1
|
Bindi B, Perioli A, Melo P, Mattu C, Ferreira AM. Bioinspired Collagen/Hyaluronic Acid/Fibrin-Based Hydrogels for Soft Tissue Engineering: Design, Synthesis, and In Vitro Characterization. J Funct Biomater 2023; 14:495. [PMID: 37888160 PMCID: PMC10607851 DOI: 10.3390/jfb14100495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 10/28/2023] Open
Abstract
A major challenge for future drug development comprises finding alternative models for drug screening. The use of animal models in research is highly controversial, with an ongoing debate on their ethical acceptability. Also, animal models are often poorly predictive of therapeutic outcomes due to the differences between animal and human physiological environments. In this study, we aimed to develop a biomimetic hydrogel that replicates the composition of skin for potential use in in vitro modeling within tissue engineering. The hydrogel was fabricated through the crosslinking of collagen type I, hyaluronic acid, four-arm PEG succinimidyl glutarate (4S-StarPEG), and fibrinogen. Various ratios of these components were systematically optimized to achieve a well-interconnected porosity and desirable rheological properties. To evaluate the hydrogel's cytocompatibility, fibroblasts were embedded within the matrix. The resulting hydrogel exhibited promising properties as a scaffold, also facilitating the growth of and proliferation of the cells. This biomimetic hydrogel holds great potential for tissue engineering applications, particularly in skin regeneration and cancer research. The study used melanoma spheroids fabricated using the 96-round bottom well plate method as a potential application. The results demonstrate that the developed hydrogels allowed the maintenance of spheroid integrity and viability, meaning it has a promising use as a three-dimensional in vitro model of melanoma for both tissue engineering and drug screening applications.
Collapse
Affiliation(s)
- Bianca Bindi
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Annalisa Perioli
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Priscila Melo
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
2
|
Weng T, Yang M, Zhang W, Jin R, Xia S, Zhang M, Wu P, He X, Han C, Zhao X, Wang X. Dual gene-activated dermal scaffolds regulate angiogenesis and wound healing by mediating the coexpression of VEGF and angiopoietin-1. Bioeng Transl Med 2023; 8:e10562. [PMID: 37693053 PMCID: PMC10487340 DOI: 10.1002/btm2.10562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 09/12/2023] Open
Abstract
The vascularization of dermal substitutes is a key challenge in efforts to heal deep skin defects. In this study, dual gene-activated dermal scaffolds (DGADSs-1) were fabricated by loading nanocomposite particles of polyethylenimine (PEI)/multiple plasmid DNAs (pDNAs) encoding vascular endothelial growth factor and angiopoietin-1 at a ratio of 1:1. In a similar manner, DGADSs-2 were loaded with a chimeric plasmid encoding both VEGF and Ang-1. In vitro studies showed that both types of DGADSs released PEI/pDNA nanoparticles in a sustained manner; they demonstrated effective transfection ability, leading to upregulated expression of VEGF and Ang-1. Furthermore, both types of DGADSs promoted fibroblast proliferation and blood vessel formation, although DGADSs-1 showed a more obvious promotion effect. A rat full-thickness skin defect model showed that split-thickness skin transplanted using a one-step method could achieve full survival at the 12th day after surgery in both DGADSs-1 and DGADSs-2 groups, and the vascularization time of dermal substitutes was significantly shortened. Compared with the other three groups of scaffolds, the DGADSs-1 group had significantly greater cell infiltration, collagen deposition, neovascularization, and vascular maturation, all of which promoted wound healing. Thus, compared with single-gene-activated dermal scaffolds, DGADSs show greater potential for enhancing angiogenesis. DGADSs with different loading modes also exhibited differences in terms of angiogenesis; the effect of loading two genes (DGADSs-1) was better than the effect of loading a chimeric gene (DGADSs-2). In summary, DGADSs, which continuously upregulate VEGF and Ang-1 expression, offer a new functional tissue-engineered dermal substitute with the ability to activate vascularization.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
- Department of Burn and Plastic SurgeryChildren's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical CenterHangzhouChina
| | - Min Yang
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| | - Wei Zhang
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| | - Ronghua Jin
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| | - Sizhan Xia
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| | - Manjia Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Pan Wu
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| | - Xiaojie He
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| | - Chunmao Han
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| | - Xiong Zhao
- Department of Burn and Plastic SurgeryChildren's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical CenterHangzhouChina
| | - Xingang Wang
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
3
|
Phan TV, Oo Y, Rodboon T, Nguyen TT, Sariya L, Chaisuparat R, Phoolcharoen W, Yodmuang S, Ferreira JN. Plant molecular farming-derived epidermal growth factor revolutionizes hydrogels for improving glandular epithelial organoid biofabrication. SLAS Technol 2023; 28:278-291. [PMID: 36966988 DOI: 10.1016/j.slast.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Epidermal growth factor (EGF) is a known signaling cue essential towards the development and organoid biofabrication particularly for exocrine glands. This study developed an in vitro EGF delivery platform with Nicotiana benthamiana plant-produced EGF (P-EGF) encapsulated on hyaluronic acid/alginate (HA/Alg) hydrogel to improve the effectiveness of glandular organoid biofabrication in short-term culture systems. Primary submandibular gland epithelial cells were treated with 5 - 20 ng/mL of P-EGF and commercially available bacteria-derived EGF (B-EGF). Cell proliferation and metabolic activity were measured by MTT and luciferase-based ATP assays. P-EGF and B-EGF 5 - 20 ng/mL promoted glandular epithelial cell proliferation during 6 culture days on a comparable fashion. Organoid forming efficiency and cellular viability, ATP-dependent activity and expansion were evaluated using two EGF delivery systems, HA/Alg-based encapsulation and media supplementation. Phosphate buffered saline (PBS) was used as a control vehicle. Epithelial organoids fabricated from PBS-, B-EGF-, and P-EGF-encapsulated hydrogels were characterized genotypically, phenotypically and by functional assays. P-EGF-encapsulated hydrogel enhanced organoid formation efficiency and cellular viability and metabolism relative to P-EGF supplementation. At culture day 3, epithelial organoids developed from P-EGF-encapsulated HA/Alg platform contained functional cell clusters expressing specific glandular epithelial markers such as exocrine pro-acinar (AQP5, NKCC1, CHRM1, CHRM3, Mist1), ductal (K18, Krt19), and myoepithelial (α-SMA, Acta2), and possessed a high mitotic activity (38-62% Ki67 cells) with a large epithelial progenitor population (∼70% K14 cells). The P-EGF encapsulation strikingly upregulated the expression of pro-acinar AQP5 cells through culture time when compared to others (B-EGF, PBS). Thus, the utilization of Nicotiana benthamiana in molecular farming can produce EGF biologicals amenable to encapsulation in HA/Alg-based in vitro platforms, which can effectively and promptly induce the biofabrication of exocrine gland organoids.
Collapse
Affiliation(s)
- Toan V Phan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; International Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yamin Oo
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Truc T Nguyen
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ladawan Sariya
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Wang J, Song Y, Xie W, Zhao J, Wang Y, Yu W. Therapeutic angiogenesis based on injectable hydrogel for protein delivery in ischemic heart disease. iScience 2023; 26:106577. [PMID: 37192972 PMCID: PMC10182303 DOI: 10.1016/j.isci.2023.106577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Ischemic heart disease (IHD) remains the leading cause of death and disability worldwide and leads to myocardial necrosis and negative myocardial remodeling, ultimately leading to heart failure. Current treatments include drug therapy, interventional therapy, and surgery. However, some patients with severe diffuse coronary artery disease, complex coronary artery anatomy, and other reasons are unsuitable for these treatments. Therapeutic angiogenesis stimulates the growth of the original blood vessels by using exogenous growth factors to generate more new blood vessels, which provides a new treatment for IHD. However, direct injection of these growth factors can cause a short half-life and serious side effects owing to systemic spread. Therefore, to overcome this problem, hydrogels have been developed for temporally and spatially controlled delivery of single or multiple growth factors to mimic the process of angiogenesis in vivo. This paper reviews the mechanism of angiogenesis, some important bioactive molecules, and natural and synthetic hydrogels currently being applied for bioactive molecule delivery to treat IHD. Furthermore, the current challenges of therapeutic angiogenesis in IHD and its potential solutions are discussed to facilitate real translation into clinical applications in the future.
Collapse
Affiliation(s)
- Junke Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 26000, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Yancheng Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 26000, China
| | - Wenjie Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Shandong, Qingdao, Shandong 26000, China
| | - Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ying Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong 26000, China
- Corresponding author
| | - Wenzhou Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 26003, China
- Corresponding author
| |
Collapse
|
5
|
Tan Y, Cai B, Li X, Wang X. Preparation and Application of Biomass-based Sprayable Hydrogels. PAPER AND BIOMATERIALS 2023; 8:1-19. [DOI: 10.26599/pbm.2023.9260006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Sethi S, Medha, Thakur S, Singh A, Kaith BS, Khullar S. Biopolymeric Nanohydrogels as Devices for Controlled and Targeted Delivery of Drugs. HANDBOOK OF GREEN AND SUSTAINABLE NANOTECHNOLOGY 2023:1857-1887. [DOI: 10.1007/978-3-031-16101-8_69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Chen J, Zhou X, Sun W, Zhang Z, Teng W, Wang F, Sun H, Zhang W, Wang J, Yu X, Ye Z, Li W. Vascular Derived ECM Improves Therapeutic Index of BMP-2 and Drives Vascularized Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107991. [PMID: 35218305 DOI: 10.1002/smll.202107991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Vascularized osteogenesis is essential for successful bone regeneration, yet its realization during large size bone defect healing remains challenging due to the difficulty to couple multiple biological processes. Herein, harnessing the intrinsic angiogenic potential of vascular derived extracellular matrix (vECM) and its specific affinity to growth factors, a vECM/GelMA based hybrid hydrogel delivery system is constructed to achieve optimized bone morphogenetic protein-2 (BMP-2) therapeutic index and provide intrinsic angiogenic induction during bone healing. The incorporation of vECM not only effectively regulates BMP-2 kinetics to match the bone healing timeframe, but also promotes angiogenesis both in vitro and in vivo. In vivo results also show that vECM-mediated BMP-2 release remarkably enhances vascularized bone formation for critical size bone defects. In particular, blood vessel ingrowth stained with CD31 marker in the defect area is substantially encouraged over the course of healing, suggesting incorporation of vECM served roles in both angiogenesis and osteogenesis. Thus, the authors' study exemplifies that affinity of growth factor towards ECM may be a promising strategy to be leveraged to develop sophisticated delivery systems endowed with desirable properties for regenerative medicine applications.
