1
|
Al-Gburi HHJ, Hassanzadeh-Tabrizi SA, Jabbarzare S. Production of Cu 0.5Zn 0.5Fe 2O 4 Nanostructures as a Hyperthermia Agent for Cancer Healing. Int J Biomater 2025; 2025:7290633. [PMID: 40406541 PMCID: PMC12097855 DOI: 10.1155/ijbm/7290633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/07/2025] [Indexed: 05/26/2025] Open
Abstract
Cancer is a pervasive and devastating disease affecting various parts of the body, posing significant challenges to human societies. Recently, the development of novel magnetic and biocompatible nanoparticles has emerged as a promising approach for magnetic hyperthermia in cancer treatment, complementing existing therapeutic methods. In the present work, Cu0.5Zn0.5Fe2O4 mixed spinel nanoparticles were produced via a sol-gel combustion route. The produced magnetic nanopowders were studied via FTIR, SEM, XRD, and VSM techniques. XRD results confirmed the formation of the spinel structure of ferrites. Microstructural investigations showed that the synthesized nanoparticles have a particle size ranging from 20 to 200 nm. The VSM results displayed that the saturation magnetization and coercivity of Cu0.5Zn0.5Fe2O4 nanoparticles were 57 emu/g and 24 Oe, respectively. Saturation magnetization for the Cu0.5Zn0.5Fe2O4 specimens improved with increasing heat treatment temperature. In order to examine the samples' heating effectiveness for magnetic hyperthermia therapy, various magnetic fields were used. The temperature of the Cu0.5Zn0.5Fe2O4 powders increased from 37°C to 47°C in 10 min when exposed to a 400-Oe magnetic field and 200-kHz frequency. Results showed that the fabricated products have the potential to be used as hyperthermia agents for cancer therapy. The novelty of this study focuses on the use of Cu0.5Zn0.5Fe2O4 mixed spinel as a new hyperthermia agent with more biocompatible constituent elements.
Collapse
Affiliation(s)
| | | | - Saeid Jabbarzare
- Institute of Manufacturing Engineering and Industrial Technologies, Na.C, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
2
|
Farshchi F, Saadati A, Bahavarnia F, Hasanzadeh M, Shadjou N. Identification of acetaldehyde based on plasmonic patterns of a gold nanostructure conjugated with chromophore and H 2O 2: a new platform for the rapid and low-cost analysis of carcinogenic agents by colorimetric affordable test strip (CATS). RSC Adv 2024; 14:15755-15765. [PMID: 38752162 PMCID: PMC11094588 DOI: 10.1039/d4ra02814g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Acetaldehyde, a prevalent carbonyl compound in fermented foods, poses challenges in various applications due to its reactivity. This study addresses the need for efficient acetaldehyde detection methods across biotechnological, environmental, pharmaceutical, and food sectors. Herein, we present a novel colorimetric/UV spectrophotometric approach utilizing gold nanoparticles (AuNPs), particularly gold nano-flowers (AuNFs), for sensitive acetaldehyde identification. The method exhibits a notable sensitivity, detecting acetaldehyde at concentrations as low as 0.1 μM. The mechanism involves the interaction of acetaldehyde molecules with AuNFs, leading to a significant change in the absorbance spectrum, which serves as the basis for detection. Moreover, its applicability extends to human biofluids, notably urine samples. Integration with a cost-effective one-drop microfluidic colorimetric device (OD-μPCD) enables the development of an affordable test strip (CATS). This semi-analytical device, employing a multichannel OD-μPCD, facilitates real-time analysis of acetaldehyde in human samples. Our findings demonstrate the pioneering utilization of AuNPs for selective and sensitive acetaldehyde detection, promising advancements in environmental and occupational safety standards, and laying a foundation for enhanced detection and monitoring of related volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Fatemeh Farshchi
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas Avenida Brasil No 4365-Manguinhos Rio de Janeiro 21040-900 Brazil
| | - Arezoo Saadati
- Central European Institute of Technology, Brno University of Technology Brno CZ-612 00 Czech Republic
| | - Farnaz Bahavarnia
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
3
|
Zhou Z, Shu T, Su L, Zhang X. Size-matching compositing nanoprobe of AIE-type gold nanocluster supramolecular nanogels wrapped by hypergravity-tailored MnO 2 nanosheets for cellular glutathione detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123690. [PMID: 38043289 DOI: 10.1016/j.saa.2023.123690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Compositing has been the main approach for material creation via wisely combining material components with different properties. MnO2 nanosheets (MNSs) with thin 2 D morphology are usually applied to composite molecules or nanomaterials for biosensing and bioimaging applications. However, such composition is actually structurally unmatched, albeit performance matching. Here, a series of benefits merely on the basis of structural match have been unearthed via tailoring MNSs with four sizes by synthesis under controllable hypergravity field. The classical fluorophore-quencher couple was utilized as the subject model, where the soft supramolecular nanogels based on aggregation-induced emission (AIE)-active gold nanoclusters were wrapped by MNSs of strong absorption. By comparative study of one-on-one wrapping and one-to-many encapsulation with geometrical selection of different MNSs, we found that the one-on-one wrapping model protected weakly-bonded nanogels from combination-induced distortion and strengthened nanogel networks via endowing exoskeleton. Besides, wrapping pattern and size-match significantly enhanced the quenching efficiency of MNSs towards the emissive nanogels. More importantly, the well-wrapped nanocomposites had considerable enhanced biological compatibility with much lower cytotoxicity and higher transfection capacity than the untailored MNSs composite and could serve as cellular glutathione detection.
Collapse
Affiliation(s)
- Ziping Zhou
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, PR China; Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Aerospace Research Institute of Materials & Processing Technology, Science and Technology on Advanced Functional Composites Laboratory, Beijing 100076, PR China
| | - Tong Shu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Lei Su
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Xueji Zhang
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| |
Collapse
|
4
|
Wang D, Pan Q, Yang J, Gong S, Liu X, Fu Y. Effects of Mixtures of Engineered Nanoparticles and Cocontaminants on Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2598-2614. [PMID: 38291652 DOI: 10.1021/acs.est.3c09239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The widespread application of nanotechnology inevitably leads to an increased release of engineered nanoparticles (ENPs) into the environment. Due to their specific physicochemical properties, ENPs may interact with other contaminants and exert combined effects on the microbial community and metabolism of anaerobic digestion (AD), an important process for organic waste reduction, stabilization, and bioenergy recovery. However, the complicated interactions between ENPs and other contaminants as well as their combined effects on AD are often overlooked. This review therefore focuses on the co-occurrence of ENPs and cocontaminants in the AD process. The key interactions between ENPs and cocontaminants and their combined influences on AD are summarized from the available literature, including the critical mechanisms and influencing factors. Some sulfides, coagulants, and chelating agents have a dramatic "detoxification" effect on the inhibition effect of ENPs on AD. However, some antibiotics and surfactants increase the inhibition of ENPs on AD. The reasons for these differences may be related to the interactive effects between ENPs and cocontaminants, changes of key enzyme activities, adenosine triphosphate (ATP) levels, reactive oxygen species (ROS) production, and microbial communities. New scientific opportunities for a better understanding of the coexistence in real world situations are converging on the scale of nanoparticles.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Qinyi Pan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Jingnan Yang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Water Resources and Environmental Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Sheng Gong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Yukui Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
5
|
Kuru Cİ, Ulucan-Karnak F, Dayıoğlu B, Şahinler M, Şendemir A, Akgöl S. Affinity-Based Magnetic Nanoparticle Development for Cancer Stem Cell Isolation. Polymers (Basel) 2024; 16:196. [PMID: 38256995 PMCID: PMC10818538 DOI: 10.3390/polym16020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Cancer is still the leading cause of death in the world despite the developing research and treatment opportunities. Failure of these treatments is generally associated with cancer stem cells (CSCs), which cause metastasis and are defined by their resistance to radio- and chemotherapy. Although known stem cell isolation methods are not sufficient for CSC isolation, they also bring a burden in terms of cost. The aim of this study is to develop a high-efficiency, low-cost, specific method for cancer stem cell isolation with magnetic functional nanoparticles. This study, unlike the stem cell isolation techniques (MACS, FACS) used today, was aimed to isolate cancer stem cells (separation of CD133+ cells) with nanoparticles with specific affinity and modification properties. For this purpose, affinity-based magnetic nanoparticles were synthesized and characterized by providing surface activity and chemical reactivity, as well as making surface modifications necessary for both lectin affinity and metal affinity interactions. In the other part of the study, synthesized and characterized functional polymeric magnetic nanoparticles were used for the isolation of CSC from the human osteosarcoma cancer cell line (SAOS-2) with a cancer stem cell subpopulation bearing the CD133 surface marker. The success and efficiency of separation after stem cell isolation were evaluated via the MACS and FACS methods. As a result, when the His-graft-mg-p(HEMA) nanoparticle was used at a concentration of 0.1 µg/mL for 106 and 108 cells, superior separation efficiency to commercial microbeads was obtained.
