng
- Hunan Agricultural University, Changsha, 410128, China
| | - Dingding Su
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 262113, China.
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China.
| |
Collapse
|
2
|
Ożga K, Stepuch P, Maciejewski R, Sadok I. Promising Gastric Cancer Biomarkers-Focus on Tryptophan Metabolism via the Kynurenine Pathway. Int J Mol Sci 2025; 26:3706. [PMID: 40332338 PMCID: PMC12027761 DOI: 10.3390/ijms26083706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Currently, gastric cancer treatment remains an enormous challenge and requires a multidisciplinary approach. Globally, the incidence and prevalence of gastric cancer vary, with the highest rates found in East Asia, Central Europe, and Eastern Europe. Early diagnosis is critical for successful surgical removal of gastric cancer, but the disease often develops asymptomatically. Therefore, many cases are diagnosed at an advanced stage, resulting in poor survival. Metastatic gastric cancer also has a poor prognosis. Therefore, it is urgent to identify reliable molecular disease markers and develop an effective medical treatment for advanced stages of the disease. This review summarizes potential prognostic or predictive markers of gastric cancer. Furthermore, the role of tryptophan metabolites from the kynurenine pathway as prognostic, predictive, and diagnostic factors of gastric cancer is discussed, as this metabolic pathway is associated with tumor immune resistance.
Collapse
Affiliation(s)
- Kinga Ożga
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Paweł Stepuch
- II Department of Oncological Surgery with Subdivision of Minimal Invasive Surgery, Center of Oncology of the Lublin Region St. Jana z Dukli, Jaczewskiego 7, 20-090 Lublin, Poland;
| | - Ryszard Maciejewski
- Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland;
| | - Ilona Sadok
- Department of Biomedical and Analytical Chemistry, Institute of Biological Sciences, Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| |
Collapse
|
3
|
Gao F, Shah R, Xin G, Wang R. Metabolic Dialogue Shapes Immune Response in the Tumor Microenvironment. Eur J Immunol 2025; 55:e202451102. [PMID: 40223597 PMCID: PMC11995254 DOI: 10.1002/eji.202451102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
The fate of immune cells is fundamentally linked to their metabolic program, which is also influenced by the metabolic landscape of their environment. The tumor microenvironment represents a unique system for intercellular metabolic interactions, where tumor-derived metabolites suppress effector CD8+ T cells and promote tumor-promoting macrophages, reinforcing an immune-suppressive niche. This review will discuss recent advancements in metabolism research, exploring the interplay between various metabolites and their effects on immune cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Fengxia Gao
- Department of Microbial Infection and ImmunityPelotonia Institute for Immuno‐OncologyThe Ohio State UniversityColumbusOhioUSA
| | - Rushil Shah
- Center for Childhood Cancer ResearchHematology/Oncology & BMTAbigail Wexner Research Institute at Nationwide Children's HospitalDepartment of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Gang Xin
- Department of Microbial Infection and ImmunityPelotonia Institute for Immuno‐OncologyThe Ohio State UniversityColumbusOhioUSA
| | - Ruoning Wang
- Center for Childhood Cancer ResearchHematology/Oncology & BMTAbigail Wexner Research Institute at Nationwide Children's HospitalDepartment of PediatricsThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
4
|
Dong XM, Chen L, Xu YX, Wu P, Xie T, Liu ZQ. Exploring metabolic reprogramming in esophageal cancer: the role of key enzymes in glucose, amino acid, and nucleotide pathways and targeted therapies. Cancer Gene Ther 2025; 32:165-183. [PMID: 39794467 DOI: 10.1038/s41417-024-00858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 01/13/2025]
Abstract
Esophageal cancer (EC) is one of the most common malignancies worldwide with the character of poor prognosis and high mortality. Despite significant advancements have been achieved in elucidating the molecular mechanisms of EC, for example, in the discovery of new biomarkers and metabolic pathways, effective treatment options for patients with advanced EC are still limited. Metabolic heterogeneity in EC is a critical factor contributing to poor clinical outcomes. This heterogeneity arises from the complex interplay between the tumor microenvironment and genetic factors of tumor cells, which drives significant metabolic alterations in EC, a process known as metabolic reprogramming. Understanding the mechanisms of metabolic reprogramming is essential for developing new antitumor therapies and improving treatment outcomes. Targeting the distinct metabolic alterations in EC could enable more precise and effective therapies. In this review, we explore the complex metabolic changes in glucose, amino acid, and nucleotide metabolism during the progression of EC, and how these changes drive unique nutritional demands in cancer cells. We also evaluate potential therapies targeting key metabolic enzymes and their clinical applicability. Our work will contribute to enhancing knowledge of metabolic reprogramming in EC and provide new insights and approaches for the clinical treatment of EC.
Collapse
Affiliation(s)
- Xue-Man Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Pu Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.
| | - Zhao-Qian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
| |
Collapse
|
5
|
Stauff E, Xu W, Kecskemethy HH, Langhans SA, Kandula VVR, Averill LW, Yue X. Tryptophan Kynurenine Pathway-Based Imaging Agents for Brain Disorders and Oncology-From Bench to Bedside. Biomolecules 2025; 15:47. [PMID: 39858441 PMCID: PMC11762981 DOI: 10.3390/biom15010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Tryptophan (Trp)-based radiotracers have excellent potential for imaging many different types of brain pathology because of their involvement with both the serotonergic and kynurenine (KYN) pathways. However, radiotracers specific to the kynurenine metabolism pathway are limited. In addition, historically Trp-based radiopharmaceuticals were synthesized with the short-lived isotope carbon-11. A newer generation of Trp-based imaging agents using the longer half-lived and commercially available isotopes, such as fluorine-18 and iodine-124, are being developed. The newly developed amino acid-based tracers have been demonstrated to have favorable radiochemical and imaging characteristics in pre-clinical studies. However, many barriers still exist in the clinical translation of KYN pathway-specific radiotracers.
Collapse
Affiliation(s)
- Erik Stauff
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (W.X.); (H.H.K.); (V.V.R.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Wenqi Xu
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (W.X.); (H.H.K.); (V.V.R.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Heidi H. Kecskemethy
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (W.X.); (H.H.K.); (V.V.R.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Sigrid A. Langhans
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
- Division of Neurology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA
| | - Vinay V. R. Kandula
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (W.X.); (H.H.K.); (V.V.R.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Lauren W. Averill
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (W.X.); (H.H.K.); (V.V.R.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Xuyi Yue
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (W.X.); (H.H.K.); (V.V.R.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Salmi T, Ameur D, Dali-Sahi M, Dib J, Amraoui N, Kachekouche Y, Dennouni-Medjati N. Exploration of plasma tryptophan levels along with Ki-67 expression binomial investigation for forecasting tumor aggressiveness within invasive ductal breast cancer. J Mol Histol 2024; 56:52. [PMID: 39708255 DOI: 10.1007/s10735-024-10333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
Ki-67 is a histological marker indicating cancer aggressiveness, while tryptophan (TRP) depletion modulates immune responses, including tumor aggressiveness. The study evaluates Ki-67's predictive value in relation to plasma TRP levels in invasive ductal carcinoma of breast cancer, aiming to improve understanding of tumor characteristics and clinical behavior. A study involving 165 women, measured plasma TRP levels and Ki-67 and analyzed their relationship with tumor aggressiveness markers using statistical analyses and predictive models. Our study highlighted a significant correlation between decreased plasma levels of TRP and a high mitotic index, measured by the Ki-67 marker (Pearson correlation coefficient r = - 0.402; p = 0.011). Tryptophan levels below 40 µmol/L were associated with a Ki-67 level above 15%, suggesting more active tumor growth in patients. Additionally, several risk factors for BC were identified within the studied population. The demographic and clinical characteristics of the participants include an average age of 63 years, plasma glucose levels above 1.2 g/L, and plasma TRP levels below 40 µmol/L, which are associated with an increased risk of BC. Furthermore, various polynomial logistic regression models indicate that TRP levels may be predicted based on Ki-67 expression, providing a promising approach to refine prognostic assessments. The study showed a correlation between low levels of tryptophan (TRP) and a high Ki-67 mitotic index in breast cancer patients, particularly in invasive ductal carcinoma, which is strongly linked to the aggressiveness of the disease. The integration of these markers into routine practice remains a technical and economic challenge.