Collapse
Affiliation(s)
- Jiayu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xingzhi Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Wenquan Sun
- School of Medical and Food, University of Shanghai for Science and Technology, Shanghai, 201210, P. R. China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Wangsiyuan Teng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Hangxiang Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Wei Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Jianwei Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xiaohua Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Weixu Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| |
Collapse
|
8
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
9
|
Dong YC, Bouché M, Uman S, Burdick JA, Cormode DP. Detecting and Monitoring Hydrogels with Medical Imaging. ACS Biomater Sci Eng 2021; 7:4027-4047. [PMID: 33979137 PMCID: PMC8440385 DOI: 10.1021/acsbiomaterials.0c01547] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogels, water-swollen polymer networks, are being applied to numerous biomedical applications, such as drug delivery and tissue engineering, due to their potential tunable rheologic properties, injectability into tissues, and encapsulation and release of therapeutics. Despite their promise, it is challenging to assess their properties in vivo and crucial information such as hydrogel retention at the site of administration and in situ degradation kinetics are often lacking. To address this, technologies to evaluate and track hydrogels in vivo with various imaging techniques have been developed in recent years, including hydrogels functionalized with contrast generating material that can be imaged with methods such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), optical imaging, and nuclear imaging systems. In this review, we will discuss emerging approaches to label hydrogels for imaging, review the advantages and limitations of these imaging techniques, and highlight examples where such techniques have been implemented in biomedical applications.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Selen Uman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Narasimhan B, Narasimhan H, Lorente-Ros M, Romeo FJ, Bhatia K, Aronow WS. Therapeutic angiogenesis in coronary artery disease: a review of mechanisms and current approaches. Expert Opin Investig Drugs 2021; 30:947-963. [PMID: 34346802 DOI: 10.1080/13543784.2021.1964471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Despite tremendous advances, the shortcomings of current therapies for coronary disease are evidenced by the fact that it remains the leading cause of death in many parts of the world. There is hence a drive to develop novel therapies to tackle this disease. Therapeutic approaches to coronary angiogenesis have long been an area of interest in lieu of its incredible, albeit unrealized potential. AREAS COVERED This paper offers an overview of mechanisms of native angiogenesis and a description of angiogenic growth factors. It progresses to outline the advances in gene and stem cell therapy and provides a brief description of other investigational approaches to promote angiogenesis. Finally, the hurdles and limitations unique to this particular area of study are discussed. EXPERT OPINION An effective, sustained, and safe therapeutic option for angiogenesis truly could be the paradigm shift for cardiovascular medicine. Unfortunately, clinically meaningful therapeutic options remain elusive because promising animal studies have not been replicated in human trials. The sheer complexity of this process means that numerous major hurdles remain before therapeutic angiogenesis truly makes its way from the bench to the bedside.
Collapse
Affiliation(s)
- Bharat Narasimhan
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | | | - Marta Lorente-Ros
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Francisco Jose Romeo
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Kirtipal Bhatia
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| |
Collapse
|
11
|
Damerau JM, Bierbaum S, Wiedemeier D, Korn P, Smeets R, Jenny G, Nadalini J, Stadlinger B. A systematic review on the effect of inorganic surface coatings in large animal models and meta-analysis on tricalcium phosphate and hydroxyapatite on periimplant bone formation. J Biomed Mater Res B Appl Biomater 2021; 110:157-175. [PMID: 34272804 PMCID: PMC9292919 DOI: 10.1002/jbm.b.34899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022]
Abstract
The aim of the present systematic review was to analyse studies using inorganic implant coatings and, in a meta‐analysis, the effect of specifically tricalcium phosphate (TCP) and hydroxyapatite (HA) implant surface coatings on bone formation according to the PRISMA criteria. Inclusion criteria were the comparison to rough surfaced titanium implants in large animal studies at different time points of healing. Forty studies met the inclusion criteria for the systematic review. Fifteen of these analyzed the bone‐to‐implant contact (BIC) around the most investigated inorganic titanium implant coatings, namely TCP and HA, and were included in the meta‐analysis. The results of the TCP group show after 14 days a BIC being 3.48% points lower compared with the reference surface. This difference in BIC decreases to 0.85% points after 21–28 days. After 42–84 days, the difference in BIC of 13.79% points is in favor of the TCP‐coatings. However, the results are not statistically significant, in part due to the fact that the variability between the studies increased over time. The results of the HA group show a significant difference in mean BIC of 6.94% points after 14 days in favor of the reference surface. After 21–28 days and 42–84 days the difference in BIC is slightly in favor of the test group with 1.53% points and 1.57% points, respectively, lacking significance. In large animals, there does not seem to be much effect of TCP‐coated or HA‐coated implants over uncoated rough titanium implants in the short term.
Collapse
Affiliation(s)
- Jeanne-Marie Damerau
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Susanne Bierbaum
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,International Medical College, Münster, Germany
| | - Daniel Wiedemeier
- Statistical Services, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Paula Korn
- Department of Oral and Maxillofacial Surgery Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Jenny
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Johanna Nadalini
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Meng X, Xing Y, Li J, Deng C, Li Y, Ren X, Zhang D. Rebuilding the Vascular Network: In vivo and in vitro Approaches. Front Cell Dev Biol 2021; 9:639299. [PMID: 33968926 PMCID: PMC8097043 DOI: 10.3389/fcell.2021.639299] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
As the material transportation system of the human body, the vascular network carries the transportation of materials and nutrients. Currently, the construction of functional microvascular networks is an urgent requirement for the development of regenerative medicine and in vitro drug screening systems. How to construct organs with functional blood vessels is the focus and challenge of tissue engineering research. Here in this review article, we first introduced the basic characteristics of blood vessels in the body and the mechanism of angiogenesis in vivo, summarized the current methods of constructing tissue blood vessels in vitro and in vivo, and focused on comparing the functions, applications and advantages of constructing different types of vascular chips to generate blood vessels. Finally, the challenges and opportunities faced by the development of this field were discussed.
Collapse
Affiliation(s)
- Xiangfu Meng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yunhui Xing
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Cechuan Deng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
13
|
Xu AA, Shapero KS, Geibig JA, Ma HWK, Jones AR, Hanna M, Pitts DR, Hillas E, Firpo MA, Peattie RA. Histologic evaluation of therapeutic responses in ischemic myocardium elicited by dual growth factor delivery from composite glycosaminoglycan hydrogels. Acta Histochem 2021; 123:151699. [PMID: 33662819 DOI: 10.1016/j.acthis.2021.151699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 01/01/2023]
Abstract
In this project, the ability of dual growth factor-preloaded, silk-reinforced, composite hyaluronic acid-based hydrogels to elicit advantageous histologic responses when secured to ischemic myocardium was evaluated in vivo. Reinforced hydrogels containing both Vascular Endothelial Growth Factor (VEGF) and Platelet-derived Growth Factor (PDGF) were prepared by crosslinking chemically modified hyaluronic acid and heparin with poly(ethylene glycol)-diacrylate around a reinforcing silk mesh. Composite patches were sutured to the ventricular surface of ischemic myocardium in Sprague-Dawley rats, and the resulting angiogenic response was followed for 28 days. The gross appearance of treated hearts showed significantly reduced ischemic area and fibrous deposition compared to untreated control hearts. Histologic evaluation showed growth factor delivery to restore myofiber orientation to pre-surgical levels and to significantly increase elicited microvessel density and maturity by day 28 in infarcted myocardial tissue (p < 0.05). In addition, growth factor delivery reduced cell apoptosis and decreased the density of elicited mast cells and both CD68+ and anti-inflammatory CD163+ macrophages. These findings suggest that HA-based, dual growth factor-loaded hydrogels can successfully induce a series of beneficial responses in ischemic myocardium, and offer the potential for therapeutic improvement of ischemic myocardial remodeling.
