1
|
Mantry S, Das PK, Sankaraiah J, Panda S, Silakabattini K, Reddy Devireddy AK, Barik CS, Khalid M. Advancement on heparin-based hydrogel/scaffolds in biomedical and tissue engineering applications: Delivery carrier and pre-clinical implications. Int J Pharm 2025:125733. [PMID: 40398669 DOI: 10.1016/j.ijpharm.2025.125733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
The advancement of biomaterials utilization in biomedical and tissue regenerative applications has emerged progressively. Hydrogels are three-dimensional, hydrophilic polymeric networks that replicate the natural extracellular matrix (ECM), establishing a hydrated porous milieu that emulates biological functions such as proliferation and differentiation of cellular components. The application of biological macromolecules, particularly Heparin-based hydrogel, has garnered considerable interest owing to various intrinsic biological and mechanical properties. This comprehensive review paper is designed to elucidate the derivation of heparin and its purification method for biomedical uses. The article briefly outlines the diverse physiochemical and biological properties of heparin derivative-based hydrogels/scaffolds and emphasizes their significance as vehicles for growth factors, genes, and cells in complex biomedical and tissue engineering applications. This publication also summarizes the potential concerns associated with heparin-based derivatives, efforts to address these issues, and current clinical perspectives. This represents the inaugural instance of an extensive summarization of heparin-based hydrogels in biomedical applications, emphasizing pre-clinical and clinical investigations, which will further assist the scientific community in addressing the challenges associated with heparin-based hydrogels in biomedical contexts.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmacy, Sarala Birla University, Birla Knowledge City, P.O.- Mahilong, Purulia Road, Ranchi 835103 Jharkhand, India.
| | - Prabhat Kumar Das
- Department of Pharmacology, GRY Institute of Pharmacy, Borawan, Khargone, MP, India
| | - Jonna Sankaraiah
- Department of Process Development, Medytox Inc., 102, Osongsaengmyeong 4-ro, Osong-eup, Heugdeok-gu, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Satyajit Panda
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack, Odisha 754202, India.
| | - Kotaiah Silakabattini
- Department of Pharmacognosy, Chebrolu Hanumaiah Institute of Pharmaceutical Sciences, Chandramoulipuram, Chowdavaram, Guntur 522019 Andhra Pradesh, India
| | - Ashok Kumar Reddy Devireddy
- Department of Pharmacology, A M Reddy Memorial College of Pharmacy, Petlurivaripalem, Narasaraopet, Palnadu (Dt), A.P 522601, India
| | - Chandra Sekhar Barik
- Department of Pharmacology, School of Pharmacy, DRIEMS University, Kotasahi, Kairapari, Tangi, Cuttack, Odisha 754022, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| |
Collapse
|
2
|
Figueiredo G, Osório H, Mendes MV, Mendo S. A review on the expanding biotechnological frontier of Pedobacter. Biotechnol Adv 2025; 82:108588. [PMID: 40294724 DOI: 10.1016/j.biotechadv.2025.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
The genus Pedobacter consists of Gram-negative bacteria with a broad geographic distribution, isolated from diverse habitats, including water, soil, plants, wood, rocks and animals. However, characterization efforts have been limited to a small number of species. Likewise, in the context of natural products (NP), only a small fraction of Pedobacter -derived NPs have been characterized so far. In contrast, in silico analysis of the increasing number of available genomes in the databases, suggests a wealth of yet to be discovered compounds. Notable biotechnological applications described so far include the production of heparinases and chondroitinases for therapeutic purposes, phytases and galactosidases as aquaculture feed supplements, alginate lyases for biofuel production, and secondary metabolites such as pedopeptins and isopedopeptins with antimicrobial properties. Further research integrating synthetic biology approaches, holds great promise for unlocking the hidden potential of members of this genus, thus expanding its industrial applications.