Collapse
MESH Headings
- Tryptophan/blood
- Tryptophan/metabolism
- Humans
- Ki-67 Antigen/blood
- Ki-67 Antigen/metabolism
- Ki-67 Antigen/analysis
- Female
- Breast Neoplasms/blood
- Breast Neoplasms/pathology
- Breast Neoplasms/diagnosis
- Middle Aged
- Carcinoma, Ductal, Breast/blood
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/metabolism
- Aged
- Biomarkers, Tumor/blood
- Adult
- Prognosis
- Mitotic Index
- Aged, 80 and over
Collapse
Affiliation(s)
- Takwa Salmi
- Department of Biology, University of Tlemcen, 22, Rue Abi Ayed Abdelkrim, Fg Pasteur, B.P 119, 13000, Tlemcen, Algeria
- Analytical Chemistry and Electrochemistry Laboratory, University of Tlemcen, 13000, Tlemcen, Algeria
| | - Djilali Ameur
- Departement of Physics, University of Tlemcen, 22, Rue Abi Ayed Abdelkrim, Fg Pasteur, B.P 119, 13000, Tlemcen, Algeria.
- Laboratory of Theoretical Physics, Faculty of Sciences, University of Tlemcen, 13000, Tlemcen, Algeria.
| | - Majda Dali-Sahi
- Department of Biology, University of Tlemcen, 22, Rue Abi Ayed Abdelkrim, Fg Pasteur, B.P 119, 13000, Tlemcen, Algeria
- Analytical Chemistry and Electrochemistry Laboratory, University of Tlemcen, 13000, Tlemcen, Algeria
| | - Joanna Dib
- Analytical Chemistry and Electrochemistry Laboratory, University of Tlemcen, 13000, Tlemcen, Algeria
- Departement of Mathematics, University of Tlemcen, 22, Rue Abi Ayed Abdelkrim, Fg Pasteur, B.P 119, 13000, Tlemcen, Algeria
| | - Nawel Amraoui
- Department of Biology, University of Tlemcen, 22, Rue Abi Ayed Abdelkrim, Fg Pasteur, B.P 119, 13000, Tlemcen, Algeria
| | - Youssouf Kachekouche
- Department of Biology, Faculty of Nature and Life Sciences, University of Chlef, Chlef, Algeria
| | - Nouria Dennouni-Medjati
- Department of Biology, University of Tlemcen, 22, Rue Abi Ayed Abdelkrim, Fg Pasteur, B.P 119, 13000, Tlemcen, Algeria
- Analytical Chemistry and Electrochemistry Laboratory, University of Tlemcen, 13000, Tlemcen, Algeria
| |
Collapse
|
7
|
Yin T, Zhang X, Xiong Y, Li B, Guo D, Sha Z, Lin X, Wu H. Exploring gut microbial metabolites as key players in inhibition of cancer progression: Mechanisms and therapeutic implications. Microbiol Res 2024; 288:127871. [PMID: 39137590 DOI: 10.1016/j.micres.2024.127871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
The gut microbiota plays a critical role in numerous biochemical processes essential for human health, such as metabolic regulation and immune system modulation. An increasing number of research suggests a strong association between the gut microbiota and carcinogenesis. The diverse metabolites produced by gut microbiota can modulate cellular gene expression, cell cycle dynamics, apoptosis, and immune system functions, thereby exerting a profound influence on cancer development and progression. A healthy gut microbiota promotes substance metabolism, stimulates immune responses, and thereby maintains the long-term homeostasis of the intestinal microenvironment. When the gut microbiota becomes imbalanced and disrupts the homeostasis of the intestinal microenvironment, the risk of various diseases increases. This review aims to elucidate the impact of gut microbial metabolites on cancer initiation and progression, focusing on short-chain fatty acids (SCFAs), polyamines (PAs), hydrogen sulfide (H2S), secondary bile acids (SBAs), and microbial tryptophan catabolites (MTCs). By detailing the roles and molecular mechanisms of these metabolites in cancer pathogenesis and therapy, this article sheds light on dual effects on the host at different concentrations of metabolites and offers new insights into cancer research.
Collapse
Affiliation(s)
- Tianxiang Yin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiang Zhang
- Medical School, Yan'an University, Yan'an 716000, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Bohao Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyuan Lin
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
8
|
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, Li H, Yan D. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer 2024; 23:241. [PMID: 39472902 PMCID: PMC11523861 DOI: 10.1186/s12943-024-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- Department of Scientific Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjiao Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Chaoli Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Mu H, Ye L, Wang B. Detailed resume of S-methyltransferases: Categories, structures, biological functions and research advancements in related pathophysiology and pharmacotherapy. Biochem Pharmacol 2024; 226:116361. [PMID: 38876259 DOI: 10.1016/j.bcp.2024.116361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Methylation is a vital chemical reaction in the metabolism of many drugs, neurotransmitters, hormones, and exogenous compounds. Among them, S-methylation plays a significant role in the biotransformation of sulfur-containing compounds, particularly chemicals with sulfhydryl groups. Currently, only three S-methyltransferases have been reported: thiopurine methyltransferase (TPMT), thiol methyltransferase (TMT), and thioether methyltransferase (TEMT). These enzymes are involved in various biological processes such as gene regulation, signal transduction, protein repair, tumor progression, and biosynthesis and degradation reactions in animals, plants, and microorganisms. Furthermore, they play pivotal roles in the metabolic pathways of essential drugs and contribute to the advancement of diseases such as tumors. This paper reviews the research progress on relevant structural features, metabolic mechanisms, inhibitor development, and influencing factors (gene polymorphism, S-adenosylmethionine level, race, sex, age, and disease) of S-methyltransferases. We hope that a better comprehension of S-methyltransferases will help to provide a reference for the development of novel strategies for related disorders and improve long-term efficacy.
Collapse
Affiliation(s)
- Hongfei Mu
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Lisha Ye
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Baolian Wang
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
10
|
Jiang Z, Fang Z, Hong D, Wang X. Cancer Immunotherapy with "Vascular-Immune" Crosstalk as Entry Point: Associated Mechanisms, Therapeutic Drugs and Nano-Delivery Systems. Int J Nanomedicine 2024; 19:7383-7398. [PMID: 39050878 PMCID: PMC11268745 DOI: 10.2147/ijn.s467222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Tumor vessels characterized by abnormal functions and structures hinder the infiltration and immune antigen presentation of immune cells by inducing the formation of an immunosuppressive microenvironment ("cold" environment). Vascular-targeted therapy has been proven to enhance immune stimulation and the effectiveness of immunotherapy by modulating the "cold" microenvironment, such as hypoxia and an acidic microenvironment. Notably, a therapeutic strategy based on "vascular-immune" crosstalk can achieve dual regulation of tumor vessels and the immune system by reprogramming the tumor microenvironment (TME), thus forming a positive feedback loop between tumor vessels and the immune microenvironment. From this perspective, we discuss the factors of tumor angiogenesis and "cold" TME formation. Building on this foundation, some vascular-targeted therapeutic drugs will be elaborated upon in detail to achieve dual regulation of tumor vessels and immunity. More importantly, we focus on cutting-edge nanotechnology in view of "vascular-immune" crosstalk and discuss the rational fabrication of tailor-made nanosystems for efficiently enhancing immunotherapy.