Collapse
Affiliation(s)
- Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey; (C.İ.K.); (S.A.)
| | - Fulden Ulucan-Karnak
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey; (C.İ.K.); (S.A.)
| | - Büşra Dayıoğlu
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey; (B.D.); (M.Ş.); (A.Ş.)
| | - Mert Şahinler
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey; (B.D.); (M.Ş.); (A.Ş.)
| | - Aylin Şendemir
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey; (B.D.); (M.Ş.); (A.Ş.)
| | - Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey; (C.İ.K.); (S.A.)
| |
Collapse
|
6
|
Muzenda C, Nkwachukwu OV, Jayeola KD, Zinyemba O, Zhou M, Arotiba OA. Heterogenous electro-Fenton degradation of sulfamethoxazole on a polyethylene glycol-coated magnetite nanoparticles catalyst. CHEMOSPHERE 2023; 339:139698. [PMID: 37532200 DOI: 10.1016/j.chemosphere.2023.139698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
We report the preparation and application of poly (ethylene) glycol (PEG) coated magnetite nanoparticles (MNPs) catalyst for the heterogeneous electro-Fenton (HEF) degradation of sulfamethoxazole in real wastewater PEG-coated MNPs of four MNP:PEG ratios were synthesised using the co-precipitation method. The synthesised MNP were characterised using FTIR, XRD, EDX, TEM, and CHN elemental analysis. It was observed that the coating of MNP with PEG influences the nanoparticle size, agglomeration tendencies and catalytic efficiency of MNPs properties in the HEF degradation process. A 1:1 optimal MNP:PEG catalyst yielded 91% sulfamethoxazole degradation and 48% total organic carbon removal in 60 min, which is an improvement of 11% over degradation with the uncoated MNP. The PEG-coated MNP showed higher stability in 10 consecutive reaction cycles, reduced leaching, and improved performance at a lower dosage and broader pH range than the uncoated MNPs. These results show that coating MNP with PEG enhances HEF catalytic performance in the degradation of sulfamethoxazole in wastewater.
Collapse
Affiliation(s)
- Charles Muzenda
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Oluchi V Nkwachukwu
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Kehinde D Jayeola
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Orpah Zinyemba
- Department of Chemical Sciences, University of Johannesburg, South Africa
| | - Minghua Zhou
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa.
| |
Collapse
|
7
|
Mansoor A, Khurshid Z, Khan MT, Mansoor E, Butt FA, Jamal A, Palma PJ. Medical and Dental Applications of Titania Nanoparticles: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203670. [PMID: 36296859 PMCID: PMC9611494 DOI: 10.3390/nano12203670] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 05/25/2023]
Abstract
Currently, titanium oxide (TiO2) nanoparticles are successfully employed in human food, drugs, cosmetics, advanced medicine, and dentistry because of their non-cytotoxic, non-allergic, and bio-compatible nature when used in direct close contact with the human body. These NPs are the most versatile oxides as a result of their acceptable chemical stability, lower cost, strong oxidation properties, high refractive index, and enhanced aesthetics. These NPs are fabricated by conventional (physical and chemical) methods and the latest biological methods (biological, green, and biological derivatives), with their advantages and disadvantages in this epoch. The significance of TiO2 NPs as a medical material includes drug delivery release, cancer therapy, orthopedic implants, biosensors, instruments, and devices, whereas their significance as a dental biomaterial involves dentifrices, oral antibacterial disinfectants, whitening agents, and adhesives. In addition, TiO2 NPs play an important role in orthodontics (wires and brackets), endodontics (sealers and obturating materials), maxillofacial surgeries (implants and bone plates), prosthodontics (veneers, crowns, bridges, and acrylic resin dentures), and restorative dentistry (GIC and composites).
Collapse
Affiliation(s)
- Afsheen Mansoor
- Department of Dental Material Sciences, School of Dentistry, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44080, Pakistan
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Muhammad Talal Khan
- Department of Dental Biomaterials, Bakhtawar Amin Medical and Dental College, Multan 60650, Pakistan;
| | - Emaan Mansoor
- Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan;
| | - Faaz Ahmad Butt
- Department of Materials Engineering, NED University of Engineering & Technology, Karachi 74200, Pakistan;
| | - Asif Jamal
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Paulo J. Palma
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
8
|
Satyanarayana Acharyulu N, Sohan A, Banoth P, Chintalapati S, Doshi S, Reddy V, Santhosh C, Grace AN, De Los Santos Valladares L, Kollu P. Effect of the Graphene- Ni/NiFe 2O 4 Composite on Bacterial Inhibition Mediated by Protein Degradation. ACS OMEGA 2022; 7:30794-30800. [PMID: 36092631 PMCID: PMC9453936 DOI: 10.1021/acsomega.2c02064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/05/2022] [Indexed: 05/15/2023]
Abstract
Recent investigations have demonstrated that nickel ferrite nanoparticles and their derivatives have toxicity effects on bacterial cells. In this study, we have prepared nickel ferrite nanoparticles (Ni/NiFe2O4) and nickel/nickel ferrite graphene oxide (Ni/NiFe2O4-GO) nanocomposite and evaluated their toxic effects on E. coli cells ATCC 25922. The prepared nanomaterials were characterized using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry techniques. The toxicity was evaluated using variations in cell viability, cell morphology, protein degradation, and oxidative stress. Ni/NiFe2O4-GO nanocomposites likewise prompt oxidative stress proved by the age of reactive oxygen species (ROS) and exhaustion of antioxidant glutathione. This is the first report indicating that Ni/NiFe2O4-GO nanocomposite-initiated cell death in E. coli through ROS age and oxidative stress.
Collapse
Affiliation(s)
- Narayanam
Phani Satyanarayana Acharyulu
- Department
of Physics, Krishna University, Machilipatnam, Andhra Pradesh 521003, India
- Department
of Engineering Physics, S.R.K.R. Engineering
College, West Godavari
District, Bhimavaram, Andhra
Pradesh 534204, India
| | - Arya Sohan
- CASEST,
School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, Telangana 500046, India
| | - Pravallika Banoth
- CASEST,
School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, Telangana 500046, India
| | - Srinivasu Chintalapati
- Department
of Physics, Andhra Loyola College, Krishna District, Vijayawada, Andhra Pradesh 520008, India
| | - Sejal Doshi
- Department
of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Venu Reddy
- Department
of Chemistry, S.R.K.R. Engineering College, Bhimavaram, Andhra Pradesh 534204, India
- Nanotechnology Research Centre, S.R.K.R.
Engineering College, Bhimavaram, Andhra Pradesh 534204, India
| | - Chella Santhosh
- Department
of ECE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur (Dist), Vijayawada, Andhra Pradesh 522302, India
| | | | - Luis De Los Santos Valladares
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- School
of Materials Science and Engineering, Northeastern
University, Shenyang, Liaoning 110819, People’s Republic of China
| | - Pratap Kollu
- CASEST,
School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, Telangana 500046, India
- . Phone: +91-40-2313-4327
| |
Collapse
|
9
|
Hossain MS, Uddin MN, Sarkar S, Ahmed S. Crystallographic dependency of waste cow bone, hydroxyapatite, and β-tricalcium phosphate for biomedical application. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
11
|
Ahmad A. Safety and Toxicity Implications of Multifunctional Drug Delivery Nanocarriers on Reproductive Systems In Vitro and In Vivo. FRONTIERS IN TOXICOLOGY 2022; 4:895667. [PMID: 35785262 PMCID: PMC9240477 DOI: 10.3389/ftox.2022.895667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
In the recent past, nanotechnological advancements in engineered nanomaterials have demonstrated diverse and versatile applications in different arenas, including bio-imaging, drug delivery, bio-sensing, detection and analysis of biological macromolecules, bio-catalysis, nanomedicine, and other biomedical applications. However, public interests and concerns in the context of human exposure to these nanomaterials and their consequential well-being may hamper the wider applicability of these nanomaterial-based platforms. Furthermore, human exposure to these nanosized and engineered particulate materials has also increased drastically in the last 2 decades due to enormous research and development and anthropocentric applications of nanoparticles. Their widespread use in nanomaterial-based industries, viz., nanomedicine, cosmetics, and consumer goods has also raised questions regarding the potential of nanotoxicity in general and reproductive nanotoxicology in particular. In this review, we have summarized diverse aspects of nanoparticle safety and their toxicological outcomes on reproduction and developmental systems. Various research databases, including PubMed and Google Scholar, were searched for the last 20 years up to the date of inception, and nano toxicological aspects of these materials on male and female reproductive systems have been described in detail. Furthermore, a discussion has also been dedicated to the placental interaction of these nanoparticles and how these can cross the blood–placental barrier and precipitate nanotoxicity in the developing offspring. Fetal abnormalities as a consequence of the administration of nanoparticles and pathophysiological deviations and aberrations in the developing fetus have also been touched upon. A section has also been dedicated to the regulatory requirements and guidelines for the testing of nanoparticles for their safety and toxicity in reproductive systems. It is anticipated that this review will incite a considerable interest in the research community functioning in the domains of pharmaceutical formulations and development in nanomedicine-based designing of therapeutic paradigms.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology, Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Mohali, India
- Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Anas Ahmad,
| |
Collapse
|
12
|
Khan MS, Buzdar SA, Hussain R, Afzal G, Jabeen G, Javid MA, Iqbal R, Iqbal Z, Mudassir KB, Saeed S, Rauf A, Ahmad HI. Hematobiochemical, Oxidative Stress, and Histopathological Mediated Toxicity Induced by Nickel Ferrite (NiFe 2O 4) Nanoparticles in Rabbits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5066167. [PMID: 35308168 PMCID: PMC8933065 DOI: 10.1155/2022/5066167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022]
Abstract
From the past few decades, attention towards the biological evaluation of nanoparticles (NPs) has increased due to the persistent and extensive application of NPs in various fields, including biomedical science, modern industry, magnetic resonance imaging, and the construction of sensors. Therefore, in the current study, magnetic nickel ferrite (NiFe2O4) nanoparticles (NFNPs) were synthesized and evaluated for their possible adverse effects in rabbits. The crystallinity of the synthesized NFNPs was confirmed using X-ray diffraction (XRD) technique. The saturation magnetization (46.7 emug-1) was measured using vibrating sample magnetometer (VSM) and 0.35-tesla magnetron by magnetic resonance imaging (MRI). The adverse effects of NFNPs on blood biochemistry and histoarchitecture of the liver, kidneys, spleen, brain, and heart of the rabbits were determined. A total of sixteen adult rabbits, healthy and free from any apparent infection, were blindly placed in two groups. The rabbits in group A served as control, while the rabbits in group B received a single dose (via ear vein) of NFNPs for ten days. The blood and visceral tissues were collected from each rabbit at days 5 and 10 of posttreatment. The results on blood and serum biochemistry profile indicated significant variation in hematological and serum biomarkers in NFNP-treated rabbits. The results showed an increased quantity of oxidative stress and depletion of antioxidant enzymes in treated rabbits. Various serum biochemical tests exhibited significantly higher concentrations of different liver function tests, kidney function tests, and cardiac biomarkers. Histopathologically, the liver showed congestion, edema, atrophy, and degeneration of hepatocytes. The kidneys exhibited hemorrhages, atrophy of renal tubule, degeneration, and necrosis of renal tubules, whereas coagulative necrosis, neutrophilic infiltration, and severe myocarditis were seen in different sections of the heart. The brain of the treated rabbits revealed necrosis of neurons, neuron atrophy, and microgliosis. In conclusion, the current study results indicated that the highest concentration of NPs induced adverse effects on multiple tissues of the rabbits.