Collapse
Affiliation(s)
- Gonçalo Figueiredo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Ipatimup - Institute of Molecular Pathology and Immunology of the, University of Porto, 4200-135 Porto, Portugal
| | - Marta V Mendes
- CIIMAR/CIMAR LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, 4450-208 Porto, Portugal
| | - Sónia Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Wu X, Yun Z, Su N, Zhao L, Zhang H, Zhang M, Wu Q, Zhang C, Xing XH. Characterization of maltose-binding protein-fused heparinases with enhanced thermostability by application of rigid and flexible linkers. Biotechnol Appl Biochem 2025; 72:5-16. [PMID: 39072851 DOI: 10.1002/bab.2642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Heparinases, including heparinases I-III (HepI, HepII, and HepIII, respectively), are important tools for producing low-molecular-weight heparin, an improved anticoagulant. The poor thermostability of heparinases significantly hinders their industrial and laboratory applications. To improve the thermostability of heparinases, we applied a rigid linker (EAAAK)5 (R) and a flexible linker (GGGGS)5 (F) to fuse maltose-binding protein (MBP) and HepI, HepII, and HepIII from Pedobacter heparinus, replacing the original linker from the plasmid pMAL-c2X. Compared with their parental fusion protein, MBP-fused HepIs, HepIIs, and HepIIIs with linkers (EAAAK)5 or (GGGGS)5 all displayed enhanced thermostability (half-lives at 30°C: 242%-464%). MBP-fused HepIs and HepIIs exhibited higher specific activity (127%-324%), whereas MBP-fused HepIIIs displayed activity similar to that of their parental fusion protein. Kinetics analysis revealed that MBP-fused HepIIs showed a significantly decreased affinity toward heparin with increased Km values (397%-480%) after the linker replacement, whereas the substrate affinity did not change significantly for MBP-fused HepIs and HepIIIs. Furthermore, it preliminarily appeared that the depolymerization mechanism of these fusion proteins may not change after linker replacement. These findings suggest the superior enzymatic properties of MBP-fused heparinases with suitable linker designs and their potential for the bioproduction of low-molecular-weight heparin.
Collapse
Affiliation(s)
- Xi Wu
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Zhenyu Yun
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Nan Su
- MOE Key Lab of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Lin Zhao
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Hui Zhang
- MOE Key Lab of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Mengyan Zhang
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Qi Wu
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Chong Zhang
- MOE Key Lab of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Xin-Hui Xing
- MOE Key Lab of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Zou R, Xu X, Li F. Classification and characteristics of bacterial glycosaminoglycan lyases, and their therapeutic and experimental applications. J Cell Sci 2025; 138:JCS263489. [PMID: 39846151 DOI: 10.1242/jcs.263489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Glycosaminoglycans (GAGs), as animal polysaccharides, are linked to proteins to form various types of proteoglycans. Bacterial GAG lyases are not only essential enzymes that spoilage bacteria use for the degradation of GAGs, but also valuable tools for investigating the biological function and potential therapeutic applications of GAGs. The ongoing discovery and characterization of novel GAG lyases has identified an increasing number of lyases suitable for functional studies and other applications involving GAGs, which include oligosaccharide sequencing, detection and removal of specific glycan chains, clinical drug development and the design of novel biomaterials and sensors, some of which have not yet been comprehensively summarized. GAG lyases can be classified into hyaluronate lyases, chondroitinases and heparinases based on their substrate spectra, and their functional applications are mainly determined by their substrates, with different lyases exhibiting differing substrate selectivity and preferences. It is thus necessary to understand the properties of the available enzymes to determine strategies for their functional application. Building on previous studies and reviews, this Review highlights small yet crucial differences among or within the various GAG lyases to aid in optimizing their use in future studies. To clarify ideas and strategies for further research, we also discuss several traditional and novel applications of GAG lyases.