Collapse
Affiliation(s)
- Zhijie Jiang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Zhujun Fang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Dongsheng Hong
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Xiaojuan Wang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| |
Collapse
|
11
|
Yang T, Li X, Wang X, Meng X, Zhang Z, Zhao M, Su R. Combination of histological and metabolomic assessments to evaluate the potential pharmacological efficacy of saikosaponin D. J Pharm Biomed Anal 2024; 242:116001. [PMID: 38354536 DOI: 10.1016/j.jpba.2024.116001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Saikosaponin D (SsD), a natural triterpenoid saponin compound, exhibits notable potential in suppressing tumor growth and inhibiting metastasis, particularly in breast cancer. However, its underlying mechanism of action for SsD remains unclear. In this study, a combination strategy to reveal the metabolism modulation of SsD on breast cancer was performed by integration of histopathological assessments and untargeted metabolomics analysis. Pathological evaluation of the efficacy of SsD from a visual and intuitive perspective. Accordingly, a non-targeted metabolomics study was used to investigate the pharmacological efficacy using a set of serum samples from mice before and after (0-30 days) modulated with SsD based on ultra-high performance liquid chromatography tandem orbitrap mass spectrometry to discover metabolite biomarkers for finding the key metabolic mechanism in a molecular perspective. As a result, 20 metabolites were selected as potential biomarkers for SsD efficacy evaluation with high sensitivity and specificity. These metabolites changes were involved in sphingolipid metabolism, glycerophospholipid metabolism, phenylalanine and tryptophan metabolism, and phenylalanine, tyrosine and tryptophan biosynthesis pathways, suggesting that SsD exerted anti-breast cancer effects through the regulation of the underlying metabolism. In conclusion, we developed a new analysis strategy that effectively discovers tumor-progressing related metabolite biomarkers in serum for pharmacological efficacy evaluation.
Collapse
Affiliation(s)
- Tongtong Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Xuanzhu Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Xiaowen Wang
- Chinese Society for Measurement, No. 22, Maizidian Street, Chaoyang District, Beijing, China
| | - Xiangzhe Meng
- Hydrology and Water Resources Bureau of Jilin Province, Changchun 130028, China
| | - Zhe Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Mingyue Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Rui Su
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
12
|
Sarf EA, Dyachenko EI, Bel’skaya LV. Salivary Tryptophan as a Metabolic Marker of HER2-Negative Molecular Subtypes of Breast Cancer. Metabolites 2024; 14:247. [PMID: 38786723 PMCID: PMC11123106 DOI: 10.3390/metabo14050247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Changes in the concentration of tryptophan (Trp) indicate a serious metabolic restructuring, which is both a cause and a consequence of many diseases. This work examines the upward change in salivary Trp concentrations among patients with breast cancer. This study involved volunteers divided into three groups: breast cancer (n = 104), non-malignant breast pathologies (n = 30) and healthy controls (n = 20). In all participants, before treatment, the quantitative content of Trp in saliva was determined by capillary electrophoresis. In 20 patients with breast cancer, Trp was re-tested four weeks after surgical removal of the tumor. An increase in the Trp content in saliva in breast cancer has been shown, which statistically significantly decreases after surgical removal of the tumor. A direct correlation was found between increased Trp levels with the degree of malignancy and aggressive molecular subtypes of breast cancer, namely triple negative and luminal B-like HER2-negative. These conclusions were based on an increase in Ki-67 and an increase in Trp in HER2-negative and progesterone-negative subtypes. Factors under which an increase in Trp concentration in saliva was observed were identified: advanced stage of breast cancer, the presence of regional metastasis, low tumor differentiation, a lack of expression of HER2, estrogen and progesterone receptors and the high proliferative activity of the tumor. Thus, the determination of salivary Trp may be a valuable tool in the study of metabolic changes associated with cancer, particularly breast cancer.
Collapse
Affiliation(s)
| | | | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia; (E.A.S.); (E.I.D.)
| |
Collapse
|
13
|
Wu T, Liao J, Xiang F, Yu J, Huo Y, Gao Y, Li H, Zheng W. Probing cell metabolism using the two-photon excitation autofluorescence lifetime of tryptophan. OPTICS LETTERS 2024; 49:1105-1108. [PMID: 38426949 DOI: 10.1364/ol.511947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Compared to intensity detection, fluorescence lifetime has the advantage of being unaffected by variations in excitation intensity, fluorophore concentration, or attenuation due to biological absorption and scattering. In this Letter, to the best of our knowledge, we present the use of the two-photon excitation autofluorescence lifetime imaging of tryptophan (TRP) to probe cell metabolism for the first time. Tests of pure chemical samples showed that the fluorescence lifetime of TRP was highly sensitive to changes in molecular conformation and the environment. In in vitro cell experiments, we successfully utilized the fluorescence lifetime of TRP to distinguish tumor cells from healthy cells, track the therapeutic effect of the tumor immunotherapy drug 1-MT for HeLa cells, and monitor cells in response to carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-induced cell apoptosis. These results reveal that the two-photon excitation autofluorescence lifetime of TRP could be a sensitive natural probe of cell metabolism in living cells.
Collapse
|
14
|
Chen J, Cui L, Lu S, Xu S. Amino acid metabolism in tumor biology and therapy. Cell Death Dis 2024; 15:42. [PMID: 38218942 PMCID: PMC10787762 DOI: 10.1038/s41419-024-06435-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Amino acid metabolism plays important roles in tumor biology and tumor therapy. Accumulating evidence has shown that amino acids contribute to tumorigenesis and tumor immunity by acting as nutrients, signaling molecules, and could also regulate gene transcription and epigenetic modification. Therefore, targeting amino acid metabolism will provide new ideas for tumor treatment and become an important therapeutic approach after surgery, radiotherapy, and chemotherapy. In this review, we systematically summarize the recent progress of amino acid metabolism in malignancy and their interaction with signal pathways as well as their effect on tumor microenvironment and epigenetic modification. Collectively, we also highlight the potential therapeutic application and future expectation.