Collapse
Affiliation(s)
| | - Saeed Ahmad Buzdar
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan
| | - Gulnaz Afzal
- Department of Zoology (Life sciences), The Islamia University, Bahawalpur 63100, Pakistan
| | - Ghazala Jabeen
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Arshad Javid
- Department of Basic Sciences, University of Engineering and Technology, Taxila, Pakistan
| | - Rehana Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan
| | - Zahid Iqbal
- Department of Pharmacology, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan
| | - Khola Bint Mudassir
- Department of Zoology (Life sciences), The Islamia University, Bahawalpur 63100, Pakistan
| | - Saba Saeed
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi-Anbar KPK, Pakistan
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
13
|
Nakai M, Imai K, Hashimoto Y. Cell viability of fine powders in hybrid resins and ceramic materials for CAD/CAM. Dent Mater J 2022; 41:495-505. [PMID: 35264544 DOI: 10.4012/dmj.2021-261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Resin blocks and ceramic blocks for CAD/CAM crowns were cut into powders and separated into three particle size groups. Oxidative stress and cell viability were measured in 3T3 and FRSK cells. The results of cytotoxicity tended to be slightly higher for resin than for ceramics. The values also increased as the particle size decreased in the powders. In addition, incorporation into cells was frequently observed under SEM, suggesting that the particle size of easily incorporated dust is different among cell types. Fluorescence-activated cell sorter (FACS) showed an increase in apoptosis and a decrease in cell viability in most of the sample groups compared to the control group. Hematoxylin and eosin staining of the cells showed deep staining of the nuclei in the sample groups. It was found that oxidative stress cell viability and apoptosis appeared differently depending on the size of the particles and the type of cells.
Collapse
Affiliation(s)
- Mariko Nakai
- Department of Biomaterials, Faculty of Dentistry, Osaka Dental University
| | - Koichi Imai
- Department of Tissue Engineering, Faculty of Dentistry, Osaka Dental University.,Graduate School of Health Sciences, Osaka Dental University
| | - Yoshiya Hashimoto
- Department of Biomaterials, Faculty of Dentistry, Osaka Dental University
| |
Collapse
|
14
|
Zhang B, Tang X, Fan C, Hao W, Zhao Y, Zeng Y. Cationic polyacrylamide alleviated the inhibitory impact of ZnO nanoparticles on anaerobic digestion of waste activated sludge through reducing reactive oxygen species induced. WATER RESEARCH 2021; 205:117651. [PMID: 34560617 DOI: 10.1016/j.watres.2021.117651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
The enrichment of zinc oxide nanoparticles (ZnO NPs) in waste activated sludge (WAS) has raised concerns about their potential impact on anaerobic digestion of WAS. To date, there is no information regarding how to attenuate the negative effects of ZnO NPs on WAS anaerobic digestion. In this study, it was found that the appropriate amount of cationic polyacrylamide (cPAM) could mitigate the toxicity of ZnO NPs. During short-term exposure, the supplement of 4.0 mg cPAM/g TSS significantly restored biochemical methane potential from 28.6% inhibition to 9.3% inhibition compared with the control digester (P < 0.01). The spiked cPAM promoted the solubilization and acidification stages by weakening the contact between ZnO NPs and anaerobes in anaerobic digestion process, thus providing abundant substance for sequent bio-utilization. In the long-term semi-continues operated reactor, the continuous replacement of cPAM (at 4.0 mg/g TSS) significantly strengthened the recovery of VS destruction rate (20.3% to 26.4%, P < 0.01) and the daily yield of methane (93.5 mL/d to 124.2 mL/d, P < 0.01). Consistent with the restored performance, the application of cPAM increased the total microbial communities and the relative abundances of dominant acidogens and methanogens. Further explorations showed decreased toxicity of ZnO NPs primarily attributed to the decline of reactive oxygen species (ROS) induced by ZnO NPs.
Collapse
Affiliation(s)
- Baowei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Wanle Hao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yilin Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanjing Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
15
|
Vecchiotti G, Colafarina S, Aloisi M, Zarivi O, Di Carlo P, Poma A. Genotoxicity and oxidative stress induction by polystyrene nanoparticles in the colorectal cancer cell line HCT116. PLoS One 2021; 16:e0255120. [PMID: 34297768 PMCID: PMC8301662 DOI: 10.1371/journal.pone.0255120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022] Open
Abstract
The potential risks of environmental nanoparticles (NPs), in particular Polystyrene Nanoparticles (PNPs), is an emerging problem; specifically, the interaction of PNPs with intestinal cells has not been characterized so far. The mechanism by which polystyrene particles are transferred to humans has not yet been clarified, whether directly through ingestion from contaminated food. We evaluated the interaction between PNPs and colorectal adenocarcinoma cells (HCT116). Cells were exposed to different concentrations of PNPs, metabolic activity and the consequent cytotoxic potential were assessed through viability test; we evaluated the PNP genotoxic potential through the Cytokinesis-Block Micronucleus cytome (CBMN cyt) assay. Finally, we detected Reactive Oxygen Species (ROS) production after NPs exposure and performed Western Blot analysis to analyze the enzymes (SOD1, SOD2, Catalase, Glutathione Peroxidase) involved in the cell detoxification process that comes into play during the cell-PNPs interaction. This work analyzes the cyto and genotoxicity of PNPs in the colorectal HCT116 cell line, in particular the potential damage from oxidative stress produced by PNPs inside the cells related to the consequent nuclear damage. Our results show moderate toxicity of PNPs both in terms of ROS production and DNA damage. Further studies will be needed on different cell lines to have a more complete picture of the impact of environmental pollution on human health in terms of PNPs cytotoxicity and genotoxicity.
Collapse
Affiliation(s)
- Giulia Vecchiotti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Massimo Aloisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Piero Di Carlo
- Department of Psychological, Health & Territorial Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology—CAST, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Anna Poma
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- * E-mail:
| |
Collapse
|
16
|
Ruseska I, Fresacher K, Petschacher C, Zimmer A. Use of Protamine in Nanopharmaceuticals-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1508. [PMID: 34200384 PMCID: PMC8230241 DOI: 10.3390/nano11061508] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
Macromolecular biomolecules are currently dethroning classical small molecule therapeutics because of their improved targeting and delivery properties. Protamine-a small polycationic peptide-represents a promising candidate. In nature, it binds and protects DNA against degradation during spermatogenesis due to electrostatic interactions between the negatively charged DNA-phosphate backbone and the positively charged protamine. Researchers are mimicking this technique to develop innovative nanopharmaceutical drug delivery systems, incorporating protamine as a carrier for biologically active components such as DNA or RNA. The first part of this review highlights ongoing investigations in the field of protamine-associated nanotechnology, discussing the self-assembling manufacturing process and nanoparticle engineering. Immune-modulating properties of protamine are those that lead to the second key part, which is protamine in novel vaccine technologies. Protamine-based RNA delivery systems in vaccines (some belong to the new class of mRNA-vaccines) against infectious disease and their use in cancer treatment are reviewed, and we provide an update on the current state of latest developments with protamine as pharmaceutical excipient for vaccines.
Collapse
Affiliation(s)
| | | | | | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, 8010 Graz, Austria; (I.R.); (K.F.); (C.P.)
| |
Collapse
|
17
|
Anbu P. Chemical synthesis of NiFe 2 O 4 /NG/cellulose nanocomposite and its antibacterial potential against bacterial pathogens. Biotechnol Appl Biochem 2021; 69:867-875. [PMID: 33811671 DOI: 10.1002/bab.2157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/23/2021] [Indexed: 11/09/2022]
Abstract
In this work, a nickel ferrite (NiFe2 O4 )/nitrogen-doped-graphene (NG)/cellulose composite (NiFe2 O4 /NG/cellulose) was successfully synthesized through a facile chemical route, and its antibacterial potential was evaluated. The synthesized NiFe2 O4 /NG/cellulose composite was characterized by performing morphological and structural analyses. The results showed the successful formation of NiFe2 O4 -nanoparticles with a spherical shape and a size ranging from 15 to 200 nm. Energy-dispersive X-ray results confirmed the presence of various elements (carbon, nitrogen, oxygen, iron, and nickel) in the reaction mixture. The X-ray diffraction pattern showed the face-centered-cubic nature of the particles. In addition, antibacterial activity against Escherichia coli (Gram-negative bacteria) and Bacillus subtilis (Gram-positive bacteria) was evaluated with different concentrations of NiFe2 O4 /NG/cellulose composite (0-50 μg/mL). Inhibitory activity increased with increasing concentrations of NiFe2 O4 /NG/cellulose. The composite's inhibitory activity was slightly higher in E. coli than in B. subtilis due to the differing nature of their cell wall structures. Overall, the chemically synthesized NiFe2 O4 /NG/cellulose composite has the potential as an efficient antibacterial agent for controlling the growth of pathogenic bacteria.