Collapse
Affiliation(s)
- Ruyi Zou
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Xiangyu Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| |
Collapse
|
5
|
Alcorn MD, Sun C, Gilliland TC, Lukash T, Crasto CM, Raju S, Diamond MS, Weaver SC, Klimstra WB. Three positively charged binding sites on the eastern equine encephalitis virus E2 glycoprotein coordinate heparan sulfate- and protein receptor-dependent infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621500. [PMID: 39574633 PMCID: PMC11580934 DOI: 10.1101/2024.11.04.621500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Naturally circulating strains of eastern equine encephalitis virus (EEEV) bind heparan sulfate (HS) receptors and this interaction has been linked to its neurovirulence. Previous studies associated EEEV-HS interactions with three positively charged amino acid clusters on the E2 glycoprotein. One of these sites has recently been reported to be critical for binding EEEV to very-low-density lipoprotein receptor (VLDLR), an EEEV receptor protein. The proteins apolipoprotein E receptor 2 (ApoER2) isoforms 1 and 2, and LDLR have also been shown to function as EEEV receptors. Herein, we investigate the individual contribution of each HS interaction site to EEEV HS- and protein receptor-dependent infection in vitro and EEEV replication in animals. We show that each site contributes to both EEEV-HS and EEEV-protein receptor interactions, providing evidence that altering these interactions can affect disease in mice and eliminate mosquito infectivity. Thus, multiple HS-binding sites exist in EEEV E2, and these sites overlap functionally with protein receptor interaction sites, with each type of interaction contributing to tissue infectivity and disease phenotypes.
Collapse
Affiliation(s)
- Maria D.H. Alcorn
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Chengqun Sun
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Theron C. Gilliland
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Tetyana Lukash
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Christine M. Crasto
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Saravanan Raju
- Department of Medicine and Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Michael S. Diamond
- Department of Medicine and Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Scott C. Weaver
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - William B. Klimstra
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
6
|
Upadhaya AH, Mirgane HA, Pandey SP, Patil VS, Bhosale SV, Singh PK. Electrostatically Engineered Tetraphenylethylene-Based Fluorescence Sensor for Protamine and Trypsin: Leveraging Aggregation-Induced Emission for Enhanced Sensitivity and Selectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19357-19369. [PMID: 39241011 DOI: 10.1021/acs.langmuir.4c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
The accurate detection of Protamine and Trypsin, two biomolecules with significant clinical and biological relevance, presents a substantial challenge because of their structural peculiarities, low abundance in physiological fluids, and potential interference from other substances. Protamine, a cationic protein, is crucial for counteracting heparin overdoses, whereas Trypsin, a serine protease, is integral to protein digestion and enzyme activation. This study introduces a novel fluorescence sensor based on a (4-(1,2,2-tris(4-phosphonophenyl)vinyl)phenyl)phosphonic acid octasodium salt (TPPE), leveraging aggregation-induced emission (AIE) characteristics and electrostatic interactions to achieve selective and sensitive detection of these biomolecules. Through comprehensive optical characterization, including ground-state absorption, steady-state, and time-resolved emission spectroscopy, the interaction mechanisms and aggregation dynamics of TPPE with Protamine and Trypsin were elucidated. The sensor exhibits very high sensitivity (LOD: 1.45 nM for Protamine and 32 pM for Trypsin), selectivity, and stability, successfully operating in complex biological matrices, such as human serum and urine. Importantly, this sensor design underscores the synergy between the AIE phenomena and biomolecular interactions, offering a promising alternative for analytical applications in biomedical research and clinical diagnostics. The principles outlined herein open new avenues for the development of other AIE-based sensors, expanding the toolkit available for detecting a wide range of biomolecules using similar design strategies.
Collapse
Affiliation(s)
- Aditi H Upadhaya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W) 400 056, India
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Harshad A Mirgane
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Shrishti P Pandey
- Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W) 400 056, India
| | - Vrushali S Patil
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Sheshanath V Bhosale
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| |
Collapse
|
7
|
Belvedere R, Novizio N, Palazzo M, Pessolano E, Petrella A. The pro-healing effects of heparan sulfate and growth factors are enhanced by the heparinase enzyme: New association for skin wound healing treatment. Eur J Pharmacol 2023; 960:176138. [PMID: 37923158 DOI: 10.1016/j.ejphar.2023.176138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Effective treatment strategies for skin wound repair are the focus of numerous studies. New pharmacological approaches appear necessary to guarantee a correct and healthy tissue regeneration. For these reasons, we purposed to investigate the effects of the combination between heparan sulfate and growth factors further adding the heparinase enzyme. Interestingly, for the first time, we have found that this whole association retains a marked pro-healing activity when topically administered to the wound. In detail, this combination significantly enhances the motility and activation of the main cell populations involved in tissue regeneration (keratinocytes, fibroblasts and endothelial cells), compared with single agents administered without heparinase. Notably, using an experimental C57BL/6 mouse model of skin wounding, we observed that the topical treatment of skin lesions with heparan sulfate + growth factors + heparinase promotes the highest closure of wounds compared to each substance mixed with the other ones in all the possible combinations. Eosin/hematoxylin staining of skin biopsies revealed that treatment with the whole combination allows the formation of a well-structured matrix with numerous new vessels. Confocal analyses for vimentin, FAP1α, CK10 and CD31 have highlighted the presence of activated fibroblasts, differentiated keratinocytes and endothelial cells at the closed region of wounds. Our results encourage defining this combined treatment as a new and appealing therapy expedient in skin wound healing, as it is able to activate cell components and promote a dynamic lesions closure.