Collapse
Affiliation(s)
- Jie Chen
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Likun Cui
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Shaoteng Lu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
15
|
Long Y, Shi H, He Y, Qi X. Analyzing the impact of metabolism on immune cells in tumor microenvironment to promote the development of immunotherapy. Front Immunol 2024; 14:1307228. [PMID: 38264667 PMCID: PMC10804850 DOI: 10.3389/fimmu.2023.1307228] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Tumor metabolism and tumor immunity are inextricably linked. Targeting the metabolism of tumors is a point worth studying in tumor immunotherapy. Recently, the influence of the metabolism of tumors and immune cells on the occurrence, proliferation, metastasis, and prognosis of tumors has attracted more attention. Tumor tissue forms a specific tumor microenvironment (TME). In addition to tumor cells, there are also immune cells, stromal cells, and other cells in TME. To adapt to the environment, tumor cells go through the metabolism reprogramming of various substances. The metabolism reprogramming of tumor cells may further affect the formation of the tumor microenvironment and the function of a variety of cells, especially immune cells, eventually promoting tumor development. Therefore, it is necessary to study the metabolism of tumor cells and its effects on immune cells to guide tumor immunotherapy. Inhibiting tumor metabolism may restore immune balance and promote the immune response in tumors. This article will describe glucose metabolism, lipid metabolism, amino acid metabolism, and immune cells in tumors. Besides, the impact of metabolism on the immune cells in TME is also discussed for analyzing and exploring tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Liu J, Tian R, Sun C, Guo Y, Dong L, Li Y, Song X. Microbial metabolites are involved in tumorigenesis and development by regulating immune responses. Front Immunol 2023; 14:1290414. [PMID: 38169949 PMCID: PMC10758836 DOI: 10.3389/fimmu.2023.1290414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The human microbiota is symbiotic with the host and can create a variety of metabolites. Under normal conditions, microbial metabolites can regulate host immune function and eliminate abnormal cells in a timely manner. However, when metabolite production is abnormal, the host immune system might be unable to identify and get rid of tumor cells at the early stage of carcinogenesis, which results in tumor development. The mechanisms by which intestinal microbial metabolites, including short-chain fatty acids (SCFAs), microbial tryptophan catabolites (MTCs), polyamines (PAs), hydrogen sulfide, and secondary bile acids, are involved in tumorigenesis and development by regulating immune responses are summarized in this review. SCFAs and MTCs can prevent cancer by altering the expression of enzymes and epigenetic modifications in both immune cells and intestinal epithelial cells. MTCs can also stimulate immune cell receptors to inhibit the growth and metastasis of the host cancer. SCFAs, MTCs, bacterial hydrogen sulfide and secondary bile acids can control mucosal immunity to influence the occurrence and growth of tumors. Additionally, SCFAs, MTCs, PAs and bacterial hydrogen sulfide can also affect the anti-tumor immune response in tumor therapy by regulating the function of immune cells. Microbial metabolites have a good application prospect in the clinical diagnosis and treatment of tumors, and our review provides a good basis for related research.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ruxian Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Caiyu Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Lei Dong
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
17
|
Zhang W, Zhao G, Li X, Han M, Zhang S, Deng H, Yang K. Dietary supplementation with tryptophan increases the plasma concentrations of tryptophan, kynurenine, and melatonin in Yili mares. ANIMAL PRODUCTION SCIENCE 2023; 64. [DOI: doi.org/10.1071/an23113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Context Tryptophan (Trp) is the precursor of melatonin (MT) and the latter plays vital physiological roles in mares. Aims The purpose of this experiment was to investigate the effects of dietary Trp supplementation on the plasma Trp, kynurenine (Kyn), 5-hydroxytryptophan (5-HT), and melatonin (MT) concentrations in female Yili horses. Methods Twenty Yili mares aged 2 years with mean bodyweight (BW) of 263.5 ± 14.77 kg and of similar stature were selected and randomly allocated to the control (CON; basal diet), basal diet plus Trp at 20 mg/kg BW (TRP1), basal diet plus Trp at 40 mg/kg BW (TRP2), or basal diet plus Trp at 60 mg/kg BW (TRP3) group. Key results The plasma total Trp, Kyn, and MT concentrations in all Trp groups steadily increased, reached their peak values, and gradually decreased after Trp supplementation between 0 h and 12 h. However, the plasma 5-HT concentration displayed the opposite trend. Peak plasma total Trp and 5-HT concentrations were attained between 1 h and 3 h, while those of KYN and MT appeared between 4 h and 6 h after Trp supplementation. The plasma total Trp and Kyn concentrations were significantly higher in TRP2 and TRP3 than in CON between 1 h and 12 h (P < 0.05) after Trp supplementation. The plasma 5-HT concentration was significantly (P < 0.05) lower in TRP1 than in CON at 3 h, 4 h, 6 h, 9 h, and 12 h after Trp supplementation. The plasma MT concentrations in TRP1 and TRP2 were significantly (P < 0.05) higher than in CON at 3 h, 4 h, and 12 h, and at 0 h, 1 h, and 12 h after Trp supplementation (P < 0.05). Conclusions Dietary Trp supplementation can increase the plasma total Trp, Kyn, and MT concentrations in Yili mares and the optimal Trp dosage was 20 mg/kg BW. Implication The addition of Trp to a basal diet or feed may increase the plasma total Trp, Kyn, and MT concentrations in female horses.
Collapse
|
18
|
Wang J, Zhao T, Li B, Wei W. Tryptophan metabolism-related gene expression patterns: unveiling prognostic insights and immune landscapes in uveal melanoma. Aging (Albany NY) 2023; 15:11201-11216. [PMID: 37844995 PMCID: PMC10637787 DOI: 10.18632/aging.205122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Uveal melanoma (UVM) remains the leading intraocular malignancy in adults, with a poor prognosis for those with metastatic disease. Tryptophan metabolism plays a pivotal role in influencing cancerous properties and modifying the tumor's immune microenvironment. In this study, we explore the relationship between tryptophan metabolism-related gene (TRMG) expression and the various features of UVM, including prognosis and tumor microenvironment. Our analysis included 143 patient samples sourced from public databases. Using K-means clustering, we categorized UVM patients into two distinct clusters. Further, we developed a prognostic model based on five essential genes, effectively distinguishing between low-risk and high-risk patients. This distinction underscores the importance of TRMGs in UVM prognostication. Combining TRMG data with gender to create nomograms demonstrated exceptional accuracy in predicting UVM patient outcomes. Moreover, our analysis reveals correlations between risk assessments and immune cell infiltrations. Notably, the low-risk group displayed a heightened potential response to immune checkpoint inhibitors. In conclusion, our findings underscore the dynamic relationship between TRMG expression and various UVM characteristics, presenting a novel prognostic framework centered on TRMGs. The deep connection between TRMGs and UVM's tumor immune microenvironment emphasizes the crucial role of tryptophan metabolism in shaping the immune landscape. Such understanding paves the way for designing targeted immunotherapy strategies for UVM patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tienan Zhao
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Bo Li
- College of Network and Continuing Education, China Medical University, Shenyang, Liaoning, China
| | - Wei Wei
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Dorf J, Pryczynicz A, Matowicka-Karna J, Zaręba K, Żukowski P, Zalewska A, Maciejczyk M. Could circulating biomarkers of nitrosative stress and protein glycoxidation be useful in patients with gastric cancer? Front Oncol 2023; 13:1213802. [PMID: 37503318 PMCID: PMC10369187 DOI: 10.3389/fonc.2023.1213802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Background Nitrosative stress leads to protein glycoxidation, but both processes may be strongly related to the cancer development. Therefore, the aim of this study was to assess the nitrosative stress and protein glycoxidation products in patients with gastric cancer in comparison with healthy controls. We are also the first to evaluate the diagnostic utility of nitrosative stress and protein glycoxidation markers in gastric cancer patients in respect to histopathological classifications (TNM, Lauren's and Goseki's classification) and histopathological parameters such as histological type, histological differentiation grade, presence of vascular or neural invasion, desmoplasia and Helicobacter pylori infection. Methods The study included 50 patients with gastric cancer and 50 healthy controls matched for sex and age. Nitrosative stress parameters and protein glycoxidation products were measured colorimetrically/fluorometrically in plasma or serum samples. Student's t-test or Mann-Whitney U-test were used for statistical analysis. Results NO, S-nitrosothiols, nitrotyrosine, kynurenine, N-formylkynurenine, dityrosine, AGE and Amadori products were significantly increased whereas tryptophan fluorescence was decreased in patients with gastric cancer compared to the healthy control. Nitrosative stress and glycoxidation products may be useful in diagnosis of gastric cancer because they differentiate patients with gastric cancer from healthy individuals with high sensitivity and specificity. Some of the determined parameters are characterised by high AUC value in differentiation of GC patients according to the histopathological parameters. Conclusions Gastric cancer is associated with enhanced circulating nitrosative stress and protein glycation. Although further research on a tissue model is needed, plasma/serum biomarkers may be dependent on tumour size, histological type, tumour invasion depth, presence of lymph node and distant metastasis, vascular and neural invasion and Helicobacter pylori infection. Thus, circulating biomarkers of nitrosative stress/protein glycoxidation may have potential diagnostic significance in gastric cancer patients.