Collapse
Affiliation(s)
- Periasamy Anbu
- Department of Biological Engineering, Inha University, Incheon, South Korea
| |
Collapse
|
18
|
You G, Hou J, Xu Y, Miao L, Ao Y, Xing B. Surface Properties and Environmental Transformations Controlling the Bioaccumulation and Toxicity of Cerium Oxide Nanoparticles: A Critical Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 253:155-206. [PMID: 32462332 DOI: 10.1007/398_2020_42] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Increasing production and utilization of cerium oxide nanoparticles (CNPs) in recent years have raised wide concerns about their toxicity. Numerous studies have been conducted to reveal the toxicity of CNPs, but the results are sometimes contradictory. In this review, the most important factors in mediating CNPs toxicity are discussed, including (1) the roles of physicochemical properties (size, morphology, agglomeration condition, surface charge, coating and surface valence state) on CNPs toxicity; (2) the phase transfer and transformation process of CNPs in various aqueous, terrestrial, and airborne environments; and (3) reductive dissolution of CNPs core and their chemical reactions with phosphate, sulfate/S2-, and ferrous ions. The physicochemical properties play key roles in the interactions of CNPs with organisms and consequently their environmental transformations, reactivity and toxicity assessment. Also, the speciation transformations of CNPs caused by reactions with (in)organic ligands in both environmental and biological systems would further alter their fate, transport, and toxicity potential. Thus, the toxicity mechanisms are proposed based on the physical damage of direct adsorption of CNPs onto the cell membrane and chemical inhibition (including oxidative stress and interaction of CNPs with biomacromolecules). Finally, the current knowledge gaps and further research needs in identifying the toxicological risk factors of CNPs under realistic environmental conditions are highlighted, which might improve predictions about their potential environmental influences. This review aims to provide new insights into cost-effectiveness of control options and management practices to prevent environmental risks from CNPs exposure.
Collapse
Affiliation(s)
- Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China.
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
19
|
Muhammad Q, Jang Y, Kang SH, Moon J, Kim WJ, Park H. Modulation of immune responses with nanoparticles and reduction of their immunotoxicity. Biomater Sci 2020; 8:1490-1501. [PMID: 31994542 DOI: 10.1039/c9bm01643k] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Particles with a size range of 1-100 nm used in various fields of life sciences are called nanoparticles (NPs). Currently, nanotechnology has a wide range of applications in biomedical research, industries and in almost all types of modern technology. The growing applications of nanotechnology in medicine urge scientists to analyze the impact of NPs on human body tissues and the immune system. Easy surface modifications of the NPs enable the modulation of the immune system either by evading the immune system to prevent allergic reactions or by enhancing the immunogenic response. In this review, we discussed the various possible theories and practical implications reported to date for the applications of nanotechnology in immunostimulation and immunosuppression for favorable immune response, such as vaccine delivery and cancer treatments. In the last part of this paper, we also discussed the biocompatibility and unfavorable immunotoxicity of NPs and methods for lowering their toxicity.
Collapse
Affiliation(s)
- Qasim Muhammad
- School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea.
| | - Yeonwoo Jang
- School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea.
| | - Shin Hyuk Kang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - James Moon
- Pharmaceutical Sciences and Biomedical Engineering, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
| | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
20
|
Rouco H, Diaz-Rodriguez P, Gaspar DP, Gonçalves LMD, Cuerva M, Remuñán-López C, Almeida AJ, Landin M. Rifabutin-Loaded Nanostructured Lipid Carriers as a Tool in Oral Anti-Mycobacterial Treatment of Crohn's Disease. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2138. [PMID: 33121030 PMCID: PMC7692220 DOI: 10.3390/nano10112138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Oral anti-mycobacterial treatment of Crohn's disease (CD) is limited by the low aqueous solubility of drugs, along with the altered gut conditions of patients, making uncommon their clinical use. Hence, the aim of the present work is focused on the in vitro evaluation of rifabutin (RFB)-loaded Nanostructured lipid carriers (NLC), in order to solve limitations associated to this therapeutic approach. RFB-loaded NLC were prepared by hot homogenization and characterized in terms of size, polydispersity, surface charge, morphology, thermal stability, and drug payload and release. Permeability across Caco-2 cell monolayers and cytotoxicity and uptake in human macrophages was also determined. NLC obtained were nano-sized, monodisperse, negatively charged, and spheroidal-shaped, showing a suitable drug payload and thermal stability. Furthermore, the permeability profile, macrophage uptake and selective intracellular release of RFB-loaded NLC, guarantee an effective drug dose administration to cells. Outcomes suggest that rifabutin-loaded NLC constitute a promising strategy to improve oral anti-mycobacterial therapy in Crohn's disease.
Collapse
Affiliation(s)
- Helena Rouco
- R+D Pharma Group (GI-1645), Strategic Grouping in Materials (AEMAT), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela-Campus Vida, 15782 Santiago de Compostela, Spain;
| | - Patricia Diaz-Rodriguez
- Drug Delivery Systems Group, Department of Chemical Engineering and Pharmaceutical Technology, School of Sciences, Universidad de La Laguna (ULL), Campus de Anchieta, 38200 La Laguna (Tenerife), Spain;
| | - Diana P. Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (D.P.G.); (L.M.D.G.); (A.J.A.)
| | - Lídia M. D. Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (D.P.G.); (L.M.D.G.); (A.J.A.)
| | - Miguel Cuerva
- Department of Physical Chemistry, Nanomag laboratory, Universidade de Santiago de Compostela-Campus Vida, 15782 Santiago de Compostela, Spain;
| | - Carmen Remuñán-López
- Nanobiofar Group (GI-1643), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela-Campus Vida, 15782 Santiago de Compostela, Spain;
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (D.P.G.); (L.M.D.G.); (A.J.A.)
| | - Mariana Landin
- R+D Pharma Group (GI-1645), Strategic Grouping in Materials (AEMAT), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela-Campus Vida, 15782 Santiago de Compostela, Spain;
| |
Collapse
|
21
|
Kose O, Tomatis M, Leclerc L, Belblidia NB, Hochepied JF, Turci F, Pourchez J, Forest V. Impact of the Physicochemical Features of TiO 2 Nanoparticles on Their In Vitro Toxicity. Chem Res Toxicol 2020; 33:2324-2337. [PMID: 32786542 DOI: 10.1021/acs.chemrestox.0c00106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The concern about titanium dioxide nanoparticles (TiO2-NPs) toxicity and their possible harmful effects on human health has increased. Their biological impact is related to some key physicochemical properties, that is, particle size, charge, crystallinity, shape, and agglomeration state. However, the understanding of the influence of such features on TiO2-NP toxicity remains quite limited. In this study, cytotoxicity, proinflammatory response, and oxidative stress caused by five types of TiO2-NPs with different physicochemical properties were investigated on A549 cells used either as monoculture or in co-culture with macrophages differentiated from the human monocytic THP-1 cells. We tailored bulk and surface TiO2 physicochemical properties and differentiated NPs for size/specific surface area, shape, agglomeration state, and surface functionalization/charge (aminopropyltriethoxysilane). An impact on the cytotoxicity and to a lesser extent on the proinflammatory responses depending on cell type was observed, namely, smaller, large-agglomerated TiO2-NPs were shown to be less toxic than P25, whereas rod-shaped TiO2-NPs were found to be more toxic. Besides, the positively charged particle was slightly more toxic than the negatively charged one. Contrarily, TiO2-NPs, whatever their physicochemical properties, did not induce significant ROS production in both cell systems compared to nontreated control groups. These results may contribute to a better understanding of TiO2-NPs toxicity in relation with their physicochemical features.
Collapse
Affiliation(s)
- Ozge Kose
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Maura Tomatis
- Dipartimento di Chimica and G. Scansetti Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, Università degli Studi di Torino, 10125 Torino, Italy
| | - Lara Leclerc
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Naila-Besma Belblidia
- Mines ParisTech, PSL Research University, MAT - Centre des matériaux, CNRS UMR 7633, BP 87, 91003 Evry, France.,ENSTA ParisTech UCP, Institut Polytechnique Paris, 828 bd des Maréchaux, 91762 Palaiseau cedex, France
| | - Jean-François Hochepied
- Mines ParisTech, PSL Research University, MAT - Centre des matériaux, CNRS UMR 7633, BP 87, 91003 Evry, France.,ENSTA ParisTech UCP, Institut Polytechnique Paris, 828 bd des Maréchaux, 91762 Palaiseau cedex, France
| | - Francesco Turci
- Dipartimento di Chimica and G. Scansetti Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, Università degli Studi di Torino, 10125 Torino, Italy
| | - Jérémie Pourchez
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Valérie Forest
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| |
Collapse
|
22
|
Suciu M, Ionescu CM, Ciorita A, Tripon SC, Nica D, Al-Salami H, Barbu-Tudoran L. Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1092-1109. [PMID: 32802712 PMCID: PMC7404288 DOI: 10.3762/bjnano.11.94] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/07/2020] [Indexed: 05/13/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have unique properties with regard to biological and medical applications. SPIONs have been used in clinical settings although their safety of use remains unclear due to the great differences in their structure and in intra- and inter-patient absorption and response. This review addresses potential applications of SPIONs in vitro (formulations), ex vivo (in biological cells and tissues) and in vivo (preclinical animal models), as well as potential biomedical applications in the context of drug targeting, disease treatment and therapeutic efficacy, and safety studies.