Collapse
Affiliation(s)
| | - Nunzia Novizio
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | | | - Emanuela Pessolano
- Department of Pharmacological Sciences, University of Piemonte Orientale, Novara, Italy
| | | |
Collapse
|
8
|
Wang D, Hu L, Xu R, Zhang W, Xiong H, Wang Y, Du G, Kang Z. Production of different molecular weight glycosaminoglycans with microbial cell factories. Enzyme Microb Technol 2023; 171:110324. [PMID: 37742407 DOI: 10.1016/j.enzmictec.2023.110324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
Glycosaminoglycans (GAGs) are naturally occurring acidic polysaccharides with wide applications in pharmaceuticals, cosmetics, and health foods. The diverse biological activities and physiological functions of GAGs are closely associated with their molecular weights and sulfation patterns. Except for the non-sulfated hyaluronan which can be synthesized naturally by group A Streptococcus, all the other GAGs such as heparin and chondroitin sulfate are mainly acquired from animal tissues. Microbial cell factories provide a more effective platform for the production of structurally homogeneous GAGs. Enhancing the production efficiency of polysaccharides, accurately regulating the GAGs molecular weight, and effectively controlling the sulfation degree of GAGs represent the major challenges of developing GAGs microbial cell factories. Several enzymatic, metabolic engineering, and synthetic biology strategies have been developed to tackle these obstacles and push forward the industrialization of biotechnologically produced GAGs. This review summarizes the recent advances in the construction of GAGs synthesis cell factories, regulation of GAG molecular weight, and modification of GAGs chains. Furthermore, the challenges and prospects for future research in this field are also discussed.
Collapse
Affiliation(s)
- Daoan Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Haibo Xiong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
9
|
Sulewska M, Berger M, Damerow M, Schwarzer D, Buettner FFR, Bethe A, Taft MH, Bakker H, Mühlenhoff M, Gerardy-Schahn R, Priem B, Fiebig T. Extending the enzymatic toolbox for heparosan polymerization, depolymerization, and detection. Carbohydr Polym 2023; 319:121182. [PMID: 37567694 DOI: 10.1016/j.carbpol.2023.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Heparosan is an acidic polysaccharide expressed as a capsule polymer by pathogenic and commensal bacteria, e.g. by E. coli K5. As a precursor in the biosynthesis of heparan sulfate and heparin, heparosan has a high biocompatibility and is thus of interest for pharmaceutical applications. However, due to its low immunogenicity, developing antibodies against heparosan and detecting the polymer in biological samples has been challenging. In this study, we exploited the enzyme repertoire of E. coli K5 and the E. coli K5-specific bacteriophage ΦK5B for the controlled synthesis and depolymerization of heparosan. A fluorescently labeled heparosan nonamer was used as a priming acceptor to study the elongation mechanism of the E. coli K5 heparosan polymerases KfiA and KfiC. We could demonstrate that the enzymes act in a distributive manner, producing labeled heparosan of low dispersity. The enzymatically synthesized heparosan was a useful tool to identify the tailspike protein KflB of ΦK5B as heparosan lyase and to characterize its endolytic depolymerization mechanism. Most importantly, using site-directed mutagenesis and rational construct design, we generated an inactive version of KflB for the detection of heparosan in ELISA-based assays, on blots, and on bacterial and mammalian cells.