Collapse
Affiliation(s)
- Alexander A Xu
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Kayle S Shapero
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Jared A Geibig
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Hsiang-Wei K Ma
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Alex R Jones
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Marina Hanna
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Daniel R Pitts
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Elaine Hillas
- Department of Surgery, School of Medicine, The University of Utah, 30 N., 1930 E., Salt Lake City, UT, 84132, USA
| | - Matthew A Firpo
- Department of Surgery, School of Medicine, The University of Utah, 30 N., 1930 E., Salt Lake City, UT, 84132, USA
| | - Robert A Peattie
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| |
Collapse
|
14
|
Mizuno Y, Taguchi T. Self-assembled dodecyl group-modified gelatin microparticle-based hydrogels with angiogenic properties. NPG ASIA MATERIALS 2020; 12:48. [DOI: 10.1038/s41427-020-0229-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 01/05/2025]
Abstract
AbstractSupplying oxygen and nutrients to implanted cells or tissues is an important factor that improves their survivability and function in regenerative medicine. Various efforts have been made to develop angiogenic materials by incorporating and releasing growth factors such as vascular endothelial growth factor (VEGF). However, these exogenous growth factors have a short half-life under physiological conditions. We therefore designed a novel angiogenic microparticle (C12-MP) comprising Alaska pollock-derived gelatin (ApGltn) modified with a dodecyl group (C12-ApGltn) to stimulate endogenous VEGF secretion. The C12-MP suspension formed an injectable hydrogel, the rheological properties and enzymatic degradation of which were evaluated. RAW264 cells, mouse macrophage-like cells, cultured with C12-MPs, secreted significantly more VEGF than the original ApGltn MPs. Based on laser Doppler perfusion imaging, the C12-MP hydrogel clearly induced increased blood perfusion in a subcutaneous mouse model compared with the original ApGltn microparticle (Org-MP) or phosphate-buffered saline controls. Histological studies revealed that the areas of nuclear factor (NF)-κB, CD31, and myeloperoxidase staining showed a greater increase at the site injected with C12-MPs than at the site injected with the original ApGltn microparticles or phosphate-buffered saline. The C12-MP hydrogel is a promising angiogenic material for constructing vascular beds for cell transplantation by promoting endogenous VEGF secretion without additional growth factors.
Collapse
|
15
|
Hao D, Fan Y, Xiao W, Liu R, Pivetti C, Walimbe T, Guo F, Zhang X, Farmer DL, Wang F, Panitch A, Lam KS, Wang A. Rapid endothelialization of small diameter vascular grafts by a bioactive integrin-binding ligand specifically targeting endothelial progenitor cells and endothelial cells. Acta Biomater 2020; 108:178-193. [PMID: 32151698 PMCID: PMC8012081 DOI: 10.1016/j.actbio.2020.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/31/2022]
Abstract
Establishing and maintaining a healthy endothelium on vascular and intravascular devices is crucial for the prevention of thrombosis and stenosis. Generating a biofunctional surface on vascular devices to recruit endothelial progenitor cells (EPCs) and endothelial cells (ECs) has proven efficient in promoting in situ endothelialization. However, molecules conventionally used for EPC/EC capturing generally lack structural stability, capturing specificity, and biological functionalities, which have limited their applications. Discovery of effective, specific, and structurally stable EPC/EC capturing ligands is desperately needed. Using the high-throughput One-Bead One-Compound combinatorial library screening technology, we recently identified a disulfide cyclic octa-peptide LXW7 (cGRGDdvc), which possesses strong binding affinity and functionality to EPCs/ECs, weak binding to platelets, and no binding to inflammatory cells. Because LXW7 is cyclic and 4 out of the 8 amino acids are unnatural D-amino acids, LXW7 is highly proteolytically stable. In this study, we applied LXW7 to modify small diameter vascular grafts using a Click chemistry approach. In vitro studies demonstrated that LXW7-modified grafts significantly improved EPC attachment, proliferation and endothelial differentiation and suppressed platelet attachment. In a rat carotid artery bypass model, LXW7 modification of the small diameter vascular grafts significantly promoted EPC/EC recruitment and rapidly achieved endothelialization. At 6 weeks after implantation, LXW7-modified grafts retained a high patency of 83%, while the untreated grafts had a low patency of 17%. Our results demonstrate that LXW7 is a potent EPC/EC capturing and platelet suppressing ligand and LXW7-modified vascular grafts rapidly generate a healthy and stable endothelial interface between the graft surface and the circulation to reduce thrombosis and improve patency. STATEMENT OF SIGNIFICANCE: In this study, One-Bead One-Compound (OBOC) technology has been applied for the first time in discovering bioactive ligands for tissue regeneration applications. Current molecules used to modify artificial vascular grafts generally lack EPC/EC capturing specificity, biological functionalities and structural stability. Using OBOC technology, we identified LXW7, a constitutionally stable disulfide cyclic octa-peptide with strong binding affinity and biological functionality to EPCs/ECs, very weak binding to platelets and no binding to inflammatory cells. These characteristics are crucial for promoting rapid endothelialization to prevent thrombosis and improve patency of vascular grafts. LXW7 coating technology could be applied to a wide range of vascular and intravascular devices, including grafts, stents, cardiac valves, and catheters, where a "living" endothelium and healthy blood interface are needed.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, United States; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Yahan Fan
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, United States; Department of Blood Transfusion, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, United States
| | - Christopher Pivetti
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, United States; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Tanaya Walimbe
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States
| | - Fuzheng Guo
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Xinke Zhang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, United States; School of Pharmaceutical Science, Shandong University, Jinan, Shandong 250012, China
| | - Diana L Farmer
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, United States; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Fengshan Wang
- School of Pharmaceutical Science, Shandong University, Jinan, Shandong 250012, China
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, United States; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States; Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
16
|
Liu G, Wu R, Yang B, Shi Y, Deng C, Atala A, Mou S, Criswell T, Zhang Y. A cocktail of growth factors released from a heparin hyaluronic-acid hydrogel promotes the myogenic potential of human urine-derived stem cells in vivo. Acta Biomater 2020; 107:50-64. [PMID: 32044457 DOI: 10.1016/j.actbio.2020.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 01/19/2023]
Abstract
Traditional cell therapy technology relies on the maximum expansion of primary stem cells in vitro, through multiple passages and potential differentiation protocols, in order to generate the abundance of cells needed prior to transplantation in vivo. Implantation of in vitro over-expanded and pre-differentiated cells typically results in poor cell survival and reduced regeneration capacity for tissue repair in vivo. We hypothesized that implantation of primary stem cells, after a short time culture in vitro (passage number ≤p3), in combination with controlled release of relevant growth factors would improve in vivo cell viability, engraftment and tissue regeneration. The goal of this study was to determine whether the release of myogenic growth factors from a heparin-hyaluronic acid gel (hp-HA gel) could enhance in vivo cell survival, in-growth and myogenic differentiation of human urine-derived stem cells (USC) with a corresponding enhancement in graft vascularization, innervation and regenerative properties. Human USC were obtained from healthy adult donors (n = 6), expanded and then mixed with a hp-HA gel containing sets of growth factors known to enhance myogenesis (IGF1, HGF, PDGF-BB), neurogenesis (NGF, FGF) and angiogenesis (VEGF), or a cocktail with a combination of growth factors. Primary cultured USC (p3) mixed with the hp-HA gel and the various combinations of growth factors, were subcutaneously injected into athymic mice. In vivo cell survival, engraftment and functional differentiation within the host tissue were assessed. The implanted grafts containing USC and the growth factor cocktail showed the greatest number of surviving cells as well as increased numbers of cells that expressed myogenic and endothelial cell markers as compared to other groups 4 weeks after implantation. Moreover, the graft with USC and the growth factor cocktail showed increased numbers of blood vessels and infiltrating neurons. Thus, growth factors released in a controlled manner from an hp-HA gel containing USC efficiently improved in vivo cell survival and supported vascularization and myogenic differentiation within the grafts. This study provides evidence for the use of primary USC and growth factors in a hydrogel as a novel mode of cell therapy for the promotion of myogenic differentiation for the treatment of injured muscle tissue. STATEMENT OF SIGNIFICANCE: Cell therapies are a promising treatment option for neuromuscular dysfunction disorders. However, major limitations in cell retention and engraftment after implantation remain a hindrance to the use of stem cell therapy for the treatment of muscle injuries or diseased tissues. Implanted long-term in vitro cultured cells tend to demonstrate low rates of survival and tissue engraftment, lessened paracrine effects, and poor homing and differentiation. Human USC are an easily obtainable stem cell source that possess stem cell characteristics such as a robust proliferative potential, paracrine effects on neighboring cells, and multi-potential differentiation. In this study, we demonstrated that a combination of primary human USC with a cocktail of growth factors combined in a hyaluronic gel was optimal for cell survival and engraftment, including myogenic differentiation potential of USC, angiogenesis and host nerve fiber recruitment in vivo. The present study also demonstrated that the use of primary urine derived stem cells at early passages, without in vitro pre-differentiation, implanted in a hyaluronic-heparin hydrogel containing a cocktail of growth factors, provided an alternative safe site-specific delivery method for cell therapy.
Collapse
Affiliation(s)
- Guihua Liu
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rongpei Wu
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bin Yang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yingai Shi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Chunhua Deng
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Steven Mou
- Anesthesiology-Pediatric ICU Anesthesia at WakeForest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
17
|
Development of hydrogel-like biomaterials via nanoparticle assembly and solid-hydrogel transformation. J Control Release 2019; 318:185-196. [PMID: 31857102 DOI: 10.1016/j.jconrel.2019.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/07/2019] [Accepted: 12/15/2019] [Indexed: 11/22/2022]
Abstract
Hydrogels for biomedical applications such as controlled drug release are usually synthesized with the chemical or physical crosslinking of monomers or macromers. In this work, we used gelatin to prepare hydrogel nanoparticles and studied whether gelatin nanoparticles (GNPs) could assemble to form a solid biomaterial and whether this solid biomaterial was capable of transforming into a hydrogel upon introduction to a hydrated environment. The data show that GNPs with or without aptamer functionalization could form a nanoparticle-assembled porous solid biomaterial after freezing and lyophilization treatment. This formation did not need any additional crosslinking reactions. More importantly, this solid biomaterial could undergo solid-to-hydrogel transition after contacting a solution and this transformation was tunable to match different shapes and geometries of defined molds. The formed hydrogel could also sequester and release growth factors for the promotion of skin wound healing. Thus, GNP-assembled solid biomaterials hold great potential as an off-the-shelf therapy for biomedical application such as drug delivery and regenerative medicine.