Collapse
Affiliation(s)
- Maria Suciu
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., Cluj-Napoca, Cluj County, 400006, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Str., Cluj-Napoca, Cluj County, 400293, Romania
| | - Corina M Ionescu
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., Cluj-Napoca, Cluj County, 400006, Romania
| | - Alexandra Ciorita
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., Cluj-Napoca, Cluj County, 400006, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Str., Cluj-Napoca, Cluj County, 400293, Romania
| | - Septimiu C Tripon
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., Cluj-Napoca, Cluj County, 400006, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Str., Cluj-Napoca, Cluj County, 400293, Romania
| | - Dragos Nica
- Functional Sciences Department, Medical Faculty, University of Medicine and Pharmacy “Victor Babes”, 2 Eftimie Murgu, Timisoara, Timis County, 300041, Romania
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, the School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth Western Australia 6845, Australia
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., Cluj-Napoca, Cluj County, 400006, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Str., Cluj-Napoca, Cluj County, 400293, Romania
| |
Collapse
|
23
|
Pearce KM, Okon I, Watson-Wright C. Induction of Oxidative DNA Damage and Epithelial Mesenchymal Transitions in Small Airway Epithelial Cells Exposed to Cosmetic Aerosols. Toxicol Sci 2020; 177:248-262. [DOI: 10.1093/toxsci/kfaa089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Engineered metal nanoparticles (ENPs) are frequently incorporated into aerosolized consumer products, known as nano-enabled products (NEPs). Concern for consumer pulmonary exposures grows as NEPs produce high concentrations of chemically modified ENPs. A significant knowledge gap still exists surrounding NEP aerosol respiratory effects as previous research focuses on pristine/unmodified ENPs. Our research evaluated metal-containing aerosols emitted from nano-enabled cosmetics and their induction of oxidative stress and DNA damage, which may contribute to epithelial mesenchymal transitions (EMT) within primary human small airway epithelial cells. We utilized an automated NEP generation system to monitor and gravimetrically collect aerosols from two aerosolized cosmetic lines. Aerosol monitoring data were inputted into modeling software to determine potential inhaled dose and in vitro concentrations. Toxicological profiles of aerosols and comparable pristine ENPs (TiO2 and Fe2O3) were used to assess reactive oxygen species and oxidative stress by fluorescent-based assays. Single-stranded DNA (ssDNA) damage and 8-oxoguanine were detected using the CometChip assay after 24-h exposure. Western blots were conducted after 21-day exposure to evaluate modulation of EMT markers. Results indicated aerosols possessed primarily ultrafine particles largely depositing in tracheobronchial lung regions. Significant increases in oxidative stress, ssDNA damage, and 8-oxoguanine were detected post-exposure to aerosols versus pristine ENPs. Western blots revealed statistically significant decreases in E-cadherin and increases in vimentin, fascin, and CD44 for two aerosols, indicating EMT. This work suggests certain prolonged NEP inhalation exposures cause oxidative DNA damage, which may play a role in cellular changes associated with reduced respiratory function and should be of concern.
Collapse
Affiliation(s)
| | - Imoh Okon
- Center for Molecular & Translational Medicine, Georgia State University, Atlanta, Georgia 30302
| | | |
Collapse
|
24
|
Rashdan SA, Hazeem LJ. Synthesis of spinel ferrites nanoparticles and investigating their effect on the growth of microalgae Picochlorum sp. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1080/25765299.2020.1733174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Suad A. Rashdan
- Department of Chemistry, College of Science, University of Bahrain, Manama, Kingdom of Bahrain
| | - Layla J. Hazeem
- Department of Biology, College of Science, University of Bahrain, Manama, Kingdom of Bahrain
| |
Collapse
|
25
|
de Lourdes Pérez-González ML, González-de la Rosa CH, Pérez-Hernández G, Beltrán HI. Nanostructured oleic acid/polysorbate 80 emulsions with diminished toxicity in NL-20 cell line: Insights of potential drug carriers. Colloids Surf B Biointerfaces 2020; 187:110758. [DOI: 10.1016/j.colsurfb.2019.110758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 01/17/2023]
|
26
|
Improving the electromagnetic shielding of fabricated NdFeB particles by a coating thin carbonaceous layer. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Zhu S, Gong L, Li Y, Xu H, Gu Z, Zhao Y. Safety Assessment of Nanomaterials to Eyes: An Important but Neglected Issue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802289. [PMID: 31453052 PMCID: PMC6702629 DOI: 10.1002/advs.201802289] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/28/2019] [Indexed: 05/19/2023]
Abstract
The production and application of nanomaterials have grown tremendously during last few decades. The widespread exposure of nanoparticles to the public is provoking great concerns regarding their toxicity to the human body. However, in comparison with the extensive studies carried out to examine nanoparticle toxicity to the human body/organs, one especially vulnerable organ, the eye, is always neglected. Although it is a small part of the body, 90% of outside information is obtained via the ocular system. In addition, eyes usually directly interact with the surrounding environment, which may get severer damage from toxic nanoparticles compared to inner organs. Therefore, the study of assessing the potential nanoparticle toxicity to the eyes is of great importance. Here, the recent advance of some representative manufactured nanomaterials on ocular toxicity is summarized. First, a brief introduction of ocular anatomy and disorders related to particulate matter exposure is presented. Following, the factors that may influence toxicity of nanoparticles to the eye are emphasized. Next, the studies of representative manufactured nanoparticles on eye toxicity are summarized and classified. Finally, the limitations that are associated with current nanoparticle-eye toxicity research are proposed.
Collapse
Affiliation(s)
- Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
| | - Linji Gong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yijian Li
- Southwest Eye HospitalSouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Haiwei Xu
- Southwest Eye HospitalSouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
28
|
Guillen-Romero LD, Oropeza-Guzmán MT, López-Maldonado EA, Iglesias AL, Paz-González JA, Ng T, Serena-Gómez E, Villarreal-Gómez LJ. Synthetic hydroxyapatite and its use in bioactive coatings. J Appl Biomater Funct Mater 2019; 17:2280800018817463. [PMID: 30803286 DOI: 10.1177/2280800018817463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An approach to solve the limitations of autologous bone grafting procedures in bone injury treatment is to develop bioactive coatings in the implantation system. The objective of this work is to compare the temperature effect on the stability of hydroxyapatite, graphene, and collagen colloidal suspensions to be used as biocompatible and bioactive coatings on a carbon fiber composite surface. Synthesized hydroxyapatite was assessed by X-ray diffraction. Zeta potential at different temperatures was evaluated. Specimens were characterized using scanning electron microscopy and Raman analysis. The results showed that the best hydroxyapatite/graphene ratio was 85/15, while those of the hydroxyapatite/collagen mixtures were 85/15. A hydroxyapatite/graphene/collagen mixture was synthesized based on these results.
Collapse
Affiliation(s)
- Luis Daniel Guillen-Romero
- 1 Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
| | | | - Eduardo Alberto López-Maldonado
- 3 Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
| | - Ana Leticia Iglesias
- 1 Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
| | - Juan Antonio Paz-González
- 1 Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
| | - Theodore Ng
- 4 Oakland Oral and Maxillofacial Surgery, Oakland, California, United States
| | - Eduardo Serena-Gómez
- 5 Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México
| | - Luis Jesús Villarreal-Gómez
- 1 Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, Baja California, México.,3 Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Unidad Otay, Tijuana, Baja California, México
| |
Collapse
|
29
|
|
30
|
Tracking of NiFe2O4 nanoparticles in barley (Hordeum vulgare L.) and their impact on plant growth, biomass, pigmentation, catalase activity, and mineral uptake. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.enmm.2019.100223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Umut E, Coşkun M, Pineider F, Berti D, Güngüneş H. Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia. J Colloid Interface Sci 2019; 550:199-209. [PMID: 31075674 DOI: 10.1016/j.jcis.2019.04.092] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
We demonstrate magnetic resonance imaging (MRI) contrast enhancement and ac-field induced heating abilities of tetramethylammoniumhydroxide (TMAH) coated nickel ferrite (NiFe2O4) nanoparticles and discuss the underlying physical mechanisms. The structural characterization revealed that the NiFe2O4 particles synthesized with a modified co-precipitation method have a very narrow size distribution with a 4.4 nm magnetic core and 15 nm hydrodynamic diameters, with relatively small fraction of agglomerates. The as-prepared particles presented superparamagnetic behavior at room temperature. The in vitro hyperthermia experiments, performed in ac-field conditions under human tolerable limits, showed that the suspensions of the synthesized nanoparticles exhibit a maximum specific absorption rate (SAR) value of 11 W/g. The 1H nuclear magnetic resonance (NMR) relaxometry measurements indicated the suspensions of NiFe2O4 have a transverse-to-longitudinal relaxivity ratio r2/r1 greater than two, as required for superparamagnetic MRI contrast agents. On the basis of the parameters obtained from the magnetic measurements, by comparing the relevant theoretical models with the experimental results, we found that the presence of agglomerates, and particularly the interactions within the agglomerated nanoparticles, caused a significant increase in the hyperthermia and MRI efficiencies. On the other hand, from an applicative point of view, both the MRI contrast enhancement and the heating capabilities allow the simultaneous use of nickelferrites in diagnostic and therapeutic applications as theranostic agents.