Collapse
Affiliation(s)
- Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Konrad Zaręba
- 2 Clinical Department of General and Gastroenterological Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Żukowski
- Department of Restorative Dentistry, Croydon University Hospital, Croydon, United Kingdom
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
20
|
Biswas P, Stuehr DJ. Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through control of cell heme allocation by nitric oxide. J Biol Chem 2023; 299:104753. [PMID: 37116709 PMCID: PMC10220489 DOI: 10.1016/j.jbc.2023.104753] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
Indoleamine-2, 3-dioxygenase (IDO1) and Tryptophan-2, 3-dioxygenase (TDO) catalyze the conversion of L-tryptophan to N-formyl-kynurenine and thus play primary roles in metabolism, inflammation, and tumor immune surveillance. Because their activities depend on their heme contents, which vary in biological settings and go up or down in a dynamic manner, we studied how their heme levels may be impacted by nitric oxide (NO) in mammalian cells. We utilized cells expressing TDO or IDO1 either naturally or via transfection and determined their activities, heme contents, and expression levels as a function of NO exposure. We found NO has a bimodal effect: a narrow range of low NO exposure promoted cells to allocate heme into the heme-free TDO and IDO1 populations and consequently boosted their heme contents and activities 4- to 6-fold, while beyond this range the NO exposure transitioned to have a negative impact on their heme contents and activities. NO did not alter dioxygenase protein expression levels, and its bimodal impact was observed when NO was released by a chemical donor or was generated naturally by immune-stimulated macrophage cells. NO-driven heme allocations to IDO1 and TDO required participation of a GAPDH-heme complex and for IDO1 required chaperone Hsp90 activity. Thus, cells can up- or downregulate their IDO1 and TDO activities through a bimodal control of heme allocation by NO. This mechanism has important biomedical implications and helps explain why the IDO1 and TDO activities in animals go up and down in response to immune stimulation.
Collapse
Affiliation(s)
- Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
21
|
Zhao C, Zhang H, Zhou J, Liu Q, Lu Q, Zhang Y, Yu X, Wang S, Liu R, Pu Y, Yin L. Metabolomic transition trajectory and potential mechanisms of N-nitrosomethylbenzylamine induced esophageal squamous cell carcinoma in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114071. [PMID: 36113270 DOI: 10.1016/j.ecoenv.2022.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is an environment-relevant malignancy with a high mortality. Nitrosamines, a class of nitrogen-containing environmental carcinogens, are widely suggested as a risk factor for ESCC. However, how nitrosamines affect metabolic regulation to promote ESCC tumorigenesis is largely unknown. In this study, the transition trajectory of serum metabolism in the course of ESCC induced by N-nitrosomethylbenzylamine (NMBA) in rats was depicted by an untargeted metabolomic analysis, and the potential molecular mechanisms were revealed. The results showed that the metabolic alteration in rats was slight at the basal cell hyperplasia (BCH) stage, while it became apparent when the esophageal lesion developed into dysplasia (DYS) or more serious conditions. Moreover, serum metabolism of severe dysplasia (S-DYS) showed more similar characteristics to that of carcinoma in situ (CIS) and invasive cancer (IC). Aberrant nicotinate (NA) and nicotinamide (NAM) metabolism, tryptophan (TRP) metabolism, and sphingolipid metabolism could be the key players favoring the malignant transformation of esophageal epithelium induced by NMBA. More particularly, NA and NAM metabolism in the precancerous stages and TRP metabolism in the cancerous stages were demonstrated to replenish NAD+ in different patterns. Furthermore, both the IDO1-KYN-AHR axis mediated by TRP metabolism and the SPHK1-S1P-S1PR1 axis by sphingolipid metabolism provided an impetus to create the pro-inflammatory yet immune-suppressive microenvironment to facilitate the esophageal tumorigenesis and progression. Together, these suggested that NMBA exerted its carcinogenicity via more than one pathway, which may act together to produce combination effects. Targeting these pathways may open up the possibility to attenuate NMBA-induced esophageal carcinogenesis. However, the interconnection between different metabolic pathways needs to be specified further. And the integrative and multi-level systematic research will be conducive to fully understanding the mechanisms of NMBA-induced ESCC.
Collapse
Affiliation(s)
- Chao Zhao
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China; School of Nursing & School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Hu Zhang
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Jingjing Zhou
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Qiwei Liu
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Qiang Lu
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Ying Zhang
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Xiaojin Yu
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Shizhi Wang
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Ran Liu
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Yuepu Pu
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Lihong Yin
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China.
| |
Collapse
|
22
|
Xiu M, Li L, Li Y, Gao Y. An update regarding the role of WNK kinases in cancer. Cell Death Dis 2022; 13:795. [PMID: 36123332 PMCID: PMC9485243 DOI: 10.1038/s41419-022-05249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 01/23/2023]
Abstract
Mammalian WNK kinases (WNKs) are serine/threonine kinases that contain four members, WNK1-4. They function to maintain ion homeostasis and regulate blood pressure in mammals. Recent studies have revealed that the dysregulation of WNKs contributes to tumor growth, metastasis, and angiogenesis through complex mechanisms, especially through phosphorylating kinase substrates SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1). Here, we review and discuss the relationships between WNKs and several key factors/biological processes in cancer, including ion channels, cation chloride cotransporters, sodium bicarbonate cotransporters, signaling pathways, angiogenesis, autophagy, and non-coding RNAs. In addition, the potential drugs for targeting WNK-SPAK/OSR1 signaling have also been discussed. This review summarizes and discusses knowledge of the roles of WNKs in cancer, which provides a comprehensive reference for future studies.
Collapse
Affiliation(s)
- Mengxi Xiu
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Li Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yandong Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yong Gao
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| |
Collapse
|
23
|
Ge C, Yan J, Yuan X, Xu G. A positive feedback loop between tryptophan hydroxylase 1 and β-Catenin/ZBP-89 signaling promotes prostate cancer progression. Front Oncol 2022; 12:923307. [PMID: 36172162 PMCID: PMC9510627 DOI: 10.3389/fonc.2022.923307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/05/2022] [Indexed: 12/15/2022] Open
Abstract
Alterations in tryptophan (Trp) metabolism facilitate the continuous modulation of tumor progression, including tumor growth, distant metastasis, and chemoresistance development. Although there is a high correlation between Trp metabolism and tumor progression, it is unknown whether and how Trp metabolism affects the development of prostate cancer. In this study, we reported that the overexpression of Trp hydroxylase 1 (TPH1) caused the upregulation of Trp hydroxylation and mediated the production of 5-hydroxytryptamine (5-HT), contributing to tumor growth and poor prognosis in patients with prostate cancer. An increase in 5-HT levels triggered the activation of the Axin 1/β-catenin signaling pathway, thus enhancing cell proliferation and migration. Consequently, β-catenin cooperated with the Krüppel-type zinc finger family transcription factor ZBP-89 to upregulate TPH1 expression, further promoting Trp hydroxylation and forming the TPH1/5-HT/β-catenin/ZBP-89/THP1 positive feedback signaling loop. Interruption of the signaling loop by the THP1 inhibitor 4-chloro-dl-phenylalanine (PCPA) significantly improved anticancer effects and suppressed lung metastasis in prostate cancer–bearing mice. Our findings revealed a mechanism by which TPH1 promotes prostate cancer growth by inducing Trp hydroxylation and identified a novel THP1 target for an innovative prostate cancer therapeutic strategy.
