1
|
Awad NK. Organs on chips: fundamentals, bioengineering and applications. J Artif Organs 2025; 28:110-130. [PMID: 39134691 DOI: 10.1007/s10047-024-01460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/12/2024] [Indexed: 05/16/2025]
Abstract
Human body constitutes unique biological system containing specific fluid mechanics and biomechanics. Traditional cell culture techniques of 2D and 3D do not recapitulate these specific natures of the human system. In addition, they lack the spatiotemporal conditions of representing the cells. Moreover, they do not enable the study of cell-cell interactions in multiple cell culture platforms. Therefore, establishing biological system of dynamic cell culture was of great interest. Organs on chips systems were fabricated proving their concept to mimic specific organs functions. Therefore, it paves the way for validating new drugs and establishes mechanisms of emerging diseases. It has played a key role in validating suitable vaccines for Coronavirus disease (COVID-19). Herein, the concept of organs on chips, fabrication methodology and their applications are discussed.
Collapse
Affiliation(s)
- Nasser K Awad
- Physical Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Dokki, 12422, Cairo, Egypt.
| |
Collapse
|
2
|
Iijima M, Sato M, Wakabayashi H, Kojima K, Togashi K, Oishi S, Misu T, Mukai M, Miyajima H, Maruo S, Iijima K. Fabrication of Multiscale, Multidirectional Orientated Collagen Hydrogels with Guided Cell Alignment Using Fluidics and a Three-Dimensional Printing. ACS Biomater Sci Eng 2025; 11:2875-2887. [PMID: 40251729 PMCID: PMC12076280 DOI: 10.1021/acsbiomaterials.4c02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
Various tissues have oriented collagen structures that confer mechanical strength and stability. However, creating models that precisely mimic the size and direction of these tissues remains challenging. In the present study, we developed a collagen tissue with multiscale and multidirectional controlled orientation using fluidic devices prepared using three-dimensional (3D) printing technology. Two types of fluidic channels were fabricated: a one-directional "horizontal orientation model" and vertical protrusions added to create a two-directional "vertical/horizontal orientation model". A type I collagen solution, mixed with or without cells, was introduced into the fluidic channel and gelled. As a result, in the horizontal orientation model, collagen fibrils and fibers were oriented by the flow. Both the fibroblasts and stem cells were aligned parallel to the flow along the collagen structure. In the vertical/horizontal orientation model, both the horizontal and vertical parts confirmed the orientation of collagen fibrils, fibers, and fibroblasts in both directions. Observation of the model at the nanoscale level using scanning electron microscopy (SEM) can explain the collagen orientation mechanism at the molecular and fibril levels. Prior to full gelation, collagen molecules and fibrils align parallel to the flow owing to the influence of flow and channel wall effects. This wall effect, starting from the outer channel wall, creates a gelated collagen "wall" toward the inside of the channel. Collagen fibrils aggregate into collagen fibers. In our experiments focusing on collagen contraction, the cell orientation was also described. As cells proliferate in response to the contact guidance of collagen fibrils and fiber orientation, focal adhesions and F-actin are activated and organize anisotropic traction forces that, in turn, drive cell orientation. Therefore, our method enables the customization of models with the desired tissue-specific orientations, thereby advancing future possibilities in tissue engineering.
Collapse
Affiliation(s)
- Mizuki Iijima
- Graduate
School of Engineering Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Mitsuki Sato
- Graduate
School of Engineering Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Hoshi Wakabayashi
- Graduate
School of Engineering Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kaori Kojima
- Graduate
School of Engineering Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kanata Togashi
- Graduate
School of Engineering Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Shogo Oishi
- Graduate
School of Engineering Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Takumi Misu
- Graduate
School of Engineering Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Masaru Mukai
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Hiroki Miyajima
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Shoji Maruo
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Institute
of Advanced Sciences, Yokohama National
University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Institute
for Multidisciplinary Sciences, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazutoshi Iijima
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Institute
of Advanced Sciences, Yokohama National
University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
3
|
Pueyo Moliner A, Ito K, Zaucke F, Kelly DJ, de Ruijter M, Malda J. Restoring articular cartilage: insights from structure, composition and development. Nat Rev Rheumatol 2025; 21:291-308. [PMID: 40155694 DOI: 10.1038/s41584-025-01236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/01/2025]
Abstract
Articular cartilage can withstand substantial compressive and shear forces within the joint and also reduces friction during motion. The exceptional mechanical properties of articular cartilage stem from its highly organized extracellular matrix (ECM). The ECM is composed mainly of collagen type II and is pivotal in conferring mechanical durability to the tissue within its proteoglycan-rich matrix. Articular cartilage is prone to injury and degeneration, and current treatments often fail to restore the mechanical function of this tissue. A key challenge is replicating the intricate collagen-proteoglycan network, which is essential for the long-lasting restoration and mechanical durability of the tissue. Understanding articular cartilage development, which arises between late embryonic and early juvenile development, is vital for the creation of durable therapeutic strategies. The development of the articular ECM involves the biosynthesis, fibrillogenesis and self-assembly of the collagen type II network, which, along with proteoglycans and minor ECM components, shapes the architecture of adult articular cartilage. A deeper understanding of these processes could inform biomaterial-based therapies aimed at improving therapeutic outcomes. Emerging biofabrication technologies offer new opportunities to integrate developmental principles into the creation of durable articular cartilage implants. Bridging fundamental biology with innovative engineering offers novel approaches to generating more-durable 3D implants for articular cartilage restoration.
Collapse
Affiliation(s)
- Alba Pueyo Moliner
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Keita Ito
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Frank Zaucke
- Department of Trauma Surgery and Orthopedics, Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mylène de Ruijter
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands.
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands.
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Zanotelli MR, Miller JP, Wang W, Ortiz I, Tahon E, Bordeleau F, Reinhart-King CA. Tension directs cancer cell migration over fiber alignment through energy minimization. Biomaterials 2024; 311:122682. [PMID: 38959532 DOI: 10.1016/j.biomaterials.2024.122682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Cell migration during many fundamental biological processes including metastasis requires cells to traverse tissue with heterogeneous mechanical cues that direct migration as well as determine force and energy requirements for motility. However, the influence of discrete structural and mechanical cues on migration remains challenging to determine as they are often coupled. Here, we decouple the pro-invasive cues of collagen fiber alignment and tension to study their individual impact on migration. When presented with both cues, cells preferentially travel in the axis of tension against fiber alignment. Computational and experimental data show applying tension perpendicular to alignment increases potential energy stored within collagen fibers, lowering requirements for cell-induced matrix deformation and energy usage during migration compared to motility in the direction of fiber alignment. Energy minimization directs migration trajectory, and tension can facilitate migration against fiber alignment. These findings provide a conceptual understanding of bioenergetics during migration through a fibrous matrix.
Collapse
Affiliation(s)
- Matthew R Zanotelli
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Joseph P Miller
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ismael Ortiz
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Elise Tahon
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, G1R 3S3, Canada
| | - Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, G1R 3S3, Canada; Département de Biologie Moléculaire, de Biochimie Médicale et de Pathologie, Université Laval, Québec, Canada, G1V 0A6.
| | | |
Collapse
|
5
|
Zhou Y, Shi W, Kimura R, Chai Y, Tagaya M. Self-Assembly of Cyclic-Bending Collagen Fibrils by Polyimide Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22602-22613. [PMID: 39412338 DOI: 10.1021/acs.langmuir.4c02340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The cyclic-bending morphologies of the fibrils formed by the self-assembly of type I collagen (Col) are closely related to the mechanisms of various diseases. Therefore, studies that allow the self-assembly of Col molecules to form cyclic-bending fibrils in vitro are vitally important. In this study, we successfully achieved the cyclic-bending shapes (specifically, a regular hexagonal shape) of Col molecules by controlling the steric structures of polyimide (PI) molecular chains through the film formation process. Specifically, when a single layer of PI film was baked, the PI molecular chains within the film bent in the direction parallel to the substrate surface plane. Repeating the layering and baking processes resulted in 3D structures of the PI molecular chains, which were oriented in the direction perpendicular to the substrate surface plane. This three-dimensional bending would result from the PI molecular chain interactions between the upper and lower layers. When the Col molecules were reacted on these film surfaces, they recognized the structures of the PI molecular chains and self-assembled to form cyclic-bending Col fibrils. Especially, in PI films subjected to three cycles of layering and baking, hemicircular-shaped Col fibrils were observed to be regularly arrayed. Additionally, these regularly cyclic-bending fibrils were aligned in the uniaxial direction through a uniaxial rubbing treatment of the PI films. This successful research is significant both as a method for controlling the morphologies of Col fibrils and as a study that explores the biomedical implications of Col fibril cyclic-bending in the living body.