Collapse
Affiliation(s)
- Evrim Umut
- Dokuz Eylul University,Department of Medical Imaging Techniques, İnciralti, 35340 İzmir, Turkey.
| | - Mustafa Coşkun
- Hacettepe University, Department of Physics Engineering, Beytepe, 06800 Ankara, Turkey
| | - Francesco Pineider
- Department of Chemistry and Industrial Chemistry, Università di Pisa and INSTM, Pisa I-56124, Italy
| | - Debora Berti
- Department of Chemistry "U.Schiff", Università degli Studi di Firenze and CSGI, Sesto Fiorentino I-50019, Italy
| | - Hakan Güngüneş
- Hitit University, Department of Physics, 19040 Çorum, Turkey
| |
Collapse
|
32
|
Soleimani Lashkenari M, Ghorbani M, Naghibi H, Khalaj P. Synthesis and characterization of polyrhodanine/nickel ferrite nanocomposite with an effective and broad spectrum antibacterial activity. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2018.1563124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Mohsen Ghorbani
- Department of Chemical Engineering, Babol Noshirvani University of Technolgy, Shariati Ave., Babol, Iran
| | - Hananeh Naghibi
- Chemical Engineering Department, Mazandaran University of Science & Technology, Babol, Iran
| | - Pouria Khalaj
- North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
33
|
Teulon JM, Godon C, Chantalat L, Moriscot C, Cambedouzou J, Odorico M, Ravaux J, Podor R, Gerdil A, Habert A, Herlin-Boime N, Chen SWW, Pellequer JL. On the Operational Aspects of Measuring Nanoparticle Sizes. NANOMATERIALS 2018; 9:nano9010018. [PMID: 30583592 PMCID: PMC6359205 DOI: 10.3390/nano9010018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Nanoparticles are defined as elementary particles with a size between 1 and 100 nm for at least 50% (in number). They can be made from natural materials, or manufactured. Due to their small sizes, novel toxicological issues are raised and thus determining the accurate size of these nanoparticles is a major challenge. In this study, we performed an intercomparison experiment with the goal to measure sizes of several nanoparticles, in a first step, calibrated beads and monodispersed SiO₂ Ludox®, and, in a second step, nanoparticles (NPs) of toxicological interest, such as Silver NM-300 K and PVP-coated Ag NPs, Titanium dioxide A12, P25(Degussa), and E171(A), using commonly available laboratory techniques such as transmission electron microscopy, scanning electron microscopy, small-angle X-ray scattering, dynamic light scattering, wet scanning transmission electron microscopy (and its dry state, STEM) and atomic force microscopy. With monomodal distributed NPs (polystyrene beads and SiO₂ Ludox®), all tested techniques provide a global size value amplitude within 25% from each other, whereas on multimodal distributed NPs (Ag and TiO₂) the inter-technique variation in size values reaches 300%. Our results highlight several pitfalls of NP size measurements such as operational aspects, which are unexpected consequences in the choice of experimental protocols. It reinforces the idea that averaging the NP size from different biophysical techniques (and experimental protocols) is more robust than focusing on repetitions of a single technique. Besides, when characterizing a heterogeneous NP in size, a size distribution is more informative than a simple average value. This work emphasizes the need for nanotoxicologists (and regulatory agencies) to test a large panel of different techniques before making a choice for the most appropriate technique(s)/protocol(s) to characterize a peculiar NP.
Collapse
Affiliation(s)
- Jean-Marie Teulon
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France.
- CEA, iBEB, LIRM, F-30207 Bagnols sur Cèze, France.
| | - Christian Godon
- CEA, iBEB, LIRM, F-30207 Bagnols sur Cèze, France.
- CEA, BIAM, LBDP, F-13108 Saint Paul lez Durance, France.
| | | | | | - Julien Cambedouzou
- Institut de Chimie Séparative de Marcoule (ICSM), CEA, CNRS, ENSCM, Univ. Montpellier, F-30207 Marcoule, France.
| | - Michael Odorico
- CEA, iBEB, LIRM, F-30207 Bagnols sur Cèze, France.
- Institut de Chimie Séparative de Marcoule (ICSM), CEA, CNRS, ENSCM, Univ. Montpellier, F-30207 Marcoule, France.
| | - Johann Ravaux
- Institut de Chimie Séparative de Marcoule (ICSM), CEA, CNRS, ENSCM, Univ. Montpellier, F-30207 Marcoule, France.
| | - Renaud Podor
- Institut de Chimie Séparative de Marcoule (ICSM), CEA, CNRS, ENSCM, Univ. Montpellier, F-30207 Marcoule, France.
| | - Adèle Gerdil
- UMR3685 CEA-CNRS, NIMBE, LEDNA, CEA Saclay, F-91191 Gif sur Yvette, France.
| | - Aurélie Habert
- UMR3685 CEA-CNRS, NIMBE, LEDNA, CEA Saclay, F-91191 Gif sur Yvette, France.
| | | | | | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France.
- CEA, iBEB, LIRM, F-30207 Bagnols sur Cèze, France.
| |
Collapse
|
34
|
Khanna L, Gupta G, Tripathi SK. Effect of size and silica coating on structural, magnetic as well as cytotoxicity properties of copper ferrite nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:552-566. [PMID: 30678942 DOI: 10.1016/j.msec.2018.12.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/05/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Copper ferrite nanoparticles, synthesized by conventional sol-gel method were calcined at different temperatures. The magnetic, structural, morphological and cytotoxicity analyses of the uncalcined and calcined nanoparticles (NPs) were investigated and compared. Formation of tetragonal structure of CuFe2O4 NPs was observed in XRD patterns. On increasing the temperature, better crystallinity and increased crystallite size were also observed. In the FTIR spectra, bonds corresponding to CH, OH and carboxylate groups gradually disappeared with increasing temperature, while peak corresponding to FeO existed more prominently. NPs calcined at 300 °C (Cu3) exhibited the highest magnetic saturation and lowest retentivity, thereby indicating its superparamagnetic behaviour. Concentration-dependent cytotoxicity values were obtained by invitro MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a tetrazole) assay, Cell Titer assay and Cell Flow Cytometry with Propidium Iodide. NPs calcined at 300 °C, 500 °C and 700 °C exhibited non-toxicity at all the concentrations. Based on magnetic and biocompatibility analyses, Cu3 NPs were found to be the most suitable one to investigate the influence of silica coating on its surface. Presence of silica was confirmed by XRD pattern, FTIR spectrum, SEM and HRTEM micrographs as well as SAED pattern. In M-H curve, superparamagnetic behaviour of the CuFe2O4 core was retained but with reduced magnetic saturation due to magnetically dead layer of silica. An increase in cellular viability was witnessed in case of silica coated CuFe2O4 NPs as compared to uncoated NPs, thus reflecting on its enhanced biocompatibility. Nanosized, superparamagnetic and highly biocompatible characteristics make silica coated CuFe2O4 NPs a potential claimant for biomedical applications.
Collapse
Affiliation(s)
- Lavanya Khanna
- Department of Physics, Panjab University, Chandigarh 160014, India
| | - Garima Gupta
- Department of Physics, Panjab University, Chandigarh 160014, India
| | - S K Tripathi
- Department of Physics, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
35
|
Alizadeh N, Salimi A, Hallaj R, Fathi F, Soleimani F. Ni-hemin metal-organic framework with highly efficient peroxidase catalytic activity: toward colorimetric cancer cell detection and targeted therapeutics. J Nanobiotechnology 2018; 16:93. [PMID: 30458781 PMCID: PMC6245618 DOI: 10.1186/s12951-018-0421-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Given the great benefits of artificial enzymes, a simple approach is proposed via assembling of Ni2+ with hemin for synthesis of Ni-hemin metal–organic-frameworks (Ni-hemin MOFs) mimic enzyme. The formation of the Ni-hemin MOFs was verified by scanning electron microscopy, Transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Energy-dispersive X-ray spectroscopy and UV–vis absorption spectroscopy. This novel nanocomposite exhibited surprising peroxidase like activity monitored by catalytic oxidation of a typical peroxidase substrate, 3,3,5,5′-tetramethylbenzidine, in the presence of H2O2. By using folic acid conjugated MOF nanocomposite as a recognition element, we develop a colorimetric assay for the direct detection of cancer cells. Results The proposed sensor presented high sensitivity and selectivity for the detection of human breast cancer cells (MCF-7) and Human Caucasian gastric adenocarcinoma. By measuring UV–vis absorbance response, a wide detection range from 50 to 105 cells/mL with a detection limit as low as 10 cells/mLwas reached for MCF-7 cells. We further discuss therapeutics efficiency of Ni-hemin MOFs in the presence of H2O2 and ascorbic acid. Peroxidase-mimic Ni-hemin MOFs as reactive oxygen species which could damage MCF-7 cancer cells, however for normal cells (human embryonic kidney HEK 293 cells) killing effect was negligible. Conclusions Based on these behaviors, the developed method offers a fast, easy and cheap assay for the interest in future diagnostic and treatment application.
Collapse
Affiliation(s)
- Negar Alizadeh
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran. .,Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Rahman Hallaj
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Reserch Center, Kurdistan University of Medical Sciences, 66177-13446, Sananandaj, Iran
| | - Farzad Soleimani
- Cellular and Molecular Reserch Center, Kurdistan University of Medical Sciences, 66177-13446, Sananandaj, Iran
| |
Collapse
|
36
|
Khaliullin TO, Kisin ER, Yanamala N, Guppi S, Harper M, Lee T, Shvedova AA. Comparative cytotoxicity of respirable surface-treated/untreated calcium carbonate rock dust particles in vitro. Toxicol Appl Pharmacol 2018; 362:67-76. [PMID: 30393145 DOI: 10.1016/j.taap.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 01/17/2023]
Abstract
Calcium carbonate rock dust (RD) is used in mining to reduce the explosivity of aerosolized coal. During the dusting procedures, potential for human exposure occurs, raising health concerns. To improve RD aerosolization, several types of anti-caking surface treatments exist. The aim of the study was to evaluate cytotoxicity of four respirable RD samples: untreated/treated limestone (UL/TL), untreated/treated marble (UM/TM), and crystalline silica (SiO2) as a positive control in A549 and THP-1 transformed human cell lines. Respirable fractions were generated and collected using FSP10 high flow-rate cyclone samplers. THP-1 cells were differentiated with phorbol-12-myristate-13-acetate (20 ng/ml, 48 h). Cells were exposed to seven different concentrations of RD and SiO2 (0-0.2 mg/ml). RD caused a slight decrease in viability at 24 or 72 h post-exposure and were able to induce inflammatory cytokine production in A549 cells, however, with considerably less potency than SiO2. In THP-1 cells at 24 h, there was significant dose-dependent lactate dehydrogenase, inflammatory cytokine and chemokine release. Caspase-1 activity was increased in SiO2- and, on a lesser scale, in TM- exposed cells. To test if the increased toxicity of TM was uptake-related, THP-1 cells were pretreated with Cytochalasin D (CytD) or Bafilomycin A (BafA), followed by exposure to RD or SiO2 for 6 h. CytD blocked the uptake and significantly decreased cytotoxicity of all particles, while BafA prevented caspase-1 activation but not cytotoxic effects of TM. Only TM was able to induce an inflammatory response in THP-1 cells, however it was much less pronounced compared to silica.