Collapse
|
24
|
Hubková B, Valko-Rokytovská M, Čižmárová B, Zábavníková M, Mareková M, Birková A. Tryptophan: Its Metabolism along the Kynurenine, Serotonin, and Indole Pathway in Malignant Melanoma. Int J Mol Sci 2022; 23:ijms23169160. [PMID: 36012419 PMCID: PMC9408957 DOI: 10.3390/ijms23169160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Tryptophan metabolism is known to be one of the important mechanisms used by cancer to evade immune surveillance. Altered tryptophan metabolism was studied in patients with pigmented malignant melanoma confirmed histologically by the anatomic stage grouping for cutaneous melanoma using clinical staging on the basis of the Breslow thickness of the melanoma, the degree of spread to regional lymph nodes, and by the presence of distant metastasis. (2) Methods: Urinary tryptophan metabolites were detected by RP-HPLC method. (3) Results: In the present work, we provided evidence of altered metabolism of all tryptophan pathways in melanoma patients. (4) Conclusions: Knowledge of the shifted serotonin pathway toward DHICA formation and kynurenine pathway shifted toward NAD+ production could serve in the early detection of the disease and the initiation of early treatment of malignant melanoma.
Collapse
Affiliation(s)
- Beáta Hubková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Tr. SNP 1, 040 11 Košice, Slovakia
| | - Marcela Valko-Rokytovská
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
- Correspondence: (M.V.-R.); (A.B.)
| | - Beáta Čižmárová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Tr. SNP 1, 040 11 Košice, Slovakia
| | | | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Tr. SNP 1, 040 11 Košice, Slovakia
| | - Anna Birková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Tr. SNP 1, 040 11 Košice, Slovakia
- Correspondence: (M.V.-R.); (A.B.)
| |
Collapse
|
25
|
Zhao J, Zhao X, Yu J, Gao S, Zhang M, Yang T, Liu L. A multi-platform metabolomics reveals possible biomarkers for the early-stage esophageal squamous cell carcinoma. Anal Chim Acta 2022; 1220:340038. [PMID: 35868700 DOI: 10.1016/j.aca.2022.340038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent types of upper gastrointestinal malignancies. This work aimed to identify potential biomarkers for early screening for ESCC and characterize the systemic metabolic disturbances underlying ESCC using multi-platform metabolomics analysis. METHODS We divided 239 patients (the early-stage ESCC patients, n = 132; Healthy controls, n = 107) into discovery and validation sets after matching age and sex. Integrated statistical and multi-platform serum metabolomics analyses were used to screen and validate significant metabolites linked to ESCC patients. RESULTS Multi-platform metabolomics analyses showed that amino acid and lipid metabolism were crucial in the etiology of ESCC. Five metabolites, tryptophan (Trp), citrulline, l-carnitine, lysine, and acetyl-carnitine, were selected as potential biomarkers to establish a diagnosis panel, which showed high accuracy in distinguishing ESCC patients from healthy controls (area under the receiver operating characteristic curve, 0.873, 95% confidence interval [CI]: 0.825-0.925). CONCLUSIONS This work laid the groundwork for understanding the etiology of ESCC. The diagnostic panel showed potential usefulness in early-stage ESCC diagnosis in clinical practice.
Collapse
Affiliation(s)
- Jinhui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Xinshu Zhao
- The Affiliated Tumor Hospital of Harbin Medical University, Harbin Medical University, Harbin, PR China
| | - Jiaying Yu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Siqi Gao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Mingjia Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Tongshu Yang
- The Affiliated Tumor Hospital of Harbin Medical University, Harbin Medical University, Harbin, PR China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
26
|
McGovern K, Castro AC, Cavanaugh J, Coma S, Walsh M, Tchaicha J, Syed S, Natarajan P, Manfredi M, Zhang XM, Ecsedy J. Discovery and Characterization of a Novel Aryl Hydrocarbon Receptor Inhibitor, IK-175, and Its Inhibitory Activity on Tumor Immune Suppression. Mol Cancer Ther 2022; 21:1261-1272. [PMID: 35666806 DOI: 10.1158/1535-7163.mct-21-0984] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022]
Abstract
Aryl hydrocarbon receptor (AHR) is a transcription factor that regulates the activity of multiple innate and adaptive immune cells subsequent to binding to numerous endogenous and exogenous ligands. For example, AHR is activated by the metabolite kynurenine, which is secreted into the tumor microenvironment by cancer cells leading to broad immunosuppression. Therefore, AHR inhibition provides a novel and ideal approach to stimulate immune-mediated recognition and subsequent eradication of tumor cells. We report here the discovery and characterization of IK-175, a novel, potent and selective AHR antagonist with favorable ADME and pharmacokinetic profiles in preclinical species. IK-175 inhibits AHR activity in experimental systems derived from multiple species including mouse, rat, monkey, and humans. In human primary immune cells, IK-175 decreased AHR target gene expression and anti-inflammatory cytokine release and increased proinflammatory cytokine release. Moreover, IK-175 led to a decrease in suppressive IL17A-, IL-22+ expressing T cells in a Th17 differentiation assay. IK-175 dose dependently blocks ligand-stimulated AHR activation of Cyp1a1 transcription in mouse liver and spleen, demonstrating on-target in vivo activity. IK-175 increases proinflammatory phenotype of the tumor microenvironment in mouse syngeneic tumors and in adjacent tumor-draining lymph nodes. As a monotherapy and combined with an anti-PD-1 antibody, IK-175 demonstrates antitumor activity in syngeneic mouse models of colorectal cancer and melanoma. IK-175 also demonstrates antitumor activity combined with liposomal doxorubicin in syngeneic mouse tumors. These studies provide rationale for targeting AHR in patients with cancer. IK-175 is being evaluated in a phase I clinical trial in patients with advanced solid tumors.
Collapse
|
27
|
Nandre R, Verma V, Gaur P, Patil V, Yang X, Ramlaoui Z, Shobaki N, Andersen MH, Pedersen AW, Zocca MB, Mkrtichyan M, Gupta S, Khleif SN. IDO Vaccine Ablates Immune-Suppressive Myeloid Populations and Enhances Antitumor Effects Independent of Tumor Cell IDO Status. Cancer Immunol Res 2022; 10:571-580. [PMID: 35290437 PMCID: PMC9381100 DOI: 10.1158/2326-6066.cir-21-0457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 01/07/2023]
Abstract
The immunosuppressive tumor microenvironment (TME) does not allow generation and expansion of antitumor effector cells. One of the potent immunosuppressive factors present in the TME is the indoleamine-pyrrole 2,3-dioxygenase (IDO) enzyme, produced mainly by cancer cells and suppressive immune cells of myeloid origin. In fact, IDO+ myeloid-derived suppressor cells (MDSC) and dendritic cells (DC) tend to be more suppressive than their IDO- counterparts. Hence, therapeutic approaches that would target the IDO+ cells in the TME, while sparing the antigen-presenting functions of IDO- myeloid populations, are needed. Using an IDO-specific peptide vaccine (IDO vaccine), we explored the possibility of generating effector cells against IDO and non-IDO tumor-derived antigens. For this, IDO-secreting (B16F10 melanoma) and non-IDO-secreting (TC-1) mouse tumor models were employed. We showed that the IDO vaccine significantly reduced tumor growth and enhanced survival of mice in both the tumor models, which associated with a robust induction of IDO-specific effector cells in the TME. The IDO vaccine significantly enhanced the antitumor efficacy of non-IDO tumor antigen-specific vaccines, leading to an increase in the number of total and antigen-specific activated CD8+ T cells (IFNγ+ and granzyme B+). Treatment with the IDO vaccine significantly reduced the numbers of IDO+ MDSCs and DCs, and immunosuppressive regulatory T cells in both tumor models, resulting in enhanced therapeutic ratios. Together, we showed that vaccination against IDO is a promising therapeutic option for both IDO-producing and non-IDO-producing tumors. The IDO vaccine selectively ablates the IDO+ compartment in the TME, leading to a significant enhancement of the immune responses against other tumor antigen-specific vaccines.