Collapse
Affiliation(s)
- Yanni Zhou
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
| | - Wanyu Shi
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
- Research Fellow of the Japan Society for the Promotion of Science (DC), 5-3-1 Koji-machi, Chiyoda-ku, Tokyo102-0083, Japan
| | - Reo Kimura
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
| | - Yadong Chai
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
| | - Motohiro Tagaya
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
6
|
Subramanian D, Tjahjono N, Hernandez PA, Varner VD, Petroll WM, Schmidtke DW. Fabrication of Micropatterns of Aligned Collagen Fibrils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2551-2561. [PMID: 38277615 PMCID: PMC11001481 DOI: 10.1021/acs.langmuir.3c02676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Many tissues in vivo contain aligned structures such as filaments, fibrils, and fibers, which expose cells to anisotropic structural and topographical cues that range from the nanometer to micrometer scales. Understanding how cell behavior is regulated by these cues during physiological and pathological processes (e.g., wound healing, cancer invasion) requires substrates that can expose cells to anisotropic cues over several length scales. In this study, we developed a novel method of fabricating micropatterns of aligned collagen fibrils of different geometry onto PDMS-coated glass coverslips that allowed us to investigate the roles of topography and confinement on corneal cell behavior. When corneal cells were cultured on micropatterns of aligned collagen fibrils in the absence of confinement, the degree of cell alignment increased from 40 ± 14 to 82 ± 5% as the size of the micropattern width decreased from 750 to 50 μm. Although the cell area (∼2500 μm2), cell length (∼160 μm), and projected nuclear area (∼175 μm2) were relatively constant on the different micropattern widths, cells displayed an increased aspect ratio as the width of the aligned collagen fibril micropatterns decreased. We also observed that the morphology of cells adhering to the surrounding uncoated PDMS was dependent upon both the size of the aligned collagen fibril micropattern and the distance from the micropatterns. When corneal cells were confined to the micropatterns of aligned collagen fibrils by a Pluronic coating to passivate the surrounding area, a similar trend in increasing cell alignment was observed (35 ± 10 to 89 ± 2%). However, the projected nuclear area decreased significantly (∼210 to 130 μm2) as the micropattern width decreased from 750 to 50 μm. The development of this method allows for the deposition of aligned collagen fibril micropatterns of different geometries on a transparent and elastic substrate and provides an excellent model system to investigate the role of anisotropic cues in cell behavior.
Collapse
Affiliation(s)
- Divya Subramanian
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
| | - Nathaniel Tjahjono
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
| | - Paula A. Hernandez
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, TX, 75390
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center at Dallas, TX, 75390
| | - Victor D. Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, TX, 75390
| | - W. Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, TX, 75390
| | - David W. Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, TX, 75390
| |
Collapse
|
7
|
Read SA, Go CS, Ferreira MJS, Ligorio C, Kimber SJ, Dumanli AG, Domingos MAN. Nanocrystalline Cellulose as a Versatile Engineering Material for Extrusion-Based Bioprinting. Pharmaceutics 2023; 15:2432. [PMID: 37896192 PMCID: PMC10609932 DOI: 10.3390/pharmaceutics15102432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Naturally derived polysaccharide-based hydrogels, such as alginate, are frequently used in the design of bioinks for 3D bioprinting. Traditionally, the formulation of such bioinks requires the use of pre-reticulated materials with low viscosities, which favour cell viability but can negatively influence the resolution and shape fidelity of the printed constructs. In this work, we propose the use of cellulose nanocrystals (CNCs) as a rheological modifier to improve the printability of alginate-based bioinks whilst ensuring a high viability of encapsulated cells. Through rheological analysis, we demonstrate that the addition of CNCs (1% and 2% (w/v)) to alginate hydrogels (1% (w/v)) improves shear-thinning behaviour and mechanical stability, resulting in the high-fidelity printing of constructs with superior resolution. Importantly, LIVE/DEAD results confirm that the presence of CNCs does not seem to affect the health of immortalised chondrocytes (TC28a2) that remain viable over a period of seven days post-encapsulation. Taken together, our results indicate a favourable effect of the CNCs on the rheological and biocompatibility properties of alginate hydrogels, opening up new perspectives for the application of CNCs in the formulation of bioinks for extrusion-based bioprinting.
Collapse
Affiliation(s)
- Sophia A. Read
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK; (S.A.R.); (C.S.G.); (M.J.S.F.)
| | - Chee Shuen Go
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK; (S.A.R.); (C.S.G.); (M.J.S.F.)
| | - Miguel J. S. Ferreira
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK; (S.A.R.); (C.S.G.); (M.J.S.F.)
| | - Cosimo Ligorio
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK; (C.L.); (A.G.D.)
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Ahu G. Dumanli
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK; (C.L.); (A.G.D.)
| | - Marco A. N. Domingos
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK; (S.A.R.); (C.S.G.); (M.J.S.F.)
| |
Collapse
|
8
|
Iqbal MH, Revana FJR, Pradel E, Gribova V, Mamchaoui K, Coirault C, Meyer F, Boulmedais F. Brush-Induced Orientation of Collagen Fibers in Layer-by-Layer Nanofilms: A Simple Method for the Development of Human Muscle Fibers. ACS NANO 2022; 16:20034-20043. [PMID: 36301714 DOI: 10.1021/acsnano.2c06329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The engineering of skeletal muscle tissue, a highly organized structure of myotubes, is promising for the treatment of muscle injuries and muscle diseases, for replacement, or for pharmacology research. Muscle tissue development involves differentiation of myoblasts into myotubes with parallel orientation, to ultimately form aligned myofibers, which is challenging to achieve on flat surfaces. In this work, we designed hydrogen-bonded tannic acid/collagen layer-by-layer (TA/COL LbL) nanofilms using a simple brushing method to address this issue. In comparison to films obtained by dipping, brushed TA/COL films showed oriented COL fibers of 60 nm diameter along the brushing direction. Built at acidic pH due to COL solubility, TA/COL films released TA in physiological conditions with a minor loss of thickness. After characterization of COL fibers' orientation, human myoblasts (C25CL48) were seeded on the oriented TA/COL film, ended by COL. After 12 days in a differentiation medium without any other supplement, human myoblasts were able to align on brushed TA/COL films and to differentiate into long aligned myotubes (from hundreds of μm up to 1.7 mm length) thanks to two distinct properties: (i) the orientation of COL fibers guiding myoblasts' alignment and (ii) the TA release favoring the differentiation. This simple and potent brushing process allows the development of anisotropic tissues in vitro which can be used for studies of drug discovery and screening or the replacement of damaged tissue.