Collapse
|
18
|
Cui H, Zhu W, Huang Y, Liu C, Yu ZX, Nowicki M, Miao S, Cheng Y, Zhou X, Lee SJ, Zhou Y, Wang S, Mohiuddin M, Horvath K, Zhang LG. In vitro and in vivo evaluation of 3D bioprinted small-diameter vasculature with smooth muscle and endothelium. Biofabrication 2019; 12:015004. [PMID: 31470437 PMCID: PMC6803062 DOI: 10.1088/1758-5090/ab402c] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to fabricate perfusable, small-diameter vasculature is a foundational step toward generating human tissues/organs for clinical applications. Currently, it is highly challenging to generate vasculature integrated with smooth muscle and endothelium that replicates the complexity and functionality of natural vessels. Here, a novel method for directly printing self-standing, small-diameter vasculature with smooth muscle and endothelium is presented through combining tailored mussel-inspired bioink and unique 'fugitive-migration' tactics, and its effectiveness and advantages over other methods (i.e. traditional alginate/calcium hydrogel, post-perfusion of endothelial cells) are demonstrated. The biologically inspired, catechol-functionalized, gelatin methacrylate (GelMA/C) undergoes rapid oxidative crosslinking in situ to form an elastic hydrogel, which can be engineered with controllable mechanical strength, high cell/tissue adhesion, and excellent bio-functionalization. The results demonstrate the bioprinted vascular construct possessed numerous favorable, biomimetic characteristics such as proper biomechanics, higher tissue affinity, vascularized tissue manufacturing ability, beneficial perfusability and permeability, excellent vasculoactivity, and in vivo autonomous connection (∼2 weeks) as well as vascular remodeling (∼6 weeks). The advanced achievements in creating biomimetic, functional vasculature illustrate significant potential toward generating a complicated vascularized tissue/organ for clinical transplantation.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wei Z, Volkova E, Blatchley MR, Gerecht S. Hydrogel vehicles for sequential delivery of protein drugs to promote vascular regeneration. Adv Drug Deliv Rev 2019; 149-150:95-106. [PMID: 31421149 PMCID: PMC6889011 DOI: 10.1016/j.addr.2019.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/04/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
In recent years, as the mechanisms of vasculogenesis and angiogenesis have been uncovered, the functions of various pro-angiogenic growth factors (GFs) and cytokines have been identified. Therefore, therapeutic angiogenesis, by delivery of GFs, has been sought as a treatment for many vascular diseases. However, direct injection of these protein drugs has proven to have limited clinical success due to their short half-lives and systemic off-target effects. To overcome this, hydrogel carriers have been developed to conjugate single or multiple GFs with controllable, sustained, and localized delivery. However, these attempts have failed to account for the temporal complexity of natural angiogenic pathways, resulting in limited therapeutic effects. Recently, the emerging ideas of optimal sequential delivery of multiple GFs have been suggested to better mimic the biological processes and to enhance therapeutic angiogenesis. Incorporating sequential release into drug delivery platforms will likely promote the formation of neovasculature and generate vast therapeutic potential.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eugenia Volkova
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael R Blatchley
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Layer-by-layer constructed hyaluronic acid/chitosan multilayers as antifouling and fouling-release coatings. Biointerphases 2019; 14:051002. [DOI: 10.1116/1.5110887] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Silva CR, Babo PS, Gulino M, Costa L, Oliveira JM, Silva-Correia J, Domingues RM, Reis RL, Gomes ME. Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomater 2018; 77:155-171. [PMID: 30031163 DOI: 10.1016/j.actbio.2018.07.035] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
Bioengineered soft tissues on any meaningful scale or complexity must incorporate aspects of the functional tissue, namely a vasculature, providing cells oxygen and nutrients critical for their survival. However, the ability of tissue engineering strategies to promote a fast revascularization is critically limited. Particularly in endodontic regenerative therapies, the complicated anatomy of the root canal system, and the narrow apical access limit the supply of new blood vessels and pulp tissue ingrowth. Here we characterize the viscoelastic and microstructural properties of a class of injectable hyaluronic acid (HA) hydrogels formed in situ, reinforced with cellulose nanocrystals (CNCs) and enriched with platelet lysate (PL), and test its ability to promote cells recruitment and proangiogenic activity in vitro. The incorporation of CNCs enhanced the stability of the materials against hydrolytic and enzymatic degradation. Moreover, the release of the chemotactic and pro-angiogenic growth factors (GFs) (PDGF and VEGF) from the PL-laden hydrogels showed an improved sustained profile proportional to the amount of incorporated CNCs. The PL-laden hydrogels exhibited preferential supportive properties of encapsulated human dental pulp cells (hDPCs) in in vitro culture conditions. Finally, PL-laden hydrogels stimulated chemotactic and pro-angiogenic activity by promoting hDPCs recruitment and cell sprouting in hDPCs/human umbilical vein endothelial cell co-cultures in vitro, and in an ex vivo model. These results support the use of the combined system as a scaffold for GFs delivery and cells recruitment, thereby exhibiting great clinical potential in treating injuries in vascularized tissues. STATEMENT OF SIGNIFICANCE Innovative strategies for improved chemotactic and pro-angiogenic features of TE constructs are needed. In this study, we developed an injectable HA/CNC/PL hydrogel with improved structural and biologic properties, that not only provide a sustained release of chemotactic and proangiogenic GFs from PL but also enhance the cells' viability and angiogenic activity. As a result of their unique traits, the developed hydrogels are ideally suited to simultaneously act as a GFs controlled delivery system and as a supportive matrix for cell culture, recruitment, and revascularization induction, holding great potential for the regeneration of vascularized soft tissues, such as the dentin-pulp complex.
Collapse
|
22
|
Jalalvandi E, Hanton LR, Moratti SC. Preparation of a pH sensitive hydrogel based on dextran and polyhydrazide for release of 5-flurouracil, an anticancer drug. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Hyaluronan chemistries for three-dimensional matrix applications. Matrix Biol 2018; 78-79:337-345. [PMID: 29438729 DOI: 10.1016/j.matbio.2018.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 01/02/2023]
Abstract
Hyaluronan is a ubiquitous constituent of mammalian extracellular matrices and, because of its excellent intrinsic biocompatibility and chemical modification versatility, has been widely employed in a multitude of biomedical applications. In this article, we will survey the approaches used to tailor hyaluronan to specific needs of tissue engineering, regenerative and reconstructive medicine and overall biomedical research. We will also describe recent examples of applications in these broader areas, such as 3D cell culture, bioprinting, organoid biofabrication, and precision medicine that are facilitated by the use of hyaluronan as a biomaterial.
Collapse
|
24
|
Giordano C, Albani D, Gloria A, Tunesi M, Batelli S, Russo T, Forloni G, Ambrosio L, Cigada A. Multidisciplinary Perspectives for Alzheimer's and Parkinson's Diseases: Hydrogels for Protein Delivery and Cell-Based Drug Delivery as Therapeutic Strategies. Int J Artif Organs 2018; 32:836-50. [DOI: 10.1177/039139880903201202] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review presents two intriguing multidisciplinary strategies that might make the difference in the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The first proposed strategy is based on the controlled delivery of recombinant proteins known to play a key role in these neurodegenerative disorders that are released in situ by optimized polymer-based systems. The second strategy is the use of engineered cells, encapsulated and delivered in situ by suitable polymer-based systems, that act as drug reservoirs and allow the delivery of selected molecules to be used in the treatment of Alzheimer's and Parkinson's diseases. In both these scenarios, the design and development of optimized polymer-based drug delivery and cell housing systems for central nervous system applications represent a key requirement. Materials science provides suitable hydrogel-based tools to be optimized together with suitably designed recombinant proteins or drug delivering-cells that, once in situ, can provide an effective treatment for these neurodegenerative disorders. In this scenario, only interdisciplinary research that fully integrates biology, biochemistry, medicine and materials science can provide a springboard for the development of suitable therapeutic tools, not only for the treatment of Alzheimer's and Parkinson's diseases but also, prospectively, for a wide range of severe neurodegenerative disorders.