Collapse
Affiliation(s)
- Rahul Nandre
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Vivek Verma
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Pankaj Gaur
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Veerupaxagouda Patil
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Xingdong Yang
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Zainab Ramlaoui
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Nour Shobaki
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | | | | | | | - Mikayel Mkrtichyan
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Seema Gupta
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Samir N. Khleif
- The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| |
Collapse
|
28
|
Zhang J, Guo Z, Xie Q, Zhong C, Gao X, Yang Q. Tryptophan hydroxylase 1 drives glioma progression by modulating the serotonin/L1CAM/NF-κB signaling pathway. BMC Cancer 2022; 22:457. [PMID: 35473609 PMCID: PMC9044587 DOI: 10.1186/s12885-022-09569-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/13/2022] [Indexed: 12/31/2022] Open
Abstract
Background Glioma is one of the main causes of cancer-related mortality worldwide and is associated with high heterogeneity. However, the key players determining the fate of glioma remain obscure. In the present study, we shed light on tumor metabolism and aimed to investigate the role of tryptophan hydroxylase 1 (TPH-1) in the advancement of glioma. Method Herein, the levels of TPH-1 expression in glioma tissues were evaluated using The Cancer Genome Atlas (TCGA) database. Further, the proliferative characteristics and migration ability of TPH-1 overexpressing LN229/T98G cells were evaluated. Additionally, we performed a cytotoxicity analysis using temozolomide (TMZ) in these cells. We also examined the tumor growth and survival time in a mouse model of glioma treated with chemotherapeutic agents and a TPH-1 inhibitor. Results The results of both clinical and experimental data showed that excess TPH-1 expression resulted in sustained glioma progression and a dismal overall survival in these patients. Mechanistically, TPH-1 increased the production of serotonin in glioma cells. The elevated serotonin levels then augmented the NF-κB signaling pathway through the upregulation of the L1-cell adhesion molecule (L1CAM), thereby contributing to cellular proliferation, invasive migration, and drug resistance. In vivo experiments demonstrated potent antitumor effects, which benefited further from the synergistic combination of TMZ and LX-1031. Conclusion Taken together, these data suggested that TPH-1 facilitated cellular proliferation, migration, and chemoresistance in glioma through the serotonin/L1CAM/NF-κB pathway. By demonstrating the link of amino acid metabolic enzymes with tumor development, our findings may provide a potentially viable target for therapeutic manipulation aimed at eradicating glioma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09569-2.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurosurgery, Ya' an people's Hospital, Ya' an, 625000, People's Republic of China
| | - Zhangchao Guo
- Department of Neurosurgery, Ya' an people's Hospital, Ya' an, 625000, People's Republic of China. .,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China.
| | - Qiangli Xie
- Department of Cardiology, Chengdu Qingbaijiang District People's Hospital, Chengdu, People's Republic of China
| | - Chuanhong Zhong
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Xiangyu Gao
- Pediatrics of Ya' an people's Hospital, Ya' an, People's Republic of China
| | - Qiumei Yang
- Department of Geriatrics, Luzhou people's Hospital, Luzhou, People's Republic of China
| |
Collapse
|
29
|
Chihanga T, Vicente-Muñoz S, Ruiz-Torres S, Pal B, Sertorio M, Andreassen PR, Khoury R, Mehta P, Davies SM, Lane AN, Romick-Rosendale LE, Wells SI. Head and Neck Cancer Susceptibility and Metabolism in Fanconi Anemia. Cancers (Basel) 2022; 14:cancers14082040. [PMID: 35454946 PMCID: PMC9025423 DOI: 10.3390/cancers14082040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Fanconi anemia (FA) is a rare inherited, generally autosomal recessive syndrome, but it displays X-linked or dominant negative inheritance for certain genes. FA is characterized by a deficiency in DNA damage repair that results in bone marrow failure, and in an increased risk for various epithelial tumors, most commonly squamous cell carcinomas of the head and neck (HNSCC) and of the esophagus, anogenital tract and skin. Individuals with FA exhibit increased human papilloma virus (HPV) prevalence. Furthermore, a subset of anogenital squamous cell carcinomas (SCCs) in FA harbor HPV sequences and FA-deficient laboratory models reveal molecular crosstalk between HPV and FA proteins. However, a definitive role for HPV in HNSCC development in the FA patient population is unproven. Cellular metabolism plays an integral role in tissue homeostasis, and metabolic deregulation is a known hallmark of cancer progression that supports uncontrolled proliferation, tumor development and metastatic dissemination. The metabolic consequences of FA deficiency in keratinocytes and associated impact on the development of SCC in the FA population is poorly understood. Herein, we review the current literature on the metabolic consequences of FA deficiency and potential effects of resulting metabolic reprogramming on FA cancer phenotypes.
Collapse
Affiliation(s)
- Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Sara Vicente-Muñoz
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Bidisha Pal
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Mathieu Sertorio
- Department of Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Ruby Khoury
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Parinda Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Andrew N. Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Lindsey E. Romick-Rosendale
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Susanne I. Wells
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
- Correspondence: ; Tel.: +1-513-636-5986
| |
Collapse
|
30
|
Yuasa HJ. Inhibitory effect of ascorbate on tryptophan 2,3-dioxygenase. J Biochem 2022; 171:653-661. [PMID: 35244712 DOI: 10.1093/jb/mvac024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) catalyze the same reaction, oxidative cleavage of L-tryptophan (L-Trp) to N-formyl-kynurenine. In both enzymes, the ferric (FeIII) form is inactive, and ascorbate (Asc) is frequently used as a reductant in in vitro assays to activate the enzymes by reducing the heme iron. Recently, it has been reported that Asc activates IDO2 by acting as a reductant, however, it is also a competitive inhibitor of the enzyme. Here, the effect of Asc on human TDO (hTDO) is investigated. Similar to its interaction with IDO2, Asc acts as both a reductant and a competitive inhibitor of hTDO in the absence of catalase, and its inhibitory effect was enhanced by the addition of H2O2. Interestingly, however, no inhibitory effect of Asc was observed in the presence of catalase. TDO is known to be activated by H2O2 and a ferryl-oxo (FeIV=O) intermediate (Compound II) is generated during the activation process. The observation that Asc acts as a competitive inhibitor of hTDO only in the absence of catalase can be explained by assuming that the target of Asc is Compound II. Asc seems to compete with L-Trp in an unusual manner.
Collapse
Affiliation(s)
- Hajime Julie Yuasa
- Laboratory of Biochemistry, Department of Chemistry and Biotechnology, Faculty of Science and Technology, National University Corporation Kochi University, Kochi 780-8520, Japan
| |
Collapse
|
31
|
Biswas P, Dai Y, Stuehr DJ. Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through GAPDH- and Hsp90-dependent control of their heme levels. Free Radic Biol Med 2022; 180:179-190. [PMID: 35051612 PMCID: PMC11389873 DOI: 10.1016/j.freeradbiomed.2022.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023]
Abstract
Indoleamine-2, 3-dioxygenase (IDO1) and Tryptophan-2, 3-dioxygense (TDO) are heme-containing dioxygenases that catalyze the conversion of tryptophan to N-formyl-kynurenine and thus enable generation of l-kynurenine and related metabolites that govern the immune response and broadly impact human biology. Given that TDO and IDO1 activities are directly proportional to their heme contents, it is important to understand their heme delivery and insertion processes. Early studies established that TDO and IDO1 heme levels are sub-saturating in vivo and subject to change but did not identify the cellular mechanisms that provide their heme or enable dynamic changes in their heme contents. We investigated the potential involvement of GAPDH and chaperone Hsp90, based on our previous studies linking these proteins to intracellular heme allocation. We studied heme delivery and insertion into IDO1 and TDO expressed in both normal and heme-deficient HEK293T cells and into IDO1 naturally expressed in HeLa cells in response to IFN-γ, and also investigated the interactions of TDO and IDO1 with GAPDH and Hsp90 in cells and among their purified forms. We found that GAPDH delivered both mitochondrially-generated and exogenous heme to apo-IDO1 and apo-TDO in cells, potentially through a direct interaction with either enzyme. In contrast, we found Hsp90 interacted with apo-IDO1 but not with apo-TDO, and was only needed to drive heme insertion into apo-IDO1. By uncovering the cellular processes that allocate heme to IDO1 and TDO, our study provides new insight on how their activities and l-kynurenine production may be controlled in health and disease.