Collapse
Affiliation(s)
- Muhammad Haseeb Iqbal
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, Strasbourg Cedex 2, 67034, France
| | | | - Emeline Pradel
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, Strasbourg Cedex 2, 67034, France
| | - Varvara Gribova
- Centre de Recherche en Biomédecine de Strasbourg, Institut National de la Santé et de la Recherche Médicale, UMR 1121, Biomatériaux et Bioingénierie, Strasbourg Cedex, 67085, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg 67000, France
| | - Kamel Mamchaoui
- Sorbonne Université, INSERM UMRS 974, Centre for Research in Myology, Batiment Babinski, GH Pitié-Salpêtrière 47 bd de l'Hôpital, F-75013 Paris, France
| | - Catherine Coirault
- Sorbonne Université, INSERM UMRS 974, Centre for Research in Myology, Batiment Babinski, GH Pitié-Salpêtrière 47 bd de l'Hôpital, F-75013 Paris, France
| | - Florent Meyer
- Centre de Recherche en Biomédecine de Strasbourg, Institut National de la Santé et de la Recherche Médicale, UMR 1121, Biomatériaux et Bioingénierie, Strasbourg Cedex, 67085, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg 67000, France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, Strasbourg Cedex 2, 67034, France
| |
Collapse
|
9
|
Ma C, Du T, Niu X, Fan Y. Biomechanics and mechanobiology of the bone matrix. Bone Res 2022; 10:59. [PMID: 36042209 PMCID: PMC9427992 DOI: 10.1038/s41413-022-00223-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
The bone matrix plays an indispensable role in the human body, and its unique biomechanical and mechanobiological properties have received much attention. The bone matrix has unique mechanical anisotropy and exhibits both strong toughness and high strength. These mechanical properties are closely associated with human life activities and correspond to the function of bone in the human body. None of the mechanical properties exhibited by the bone matrix is independent of its composition and structure. Studies on the biomechanics of the bone matrix can provide a reference for the preparation of more applicable bone substitute implants, bone biomimetic materials and scaffolds for bone tissue repair in humans, as well as for biomimetic applications in other fields. In providing mechanical support to the human body, bone is constantly exposed to mechanical stimuli. Through the study of the mechanobiology of the bone matrix, the response mechanism of the bone matrix to its surrounding mechanical environment can be elucidated and used for the health maintenance of bone tissue and defect regeneration. This paper summarizes the biomechanical properties of the bone matrix and their biological significance, discusses the compositional and structural basis by which the bone matrix is capable of exhibiting these mechanical properties, and studies the effects of mechanical stimuli, especially fluid shear stress, on the components of the bone matrix, cells and their interactions. The problems that occur with regard to the biomechanics and mechanobiology of the bone matrix and the corresponding challenges that may need to be faced in the future are also described.
Collapse
Affiliation(s)
- Chunyang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China. .,Research Institute of Beihang University in Shenzhen, Shenzhen, 518057, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China. .,School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| |
Collapse
|
10
|
Zhang T, Jia Y, Yu Y, Zhang B, Xu F, Guo H. Targeting the tumor biophysical microenvironment to reduce resistance to immunotherapy. Adv Drug Deliv Rev 2022; 186:114319. [PMID: 35545136 DOI: 10.1016/j.addr.2022.114319] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/06/2023]
Abstract
Immunotherapy based on immune checkpoint inhibitors has evolved into a new pillar of cancer treatment in clinics, but dealing with treatment resistance (either primary or acquired) is a major challenge. The tumor microenvironment (TME) has a substantial impact on the pathological behaviors and treatment response of many cancers. The biophysical clues in TME have recently been considered as important characteristics of cancer. Furthermore, there is mounting evidence that biophysical cues in TME play important roles in each step of the cascade of cancer immunotherapy that synergistically contribute to immunotherapy resistance. In this review, we summarize five main biophysical cues in TME that affect resistance to immunotherapy: extracellular matrix (ECM) structure, ECM stiffness, tumor interstitial fluid pressure (IFP), solid stress, and vascular shear stress. First, the biophysical factors involved in anti-tumor immunity and therapeutic antibody delivery processes are reviewed. Then, the causes of these five biophysical cues and how they contribute to immunotherapy resistance are discussed. Finally, the latest treatment strategies that aim to improve immunotherapy efficacy by targeting these biophysical cues are shared. This review highlights the biophysical cues that lead to immunotherapy resistance, also supplements their importance in related technologies for studying TME biophysical cues in vitro and therapeutic strategies targeting biophysical cues to improve the effects of immunotherapy.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710061, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuanbo Jia
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yang Yu
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710061, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710049, PR China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Hui Guo
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710061, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
11
|
Engineering a biomimetic bone scaffold that can regulate redox homeostasis and promote osteogenesis to repair large bone defects. Biomaterials 2022; 286:121574. [DOI: 10.1016/j.biomaterials.2022.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
|
12
|
Ahmed A, Mansouri M, Joshi IM, Byerley AM, Day SW, Gaborski TR, Abhyankar VV. Local extensional flows promote long-range fiber alignment in 3D collagen hydrogels. Biofabrication 2022; 14. [PMID: 35735228 DOI: 10.1088/1758-5090/ac7824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023]
Abstract
Randomly oriented type I collagen (COL1) fibers in the extracellular matrix are reorganized by biophysical forces into aligned domains extending several millimeters and with varying degrees of fiber alignment. These aligned fibers can transmit traction forces, guide tumor cell migration, facilitate angiogenesis, and influence tissue morphogenesis. To create aligned COL1 domains in microfluidic cell culture models, shear flows have been used to align thin COL1 matrices (<50µm in height) in a microchannel. However, there has been limited investigation into the role of shear flows in aligning 3D hydrogels (>130µm). Here, we show that pure shear flows do not induce fiber alignment in 3D atelo COL1 hydrogels, but the simple addition of local extensional flow promotes alignment that is maintained across several millimeters, with a degree of alignment directly related to the extensional strain rate. We further advance experimental capabilities by addressing the practical challenge of accessing a 3D hydrogel formed within a microchannel by introducing a magnetically coupled modular platform that can be released to expose the microengineered hydrogel. We demonstrate the platform's capability to pattern cells and fabricate multi-layered COL1 matrices using layer-by-layer fabrication and specialized modules. Our approach provides an easy-to-use fabrication method to achieve advanced hydrogel microengineering capabilities that combine fiber alignment with biofabrication capabilities.
Collapse
Affiliation(s)
- Adeel Ahmed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Indranil M Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Ann M Byerley
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Steven W Day
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Thomas R Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| |
Collapse
|
13
|
Engineering tumor stromal mechanics for improved T cell therapy. Biochim Biophys Acta Gen Subj 2022; 1866:130095. [DOI: 10.1016/j.bbagen.2022.130095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/23/2021] [Accepted: 01/14/2022] [Indexed: 12/17/2022]
|
14
|
Potter MJ, Richardson WJ. Fabrication and characterization methods for investigating cell-matrix interactions in environments possessing spatial orientation heterogeneity. Acta Biomater 2021; 136:420-428. [PMID: 34601105 PMCID: PMC8627456 DOI: 10.1016/j.actbio.2021.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
Fibrillar collagen is a ubiquitous structural protein that plays a significant role in determining the mechanical properties of various tissues. The constituent collagen architecture can give direct insight into the respective functional role of the tissue due to the strong structure-function relationship that is exhibited. In such tissues, matrix structure can vary across local subregions contributing to mechanical heterogeneity which can be implicated in tissue function or failure. The post-myocardial infarction scar environment is an example of note where mechanically insufficient collagen can result in impaired cardiac function and possibly tissue rupture due to post-MI cellular response and matrix interactions. In order to further develop the understanding of cell-matrix interactions within heterogeneous environments, we developed a method of heterogeneous collagen gel fabrication which produces a region of randomly oriented fibers directly adjacent to an interconnected region of anisotropic alignment. To fully capture and evaluate the degree of alignment and spatial orientation heterogeneity, several image processing and automated analysis methods were employed. Our analysis revealed the successful fabrication of an interconnected spatially heterogeneous collagen gel possessing distinct regions of random or preferential alignment. Additionally, embedded cell populations were observed to recognize and reorient with their underlying and surrounding architectures through our cell-centric analysis techniques. STATEMENT OF SIGNIFICANCE: Fibrillar collagen is a structural protein that contributes to the architecture-function relationship exhibited by various tissues where mechanically insufficient collagen architecture can lead to tissue failure. One environment where this can occur is the post-myocardial infarction scar environment where too much or too little collagen accumulation coupled with spatial fiber orientation heterogeneity can lead to environments incapable of normal mechanical functionality. While there are methodologies capable of generating aligned constructs, they do so with varying degrees of control and complexity with many producing uniform construct alignment. The presented platform is simple and produces continuous constructs possessing inherent spatial orientation heterogeneity. Coupling this with image processing and automated analysis methods enables the probing of fundamental cell-matrix interactions within heterogeneous environments.