Collapse
Affiliation(s)
- Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan - Italy
| | - Diego Albani
- Department of Neuroscience, Institute for Pharmacological Research “Mario Negri”, Milan - Italy
| | - Antonio Gloria
- Institute of Composite and Biomedical Materials, National Research Council, Naples - Italy
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan - Italy
| | - Sara Batelli
- Department of Neuroscience, Institute for Pharmacological Research “Mario Negri”, Milan - Italy
| | - Teresa Russo
- Department of Materials and Production Engineering, University of Naples “Federico II”, Naples - Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Institute for Pharmacological Research “Mario Negri”, Milan - Italy
| | - Luigi Ambrosio
- Institute of Composite and Biomedical Materials, National Research Council, Naples - Italy
| | - Alberto Cigada
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan - Italy
| |
Collapse
|
25
|
Li W, Wu D, Tan J, Liu Z, Lu L, Zhou C. A gene-activating skin substitute comprising PLLA/POSS nanofibers and plasmid DNA encoding ANG and bFGF promotes in vivo revascularization and epidermalization. J Mater Chem B 2018; 6:6977-6992. [DOI: 10.1039/c8tb02006j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A gene-activated porous nanofibrous scaffold for effectively promoting vascularization, epidermalization and dermal wound healing by sustained release of dual plasmid DNAs.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- College of Life Science and Technology
| | - Dongwei Wu
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Jianwang Tan
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Zhibin Liu
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Lu Lu
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- Engineering Research Center of Artificial Organs and Materials
| | - Changren Zhou
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- Engineering Research Center of Artificial Organs and Materials
| |
Collapse
|
26
|
Marchioli G, Zellner L, Oliveira C, Engelse M, Koning ED, Mano J, Apeldoorn AV, Moroni L. Layered PEGDA hydrogel for islet of Langerhans encapsulation and improvement of vascularization. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:195. [PMID: 29151130 PMCID: PMC5694514 DOI: 10.1007/s10856-017-6004-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Islets of Langerhans need to maintain their round morphology and to be fast revascularized after transplantation to preserve functional insulin secretion in response to glucose stimulation. For this purpose, a non-cell-adhesive environment is preferable for their embedding. Conversely, nutrient and oxygen supply to islets is guaranteed by capillary ingrowth within the construct and this can only be achieved in a matrix that provides adhesion cues for cells. In this study, two different approaches are explored, which are both based on a layered architecture, in order to combine these two opposite requirements. A non-adhesive islet encapsulation layer is based on polyethyleneglycole diacrylate (PEGDA). This first layer is combined with a second hydrogel based on thiolated-gelatin, thiolated-heparin and thiolated-hyaluronic acid providing cues for endothelial cell adhesion and acting as a growth factor releasing matrix. In an alternative approach, a conformal PEGDA coating is covalently applied on the surface of the islets. The coated islets are subsequently embedded in the previously mentioned hydrogel containing thiolated glycosaminoglycans. The suitability of this approach as a matrix for controlled growth factor release has been demonstrated by studying the controlled release of VEGF and bFGF for 14 days. Preliminary tube formation has been quantified on the growth factor loaded hydrogels. This approach should facilitate blood vessel ingrowth towards the embedded islets and maintain islet round morphology and functionality upon implantation.
Collapse
Affiliation(s)
- Giulia Marchioli
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Lisa Zellner
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Catarina Oliveira
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Marten Engelse
- Department of Nephrology and Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eelco de Koning
- Department of Nephrology and Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joao Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Aart van Apeldoorn
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
27
|
Mao D, Zhu M, Zhang X, Ma R, Yang X, Ke T, Wang L, Li Z, Kong D, Li C. A macroporous heparin-releasing silk fibroin scaffold improves islet transplantation outcome by promoting islet revascularisation and survival. Acta Biomater 2017; 59:210-220. [PMID: 28666883 DOI: 10.1016/j.actbio.2017.06.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
Abstract
Islet transplantation is considered the most promising therapeutic option with the potential to cure diabetes. However, efficacy of current clinical islet transplantation is limited by long-term graft dysfunction and attrition. We have investigated the therapeutic potential of a silk fibroin macroporous (SF) scaffold for syngeneic islet transplantation in diabetic mice. The SF scaffold was prepared via lyophilisation, which enables incorporation of active compounds including cytokines, peptide and growth factors without compromising their biological activity. For the present study, a heparin-releasing SF scaffold (H-SF) in order to evaluate the versatility of the SF scaffold for biological functionalisation. Islets were then co-transplanted with H-SF or SF scaffolds in the epididymal fat pad of diabetic mice. Mice from both H-SF and SF groups achieved 100% euglycaemia, which was maintained for 1year. More importantly, the H-SF-islets co-transplantation led to more rapid reversal of hyperglycaemia, complete normalisation of glucose responsiveness and lower long-term blood glucose levels. This superior transplantation outcome is attributable to H-SF-facilitated islet revascularisation and cell proliferation since significant increase of islet endocrine and endothelial cells proliferation was shown in grafts retrieved from H-SF-islets co-transplanted mice. Better intra-islet vascular reformation was also evident, accompanied by VEGF upregulation. In addition, when H-SF was co-transplanted with islets extracted from vegfr2-luc transgenic mice in vivo, sustained elevation of bioluminescent signal that corresponds to vegfr2 expression was collected, implicating a role of heparin-dependent activation of endogenous VEGF/VEGFR2 pathway in promoting islet revascularisation and proliferation. In summary, the SF scaffolds provide an open platform as scaffold development for islet transplantation. Furthermore, given the pro-angiogenic, pro-survival and minimal post-transplantation inflammatory reactions of H-SF, our data also support the feasibility of clinical implementation of H-SF to improve islet transplantation outcome. STATEMENT OF SIGNIFICANCE 1) The silk fibroin scaffold presented in the present study provides an open platform for scaffold development in islet transplantation, with heparinisation as an example. 2) Both heparin and silk fibroin have been used clinically. The excellent in vivo therapeutic outcome reported here may therefore be clinically relevant and provide valuable insights for bench to bed translation. 3) Compared to conventional clinical islet transplantation, during which islets are injected via the hepatic portal vein, the physical/mechanical properties of silk fibroin scaffolds create a more accessible transplantation site (i.e., within fat pad), which significantly reduces discomfort. 4) Islet implantation into the fat pad also avoids an instant blood mediated inflammatory response, which occurs upon contact of islet with recipient's blood during intraportal injection, and prolongs survival and function of implanted islets.
Collapse
Affiliation(s)
- Duo Mao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), College of Life Science, Nankai University, Tianjin 300071, China
| | - Meifeng Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), College of Life Science, Nankai University, Tianjin 300071, China
| | - Xiuyuan Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Rong Ma
- Department of Endocrinology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, Yunnan, China
| | - Xiaoqing Yang
- Department of Endocrinology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, Yunnan, China
| | - Tingyu Ke
- Department of Endocrinology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, Yunnan, China
| | - Lianyong Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), College of Life Science, Nankai University, Tianjin 300071, China
| | - Zongjin Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), College of Life Science, Nankai University, Tianjin 300071, China; School of Medicine, Nankai University, Tianjin 300071, China.
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), College of Life Science, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
28
|
Wissing TB, Bonito V, Bouten CVC, Smits AIPM. Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective. NPJ Regen Med 2017; 2:18. [PMID: 29302354 PMCID: PMC5677971 DOI: 10.1038/s41536-017-0023-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
There is a persistent and growing clinical need for readily-available substitutes for heart valves and small-diameter blood vessels. In situ tissue engineering is emerging as a disruptive new technology, providing ready-to-use biodegradable, cell-free constructs which are designed to induce regeneration upon implantation, directly in the functional site. The induced regenerative process hinges around the host response to the implanted biomaterial and the interplay between immune cells, stem/progenitor cell and tissue cells in the microenvironment provided by the scaffold in the hemodynamic environment. Recapitulating the complex tissue microstructure and function of cardiovascular tissues is a highly challenging target. Therein the scaffold plays an instructive role, providing the microenvironment that attracts and harbors host cells, modulating the inflammatory response, and acting as a temporal roadmap for new tissue to be formed. Moreover, the biomechanical loads imposed by the hemodynamic environment play a pivotal role. Here, we provide a multidisciplinary view on in situ cardiovascular tissue engineering using synthetic scaffolds; starting from the state-of-the art, the principles of the biomaterial-driven host response and wound healing and the cellular players involved, toward the impact of the biomechanical, physical, and biochemical microenvironmental cues that are given by the scaffold design. To conclude, we pinpoint and further address the main current challenges for in situ cardiovascular regeneration, namely the achievement of tissue homeostasis, the development of predictive models for long-term performances of the implanted grafts, and the necessity for stratification for successful clinical translation.
Collapse
Affiliation(s)
- Tamar B Wissing
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Valentina Bonito
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
29
|
Xu HL, Yu WZ, Lu CT, Li XK, Zhao YZ. Delivery of growth factor-based therapeutics in vascular diseases: Challenges and strategies. Biotechnol J 2017; 12. [PMID: 28296342 DOI: 10.1002/biot.201600243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022]
Abstract
Either cardiovascular or peripheral vascular diseases have become the major cause of morbidity and mortality worldwide. Recently, growth factors therapeutics, whatever administrated in form of exogenous growth factors or their relevant genes have been discovered to be an effective strategy for the prevention and therapy of vascular diseases, because of their promoting angiogenesis. Besides, as an alternative, stem cell-based therapy has been also developed in view of their paracrine-mediated effect or ability of differentiation toward angiogenesis-related cells under assistance of growth factors. Despite of being specific and potent, no matter growth factors or stem cells-based therapy, their full clinical transformation is limited from bench to bedside. In this review, the potential choices of therapeutic modes based on types of different growth factors or stem cells were firstly summarized for vascular diseases. The confronted various challenges such as lack of non-invasive delivery method, the physiochemical challenge, the short half-life time, and poor cell survival, were carefully analyzed for these therapeutic modes. Various strategies to overcome these limitations are put forward from the perspective of drug delivery. The expertised design of a suitable delivery form will undoubtedly provide valuable insight into their clinical application in the regenerative medicine.