Collapse
Affiliation(s)
- Małgorzata Sulewska
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany; Centre de Recherche sur les Macromolécules Végétales, Groupe Chimie et Biotechnologie des Oligosaccharides, 601 rue de la Chimie, BP 53X, 38041 Grenoble, Cedex 09, France.
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Manuela Damerow
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - David Schwarzer
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Andrea Bethe
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany.
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Martina Mühlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Bernard Priem
- Centre de Recherche sur les Macromolécules Végétales, Groupe Chimie et Biotechnologie des Oligosaccharides, 601 rue de la Chimie, BP 53X, 38041 Grenoble, Cedex 09, France.
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
10
|
Zaira B, Yulianti T, Levita J. Correlation between Hepatocyte Growth Factor (HGF) with D-Dimer and Interleukin-6 as Prognostic Markers of Coagulation and Inflammation in Long COVID-19 Survivors. Curr Issues Mol Biol 2023; 45:5725-5740. [PMID: 37504277 PMCID: PMC10377933 DOI: 10.3390/cimb45070361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
In general, an individual who experiences the symptoms of Severe Acute Respiratory Syndrome Coronavirus 2 or SARS-CoV-2 infection is declared as recovered after 2 weeks. However, approximately 10-20% of these survivors have been reported to encounter long-term health problems, defined as 'long COVID-19', e.g., blood coagulation which leads to stroke with an estimated incidence of 3%, and pulmonary embolism with 5% incidence. At the time of infection, the immune response produces pro-inflammatory cytokines that stimulate stromal cells to produce pro-hepatocyte growth factor (pro-HGF) and eventually is activated into hepatocyte growth factor (HGF), which helps the coagulation process in endothelial and epithelial cells. HGF is a marker that appears as an inflammatory response that leads to coagulation. Currently, there is no information on the effect of SARS-CoV-2 infection on serum HGF concentrations as a marker of the prognosis of coagulation in long COVID-19 survivors. This review discusses the pathophysiology between COVID-19 and HGF, IL-6, and D-dimer.
Collapse
Affiliation(s)
- Bena Zaira
- Student at Master Program in Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Prodia Education and Research Institute, Jakarta 10430, Indonesia
| | - Trilis Yulianti
- Prodia Education and Research Institute, Jakarta 10430, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
| |
Collapse
|
11
|
Timm S, Lettau M, Hegermann J, Rocha ML, Weidenfeld S, Fatykhova D, Gutbier B, Nouailles G, Lopez-Rodriguez E, Hocke A, Hippenstiel S, Witzenrath M, Kuebler WM, Ochs M. The unremarkable alveolar epithelial glycocalyx: a thorium dioxide-based electron microscopic comparison after heparinase or pneumolysin treatment. Histochem Cell Biol 2023:10.1007/s00418-023-02211-7. [PMID: 37386200 PMCID: PMC10387119 DOI: 10.1007/s00418-023-02211-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 07/01/2023]
Abstract
Recent investigations analyzed in depth the biochemical and biophysical properties of the endothelial glycocalyx. In comparison, this complex cell-covering structure is largely understudied in alveolar epithelial cells. To better characterize the alveolar glycocalyx ultrastructure, unaffected versus injured human lung tissue explants and mouse lungs were analyzed by transmission electron microscopy. Lung tissue was treated with either heparinase (HEP), known to shed glycocalyx components, or pneumolysin (PLY), the exotoxin of Streptococcus pneumoniae not investigated for structural glycocalyx effects so far. Cationic colloidal thorium dioxide (cThO2) particles were used for glycocalyx glycosaminoglycan visualization. The level of cThO2 particles orthogonal to apical cell membranes (≙ stained glycosaminoglycan height) of alveolar epithelial type I (AEI) and type II (AEII) cells was stereologically measured. In addition, cThO2 particle density was studied by dual-axis electron tomography (≙ stained glycosaminoglycan density in three dimensions). For untreated samples, the average cThO2 particle level was ≈ 18 nm for human AEI, ≈ 17 nm for mouse AEI, ≈ 44 nm for human AEII and ≈ 35 nm for mouse AEII. Both treatments, HEP and PLY, resulted in a significant reduction of cThO2 particle levels on human and mouse AEI and AEII. Moreover, a HEP- and PLY-associated reduction in cThO2 particle density was observed. The present study provides quantitative data on the differential glycocalyx distribution on AEI and AEII based on cThO2 and demonstrates alveolar glycocalyx shedding in response to HEP or PLY resulting in a structural reduction in both glycosaminoglycan height and density. Future studies should elucidate the underlying alveolar epithelial cell type-specific distribution of glycocalyx subcomponents for better functional understanding.