Collapse
Affiliation(s)
- Michael J Potter
- Department of Bioengineering, 301 Rhodes Research Center Clemson University, Clemson, SC, USA.
| | - William J Richardson
- Department of Bioengineering, 301 Rhodes Research Center Clemson University, Clemson, SC, USA; Biomedical Data Science & Informatics Program, Clemson University, Clemson, SC, USA.
| |
Collapse
|
15
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
16
|
Martin CL, Zhai C, Paten JA, Yeo J, Deravi LF. Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds. ACS Biomater Sci Eng 2021. [PMID: 34506101 DOI: 10.1021/acsbiomaterials.1c00566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to fabricate anisotropic collagenous materials rapidly and reproducibly has remained elusive despite decades of research. Balancing the natural propensity of monomeric collagen (COL) to spontaneously polymerize in vitro with the mild processing conditions needed to maintain its native substructure upon polymerization introduces challenges that are not easily amenable with off-the-shelf instrumentation. To overcome these challenges, we have designed a platform that simultaneously aligns type I COL fibrils under mild shear flow and builds up the material through layer-by-layer assembly. We explored the mechanisms propagating fibril alignment, targeting experimental variables such as shear rate, viscosity, and time. Coarse-grained molecular dynamics simulations were also employed to help understand how initial reaction conditions including chain length, indicative of initial polymerization, and chain density, indicative of concentration, in the reaction environment impact fibril growth and alignment. When taken together, the mechanistic insights gleaned from these studies inspired the design, iteration, fabrication, and then customization of the fibrous collagenous materials, illustrating a platform material that can be readily adapted to future tissue engineering applications.
Collapse
Affiliation(s)
- Cassandra L Martin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Chenxi Zhai
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States.,Department of Mechanical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Jeffrey A Paten
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Leila F Deravi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
17
|
Tan ML, Ling L, Fischbach C. Engineering strategies to capture the biological and biophysical tumor microenvironment in vitro. Adv Drug Deliv Rev 2021; 176:113852. [PMID: 34197895 PMCID: PMC8440401 DOI: 10.1016/j.addr.2021.113852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Despite decades of research and advancements in diagnostic and treatment modalities, cancer remains a major global healthcare challenge. This is due in part to a lack of model systems that allow investigating the mechanisms underlying tumor development, progression, and therapy resistance under relevant conditions in vitro. Tumor cell interactions with their surroundings influence all stages of tumorigenesis and are shaped by both biological and biophysical cues including cell-cell and cell-extracellular matrix (ECM) interactions, tissue architecture and mechanics, and mass transport. Engineered tumor models provide promising platforms to elucidate the individual and combined contributions of these cues to tumor malignancy under controlled and physiologically relevant conditions. This review will summarize current knowledge of the biological and biophysical microenvironmental cues that influence tumor development and progression, present examples of in vitro model systems that are presently used to study these interactions and highlight advancements in tumor engineering approaches to further improve these technologies.
Collapse
Affiliation(s)
- Matthew L Tan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
18
|
Su CY, Burchett A, Dunworth M, Choi JS, Ewald AJ, Ahn EH, Kim DH. Engineering a 3D collective cancer invasion model with control over collagen fiber alignment. Biomaterials 2021; 275:120922. [PMID: 34126408 DOI: 10.1016/j.biomaterials.2021.120922] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Prior to cancer cell invasion, the structure of the extracellular matrix (ECM) surrounding the tumor is remodeled, such that circumferentially oriented matrix fibers become radially aligned. This predisposed radially aligned matrix structure serves as a critical regulator of cancer invasion. However, a biomimetic 3D model recapitulating a tumor's behavioral response to these ECM structures is not yet available. In this study, we have developed a phase-specific, force-guided method to establish a 3D dual topographical tumor model in which each tumor spheroid/organoid is surrounded by radially aligned collagen I fibers on one side and circumferentially oriented fibers on the opposite side. A coaxial rotating cylinder system was employed to construct the dual fiber topography and to pre-seed tumor spheroids/organoids within a single device. This system enables the application of different force mechanisms in the nucleation and elongation phases of collagen fiber polymerization to guide fiber alignment. In the nucleation phase, fiber alignment is enhanced by a horizontal laminar Couette flow driven by the inner cylinder rotation. In the elongation phase, fiber growth is guided by a vertical gravitational force to form a large aligned collagen matrix gel (35 × 25 × 0.5 mm) embedded with >1000 tumor spheroids. The fibers above each tumor spheroid are radially aligned along the direction of gravitational force in contrast to the circumferentially oriented fibers beneath each tumor spheroid/organoid, where the presence of the tumor interferes with the gravity-induced fiber alignment. After tumor invasion, there are more disseminated multicellular clusters on the radially aligned side, compared to the side of the tumor spheroid/organoid facing circumferentially oriented fibers. These results indicate that our 3D dual topographical model recapitulates the preference of tumors to invade and disseminate along radially aligned fibers. We anticipate that this 3D dual topographical model will have broad utility to those studying collective tumor invasion and that it has the potential to identify cancer invasion-targeted therapeutic agents.
Collapse
Affiliation(s)
- Chia-Yi Su
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alice Burchett
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Matthew Dunworth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jong Seob Choi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrew J Ewald
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eun Hyun Ahn
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
19
|
Ahmed A, Joshi IM, Mansouri M, Ahamed NNN, Hsu MC, Gaborski TR, Abhyankar VV. Engineering fiber anisotropy within natural collagen hydrogels. Am J Physiol Cell Physiol 2021; 320:C1112-C1124. [PMID: 33852366 PMCID: PMC8285641 DOI: 10.1152/ajpcell.00036.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
It is well known that biophysical properties of the extracellular matrix (ECM), including stiffness, porosity, composition, and fiber alignment (anisotropy), play a crucial role in controlling cell behavior in vivo. Type I collagen (collagen I) is a ubiquitous structural component in the ECM and has become a popular hydrogel material that can be tuned to replicate the mechanical properties found in vivo. In this review article, we describe popular methods to create 2-D and 3-D collagen I hydrogels with anisotropic fiber architectures. We focus on methods that can be readily translated from engineering and materials science laboratories to the life-science community with the overall goal of helping to increase the physiological relevance of cell culture assays.