Collapse
Affiliation(s)
- He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Wen-Ze Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui-Tao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xiao-Kun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
- Collaborative Innovation Center of Biomedical Science by Wenzhou University & Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
30
|
Wang K, Zhang Q, Zhao L, Pan Y, Wang T, Zhi D, Ma S, Zhang P, Zhao T, Zhang S, Li W, Zhu M, Zhu Y, Zhang J, Qiao M, Kong D. Functional Modification of Electrospun Poly(ε-caprolactone) Vascular Grafts with the Fusion Protein VEGF-HGFI Enhanced Vascular Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11415-11427. [PMID: 28276249 DOI: 10.1021/acsami.6b16713] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Synthetic artificial vascular grafts have exhibited low patency rate and severe neointimal hyperplasia in replacing small-caliber arteries (<6 mm) because of their failure to generate a functional endothelium. In this study, small-caliber (2.0 mm) electrospun poly(ε-caprolactone) (PCL) vascular grafts were modified with a fusion protein VEGF-HGFI which consists of the class I hydrophobin (HGFI) and vascular endothelial growth factor (VEGF), via hydrophobic interactions. Immunofluorescence staining with the anti-VEGF antibody showed that VEGF-HGFI formed a protein layer on the surface of fibers in the grafts. Scanning electron microscopy (SEM) and mechanical measurements showed that VEGF-HGFI modification had no effect on the structure and mechanical properties of PCL grafts. Blood compatibility tests demonstrated a lower level of fibrinogen (FGN) absorption, platelet activation, and aggregation on the VEGF-HGFI-modified PCL mats than that on the bare PCL mats. The hemolysis rate was comparable in both the modified and bare PCL mats. In vitro culture of human umbilical vein endothelial cells (HUVECs) demonstrated that VEGF-HGFI modification could remarkably enhance nitric oxide (NO) production, prostacyclin2 (PGI2) release, and the uptake of acetylated low-density lipoprotein (Ac-LDL) by HUVECs. The healing characteristics of the modified grafts were examined in the replacement of rat abdominal aorta for up to 1 month. Immunofluorescence staining revealed that endothelialization, vascularization, and smooth muscle cell (SMC) regeneration were markedly improved in the VEGF-HGFI-modified PCL grafts. These results suggest that modification with fusion protein VEGF-HGFI is an effective method to improve the regeneration capacity of synthetic vascular grafts.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Qiuying Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Liqiang Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Yiwa Pan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Ting Wang
- Urban Transport Emission Control Research Centre, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Dengke Zhi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Shaoyang Ma
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Peixin Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Tiechan Zhao
- Center for Research and Development of Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193, China
| | - Siming Zhang
- Center for Research and Development of Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193, China
| | - Wen Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Meifeng Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Yan Zhu
- Center for Research and Development of Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193, China
| | - Jun Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Mingqiang Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| |
Collapse
|
31
|
Fakoya AOJ. New Delivery Systems of Stem Cells for Vascular Regeneration in Ischemia. Front Cardiovasc Med 2017; 4:7. [PMID: 28286751 PMCID: PMC5323391 DOI: 10.3389/fcvm.2017.00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/07/2017] [Indexed: 01/08/2023] Open
Abstract
The finances of patients and countries are increasingly overwhelmed with the plague of cardiovascular diseases as a result of having to chronically manage the associated complications of ischemia such as heart failures, neurological deficits, chronic limb ulcers, gangrenes, and amputations. Hence, scientific research has sought for alternate therapies since pharmacological and surgical treatments have fallen below expectations in providing the desired quality of life. The advent of stem cells research has raised expectations with respect to vascular regeneration and tissue remodeling, hence assuring the patients of the possibility of an improved quality of life. However, these supposed encouraging results have been short-lived as the retention, survival, and engraftment rates of these cells appear to be inadequate; hence, the long-term beneficial effects of these cells cannot be ascertained. These drawbacks have led to the relentless research into better ways to deliver stem cells or angiogenic factors (which mobilize stem cells) to the regions of interest to facilitate increased retention, survival, engraftment, and regeneration. This review considered methods, such as the use of scaffolds, retrograde coronary delivery, improved combinations, stem cell pretreatment, preconditioning, stem cell exosomes, mannitol, magnet, and ultrasound-enhanced delivery, homing techniques, and stem cell modulation. Furthermore, the study appraised the possibility of a combination therapy of stem cells and macrophages, considering the enormous role macrophages play in repair, remodeling, and angiogenesis.
Collapse
|
32
|
Hamlet SM, Vaquette C, Shah A, Hutmacher DW, Ivanovski S. 3-Dimensional functionalized polycaprolactone-hyaluronic acid hydrogel constructs for bone tissue engineering. J Clin Periodontol 2017; 44:428-437. [PMID: 28032906 DOI: 10.1111/jcpe.12686] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2016] [Indexed: 11/27/2022]
Abstract
AIM Alveolar bone regeneration remains a significant clinical challenge in periodontology and dental implantology. This study assessed the mineralized tissue forming potential of 3-D printed medical grade polycaprolactone (mPCL) constructs containing osteoblasts (OB) encapsulated in a hyaluronic acid (HA)-hydrogel incorporating bone morphogenetic protein-7 (BMP-7). MATERIALS AND METHODS HA-hydrogels containing human OB ± BMP-7 were prepared. Cell viability, osteogenic gene expression, mineralized tissue formation and BMP-7 release in vitro, were assessed by fluorescence staining, RT-PCR, histological/μ-CT examination and ELISA respectively. In an athymic rat model, subcutaneous ectopic mineralized tissue formation in mPCL-hydrogel constructs was assessed by μ-CT and histology. RESULTS Osteoblast encapsulation in HA-hydrogels did not detrimentally effect cell viability, and 3-D culture in osteogenic media showed mineralized collagenous matrix formation after 6 weeks. BMP-7 release from the hydrogel was biphasic, sustained and increased osteogenic gene expression in vitro. After 4 weeks in vivo, mPCL-hydrogel constructs containing BMP-7 formed significantly more volume (mm3 ) of vascularized bone-like tissue. CONCLUSIONS Functionalized mPCL-HA hydrogel constructs provide a favourable environment for bone tissue engineering. Although encapsulated cells contributed to mineralized tissue formation within the hydrogel in vitro and in vivo, their addition did not result in an improved outcome compared to BMP-7 alone.
Collapse
Affiliation(s)
- Stephen M Hamlet
- Menzies Health Institute Queensland, Griffith University, Southport, Qld, Australia.,School of Dentistry and Oral Health, Griffith University, Southport, Qld, Australia
| | - Cedryck Vaquette
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Qld, Australia
| | - Amit Shah
- Menzies Health Institute Queensland, Griffith University, Southport, Qld, Australia
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Qld, Australia
| | - Saso Ivanovski
- Menzies Health Institute Queensland, Griffith University, Southport, Qld, Australia.,School of Dentistry and Oral Health, Griffith University, Southport, Qld, Australia
| |
Collapse
|
33
|
Silva LPD, Pirraco RP, Santos TC, Novoa-Carballal R, Cerqueira MT, Reis RL, Correlo VM, Marques AP. Neovascularization Induced by the Hyaluronic Acid-Based Spongy-Like Hydrogels Degradation Products. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33464-33474. [PMID: 27960396 DOI: 10.1021/acsami.6b11684] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Neovascularization has been a major challenge in many tissue regeneration strategies. Hyaluronic acid (HA) of 3-25 disaccharides is known to be angiogenic due to its interaction with endothelial cell receptors. This effect has been explored with HA-based structures but a transitory response is observed due to HA burst biodegradation. Herein we developed gellan gum (GG)-HA spongy-like hydrogels from semi-interpenetrating network hydrogels with different HA amounts. Enzymatic degradation was more evident in the GG-HA with high HA amount due to their lower mechanical stability, also resulting from the degradation itself, which facilitated the access of the enzyme to the HA in the bulk. GG-HA spongy-like hydrogels hyaluronidase-mediated degradation lead to the release of HA oligosaccharides of different amounts and sizes in a HA content-dependent manner which promoted in vitro proliferation of human umbilical cord vein endothelial cells (HUVECs) but not their migration. Although no effect was observed in human dermal microvascular endothelial cells (hDMECs) in vitro, the implantation of GG-HA spongy-like hydrogels in an ischemic hind limb mice model promoted neovascularization in a material-dependent manner, consistent with the in vitro degradation profile. Overall, GG-HA spongy-like hydrogels with a sustained release of HA oligomers are valuable options to improve tissue vascularization, a critical issue in several applications in the tissue engineering and regenerative medicine field.
Collapse
Affiliation(s)
- Lucília P da Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Tírcia C Santos
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Ramon Novoa-Carballal
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Mariana T Cerqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Vitor M Correlo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| |
Collapse
|
34
|
Marchioli G, Luca AD, de Koning E, Engelse M, Van Blitterswijk CA, Karperien M, Van Apeldoorn AA, Moroni L. Hybrid Polycaprolactone/Alginate Scaffolds Functionalized with VEGF to Promote de Novo Vessel Formation for the Transplantation of Islets of Langerhans. Adv Healthc Mater 2016; 5:1606-16. [PMID: 27113576 DOI: 10.1002/adhm.201600058] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/16/2016] [Indexed: 12/26/2022]
Abstract
Although regarded as a promising treatment for type 1 diabetes, clinical islet transplantation in the portal vein is still hindered by a low transplantation outcome. Alternative transplantation sites have been proposed, but the survival of extra-hepatically transplanted islets of Langerhans critically depends on quick revascularization after engraftment. This study aims at developing a new 3D scaffold platform that can actively boost vascularization and may find an application for extra-hepatic islet transplantation. The construct consists of a 3D ring-shaped polycaprolactone (PCL) scaffold with heparinized surface to electrostatically bind vascular endothelial growth factor (VEGF), surrounding a hydrogel core for islets encapsulation. Heparin immobilization improves the amount of VEGF retained by the construct, up to 3.6 fold, compared to untreated PCL scaffolds. In a chicken chorioallanthoic membrane model, VEGF immobilized on the construct enhances angiogenesis in close proximity and on the surface of the scaffolds. After 7 days, islets encapsulated in the alginate core show functional response to glucose stimuli comparable to free-floating islets. Thus, the developed platform has the potential to support rapid vascularization and islet endocrine function.
