1
|
Cai J, Zhu Y, Deng G, Ouyang L, Xiao W, Zhou F, Han Y, Yuan F, Huang L, Li X. Effect and underlying mechanism of Huangjing Qianshi decoction in pre-diabetes mouse model. BMC Complement Med Ther 2025; 25:151. [PMID: 40269867 PMCID: PMC12020235 DOI: 10.1186/s12906-025-04893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Insulin secretion deficiency and increased insulin resistance are key pathological pathways that lead to pre-diabetes. Without intervention, pre-diabetes can easily develop into type 2 diabetes mellitus. However, no specific medicine is available for treating pre-diabetes except for intervention through lifestyle changes. Huangjing Qianshi decoction (HJQST) is a qi-replenishing and yin-nourishing Chinese medicinal compound. However, the mode and mechanism of action of HJQST in improving pre-diabetes remain unclear. Here, we studied the effect of HJQST on pre-diabetes. METHODS BKS-db mice were induced to develop pre-diabetes and treated with HJQST and metformin (MET). After treatment for 51 days, hematoxylin-eosin and oil red O staining were used to analyze the pathological damage and lipid droplet formation in the pancreatic, liver and skeletal muscle of pre-diabetic mice. Serum levels of free fat acid (FFA), glycated hemoglobin A1c (HbA1c), fasting insulin (INS), reactive oxygen species (ROS), and tumor necrosis factor-α (TNF-α) were analyzed. Levels of glucose transporter 4 (GLUT-4), INS, nuclear receptor subfamily 3 group c member 2 (NR3C2), phosphorylated-signal transducer and activator of transcription 1 (p-STAT1), peroxisome proliferator activated receptor co-activator 1 α (PGC-1α), and protein inhibitor of activated STAT1 (PIAS1) protein were analyzed by immunohistochemistry and western blot. RESULTS The body weight, fasting blood glucose (FBS) levels, and serum levels of HbA1c, FFA, ROS, and TNF-α were significantly decreased, whereas the insulin level was significantly increased in pre-diabetic BKS-db mice after HJQST treatment. Additionally, HJQST treatment improved pancreatic and liver damage and the lipid droplet formation in liver and skeletal muscle. Furthermore, the increased NR3C2 and p-STAT1 protein levels and decreased GLUT-4, INS, PIAS1, and PGC-1a protein levels in pre-diabetic mice were reversed by HJQST treatment. CONCLUSION HJQST treatment could reverse high FBS level and aberrant lipid metabolism, oxidative stress, and inflammation in pre-diabetes, all of which are related to the NR3C2/PIAS1/STAT1/PGC-1α signal axis.
Collapse
Affiliation(s)
- Jialuo Cai
- Preventive Treatment of Disease Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yilin Zhu
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
| | - Guiming Deng
- Department of Scientific Research, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Linqi Ouyang
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Wangzhong Xiao
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Fang Zhou
- Department of Health Management, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yuanshan Han
- Department of Scientific Research, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Feiyun Yuan
- Library's Office, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Li Huang
- Preparation Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Xiaoping Li
- Preventive Treatment of Disease Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| |
Collapse
|
2
|
Caputo S, Papaccio F, Marrapodi R, Lopez G, Iacovelli P, Pacifico A, Migliano E, Cota C, Di Nardo A, Picardo M, Bellei B. Defective Intracellular Insulin/IGF-1 Signaling Elucidates the Link Between Metabolic Defect and Autoimmunity in Vitiligo. Cells 2025; 14:565. [PMID: 40277891 PMCID: PMC12025416 DOI: 10.3390/cells14080565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Vitiligo is featured by the manifestation of white maculae and primarily results from inflammatory/immune-selective aggression to melanocytes. The trigger mechanism leading to the activation of resident immune cells in the skin still lacks a molecular description. There is growing evidence linking altered mitochondrial metabolism to vitiligo, suggesting that an underlying metabolic defect may enable a direct activation of the immune system. Recent evidence demonstrated the association of vitiligo with disorders related to systemic metabolism, including insulin resistance (IR) and lipid disarrangements. However, IR, defined as a cellular defect in the insulin-mediated control of glucose metabolism, and its possible role in vitiligo pathogenesis has not been proven yet. Methods: In this study, we compared the Ins/IGF-1 intracellular signaling of dermal and epidermal cells isolated from non-lesional vitiligo skin to that belonging to cells obtained from healthy donors. Results: We demonstrated that due to the intensified glucose uptake, S6, and insulin receptor substrate 1 (IRS1) chronic phosphorylation, their inducibilities were downsized, a condition that coincides with the definition of insulin resistance at the cellular level. Correspondingly, the mitogenic and metabolic activities normally provoked by Ins/IGF-1 exposure resulted in significantly compromised vitiligo cells (p ≤ 0.05). Besides all the vitiligo-derived skin cells manifesting an energetic disequilibrium consisting of a low ATP, catabolic processes activation, and chronic oxidative stress, the functional consequences of this state appear amplified in the keratinocyte lineage. Conclusion: The presented data argue for insulin and IGF-1 resistance collocating dysfunctional glucose metabolism in the mechanisms of vitiligo pathogenesis. In vitiligo keratinocytes, the intrinsic impairment of intracellular metabolic activities, particularly when associated with stimulation with Ins/IGF-1, converges into an aberrant pro-inflammatory phenotype that may initiate immune cell recruitment.