Collapse
Affiliation(s)
- Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
32
|
Jianfeng W, Yutao W, Jianbin B. Indolethylamine-N-Methyltransferase Inhibits Proliferation and Promotes Apoptosis of Human Prostate Cancer Cells: A Mechanistic Exploration. Front Cell Dev Biol 2022; 10:805402. [PMID: 35252179 PMCID: PMC8891133 DOI: 10.3389/fcell.2022.805402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Indolethylamine-N-methyltransferase (INMT) is a methyltransferase downregulated in lung cancer, meningioma, and prostate cancer; however, its role and mechanism in prostate cancer remain unclear. By analyzing The Cancer Genome Atlas (TCGA)-PRAD, we found that the expression of INMT in prostate cancer was lower than that of adjacent non-cancerous prostate tissues and was significantly correlated with lymph node metastasis Gleason score, PSA expression, and survival. Combined with the GSE46602 cohorts for pathway enrichment analysis, we found that INMT was involved in regulating the MAPK, TGFβ, and Wnt signaling pathways. After overexpression of INMT in prostate cancer cell lines 22Rv1 and PC-3, we found an effect of INMT on these tumor signal pathways; overexpression of INMT inhibited the proliferation of prostate cancer cells and promoted apoptosis. Using the ESTIMATE algorithm, we found that with the increase of INMT expression, immune and stromal scores in the tumor microenvironment increased, immune response intensity increased, and tumor purity decreased. The difference in INMT expression affected the proportion of several immune cells. According to PRISM and CTRP2.0, the potential therapeutic agents associated with the INMT expression subgroup in TCGA were predicted. The area under the curve (AUC) values of 26 compounds positively correlated with the expression of INMT, while the AUC values of 14 compounds were negatively correlated with the expression of INMT. These findings suggest that INMT may affect prostate cancer’s occurrence, development, and drug sensitivity via various tumor signaling pathways and tumor microenvironments.
Collapse
|
33
|
Antonelli M, Holčapek M, Wolrab D. Ultrahigh-performance supercritical fluid chromatography – mass spectrometry for the qualitative analysis of metabolites covering a large polarity range. J Chromatogr A 2022; 1665:462832. [DOI: 10.1016/j.chroma.2022.462832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
|
34
|
MIAO H, SUN B, NIU A, ZHANG Z. Effect of CD20 signaling pathway on lymphoma cell proliferation, invasion and related protein IDO/AHR expression. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.11322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Hongxia MIAO
- The Second Affiliated Hospital of Medical College of Qingdao University, China
| | - Bingmei SUN
- The Second Affiliated Hospital of Medical College of Qingdao University, China
| | - Airong NIU
- The Second Affiliated Hospital of Medical College of Qingdao University, China
| | - Zechuan ZHANG
- Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), China
| |
Collapse
|
35
|
Xu L, Ling J, Su C, Su YW, Xu Y, Jiang Z. Emerging Roles on Immunological Effect of Indoleamine 2,3-Dioxygenase in Liver Injuries. Front Med (Lausanne) 2021; 8:756435. [PMID: 34869457 PMCID: PMC8636938 DOI: 10.3389/fmed.2021.756435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) is one of the initial rate-limiting enzymes of the kynurenine pathway (KP), which causes immune suppression and induction of T cell anergy. It is associated with the imbalance of immune homeostasis in numerous diseases including cancer, chronic viral infection, allergy, and autoimmune diseases. Recently, IDO has extended its role to liver field. In this review, we summarize the dysregulation and potentials of IDO in the emerging field of liver injuries, as well as current challenges for IDO targets. In particular, we discuss unexpected conclusions against previous work published. IDO is induced by pro-inflammatory cytokines in liver dysfunction and exerts an immunosuppressive effect, whereas the improvement of liver injury may require consideration of multiple factors besides IDO.
Collapse
Affiliation(s)
- Lingyan Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Jiawei Ling
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chang Su
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Wen Su
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
36
|
Huang S, Wang Z, Zhao L. The Crucial Roles of Intermediate Metabolites in Cancer. Cancer Manag Res 2021; 13:6291-6307. [PMID: 34408491 PMCID: PMC8364365 DOI: 10.2147/cmar.s321433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic alteration, one of the hallmarks of cancer cells, is important for cancer initiation and development. To support their rapid growth, cancer cells alter their metabolism so as to obtain the necessary energy and building blocks for biosynthetic pathways, as well as to adjust their redox balance. Once thought to be merely byproducts of metabolic pathways, intermediate metabolites are now known to mediate epigenetic modifications and protein post-transcriptional modifications (PTM), as well as connect cellular metabolism with signal transduction. Consequently, they can affect a myriad of processes, including proliferation, apoptosis, and immunity. In this review, we summarize multiple representative metabolites involved in glycolysis, the pentose phosphate pathway (PPP), the tricarboxylic acid (TCA) cycle, lipid synthesis, ketogenesis, methionine metabolism, glutamine metabolism, and tryptophan metabolism, focusing on their roles in chromatin and protein modifications and as signal-transducing messengers.
Collapse
Affiliation(s)
- Sisi Huang
- Hengyang School of Medicine, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Zhiqin Wang
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Liang Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| |
Collapse
|
37
|
Zhang X, Liu X, Zhou W, Du Q, Yang M, Ding Y, Hu R. Blockade of IDO-Kynurenine-AhR Axis Ameliorated Colitis-Associated Colon Cancer via Inhibiting Immune Tolerance. Cell Mol Gastroenterol Hepatol 2021; 12:1179-1199. [PMID: 34087454 PMCID: PMC8445903 DOI: 10.1016/j.jcmgh.2021.05.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Chronic inflammation in colon section is associated with an increased risk of colorectal cancer (CRC). Proinflammatory cytokines were produced in a tumor microenvironment and correlated with poor clinical outcome. Tumor-infiltrating T cells were reported to be greatly involved in the development of colon cancer. In this study, we demonstrated that kynurenine (Kyn), a metabolite catalyzed by indoleamine 2,3-dioxygenase (IDO), was required for IDO-mediated T cell function, and adaptive immunity indeed played a critical role in CRC. METHODS Supernatant of colon cancer cells was used to culture activated T cells and mice spleen lymphocytes, and the IDO1-Kyn-aryl hydrocarbon (AhR) receptor axis was determined in vitro. In vivo, an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC model was established in IDO-/-, Rag1-/-, and wild-type mice, and tumor-associated T lymphocyte infiltration and Kyn/AhR signaling pathway changes were measured in each group. RESULTS Kyn promoted AhR nuclear translocation increased the transcription of Foxp3, a marker of regulatory T cells (Tregs), through improving the interaction between AhR and Foxp3 promoter. Additionally, compared WT mice, IDO-/- mice treated with AOM/DSS exhibited fewer and smaller tumor burdens in the colon, with less Treg and more CD8+ T cells infiltration, while Kyn administration abolished this regulation. Rag1-/- mice were more sensitive to AOM/DSS-induced colitis-associated colon cancer (CRC) compared with the wild-type mice, suggesting that T cell-mediated adaptive immunity indeed played a critical role in CRC. CONCLUSIONS We demonstrated that inhibition of IDO diminished Kyn/AhR-mediated Treg differentiation and could be an effective strategy for the prevention and treatment of inflammation-related colon cancer.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiuting Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Children Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Mengdi Yang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rong Hu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|