Collapse
Affiliation(s)
- Giulia Marchioli
- Department of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; Faculty of Science and Technology; University of Twente; Drienerlolaan 5 7522 NB Enschede The Netherlands
| | - Andrea Di Luca
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; Faculty of Science and Technology; University of Twente; Drienerlolaan 5 7522 NB Enschede The Netherlands
| | - Eelco de Koning
- Department of Nephrology and Department of Endocrinology; Leiden University Medical Center; Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Marten Engelse
- Department of Nephrology and Department of Endocrinology; Leiden University Medical Center; Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Clemens A. Van Blitterswijk
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; Faculty of Science and Technology; University of Twente; Drienerlolaan 5 7522 NB Enschede The Netherlands
- Department of Complex Tissue Regeneration; MERLN Institute for Technology Inspired Regenerative Medicine; Maastricht University; Universiteitssingel 40 6229 ER Maastricht The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; Faculty of Science and Technology; University of Twente; Drienerlolaan 5 7522 NB Enschede The Netherlands
| | - Aart A. Van Apeldoorn
- Department of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; Faculty of Science and Technology; University of Twente; Drienerlolaan 5 7522 NB Enschede The Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; Faculty of Science and Technology; University of Twente; Drienerlolaan 5 7522 NB Enschede The Netherlands
- Department of Complex Tissue Regeneration; MERLN Institute for Technology Inspired Regenerative Medicine; Maastricht University; Universiteitssingel 40 6229 ER Maastricht The Netherlands
| |
Collapse
|
35
|
Skardal A, Murphy SV, Crowell K, Mack D, Atala A, Soker S. A tunable hydrogel system for long-term release of cell-secreted cytokines and bioprinted in situ wound cell delivery. J Biomed Mater Res B Appl Biomater 2016; 105:1986-2000. [PMID: 27351939 DOI: 10.1002/jbm.b.33736] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/18/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
Abstract
For many cellular therapies being evaluated in preclinical and clinical trials, the mechanisms behind their therapeutic effects appear to be the secretion of growth factors and cytokines, also known as paracrine activity. Often, delivered cells are transient, and half-lives of the growth factors that they secrete are short, limiting their long-term effectiveness. The goal of this study was to optimize a hydrogel system capable of in situ cell delivery that could sequester and release growth factors secreted from those cells after the cells were no longer present. Here, we demonstrate the use of a fast photocross-linkable heparin-conjugated hyaluronic acid (HA-HP) hydrogel as a cell delivery vehicle for sustained growth factor release, which extends paracrine activity. The hydrogel could be modulated through cross-linking geometries and heparinization to support sustained release proteins and heparin-binding growth factors. To test the hydrogel in vivo, we used it to deliver amniotic fluid-derived stem (AFS) cells, which are known to secrete cytokines and growth factors, in full thickness skin wounds in a nu/nu murine model. Despite transience of the AFS cells in vivo, the HA-HP hydrogel with AFS cells improved wound closure and reepithelialization and increased vascularization and production of extracellular matrix in vivo. These results suggest that HA-HP hydrogel has the potential to prolong the paracrine activity of cells, thereby increasing their therapeutic effectiveness in wound healing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1986-2000, 2017.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.,Department of Biomedical Engineering, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, North Carolina.,Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Sean V Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Kathryn Crowell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - David Mack
- Department of Rehabilitation Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.,Department of Bioengineering, University of Washington, Seattle, Washington
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.,Department of Biomedical Engineering, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.,Department of Biomedical Engineering, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, North Carolina.,Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| |
Collapse
|
36
|
Zhou Y. The Application of Ultrasound in 3D Bio-Printing. Molecules 2016; 21:E590. [PMID: 27164066 PMCID: PMC6274238 DOI: 10.3390/molecules21050590] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional (3D) bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation) in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF) and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.
Collapse
Affiliation(s)
- Yufeng Zhou
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
37
|
Farokhi M, Mottaghitalab F, Shokrgozar MA, Ou KL, Mao C, Hosseinkhani H. Importance of dual delivery systems for bone tissue engineering. J Control Release 2016; 225:152-69. [PMID: 26805518 DOI: 10.1016/j.jconrel.2016.01.033] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
Bone formation is a complex process that requires concerted function of multiple growth factors. For this, it is essential to design a delivery system with the ability to load multiple growth factors in order to mimic the natural microenvironment for bone tissue formation. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and high toxicity suggest that conventional routes of administration are unlikely to be effective. Therefore, it seems that using multiple bioactive factors in different delivery systems can develop new strategies for improving bone tissue regeneration. Combination of these factors along with biomaterials that permit tunable release profiles would help to achieve truly spatiotemporal regulation during delivery. This review summarizes the various dual-control release systems that are used for bone tissue engineering.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Keng-Liang Ou
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University - Shuang Ho Hospital, New Taipei city, Taiwan
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019, USA
| | - Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
38
|
Abstract
Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. While growth factor or cell therapy is promising, the retention of bioactive agents in the highly vascularized myocardium is limited and prevents sustained activation needed for adequate cellular responses. Various types of biomaterials with different physical and chemical properties have been developed to improve the localized delivery of growth factor and/or cells for therapeutic angiogenesis in ischemic tissues. Hydrogels are particularly advantageous as carrier systems because they are structurally similar to the tissue extracellular matrix (ECM), they can be processed under relatively mild conditions and can be delivered in a minimally invasive manner. Moreover, hydrogels can be designed to degrade in a timely fashion that coincides with the angiogenic process. For these reasons, hydrogels have shown great potential as pro-angiogenic matrices. This paper reviews a few of the hydrogel systems currently being applied together with growth factor delivery and/or cell therapy to promote therapeutic angiogenesis in ischemic tissues, with emphasis on myocardial applications.
Collapse
|
39
|
Van Hove AH, Benoit DSW. Depot-Based Delivery Systems for Pro-Angiogenic Peptides: A Review. Front Bioeng Biotechnol 2015; 3:102. [PMID: 26236708 PMCID: PMC4504170 DOI: 10.3389/fbioe.2015.00102] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/29/2015] [Indexed: 01/13/2023] Open
Abstract
Insufficient vascularization currently limits the size and complexity for all tissue engineering approaches. Additionally, increasing or re-initiating blood flow is the first step toward restoration of ischemic tissue homeostasis. However, no FDA-approved pro-angiogenic treatments exist, despite the many pre-clinical approaches that have been developed. The relatively small size of peptides gives advantages over protein-based treatments, specifically with respect to synthesis and stability. While many pro-angiogenic peptides have been identified and shown promising results in vitro and in vivo, the majority of biomaterials developed for pro-angiogenic drug delivery focus on protein delivery. This narrow focus limits pro-angiogenic therapeutics as peptides, similar to proteins, suffer from poor pharmacokinetics in vivo, necessitating the development of controlled release systems. This review discusses pro-angiogenic peptides and the biomaterials delivery systems that have been developed, or that could easily be adapted for peptide delivery, with a particular focus on depot-based delivery systems.
Collapse
Affiliation(s)
- Amy H. Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
40
|
Molecular weight and concentration of heparin in hyaluronic acid-based matrices modulates growth factor retention kinetics and stem cell fate. J Control Release 2015; 209:308-16. [PMID: 25931306 DOI: 10.1016/j.jconrel.2015.04.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/20/2015] [Accepted: 04/25/2015] [Indexed: 12/22/2022]
Abstract
Growth factors are critical for regulating and inducing various stem cell functions. To study the effects of growth factor delivery kinetics and presentation on stem cell fate, we developed a series of heparin-containing hyaluronic acid (HyA)-based hydrogels with various degrees of growth factor affinity and retention. To characterize this system, we investigated the effect of heparin molecular weight, fractionation, and relative concentration on the loading efficiency and retention kinetics of TGFβ1 as a model growth factor. At equal concentrations, high MW heparin both loaded and retained the greatest amount of TGFβ1, and had the slowest release kinetics, primarily due to the higher affinity with TGFβ1 compared to low MW or unfractionated heparin. Subsequently, we tested the effect of TGFβ1, presented from various heparin-containing matrices, to differentiate a versatile population of Sca-1(+)/CD45(-) cardiac progenitor cells (CPCs) into endothelial cells and form vascular-like networks in vitro. High MW heparin HyA hydrogels stimulated more robust differentiation of CPCs into endothelial cells, which formed vascular-like networks within the hydrogel. This observation was attributed to the ability of high MW heparin HyA hydrogels to sequester endogenously synthesized angiogenic factors within the matrix. These results demonstrate the importance of molecular weight, fractionation, and concentration of heparin on presentation of heparin-binding growth factors and their effect on stem cell differentiation and lineage specification.
Collapse
|
41
|
Blatchley MR, Gerecht S. Acellular implantable and injectable hydrogels for vascular regeneration. Biomed Mater 2015; 10:034001. [DOI: 10.1088/1748-6041/10/3/034001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Sundararaj SC, Thomas MV, Dziubla TD, Puleo DA. Bioerodible system for sequential release of multiple drugs. Acta Biomater 2014; 10:115-25. [PMID: 24096151 DOI: 10.1016/j.actbio.2013.09.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/24/2013] [Accepted: 09/24/2013] [Indexed: 12/22/2022]
Abstract
Because many complex physiological processes are controlled by multiple biomolecules, comprehensive treatment of certain disease conditions may be more effectively achieved by administration of more than one type of drug. Thus, the objective of the present research was to develop a multilayered, polymer-based system for sequential delivery of multiple drugs. The polymers used were cellulose acetate phthalate (CAP) complexed with Pluronic F-127 (P). After evaluating morphology of the resulting CAPP system, in vitro release of small molecule drugs and a model protein was studied from both single and multilayered devices. Drug release from single-layered CAPP films followed zero-order kinetics related to surface erosion of the association polymer. Release studies from multilayered CAPP devices showed the possibility of achieving intermittent release of one type of drug as well as sequential release of more than one type of drug. Mathematical modeling accurately predicted the release profiles for both single layer and multilayered devices. The present CAPP association polymer-based multilayer devices can be used for localized, sequential delivery of multiple drugs for the possible treatment of complex disease conditions, and perhaps for tissue engineering applications, that require delivery of more than one type of biomolecule.