Collapse
Affiliation(s)
- Adeel Ahmed
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
| | - Indranil M Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York
| | - Mehran Mansouri
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
| | - Nuzhet N N Ahamed
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
| | - Meng-Chun Hsu
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
| | - Thomas R Gaborski
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York
| | - Vinay V Abhyankar
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York
| |
Collapse
|
20
|
Ahmed A, Joshi IM, Larson S, Mansouri M, Gholizadeh S, Allahyari Z, Forouzandeh F, Borkholder DA, Gaborski TR, Abhyankar VV. Microengineered 3D Collagen Gels with Independently Tunable Fiber Anisotropy and Directionality. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001186. [PMID: 34150990 PMCID: PMC8211114 DOI: 10.1002/admt.202001186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 05/17/2023]
Abstract
Cellular processes, including differentiation, proliferation, and migration, have been linked to the alignment (anisotropy) and orientation (directionality) of collagen fibers in the native extracellular matrix (ECM). Given the critical role that biophysical cell-matrix interactions play in regulating biological functions, several microfluidic-based methods have been used to establish 3D collagen gels with defined fiber properties; these gels have helped to establish quantitative relationships between structural ECM cues and observed cell responses. Although existing microfluidic fabrication methods provide excellent definition over collagen fiber anisotropy, they have not demonstrated the independent control over fiber anisotropy and directionality necessary to replicate in vivo collagen architecture. Therefore, to advance collagen microengineering capabilities, we present a user-friendly technology platform that uses controlled fluid flows within a non-uniform microfluidic channel network to create collagen landscapes that can be tuned as a function of extensional strain rate. Herein, we demonstrate capabilities to i) control the degree of fiber anisotropy, ii) create spatial gradients in fiber anisotropy, iii) independently define fiber directionality, and iv) generate multi-material interfaces within a 3D environment. We then address the practical issue of integrating cells into microfluidic systems by using a peel-off template technique to provide direct access to microengineered collagen gels, and demonstrate that cells respond to the defined properties of the landscape. Finally, the platform's modular capability is highlighted by integrating a sub-micrometer thick porous parylene membrane onto the microengineered collagen as a method to define cell-substrate interactions.
Collapse
Affiliation(s)
- Adeel Ahmed
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Indranil M Joshi
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Stephen Larson
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Mehran Mansouri
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Shayan Gholizadeh
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Zahra Allahyari
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Farzad Forouzandeh
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - David A Borkholder
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Thomas R Gaborski
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Vinay V Abhyankar
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| |
Collapse
|
21
|
Du T, Niu X, Hou S, Xu M, Li Z, Li P, Fan Y. Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress. J Mater Chem B 2021; 8:2562-2572. [PMID: 32101230 DOI: 10.1039/c9tb02643f] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS in collagen mineralization, a mechanical loading induced mineralization system is developed and compared with traditional polyacrylic acid (PAA) induced mineralization. Fourier transform infrared (FTIR) spectroscopy, calcium-to-phosphorus molar ratio and transmission electron microscopy (TEM) demonstrate that both periodic FSS and PAA can control the size of amorphous calcium phosphate (ACP) to avoid aggregation and help the formation of intrafibrillar mineralization. Differently, periodic FSS under a proper cycle and range can accelerate the conversion of ACP to apatite crystals and alleviate the reduced transformation caused by PAA. Under the action of template analogues, periodic FSS can also promote the formation of highly oriented hierarchical intrafibrillar mineralized (HIM) collagen. These findings are helpful for understanding the mechanism of collagen mineralization in natural bone matrix and contribute to the design of novel bone substitute materials with hierarchical structures.
Collapse
Affiliation(s)
- Tianming Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China and Research Institute of Beihang University in Shenzhen, Shenzhen 518057, China
| | - Sen Hou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Menghan Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Zhengwei Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China and Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| |
Collapse
|
22
|
Garrison CM, Schwarzbauer JE. Fibronectin fibril alignment is established upon initiation of extracellular matrix assembly. Mol Biol Cell 2021; 32:739-752. [PMID: 33625865 PMCID: PMC8108514 DOI: 10.1091/mbc.e20-08-0533] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The physical structure of the extracellular matrix (ECM) is tissue-specific and fundamental to normal tissue function. Proper alignment of ECM fibers is essential for the functioning of a variety of tissues. While matrix assembly in general has been intensively investigated, little is known about the mechanisms required for formation of aligned ECM fibrils. We investigated the initiation of fibronectin (FN) matrix assembly using fibroblasts that assemble parallel ECM fibrils and found that matrix assembly sites, where FN fibrillogenesis is initiated, were oriented in parallel at the cell poles. We show that these polarized matrix assembly sites progress into fibrillar adhesions and ultimately into aligned FN fibrils. Cells that assemble an unaligned meshwork matrix form matrix assembly sites around the cell periphery, but the distribution of matrix assembly sites in these cells could be modulated through micropatterning or mechanical stretch. While an elongated cell shape corresponds with a polarized matrix assembly site distribution, these two features are not absolutely linked, since we discovered that transforming growth factor beta (TGF-β1) enhances matrix assembly site polarity and assembly of aligned fibrils independent of cell elongation. We conclude that the ultimate orientation of FN fibrils is determined by the alignment and distribution of matrix assembly sites that form during the initial stages of cell–FN interactions.
Collapse
Affiliation(s)
- Carly M Garrison
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | |
Collapse
|
23
|
Petroll WM, Varner VD, Schmidtke DW. Keratocyte mechanobiology. Exp Eye Res 2020; 200:108228. [PMID: 32919993 PMCID: PMC7655662 DOI: 10.1016/j.exer.2020.108228] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/22/2023]
Abstract
In vivo, corneal keratocytes reside within a complex 3D extracellular matrix (ECM) consisting of highly aligned collagen lamellae, growth factors, and other extracellular matrix components, and are subjected to various mechanical stimuli during developmental morphogenesis, fluctuations in intraocular pressure, and wound healing. The process by which keratocytes convert changes in mechanical stimuli (e.g. local topography, applied force, ECM stiffness) into biochemical signaling is known as mechanotransduction. Activation of the various mechanotransductive pathways can produce changes in cell migration, proliferation, and differentiation. Here we review how corneal keratocytes respond to and integrate different biochemical and biophysical factors. We first highlight how growth factors and other cytokines regulate the activity of Rho GTPases, cytoskeletal remodeling, and ultimately the mechanical phenotype of keratocytes. We then discuss how changes in the mechanical properties of the ECM have been shown to regulate keratocyte behavior in sophisticated 2D and 3D experimental models of the corneal microenvironment. Finally, we discuss how ECM topography and protein composition can modulate cell phenotypes, and review the different methods of fabricating in vitro mimics of corneal ECM topography, novel approaches for examining topographical effects in vivo, and the impact of different ECM glycoproteins and proteoglycans on keratocyte behavior.
Collapse
Affiliation(s)
- W Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
24
|
Malladi S, Miranda-Nieves D, Leng L, Grainger SJ, Tarabanis C, Nesmith AP, Kosaraju R, Haller CA, Parker KK, Chaikof EL, Günther A. Continuous Formation of Ultrathin, Strong Collagen Sheets with Tunable Anisotropy and Compaction. ACS Biomater Sci Eng 2020; 6:4236-4246. [PMID: 32685675 PMCID: PMC7362332 DOI: 10.1021/acsbiomaterials.0c00321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023]
Abstract
The multiscale organization of protein-based fibrillar materials is a hallmark of many organs, but the recapitulation of hierarchal structures down to fibrillar scales, which is a requirement for withstanding physiological loading forces, has been challenging. We present a microfluidic strategy for the continuous, large-scale formation of strong, handleable, free-standing, multicentimeter-wide collagen sheets of unprecedented thinness through the application of hydrodynamic focusing with the simultaneous imposition of strain. Sheets as thin as 1.9 μm displayed tensile strengths of 0.5-2.7 MPa, Young's moduli of 3-36 MPa, and modulated the diffusion of molecules as a function of collagen nanoscale structure. Smooth muscle cells cultured on engineered sheets oriented in the direction of aligned collagen fibrils and generated coordinated vasomotor responses. The described biofabrication approach enables rapid formation of ultrathin collagen sheets that withstand physiologically relevant loads for applications in tissue engineering and regenerative medicine, as well as in organ-on-chip and biohybrid devices.