Collapse
Affiliation(s)
- Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.C.); (F.P.); (R.M.); (G.L.); (A.D.N.)
| | - Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.C.); (F.P.); (R.M.); (G.L.); (A.D.N.)
| | - Ramona Marrapodi
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.C.); (F.P.); (R.M.); (G.L.); (A.D.N.)
| | - Gianluca Lopez
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.C.); (F.P.); (R.M.); (G.L.); (A.D.N.)
| | - Paolo Iacovelli
- Clinical Dermatology, Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (P.I.)
| | - Alessia Pacifico
- Clinical Dermatology, Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (P.I.)
| | - Emilia Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, 00144 Rome, Italy
| | - Anna Di Nardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.C.); (F.P.); (R.M.); (G.L.); (A.D.N.)
| | - Mauro Picardo
- Istituto Dermopatico dell’Immacolata (IDI-IRCCS), 00167 Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.C.); (F.P.); (R.M.); (G.L.); (A.D.N.)
| |
Collapse
|
3
|
Neikirk K, Kabugi K, Mungai M, Kula B, Smith N, Hinton AO. Ethnicity-related differences in mitochondrial regulation by insulin stimulation in diabetes. J Cell Physiol 2024; 239:e31317. [PMID: 38775168 PMCID: PMC11324399 DOI: 10.1002/jcp.31317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 08/15/2024]
Abstract
Mitochondrial dysfunction has long been implicated in the development of insulin resistance, which is a hallmark of type 2 diabetes. However, recent studies reveal ethnicity-related differences in mitochondrial processes, underscoring the need for nuance in studying mitochondrial dysfunction and insulin sensitivity. Furthermore, the higher prevalence of type 2 diabetes among African Americans and individuals of African descent has brought attention to the role of ethnicity in disease susceptibility. In this review, which covers existing literature, genetic studies, and clinical data, we aim to elucidate the complex relationship between mitochondrial alterations and insulin stimulation by considering how mitochondrial dynamics, contact sites, pathways, and metabolomics may be differentially regulated across ethnicities, through mechanisms such as single nucleotide polymorphisms (SNPs). In addition to achieving a better understanding of insulin stimulation, future studies identifying novel regulators of mitochondrial structure and function could provide valuable insights into ethnicity-dependent insulin signaling and personalized care.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA 14642
| | - Nathan Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA 14642
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
4
|
Danowska M, Strączkowski M. The Ca2+/Calmodulin-dependent Calcineurin/NFAT Signaling Pathway in the Pathogenesis of Insulin Resistance in Skeletal Muscle. Exp Clin Endocrinol Diabetes 2023; 131:589-594. [PMID: 37875146 DOI: 10.1055/a-2174-7958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Skeletal muscle is the tissue directly involved in insulin-stimulated glucose uptake. Glucose is the primary energy substrate for contracting muscles, and proper metabolism of glucose is essential for health. Contractile activity and the associated Ca2+signaling regulate functional capacity and muscle mass. A high concentration of Ca2+and the presence of calmodulin (CaM) leads to the activation of calcineurin (CaN), a protein with serine-threonine phosphatase activity. The signaling pathway linked with CaN and transcription factors like the nuclear factor of activated T cells (NFAT) is essential for skeletal muscle development and reprogramming of fast-twitch to slow-twitch fibers. CaN activation may promote metabolic adaptations in muscle cells, resulting in better insulin-stimulated glucose transport. The molecular mechanisms underlying the altered insulin response remain unclear. The role of the CaN/NFAT pathway in regulating skeletal muscle hypertrophy is better described than its involvement in the pathogenesis of insulin resistance. Thus, there are opportunities for future research in that field. This review presents the role of CaN/NFAT signaling and suggests the relationship with insulin-resistant muscles.