Collapse
Affiliation(s)
- Sharath C Sundararaj
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0070, USA
| | | | | | | |
Collapse
|
43
|
Yalcinkaya TM, Sittadjody S, Opara EC. Scientific principles of regenerative medicine and their application in the female reproductive system. Maturitas 2014; 77:12-9. [DOI: 10.1016/j.maturitas.2013.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 02/01/2023]
|
44
|
El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract 2013; 2013:316-42. [PMID: 24689032 PMCID: PMC3963751 DOI: 10.5339/gcsp.2013.38] [Citation(s) in RCA: 447] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/11/2013] [Indexed: 12/18/2022] Open
Abstract
Designing of biologically active scaffolds with optimal characteristics is one of the key factors for successful tissue engineering. Recently, hydrogels have received a considerable interest as leading candidates for engineered tissue scaffolds due to their unique compositional and structural similarities to the natural extracellular matrix, in addition to their desirable framework for cellular proliferation and survival. More recently, the ability to control the shape, porosity, surface morphology, and size of hydrogel scaffolds has created new opportunities to overcome various challenges in tissue engineering such as vascularization, tissue architecture and simultaneous seeding of multiple cells. This review provides an overview of the different types of hydrogels, the approaches that can be used to fabricate hydrogel matrices with specific features and the recent applications of hydrogels in tissue engineering. Special attention was given to the various design considerations for an efficient hydrogel scaffold in tissue engineering. Also, the challenges associated with the use of hydrogel scaffolds were described.
Collapse
Affiliation(s)
- Ibrahim M El-Sherbiny
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, 12588 Giza, Egypt
| | - Magdi H Yacoub
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
45
|
Sundararaj SC, Thomas MV, Peyyala R, Dziubla TD, Puleo DA. Design of a multiple drug delivery system directed at periodontitis. Biomaterials 2013; 34:8835-42. [PMID: 23948165 PMCID: PMC3773615 DOI: 10.1016/j.biomaterials.2013.07.093] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/26/2013] [Indexed: 02/07/2023]
Abstract
Periodontal disease is highly prevalent, with 90% of the world population affected by either periodontitis or its preceding condition, gingivitis. These conditions are caused by bacterial biofilms on teeth, which stimulate a chronic inflammatory response that leads to loss of alveolar bone and, ultimately, the tooth. Current treatment methods for periodontitis address specific parts of the disease, with no individual treatment serving as a complete therapy. The present research sought to demonstrate development of a multiple drug delivery system for stepwise treatment of different stages of periodontal disease. More specifically, multilayered films were fabricated from an association polymer comprising cellulose acetate phthalate and Pluronic F-127 to achieve sequential release of drugs. The four types of drugs used were metronidazole, ketoprofen, doxycycline, and simvastatin to eliminate infection, inhibit inflammation, prevent tissue destruction, and aid bone regeneration, respectively. Different erosion times and adjustable sequential release profiles were achieved by modifying the number of layers or by inclusion of a slower-eroding polymer layer. Analysis of antibiotic and anti-inflammatory bioactivity showed that drugs released from the devices retained 100% bioactivity. The multilayered CAPP delivery system offers a versatile approach for releasing different drugs based on the pathogenesis of periodontitis and other conditions.
Collapse
Affiliation(s)
- Sharath C. Sundararaj
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0070, USA
| | - Mark V. Thomas
- College of Dentistry, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Rebecca Peyyala
- College of Dentistry, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Thomas D. Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, USA
| | - David A. Puleo
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0070, USA
| |
Collapse
|
46
|
Kharkar PM, Kiick KL, Kloxin AM. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev 2013; 42:7335-72. [PMID: 23609001 PMCID: PMC3762890 DOI: 10.1039/c3cs60040h] [Citation(s) in RCA: 498] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Indexed: 12/12/2022]
Abstract
Degradable and cell-compatible hydrogels can be designed to mimic the physical and biochemical characteristics of native extracellular matrices and provide tunability of degradation rates and related properties under physiological conditions. Hence, such hydrogels are finding widespread application in many bioengineering fields, including controlled bioactive molecule delivery, cell encapsulation for controlled three-dimensional culture, and tissue engineering. Cellular processes, such as adhesion, proliferation, spreading, migration, and differentiation, can be controlled within degradable, cell-compatible hydrogels with temporal tuning of biochemical or biophysical cues, such as growth factor presentation or hydrogel stiffness. However, thoughtful selection of hydrogel base materials, formation chemistries, and degradable moieties is necessary to achieve the appropriate level of property control and desired cellular response. In this review, hydrogel design considerations and materials for hydrogel preparation, ranging from natural polymers to synthetic polymers, are overviewed. Recent advances in chemical and physical methods to crosslink hydrogels are highlighted, as well as recent developments in controlling hydrogel degradation rates and modes of degradation. Special attention is given to spatial or temporal presentation of various biochemical and biophysical cues to modulate cell response in static (i.e., non-degradable) or dynamic (i.e., degradable) microenvironments. This review provides insight into the design of new cell-compatible, degradable hydrogels to understand and modulate cellular processes for various biomedical applications.
Collapse
Affiliation(s)
- Prathamesh M. Kharkar
- Department of Materials Science and Engineering , University of Delaware , Newark , DE 19716 , USA . ;
| | - Kristi L. Kiick
- Department of Materials Science and Engineering , University of Delaware , Newark , DE 19716 , USA . ;
- Biomedical Engineering , University of Delaware , Newark , DE 19716 , USA
- Delaware Biotechnology Institute , University of Delaware , Newark , DE 19716 , USA
| | - April M. Kloxin
- Department of Materials Science and Engineering , University of Delaware , Newark , DE 19716 , USA . ;
- Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , DE 19716 , USA
| |
Collapse
|
47
|
Formiga FR, Tamayo E, Simón-Yarza T, Pelacho B, Prósper F, Blanco-Prieto MJ. Angiogenic therapy for cardiac repair based on protein delivery systems. Heart Fail Rev 2013; 17:449-73. [PMID: 21979836 DOI: 10.1007/s10741-011-9285-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cardiovascular diseases remain the first cause of morbidity and mortality in the developed countries and are a major problem not only in the western nations but also in developing countries. Current standard approaches for treating patients with ischemic heart disease include angioplasty or bypass surgery. However, a large number of patients cannot be treated using these procedures. Novel curative approaches under investigation include gene, cell, and protein therapy. This review focuses on potential growth factors for cardiac repair. The role of these growth factors in the angiogenic process and the therapeutic implications are reviewed. Issues including aspects of growth factor delivery are presented in relation to protein stability, dosage, routes, and safety matters. Finally, different approaches for controlled growth factor delivery are discussed as novel protein delivery platforms for cardiac regeneration.
Collapse
Affiliation(s)
- F R Formiga
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Hassan W, Dong Y, Wang W. Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Stem Cell Res Ther 2013; 4:32. [PMID: 23517589 PMCID: PMC3707066 DOI: 10.1186/scrt182] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/14/2013] [Indexed: 12/16/2022] Open
Abstract
Introduction Cell therapy using adipose-derived stem cells has been reported to improve chronic wounds via differentiation and paracrine effects. One such strategy is to deliver stem cells in hydrogels, which are studied increasingly as cell delivery vehicles for therapeutic healing and inducing tissue regeneration. This study aimed to determine the behaviour of encapsulated adipose-derived stem cells and identify the secretion profile of suitable growth factors for wound healing in a newly developed thermoresponsive PEG–hyaluronic acid (HA) hybrid hydrogel to provide a novel living dressing system. Methods In this study, human adipose-derived stem cells (hADSCs) were encapsulated in situ in a water-soluble, thermoresponsive hyperbranched PEG-based copolymer (PEGMEMA–MEO2MA–PEGDA) with multiple acrylate functional groups in combination with thiolated HA, which was developed via deactivated enhanced atom transfer radical polymerisation of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, Mn = 475), 2-(2-methoxyethoxy) ethyl methacrylate (MEO2MA) and poly(ethylene glycol) diacrylate PEGDA (Mn = 258). hADSCs embedded in the PEGMEMA–MEO2MA–PEGDA and HA hybrid hydrogel system (P-SH-HA) were monitored and analysed for their cell viability, cell proliferation and secretion of growth factors (vascular endothelial growth factor, transforming growth factor beta and placental-derived growth factor) and cytokines (IFNγ, IL-2 and IL-10) under three-dimensional culture conditions via the ATP activity assay, alamarBlue® assay, LIVE/DEAD® assay and multiplex ELISA, respectively. Results hADSCs were successfully encapsulated in situ with high cell viability for up to 7 days in hydrogels. Although cellular proliferation was inhibited, cellular secretion of growth factors such as vascular endothelial growth factor and placental-derived growth factor production increased over 7 days, whereas IL-2 and IFNγ release were unaffected. Conclusion This study indicates that hADSCs can be maintained in a P-SH-HA hydrogel, and secrete pro-angiogenic growth factors with low cytotoxicity. With the potential to add more functionality for further structural modifications, this stem cell hydrogel system can be an ideal living dressing system for wound healing applications.
Collapse
|
49
|
Shin SH, Lee J, Lim KS, Rhim T, Lee SK, Kim YH, Lee KY. Sequential delivery of TAT-HSP27 and VEGF using microsphere/hydrogel hybrid systems for therapeutic angiogenesis. J Control Release 2013; 166:38-45. [DOI: 10.1016/j.jconrel.2012.12.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/21/2012] [Accepted: 12/12/2012] [Indexed: 11/26/2022]
|
50
|
|