Collapse
Affiliation(s)
- Sara Timm
- Core Facility Electron Microscopy, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Marie Lettau
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany.
| | - Jan Hegermann
- Research Core Unit Electron Microscopy and Institute of Functional and Applied Anatomy, Hannover Medical School, 30625, Hannover, Germany
| | - Maria Linda Rocha
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany
- Institute of Pathology, Vivantes Klinikum im Friedrichshain, 10249, Berlin, Germany
| | - Sarah Weidenfeld
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Diana Fatykhova
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany
| | - Andreas Hocke
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Matthias Ochs
- Core Facility Electron Microscopy, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| |
Collapse
|
12
|
Frackiewicz A, Kalaska B, Miklosz J, Mogielnicki A. The methods for removal of direct oral anticoagulants and heparins to improve the monitoring of hemostasis: a narrative literature review. Thromb J 2023; 21:58. [PMID: 37208753 DOI: 10.1186/s12959-023-00501-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
The assessment of hemostasis is necessary to make suitable decisions on the management of patients with thrombotic disorders. In some clinical situations, for example, during thrombophilia screening, the presence of anticoagulants in sample makes diagnosis impossible. Various elimination methods may overcome anticoagulant interference. DOAC-Stop, DOAC-Remove and DOAC Filter are available methods to remove direct oral anticoagulants in diagnostic tests, although there are still reports on their incomplete efficacy in several assays. The new antidotes for direct oral anticoagulants - idarucizumab and andexanet alfa - could be potentially useful, but have their drawbacks. The necessity to remove heparins is also arising as heparin contamination from central venous catheter or therapy with heparin disturbs the appropriate hemostasis assessment. Heparinase and polybrene are already present in commercial reagents but a fully-effective neutralizer is still a challenge for researchers, thus promising candidates remain in the research phase.
Collapse
Affiliation(s)
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland.
| | - Joanna Miklosz
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Andrzej Mogielnicki
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
13
|
Perez S, Makshakova O, Angulo J, Bedini E, Bisio A, de Paz JL, Fadda E, Guerrini M, Hricovini M, Hricovini M, Lisacek F, Nieto PM, Pagel K, Paiardi G, Richter R, Samsonov SA, Vivès RR, Nikitovic D, Ricard Blum S. Glycosaminoglycans: What Remains To Be Deciphered? JACS AU 2023; 3:628-656. [PMID: 37006755 PMCID: PMC10052243 DOI: 10.1021/jacsau.2c00569] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
Glycosaminoglycans (GAGs) are complex polysaccharides exhibiting a vast structural diversity and fulfilling various functions mediated by thousands of interactions in the extracellular matrix, at the cell surface, and within the cells where they have been detected in the nucleus. It is known that the chemical groups attached to GAGs and GAG conformations comprise "glycocodes" that are not yet fully deciphered. The molecular context also matters for GAG structures and functions, and the influence of the structure and functions of the proteoglycan core proteins on sulfated GAGs and vice versa warrants further investigation. The lack of dedicated bioinformatic tools for mining GAG data sets contributes to a partial characterization of the structural and functional landscape and interactions of GAGs. These pending issues will benefit from the development of new approaches reviewed here, namely (i) the synthesis of GAG oligosaccharides to build large and diverse GAG libraries, (ii) GAG analysis and sequencing by mass spectrometry (e.g., ion mobility-mass spectrometry), gas-phase infrared spectroscopy, recognition tunnelling nanopores, and molecular modeling to identify bioactive GAG sequences, biophysical methods to investigate binding interfaces, and to expand our knowledge and understanding of glycocodes governing GAG molecular recognition, and (iii) artificial intelligence for in-depth investigation of GAGomic data sets and their integration with proteomics.