Collapse
Affiliation(s)
- Shashi Malladi
- Department
of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada
| | - David Miranda-Nieves
- Division
of Health Sciences and Technology, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Surgery, Beth Israel Deaconess Medical
Center, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering of Harvard University, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lian Leng
- Department
of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada
| | - Stephanie J. Grainger
- Department
of Surgery, Beth Israel Deaconess Medical
Center, Boston, Massachusetts 02115, United States
| | - Constantine Tarabanis
- Department
of Surgery, Beth Israel Deaconess Medical
Center, Boston, Massachusetts 02115, United States
| | - Alexander P. Nesmith
- Wyss
Institute for Biologically Inspired Engineering of Harvard University, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Revanth Kosaraju
- Department
of Surgery, Beth Israel Deaconess Medical
Center, Boston, Massachusetts 02115, United States
| | - Carolyn A. Haller
- Department
of Surgery, Beth Israel Deaconess Medical
Center, Boston, Massachusetts 02115, United States
| | - Kevin Kit Parker
- Wyss
Institute for Biologically Inspired Engineering of Harvard University, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Elliot L. Chaikof
- Division
of Health Sciences and Technology, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Surgery, Beth Israel Deaconess Medical
Center, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering of Harvard University, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Axel Günther
- Department
of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
25
|
Shen Y, Tanaka N, Yamazoe H, Furutani S, Nagai H, Kawai T, Tanaka Y. Flow analysis on microcasting with degassed polydimethylsiloxane micro-channels for cell patterning with cross-linked albumin. PLoS One 2020; 15:e0232518. [PMID: 32433673 PMCID: PMC7239381 DOI: 10.1371/journal.pone.0232518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/20/2020] [Indexed: 11/19/2022] Open
Abstract
Patterned cell culturing is one of the most useful techniques for understanding the interaction between geometric conditions surrounding cells and their behaviors. The authors previously proposed a simple method for cell patterning with an agarose gel microstructure fabricated by microcasting with a degassed polydimethylsiloxane (PDMS) mold. Although the vacuum pressure produced from the degassed PDMS can drive a highly viscous agarose solution, the influence of solution viscosity on the casting process is unknown. This study investigated the influences of micro-channel dimensions or solution viscosity on the flow of the solution in a micro-channel of a PDMS mold by both experiments and numerical simulation. It was found experimentally that the degassed PDMS mold was able to drive a solution with a viscosity under 575 mPa·s. A simulation model was developed which can well estimate the flow rate in various dimensions of micro-channels. Cross-linked albumin has low viscosity (1 mPa·s) in aqueous solution and can undergo a one-way dehydration process from solution to solid that produces cellular repellency after dehydration. A microstructure of cross-linked albumin was fabricated on a cell culture dish by the microcasting method. After cells were seeded and cultivated on the cell culture dish with the microstructure for 7 days, the cellular pattern of mouse skeletal myoblast cell line C2C12 was observed. The microcasting with cross-linked albumin solution enables preparation of patterned cell culture systems more quickly in comparison with the previous agarose gel casting, which requires a gelation process before the dehydration process.
Collapse
Affiliation(s)
- Yigang Shen
- RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | - Hironori Yamazoe
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
| | - Shunsuke Furutani
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL), AIST, Osaka, Japan
| | - Hidenori Nagai
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL), AIST, Osaka, Japan
| | - Takayuki Kawai
- RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Yo Tanaka
- RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
26
|
Dewle A, Pathak N, Rakshasmare P, Srivastava A. Multifarious Fabrication Approaches of Producing Aligned Collagen Scaffolds for Tissue Engineering Applications. ACS Biomater Sci Eng 2020; 6:779-797. [DOI: 10.1021/acsbiomaterials.9b01225] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ankush Dewle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Navanit Pathak
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Prakash Rakshasmare
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
27
|
Force-dependent extracellular matrix remodeling by early-stage cancer cells alters diffusion and induces carcinoma-associated fibroblasts. Biomaterials 2020; 234:119756. [PMID: 31954229 DOI: 10.1016/j.biomaterials.2020.119756] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
It is known cancer cells secrete cytokines inducing normal fibroblasts (NFs) to become carcinoma-associated fibroblasts (CAFs). However, it is not clear how the CAF-promoting cytokines can effectively navigate the dense ECM, a diffusion barrier, in the tumor microenvironment to reach NFs during the early stages of cancer development. In this study, we devised a 3D coculture system to investigate the possible mechanism of CAF induction at early stages of breast cancer. We found that in a force-dependent manner, ECM fibrils are radially aligned relative to the tumor spheroid. The fibril alignment enhances the diffusion of exosomes containing CAF-promoting cytokines towards NFs. Suppression of force generation or ECM remodeling abolishes the enhancement of exosome diffusion and the subsequent CAF induction. In summary, our finding suggests that early-stage, pre-metastatic cancer cells can generate high forces to align the ECM fibrils, thereby enhancing the diffusion of CAF-promoting exosomes to reach the stroma and induce CAFs.
Collapse
|
28
|
Lin J, Shi Y, Men Y, Wang X, Ye J, Zhang C. Mechanical Roles in Formation of Oriented Collagen Fibers. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:116-128. [PMID: 31801418 DOI: 10.1089/ten.teb.2019.0243] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collagen is a structural protein that is widely present in vertebrates, being usually distributed in tissues in the form of fibers. In living organisms, fibers are organized in different orientations in various tissues. As the structural base in connective tissue and load-bearing tissue, the orientation of collagen fibers plays an extremely important role in the mechanical properties and physiological and biochemical functions. The study on mechanics role in formation of oriented collagen fibers enables us to understand how discrete cells use limited molecular materials to create tissues with different structures, thereby promoting our understanding of the mechanism of tissue formation from scratch, from invisible to tangible. However, the current understanding of the mechanism of fiber orientation is still insufficient. In addition, existing fabrication methods of oriented fibers are varied and involve interdisciplinary study, and the achievements of each experiment are favorable to the construction and improvement of the fiber orientation theory. To this end, this review focuses on the preparation methods of oriented fibers and proposes a model explaining the formation process of oriented fibers in tendons based on the existing fiber theory. Impact statement As the structural base in connective tissue and load-bearing tissue, the orientation of collagen fibers plays an extremely important role in the mechanical properties and physiological and biochemical functions. However, the current understanding of the mechanism of fiber orientation is still insufficient, which is greatly responsible for the challenge of functional tissue repair and regeneration. Understanding the mechanism of fiber orientation can promote the successful application of fiber orientation scaffolds in tissue repair and regeneration, as well as providing an insight for the mechanism of tissue histomorphology.
Collapse
Affiliation(s)
- Jiexiang Lin
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Yanping Shi
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Yutao Men
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Xin Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Jinduo Ye
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| |
Collapse
|
29
|
Lam KH, Kivanany PB, Grose K, Yonet-Tanyeri N, Alsmadi N, Varner VD, Petroll WM, Schmidtke DW. A high-throughput microfluidic method for fabricating aligned collagen fibrils to study Keratocyte behavior. Biomed Microdevices 2019; 21:99. [PMID: 31741114 PMCID: PMC7228026 DOI: 10.1007/s10544-019-0436-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In vivo, keratocytes are surrounded by aligned type I collagen fibrils that are organized into lamellae. A growing body of literature suggests that the unique topography of the corneal stroma is an important regulator of keratocyte behavior. In this study we describe a microfluidic method to deposit aligned fibrils of type I collagen onto glass coverslips. This high-throughput method allowed for the simultaneous coating of up to eight substrates with aligned collagen fibrils. When these substrates were integrated into a PDMS microwell culture system they provided a platform for high-resolution imaging of keratocyte behavior. Through the use of wide-field fluorescence and differential interference contrast microscopy, we observed that the density of collagen fibrils deposited was dependent upon both the perfusion shear rate of collagen and the time of perfusion. In contrast, a similar degree of fibril alignment was observed over a range of shear rates. When primary normal rabbit keratocytes (NRK) were seeded on substrates with a high density of aligned collagen fibrils and cultured in the presence of platelet derived growth factor (PDGF) the keratocytes displayed an elongated cell body that was co-aligned with the underlying collagen fibrils. In contrast, when NRK were cultured on substrates with a low density of aligned collagen fibrils, the cells showed no preferential orientation. These results suggest that this simple and inexpensive method can provide a general platform to study how simultaneous exposure to topographical and soluble cues influence cell behavior.