Collapse
Affiliation(s)
- Timur O Khaliullin
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Exposure Assessment Branch, 1095 Willowdale road, Morgantown, WV 26505, USA; West Virginia University, Department of Physiology and Pharmacology, PO Box 9229, Morgantown, WV, USA.
| | - Elena R Kisin
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Exposure Assessment Branch, 1095 Willowdale road, Morgantown, WV 26505, USA.
| | - Naveena Yanamala
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Exposure Assessment Branch, 1095 Willowdale road, Morgantown, WV 26505, USA.
| | - Supraja Guppi
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Exposure Assessment Branch, 1095 Willowdale road, Morgantown, WV 26505, USA.
| | - Martin Harper
- Zefon International, 5350 SW 1st Lane, Ocala, FL 34474, USA.
| | - Taekhee Lee
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburgh Mining Research Division, 626 Cochrans Mill Road, Pittsburgh, PA 15236, USA.
| | - Anna A Shvedova
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Exposure Assessment Branch, 1095 Willowdale road, Morgantown, WV 26505, USA; West Virginia University, Department of Physiology and Pharmacology, PO Box 9229, Morgantown, WV, USA.
| |
Collapse
|
37
|
Wang S, Luo Y, Zhou J, Wang M, Wang Y. PLA-PEG-FA NPs for drug delivery system: Evaluation of carrier micro-structure, degradation and size-cell proliferation relationship. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:297-302. [PMID: 30033258 DOI: 10.1016/j.msec.2018.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 02/05/2023]
Abstract
In this paper, the micro-structure of amphiphilic copolymer Polylactic acid-Polyethylene glycol-Folate (PLA-PEG-FA) was studied firstly by a differential scanning calorimetry (DSC). During the process of nanoparticles (NPs) preparation, we found good inter-structure consistency of polymer was the precondition for forming into stable NPs, and those with micro-phase separation structure were prepared of NPs within limits. Hemolytic test and CCK-8 assay results demonstrated the biotoxicity of both NPs and whose leaching liquor was far below related toxicity standards. Two kinds of cell, human breast cancer cell line (MCF-7) and human umbilical vein endothelial cells (EC), showed different manners in test of NPs size-cell proliferation relationship, respectively. Monitored by a nuclear magnetic resonance (NMR) and a gel permeation chromatography (GPC), the degradation behavior of NPs in aqueous solution indicated amide bond break more difficultly than ester bond, and FA classic proton peak disappeared in the third week, meanwhile lactic acid (LA) unit number became 25% of the initial. Finally the NPs was completely degraded in the eighth week. In the whole process, NPs underwent a change from compact to loose state. We hope these results will benefit to improve design of drug delivery system in nanomedicine, which could offer the selection rule for amphiphilic polymer NPs on material and size.
Collapse
Affiliation(s)
- Sujun Wang
- School of Food and Drug, Luoyang Normal University, Luoyang 471022, China; Key Laboratory of Biorheological Science and Technology under Ministry of Education, Research Center of Bioinspired Material Science and Engineering, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Yanfeng Luo
- Key Laboratory of Biorheological Science and Technology under Ministry of Education, Research Center of Bioinspired Material Science and Engineering, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Jin Zhou
- Key Laboratory of Biorheological Science and Technology under Ministry of Education, Research Center of Bioinspired Material Science and Engineering, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Mingxing Wang
- School of Food and Drug, Luoyang Normal University, Luoyang 471022, China
| | - Yuanliang Wang
- Key Laboratory of Biorheological Science and Technology under Ministry of Education, Research Center of Bioinspired Material Science and Engineering, Bioengineering College of Chongqing University, Chongqing 400044, China.
| |
Collapse
|
38
|
|
39
|
Li Q, Li X, Zhang L, Zuo J, Zhang Y, Liu X, Tu L, Xue B, Chang Y, Kong X. An 800 nm driven NaErF 4@NaLuF 4 upconversion platform for multimodality imaging and photodynamic therapy. NANOSCALE 2018; 10:12356-12363. [PMID: 29694473 DOI: 10.1039/c8nr00446c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multimodality imaging-guided therapy based on lanthanide-doped upconversion nanoparticles (UCNPs) has become a trend in cancer theranostics. However, the overheating effect of 980 nm excitation in photodynamic therapy (PDT) and the difficulties in optimizing multimodality imaging integration within a single particle are still challenges. Herein, 800 nm driven NaErF4@NaLuF4 UCNPs have been explored for optimized multimodality imaging and near-infrared (NIR) triggered PDT. Our results confirmed that the optimal ∼5 nm shell thickness can well balance the enhancement of upconversion luminescence and the attenuation of energy transfer efficiency from Er3+ towards a photosensitizer, to achieve efficient production of singlet oxygen (1O2) for PDT under 800 nm excitation. Furthermore, the as-obtained NaErF4@NaLuF4 UCNPs showed effective and applicable performance for upconversion luminescence (UCL) imaging, X-ray computed tomography (CT), and high-field T2 magnetic resonance imaging (MRI). This nanomaterial can serve as an excellent theranostic agent for multimodality imaging and image-guided therapy.
Collapse
Affiliation(s)
- Qiqing Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ganguly P, Breen A, Pillai SC. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater Sci Eng 2018; 4:2237-2275. [DOI: 10.1021/acsbiomaterials.8b00068] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Priyanka Ganguly
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Suresh C. Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| |
Collapse
|
41
|
De Matteis V, Rinaldi R. Toxicity Assessment in the Nanoparticle Era. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:1-19. [PMID: 29453529 DOI: 10.1007/978-3-319-72041-8_1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The wide use of engineered nanomaterials in many fields, ranging from biomedical, agriculture, environment, cosmetic, urged the scientific community to understand the processes behind their potential toxicity, in order to develop new strategies for human safety. As a matter of fact, there is a big discrepancy between the increased classes of nanoparticles and the consequent applications versus their toxicity assessment. Nanotoxicology is defined as the science that studies the effects of engineered nanodevices and nanostructures in living organisms. This chapter analyzes the physico-chemical properties of the most used nanoparticles, the way they enter the living organism and their cytoxicity mechanisms at cellular exposure level. Moreover, the current state of nanoparticles risk assessment is reported and analyzed.
Collapse
Affiliation(s)
- Valeria De Matteis
- Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Lecce, Italy.
| | - Rosaria Rinaldi
- Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Lecce, Italy
| |
Collapse
|
42
|
Muthukumarasamyvel T, Rajendran G, Santhana Panneer D, Kasthuri J, Kathiravan K, Rajendiran N. Role of Surface Hydrophobicity of Dicationic Amphiphile-Stabilized Gold Nanoparticles on A549 Lung Cancer Cells. ACS OMEGA 2017; 2:3527-3538. [PMID: 30023697 PMCID: PMC6044882 DOI: 10.1021/acsomega.7b00353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/12/2017] [Indexed: 05/11/2023]
Abstract
Herein, we report the surface functionality of dicationic cysteamine conjugated cholic acid (DCaC), dicationic cysteamine conjugated deoxycholic acid (DCaDC), and dicationic cysteamine conjugated lithocholic acid (DCaLC) templated gold nanoparticles (AuNPs) on mammalian cells. The haemocompatibility of the synthesized NPs was evaluated by in vitro hemolysis and erythrocyte sedimentation rate using human red blood cells (RBCs). In all of the systems, no toxicity was observed on human erythrocytes (RBCs) up to the concentration of 120 μg/mL. The anticancer activity of these dicationic amphiphile-stabilized AuNPs on A549 lung cancer cells was demonstrated by in vitro cell viability assay, intracellular reactive oxygen species estimation by DCFH-DA, apoptosis analysis using AO-EtBr fluorescence staining, DNA fragmentation analysis by agarose gel electrophoresis, and western blot analysis of caspase-3 expression. These results suggest that the cytotoxicity of AuNPs to A549 cells increase with the dose and hydrophobicity of amphiphiles and were found to be in the order: DCaLC-AuNPs > DCaDC-AuNPs > DCaC-AuNPs.
Collapse
Affiliation(s)
- Thangavel Muthukumarasamyvel
- Department
of Polymer Science and Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Ganapathy Rajendran
- Department
of Polymer Science and Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Devendrapandi Santhana Panneer
- Department
of Polymer Science and Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Jayapalan Kasthuri
- Department
of Chemistry, Quaid-E-Millath Government
College for Women (Autonomous), Chennai 600002, Tamil Nadu, India
| | - Krishnan Kathiravan
- Department
of Polymer Science and Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Nagappan Rajendiran
- Department
of Polymer Science and Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
- E-mail:
| |
Collapse
|
43
|
Vieira S, Vial S, Reis RL, Oliveira JM. Nanoparticles for bone tissue engineering. Biotechnol Prog 2017; 33:590-611. [PMID: 28371447 DOI: 10.1002/btpr.2469] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 03/14/2017] [Indexed: 12/11/2022]
Abstract
Tissue engineering (TE) envisions the creation of functional substitutes for damaged tissues through integrated solutions, where medical, biological, and engineering principles are combined. Bone regeneration is one of the areas in which designing a model that mimics all tissue properties is still a challenge. The hierarchical structure and high vascularization of bone hampers a TE approach, especially in large bone defects. Nanotechnology can open up a new era for TE, allowing the creation of nanostructures that are comparable in size to those appearing in natural bone. Therefore, nanoengineered systems are now able to more closely mimic the structures observed in naturally occurring systems, and it is also possible to combine several approaches - such as drug delivery and cell labeling - within a single system. This review aims to cover the most recent developments on the use of different nanoparticles for bone TE, with emphasis on their application for scaffolds improvement; drug and gene delivery carriers, and labeling techniques. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:590-611, 2017.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Stephanie Vial
- 3B's Research Group, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
44
|
Ahmad F, Zhou Y. Pitfalls and Challenges in Nanotoxicology: A Case of Cobalt Ferrite (CoFe 2O 4) Nanocomposites. Chem Res Toxicol 2017; 30:492-507. [PMID: 28118545 DOI: 10.1021/acs.chemrestox.6b00377] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nanotechnology is developing at a rapid pace with promises of a brilliant socio-economic future. The apprehensions of vivid future involvement with nanotechnology make nanoobjects ubiquitous in the macroscopic world of humans. Nanotechnology helps us to visualize the new mysterious horizons in engineering, sophisticated electronics, environmental remediation, biosensing, and nanomedicine. In all these hotspots, cobalt ferrite (CoFe) nanoparticles (NPs) are outstanding contestants because of their astonishing controllable physicochemical and magnetic properties with ease of synthesis methods. The extensive use of CoFe NPs may result in CoFe NPs easily penetrating the human body unintentionally by ingestion, inhalation, adsorption, etc. and intentionally being instilled into the human body during biomedical diagnostics and treatment. After being housed in the human body, it might induce oxidative stress, cytotoxicity, genotoxicity, inflammation, apoptosis, and developmental, metabolic and hormonal abnormalities. In this review, we compiled the toxicity knowledge of CoFe NPs aimed to provide the safe usage of this breed of nanomaterials.