Collapse
Affiliation(s)
- Serge Perez
- Centre
de Recherche sur les Macromolecules, Vegetales,
University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041 France
| | - Olga Makshakova
- FRC
Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| | - Jesus Angulo
- Insituto
de Investigaciones Quimicas, CIC Cartuja, CSIC and Universidad de Sevilla, Sevilla, SP 41092, Spain
| | - Emiliano Bedini
- Department
of Chemical Sciences, University of Naples
Federico II, Naples,I-80126, Italy
| | - Antonella Bisio
- Istituto
di Richerche Chimiche e Biochimiche, G. Ronzoni, Milan I-20133, Italy
| | - Jose Luis de Paz
- Insituto
de Investigaciones Quimicas, CIC Cartuja, CSIC and Universidad de Sevilla, Sevilla, SP 41092, Spain
| | - Elisa Fadda
- Department
of Chemistry and Hamilton Institute, Maynooth
University, Maynooth W23 F2H6, Ireland
| | - Marco Guerrini
- Istituto
di Richerche Chimiche e Biochimiche, G. Ronzoni, Milan I-20133, Italy
| | - Michal Hricovini
- Institute
of Chemistry, Slovak Academy of Sciences, Bratislava SK-845 38, Slovakia
| | - Milos Hricovini
- Institute
of Chemistry, Slovak Academy of Sciences, Bratislava SK-845 38, Slovakia
| | - Frederique Lisacek
- Computer
Science Department & Section of Biology, University of Geneva & Swiss Institue of Bioinformatics, Geneva CH-1227, Switzerland
| | - Pedro M. Nieto
- Insituto
de Investigaciones Quimicas, CIC Cartuja, CSIC and Universidad de Sevilla, Sevilla, SP 41092, Spain
| | - Kevin Pagel
- Institut
für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Berlin 14195, Germany
| | - Giulia Paiardi
- Molecular
and Cellular Modeling Group, Heidelberg Institute for Theoretical
Studies, Heidelberg University, Heidelberg 69118, Germany
| | - Ralf Richter
- School
of Biomedical Sciences, Faculty of Biological Sciences, School of
Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology and Bragg Centre for
Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sergey A. Samsonov
- Department
of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Gdsank 80-309, Poland
| | - Romain R. Vivès
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, Grenoble F-38044, France
| | - Dragana Nikitovic
- School
of Histology-Embriology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Sylvie Ricard Blum
- University
Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry,
UMR 5246, Villeurbanne F 69622 Cedex, France
| |
Collapse
|
14
|
Zhang Q, Lu D, Li F. Enzymatic Sequencing of Heparin Oligosaccharides Using Exolyase. Methods Mol Biol 2023; 2619:249-256. [PMID: 36662475 DOI: 10.1007/978-1-0716-2946-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heparin/heparan sulfate (HP/HS) is a class of acidic polysaccharides with many potential medical applications, especially HP, and its derivatives, low molecular weight heparins (LMWHs), have been widely used as anticoagulants to treat thrombosis for decades. However, the complex structure endows HP/HS a variety of biological functions and hinders the structural and functional studies of HP/HS. Heparinases derived from bacteria are useful tools for the structural studies of HP/HS as well as the preparation of LMWHs. The enzymatic method for the structural analysis of HP/HS chains is easy to operate, requires less samples, and is low cost. Here, we describe an enzymatic approach to investigate the primary sequences of the HP/HS oligosaccharides using a recently discovered exotype heparinase.
Collapse
Affiliation(s)
- Qingdong Zhang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Danrong Lu
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China.
| |
Collapse
|
15
|
Zhang G, Yang K, Wang L, Cheng Y, Liu C. Facile chemoenzymatic synthesis of unmodified anticoagulant ultra-low molecular weight heparin. Org Biomol Chem 2022; 20:8323-8330. [DOI: 10.1039/d2ob01221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A chemoenzymatic approach, mimicking the biosynthetic pathway of heparin and heparan sulfate (HS), has been well developed to prepare a series of structurally well-defined heparin oligosaccharides with excellent anticoagulant activity in good overall yields.
Collapse
Affiliation(s)
- Guijiao Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Kaihua Yang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Lin Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Yanzhen Cheng
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Chunhui Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, PR China
| |
Collapse
|