Collapse
Affiliation(s)
- Magdalena Danowska
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marek Strączkowski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
5
|
Calderón-DuPont D, Romero-Córdoba S, Tello JK, Espinosa A, Guerrero B, Contreras AV, Morán-Ramos S, Díaz-Villaseñor A. Impaired white adipose tissue fatty acid metabolism in mice fed a high-fat diet worsened by arsenic exposure, primarily affecting retroperitoneal adipose tissue. Toxicol Appl Pharmacol 2023; 468:116428. [PMID: 36801214 DOI: 10.1016/j.taap.2023.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Fatty acid (FA) metabolism dysfunction of white adipose tissue (WAT) underlies obesity and insulin resistance in response to high calorie intake and/or endocrine-disrupting chemicals (EDCs), among other factors. Arsenic is an EDC that has been associated with metabolic syndrome and diabetes. However, the combined effect of a high-fat diet (HFD) and arsenic exposure on WAT FA metabolism has been little studied. FA metabolism was evaluated in visceral (epididymal and retroperitoneal) and subcutaneous WAT of C57BL/6 male mice fed control or HFD (12 and 40% kcal fat, respectively) for 16 weeks together with an environmentally relevant chronic arsenic exposure through drinking water (100 μg/l) during the second half of the study. In mice fed HFD, arsenic potentiated the increase of serum markers of selective insulin resistance in WAT and fatty acid re-esterification and the decrease in the lipolysis index. Retroperitoneal was the WAT most affected, where the combination of arsenic and HFD in contrast to HFD, generated higher weight, larger adipocytes, increased triglyceride content, and decreased fasting stimulated lipolysis evidenced by lower phosphorylation of HSL and perilipin. At the transcriptional level, arsenic in mice fed either diet downregulated genes involved in fatty acid uptake (LPL, CD36), oxidation (PPARα, CPT1), lipolysis (ADRß3) and glycerol transport (AQP7 and AQP9). Additionally, arsenic potentiated hyperinsulinemia induced by HFD, despite a slight increase in weight gain and food efficiency. Thus, the second hit of arsenic in sensitized mice by HFD worsens fatty acid metabolism impairment in WAT, mainly retroperitoneal, along with an exacerbated insulin resistance phenotype.
Collapse
Affiliation(s)
- Diana Calderón-DuPont
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Sandra Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14000, Mexico
| | - Jessica K Tello
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Maestría en Nutrición Clínica, Universidad Anáhuac Campus Norte, Estado de México 52786, Mexico
| | - Aranza Espinosa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Brenda Guerrero
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Alejandra V Contreras
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico; Translational Molecular Biomarkers, Merck & Co., Inc, Rahway, NJ, USA
| | - Sofia Morán-Ramos
- Unidad de Genόmica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico; Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico.
| |
Collapse
|
6
|
Yoon JH, Hwang J, Son SU, Choi J, You SW, Park H, Cha SY, Maeng S. How Can Insulin Resistance Cause Alzheimer's Disease? Int J Mol Sci 2023; 24:3506. [PMID: 36834911 PMCID: PMC9966425 DOI: 10.3390/ijms24043506] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive decline. Despite worldwide efforts to find a cure, no proper treatment has been developed yet, and the only effective countermeasure is to prevent the disease progression by early diagnosis. The reason why new drug candidates fail to show therapeutic effects in clinical studies may be due to misunderstanding the cause of AD. Regarding the cause of AD, the most widely known is the amyloid cascade hypothesis, in which the deposition of amyloid beta and hyperphosphorylated tau is the cause. However, many new hypotheses were suggested. Among them, based on preclinical and clinical evidence supporting a connection between AD and diabetes, insulin resistance has been pointed out as an important factor in the development of AD. Therefore, by reviewing the pathophysiological background of brain metabolic insufficiency and insulin insufficiency leading to AD pathology, we will discuss how can insulin resistance cause AD.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - JooHyun Hwang
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sung Un Son
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Junhyuk Choi
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Seung-Won You
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Hyunwoo Park
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Health Park Co., Ltd., Seoul 02447, Republic of Korea
| | - Seung-Yun Cha
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sungho Maeng
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
7
|
Jiang Y, Feng C, Shi Y, Kou X, Le G. Eugenol improves high-fat diet/streptomycin-induced type 2 diabetes mellitus (T2DM) mice muscle dysfunction by alleviating inflammation and increasing muscle glucose uptake. Front Nutr 2022; 9:1039753. [PMID: 36424928 PMCID: PMC9681568 DOI: 10.3389/fnut.2022.1039753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/03/2022] [Indexed: 08/10/2023] Open
Abstract
Eugenol has been used in dietary interventions for metabolic diseases such as diabetes and obesity. However, the protective effect of eugenol on muscle function in diabetes is unclear. In this study, a high-fat diet (HFD) with a streptozocin (STZ) injection induced type II diabetes mellitus in a mouse model. Oral eugenol lowered blood glucose and insulin resistance of HFD/STZ-treated mice. Eugenol reduced HFD/STZ-induced muscle inflammation and prevented muscle weakness and atrophy. Eugenol administration significantly increased GLUT4 translocation and AMPK phosphorylation in skeletal muscle, thereby enhancing glucose uptake. By silencing the transient receptor potential vanilloid channel 1 (TRPV1) gene in C2C12 myotube cells, eugenol was found to increase intracellular Ca2+ levels through TRPV1, which then activated calmodulin-dependent protein kinase-2 (CaMKK2) and affected AMPK protein phosphorylation. In conclusion, eugenol is a potential nutraceutical for preventing high-glucose-induced muscle impairments, which could be explained by its mediating effects on glucose absorption and inflammatory responses in the muscle.
Collapse
Affiliation(s)
- Yuge Jiang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, China
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chuanxing Feng
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, China
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yonghui Shi
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, China
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Guowei Le
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, China
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|