Collapse
Affiliation(s)
- Kevin H Lam
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Pouriska B Kivanany
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA
| | - Kyle Grose
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA
| | - Nihan Yonet-Tanyeri
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA
| | - Nesreen Alsmadi
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA
| | - W Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA.
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9057, USA.
| |
Collapse
|
30
|
Producing Collagen Micro-stripes with Aligned Fibers for Cell Migration Assays. Cell Mol Bioeng 2019; 13:87-98. [PMID: 32030110 DOI: 10.1007/s12195-019-00600-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/14/2019] [Indexed: 01/14/2023] Open
Abstract
Introduction The orientation of collagen fibers in native tissues plays an important role in cell signaling and mediates the progression of tumor cells in breast cancer by a contact guidance mechanism. Understanding how migration of epithelial cells is directed by the alignment of collagen fibers requires in vitro assays with standardized orientations of collagen fibers. Methods To address this issue, we produced micro-stripes with aligned collagen fibers using an easy-to-use and versatile approach based on the aspiration of a collagen solution within a microchannel. Glass coverslips were functionalized with a (3-aminopropyl)triethoxysilane/glutaraldehyde linkage to covalently anchor micro-stripes of aligned collagen fibers, whereas microchannels were functionalized with a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) nonionic triblock polymer to prevent adhesion of the collagen micro-stripes. Results Using this strategy, microchannels can be peeled off to expose micro-stripes of aligned collagen fibers without affecting their mechanical integrity. We used time-lapse confocal reflection microscopy to characterize the polymerization kinetics of collagen networks for different concentrations and the orientation of collagen fibers as a function of the microchannel width. Our results indicate a non-linear concentration dependence of the area of fluorescence, suggesting that the architecture of collagen networks is sensitive to small changes in concentration. We show the possibility to influence the collagen fibril coverage by adjusting the concentration of the collagen solution. Conclusion We applied this novel approach to study the migration of epithelial cells, demonstrating that collagen micro-stripes with aligned fibers represent a valuable in-vitro assay for studying cell contact guidance mechanisms.
Collapse
|
31
|
Sawadkar P, Sibbons P, Ahmed T, Bozec L, Mudera V. Engineering of a Functional Tendon Using Collagen As a Natural Polymer. ACS Biomater Sci Eng 2019; 5:5218-5228. [PMID: 33455227 DOI: 10.1021/acsbiomaterials.8b01544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reconstruction of a tendon rupture is surgically challenging as each end of the tendon retracts, leaving a substantial gap and direct repair is often not feasible. A tendon graft is required to bridge this defect and restore function. Presently, these gaps are filled with auto-, allo-, or synthetic grafts, but they all have clinical limitations. To address this issue, we developed tissue-engineered grafts by a rapid process using compressed type I collagen, which is the most dominant protein in the tendon. However, biomechanical properties were found to be unsuitable to withstand complete load-bearing in vivo. Hence, a modified suture technique was previously developed to reduce the load on the engineered collagen graft to aid integration in vivo. Using this technique, we tested engineered collagen grafts in vivo on a lapine model in three groups up to 12 weeks without immobilization. Gross observation at 3 and 12 weeks showed the bridge integrated without adhesions with a significant increase in the mechanical, structural and histological properties as compared to 1 week. Insertion of a tissue-engineered collagen graft using a novel load-bearing suture technique which partially loads in vivo showed integration, greater mechanical strength and no adhesion formation in the time period tested. This collagen graft has inherent advantages as compared to the present-day tendon grafts.
Collapse
Affiliation(s)
- Prasad Sawadkar
- Division of Surgery and interventional Science, University College London Stanmore Campus, London HA7 4LP, United Kingdom
| | - Paul Sibbons
- Department of Surgical Research, Northwick Park Institute of Medical Research, London HA1 3UJ, United Kingdom
| | - Tarek Ahmed
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London WC1X 8LD, United Kingdom
| | - Laurent Bozec
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London WC1X 8LD, United Kingdom
| | - Vivek Mudera
- Division of Surgery and interventional Science, University College London Stanmore Campus, London HA7 4LP, United Kingdom
| |
Collapse
|
32
|
Wanjare M, Kawamura M, Hu C, Alcazar C, Wang H, Woo YJ, Huang NF. Vascularization of Engineered Spatially Patterned Myocardial Tissue Derived From Human Pluripotent Stem Cells in vivo. Front Bioeng Biotechnol 2019; 7:208. [PMID: 31552234 PMCID: PMC6733921 DOI: 10.3389/fbioe.2019.00208] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Tissue engineering approaches to regenerate myocardial tissue after disease or injury is promising. Integration with the host vasculature is critical to the survival and therapeutic efficacy of engineered myocardial tissues. To create more physiologically oriented engineered myocardial tissue with organized cellular arrangements and endothelial interactions, randomly oriented or parallel-aligned microfibrous polycaprolactone scaffolds were seeded with human pluripotent stem cell-derived cardiomyocytes (iCMs) and/or endothelial cells (iECs). The resultant engineered myocardial tissues were assessed in a subcutaneous transplantation model and in a myocardial injury model to evaluate the effect of scaffold anisotropy and endothelial interactions on vascular integration of the engineered myocardial tissue. Here we demonstrated that engineered myocardial tissue composed of randomly oriented scaffolds seeded with iECs promoted the survival of iECs for up to 14 days. However, engineered myocardial tissue composed of aligned scaffolds preferentially guided the organization of host capillaries along the direction of the microfibers. In a myocardial injury model, epicardially transplanted engineered myocardial tissues composed of randomly oriented scaffolds seeded with iCMs augmented microvessel formation leading to a significantly higher arteriole density after 4 weeks, compared to engineered tissues derived from aligned scaffolds. These findings that the scaffold microtopography imparts differential effect on revascularization, in which randomly oriented scaffolds promote pro-survival and pro-angiogenic effects, and aligned scaffolds direct the formation of anisotropic vessels. These findings suggest a dominant role of scaffold topography over endothelial co-culture in modulating cellular survival, vascularization, and microvessel architecture.
Collapse
Affiliation(s)
- Maureen Wanjare
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Masashi Kawamura
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Caroline Hu
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Cynthia Alcazar
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Y Joseph Woo
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Ngan F Huang
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
33
|
Nerger BA, Brun PT, Nelson CM. Microextrusion printing cell-laden networks of type I collagen with patterned fiber alignment and geometry. SOFT MATTER 2019; 15:5728-5738. [PMID: 31267114 PMCID: PMC6639139 DOI: 10.1039/c8sm02605j] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Type I collagen self-assembles into three-dimensional (3D) fibrous networks. These dynamic viscoelastic materials can be remodeled in response to mechanical and chemical signals to form anisotropic networks, the structure of which influences tissue development, homeostasis, and disease progression. Conventional approaches for fabricating anisotropic networks of type I collagen are often limited to unidirectional fiber alignment over small areas. Here, we describe a new approach for engineering cell-laden networks of aligned type I collagen fibers using 3D microextrusion printing of a collagen-Matrigel ink. We demonstrate hierarchical control of 3D-printed collagen with the ability to spatially pattern collagen fiber alignment and geometry. Our data suggest that collagen alignment results from a combination of molecular crowding in the ink and shear and extensional flows present during 3D printing. We demonstrate that human breast cancer cells cultured on 3D-printed collagen constructs orient along the direction of collagen fiber alignment. We also demonstrate the ability to simultaneously bioprint epithelial cell clusters and control the alignment and geometry of collagen fibers surrounding cells in the bioink. The resulting cell-laden constructs consist of epithelial cell clusters fully embedded in aligned networks of collagen fibers. Such 3D-printed constructs can be used for studies of developmental biology, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Bryan A Nerger
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA.
| | - P-T Brun
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA.