Collapse
Affiliation(s)
- Farooq Ahmad
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,Research Center of Analysis and Measurement, Zhejiang University of Technology , 18 Chaowang Road, Hangzhou 310032, China
| |
Collapse
|
45
|
Chen YW, Chang CW, Hung HS, Kung ML, Yeh BW, Hsieh S. Magnetite nanoparticle interactions with insulin amyloid fibrils. NANOTECHNOLOGY 2016; 27:415702. [PMID: 27585675 DOI: 10.1088/0957-4484/27/41/415702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Accumulation of amyloid fibrils is one of the likely key factors leading to the development of Alzheimer's disease and other amyloidosis associated diseases. Magnetic nanoparticles (NPs) have been developed as promising medical materials for many medical applications. In this study, we have explored the effects of Fe3O4 NPs on the fibrillogenesis process of insulin fibrils. When Fe3O4 NPs were co-incubated with insulin, Fe3O4 NPs had no effect on the structural transformation into amyloid-like fibrils but had higher affinity toward insulin fibrils. We demonstrated that the zeta potential of insulin fibrils and Fe3O4 NPs were both positive, suggesting the binding forces between Fe3O4 NPs and insulin fibrils were van der Waals forces but not surface charge. Moreover, a different amount of Fe3O4 NPs added had no effect on secondary structural changes of insulin fibrils. These results propose the potential use of Fe3O4 NPs as therapeutic agents against diseases related to protein aggregation or contrast agents for magnetic resonance imaging.
Collapse
Affiliation(s)
- Yun-Wen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications. Biochem Res Int 2016; 2016:7840161. [PMID: 27293893 PMCID: PMC4884576 DOI: 10.1155/2016/7840161] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 12/30/2022] Open
Abstract
In recent years, although many review articles have been presented about bioapplications of magnetic nanoparticles by some research groups with different expertise such as chemistry, biology, medicine, pharmacology, and materials science and engineering, the majority of these reviews are insufficiently comprehensive in all related topics like magnetic aspects of process. In the current review, it is attempted to carry out the inclusive surveys on importance of magnetic nanoparticles and especially magnetite ones and their required conditions for appropriate performance in bioapplications. The main attentions of this paper are focused on magnetic features which are less considered. Accordingly, the review contains essential magnetic properties and their measurement methods, synthesis techniques, surface modification processes, and applications of magnetic nanoparticles.
Collapse
|
47
|
Kim JH, Park EY, Ha HK, Jo CM, Lee WJ, Lee SS, Kim JW. Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:288-98. [PMID: 26732454 PMCID: PMC4698710 DOI: 10.5713/ajas.15.0774] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/18/2015] [Accepted: 11/30/2015] [Indexed: 12/30/2022]
Abstract
Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS). The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549) against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value) compared to trolox and vitamin E since the concentration of resveratrol was more than 50 μM. Nanoparticles prepared from β-lactoglobulin (β-lg) were successfully developed. The β-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with β-lg nanoparticles. Fluorescein isothiocynate-conjugated β-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored H2O2-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1) signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds.
Collapse
|
48
|
Yin H, Casey PS, McCall MJ, Fenech M. Size-dependent cytotoxicity and genotoxicity of ZnO particles to human lymphoblastoid (WIL2-NS) cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:767-776. [PMID: 26248212 DOI: 10.1002/em.21962] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 05/10/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
The relationship between particle size and cytogenotoxicity of ZnO particles was systematically studied in vitro using WIL2-NS human lymphoblastoid cells. Before toxicity measurements, the ZnO particles of three different sizes (26 nm, 78 nm, and 147 nm) were well characterized for their physical and chemical properties to ensure that variations in other properties including surface chemistry and particle shape, which also may influence particle toxicity, were minimal. Cell viability testing showed that increasing cytotoxicity was associated with decreasing particle size. Both the dissolution kinetics of ZnO particles in supplemented cell culture medium and the apparent numbers of ZnO particles internalized by cells were size dependent and showed strong correlation with cytotoxicity. Genotoxicity, as measured by micronucleus formation, was significantly enhanced in the presence of the medium-sized and large-sized particles. The observation that necrosis increased with smaller- sized particles but micronuclei were present to a greater extent with larger- sized particles suggests that different mechanisms of cell damage induction or susceptibilities are operating depending on particle size.
Collapse
Affiliation(s)
- Hong Yin
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Manufacturing Flagship, Clayton, Victoria, Australia
| | - Philip S Casey
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Manufacturing Flagship, Clayton, Victoria, Australia
| | - Maxine J McCall
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Food and Nutrition Flagship, North Ryde, New South Wales, Australia
| | - Michael Fenech
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Food and Nutrition Flagship, Adelaide, South Australia, Australia
| |
Collapse
|
49
|
Meindl C, Kueznik T, Bösch M, Roblegg E, Fröhlich E. Intracellular calcium levels as screening tool for nanoparticle toxicity. J Appl Toxicol 2015; 35:1150-9. [PMID: 25976553 PMCID: PMC4606983 DOI: 10.1002/jat.3160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/01/2015] [Accepted: 03/16/2015] [Indexed: 01/11/2023]
Abstract
The use of engineered nano-sized materials led to revolutionary developments in many industrial applications and in the medical field. These materials, however, also may cause cytotoxicity. In addition to size, surface properties and shape were identified as relevant parameters for cell damage. Cell damage may occur as disruption of membrane integrity, induction of apoptosis and by organelle damage. Generation of oxidative stress may serve as an indicator for cytotoxicity. Effects occurring upon short contact of particles with cells, for instance in the systemic blood circulation, could be identified according to increases of intracellular [Ca(2+) ] levels, which are caused by variety of toxic stimuli. Negatively charged, neutral and positively charged polystyrene particles of different sizes were used to study the role of size and surface properties on viability, membrane disruption, apoptosis, lysosome function, intracellular [Ca(2+) ] levels and generation of oxidative stress. Silica particles served to test this hypothesis. Twenty nm polystyrene particles as well as 12 nm and 40 nm silica particles caused membrane damage and apoptosis with no preference of the surface charge. Only 20 nm plain and amine functionalized polystyrene particles cause oxidative stress and only the plain particles lysosomal damage. A potential role of surface charge was identified for 200 nm polystyrene particles, where only the amidine particles caused lysosomal damage. Increases in intracellular [Ca(2+) ] levels and cytotoxicity after 24 h was often linked but determination of intracellular [Ca(2+) ] levels could serve to characterize further the type of membrane damage.
Collapse
Affiliation(s)
- Claudia Meindl
- Center for Medical Research, Medical University of GrazAustria
| | - Tatjana Kueznik
- Center for Medical Research, Medical University of GrazAustria
| | - Martina Bösch
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of GrazAustria
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of GrazAustria
| | | |
Collapse
|
50
|
Ahamed M, Akhtar MJ, Alhadlaq HA, Khan MAM, Alrokayan SA. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells. CHEMOSPHERE 2015; 135:278-288. [PMID: 25966046 DOI: 10.1016/j.chemosphere.2015.03.079] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/10/2015] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
Nickel ferrite nanoparticles (NPs) have received much attention for their potential applications in biomedical fields such as magnetic resonance imaging, drug delivery and cancer hyperthermia. However, little is known about the toxicity of nickel ferrite NPs at the cellular and molecular levels. In this study, we investigated the cytotoxic responses of nickel ferrite NPs in two different types of human cells (i.e., liver HepG2 and breast MCF-7). Nickel ferrite NPs induced dose-dependent cytotoxicity in both types of cells, which was demonstrated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) assays. Nickel ferrite NPs were also found to induce oxidative stress, which was evident by the depletion of glutathione and the induction of reactive oxygen species (ROS) and lipid peroxidation. The mitochondrial membrane potential due to nickel ferrite NP exposure was also observed. The mRNA levels for the tumor suppressor gene p53 and the apoptotic genes bax, CASP3 and CASP9 were up-regulated, while the anti-apoptotic gene bcl-2 was down-regulated following nickel ferrite NP exposure. Furthermore, the activities of apoptotic enzymes (caspase-3 and caspase-9) were also higher in both types of cells treated with nickel ferrite NPs. Cytotoxicity induced by nickel ferrite was efficiently prevented by N-acetyl cysteine (ROS scavenger) treatment, which suggested that oxidative stress might be one of the possible mechanisms of nickel ferrite NP toxicity. We also observed that MCF-7 cells were slightly more susceptible to nickel ferrite NP exposure than HepG2 cells. This study warrants further investigation to explore the potential mechanisms of different cytotoxic responses of nickel ferrite NPs in different cell lines.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - M A Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salman A Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|