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA. and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
34
|
George J, Hsu CC, Nguyen LTB, Ye H, Cui Z. Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnol Adv 2019; 42:107370. [PMID: 30902729 DOI: 10.1016/j.biotechadv.2019.03.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 01/27/2023]
Abstract
The development of techniques to create and use multiphase microstructured hydrogels (granular hydrogels or microgels) has enabled the generation of cultures with more biologically relevant architecture and use of structured hydrogels is especially pertinent to the development of new types of central nervous system (CNS) culture models and therapies. We review material choice and the customisation of hydrogel structure, as well as the use of hydrogels in developmental models. Combining the use of structured hydrogel techniques with developmentally relevant tissue culture approaches will enable the generation of more relevant models and treatments to repair damaged CNS tissue architecture.
Collapse
Affiliation(s)
- Julian George
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Chia-Chen Hsu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Linh Thuy Ba Nguyen
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
35
|
Wang L, Li Z, Xu C, Qin J. Bioinspired Engineering of Organ-on-Chip Devices. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:401-440. [PMID: 31713207 DOI: 10.1007/978-981-13-9791-2_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The human body can be viewed as an organism consisting of a variety of cellular and non-cellular materials interacting in a highly ordered manner. Its complex and hierarchical nature inspires the multi-level recapitulation of the human body in order to gain insights into the inner workings of life. While traditional cell culture models have led to new insights into the cellular microenvironment and biological control in vivo, deeper understanding of biological systems and human pathophysiology requires the development of novel model systems that allow for analysis of complex internal and external interactions within the cellular microenvironment in a more relevant organ context. Engineering organ-on-chip systems offers an unprecedented opportunity to unravel the complex and hierarchical nature of human organs. In this chapter, we first highlight the advances in microfluidic platforms that enable engineering of the cellular microenvironment and the transition from cells-on-chips to organs-on-chips. Then, we introduce the key features of the emerging organs-on-chips and their proof-of-concept applications in biomedical research. We also discuss the challenges and future outlooks of this state-of-the-art technology.
Collapse
Affiliation(s)
- Li Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Zhongyu Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Cong Xu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
36
|
Kivanany PB, Grose KC, Yonet-Tanyeri N, Manohar S, Sunkara Y, Lam KH, Schmidtke DW, Varner VD, Petroll WM. An In Vitro Model for Assessing Corneal Keratocyte Spreading and Migration on Aligned Fibrillar Collagen. J Funct Biomater 2018; 9:jfb9040054. [PMID: 30248890 PMCID: PMC6306816 DOI: 10.3390/jfb9040054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 01/31/2023] Open
Abstract
Background: Corneal stromal cells (keratocytes) are responsible for developing and maintaining normal corneal structure and transparency, and for repairing the tissue after injury. Corneal keratocytes reside between highly aligned collagen lamellae in vivo. In addition to growth factors and other soluble biochemical factors, feedback from the extracellular matrix (ECM) itself has been shown to modulate corneal keratocyte behavior. Methods: In this study, we fabricate aligned collagen substrates using a microfluidics approach and assess their impact on corneal keratocyte morphology, cytoskeletal organization, and patterning after stimulation with platelet derived growth factor (PDGF) or transforming growth factor beta 1 (TGFβ). We also use time-lapse imaging to visualize the dynamic interactions between cells and fibrillar collagen during wound repopulation following an in vitro freeze injury. Results: Significant co-alignment between keratocytes and aligned collagen fibrils was detected, and the degree of cell/ECM co-alignment further increased in the presence of PDGF or TGFβ. Freeze injury produced an area of cell death without disrupting the collagen. High magnification, time-lapse differential interference contrast (DIC) imaging allowed cell movement and subcellular interactions with the underlying collagen fibrils to be directly visualized. Conclusions: With continued development, this experimental model could be an important tool for accessing how the integration of multiple biophysical and biochemical signals regulate corneal keratocyte differentiation.
Collapse
Affiliation(s)
- Pouriska B Kivanany
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kyle C Grose
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Nihan Yonet-Tanyeri
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Sujal Manohar
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yukta Sunkara
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kevin H Lam
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - W Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
37
|
Zhuang J, Lin S, Dong L, Cheng K, Weng W. Magnetically Assisted Electrodeposition of Aligned Collagen Coatings. ACS Biomater Sci Eng 2018; 4:1528-1535. [DOI: 10.1021/acsbiomaterials.7b01038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Junjun Zhuang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Suya Lin
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Lingqing Dong
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
38
|
Wanjare M, Hou L, Nakayama KH, Kim JJ, Mezak NP, Abilez OJ, Tzatzalos E, Wu JC, Huang NF. Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomater Sci 2018; 5:1567-1578. [PMID: 28715029 DOI: 10.1039/c7bm00323d] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Engineering of myocardial tissue constructs is a promising approach for treatment of coronary heart disease. To engineer myocardial tissues that better mimic the highly ordered physiological arrangement and function of native cardiomyocytes, we generated electrospun microfibrous polycaprolactone scaffolds with either randomly oriented (14 μm fiber diameter) or parallel-aligned (7 μm fiber diameter) microfiber arrangement and co-seeded the scaffolds with human induced pluripotent stem cell-derived cardiomyocytes (iCMs) and endothelial cells (iECs) for up to 12 days after iCM seeding. Here we demonstrated that aligned microfibrous scaffolds induced iCM alignment along the direction of the aligned microfibers after 2 days of iCM seeding, as well as promoted greater iCM maturation by increasing the sarcomeric length and gene expression of myosin heavy chain adult isoform (MYH7), in comparison to randomly oriented scaffolds. Furthermore, the benefit of scaffold anisotropy was evident in the significantly higher maximum contraction velocity of iCMs on the aligned scaffolds, compared to randomly oriented scaffolds, at 12 days of culture. Co-seeding of iCMs with iECs led to reduced contractility, compared to when iCMs were seeded alone. These findings demonstrate a dominant role of scaffold anisotropy in engineering cardiovascular tissues that maintain iCM organization and contractile function.
Collapse
Affiliation(s)
- Maureen Wanjare
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Luqia Hou
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Karina H Nakayama
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Joseph J Kim
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Nicholas P Mezak
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Oscar J Abilez
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | | | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Ngan F Huang
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA and Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
39
|
Huang YL, Segall JE, Wu M. Microfluidic modeling of the biophysical microenvironment in tumor cell invasion. LAB ON A CHIP 2017; 17:3221-3233. [PMID: 28805874 PMCID: PMC6007858 DOI: 10.1039/c7lc00623c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tumor cell invasion, whether penetrating through the extracellular matrix (ECM) or crossing a vascular endothelium, is a critical step in the cancer metastatic cascade. Along the way from a primary tumor to a distant metastatic site, tumor cells interact actively with the microenvironment either via biomechanical (e. g. ECM stiffness) or biochemical (e.g. secreted cytokines) signals. Increasingly, it is recognized that the tumor microenvironment (TME) is a critical player in tumor cell invasion. A main challenge for the mechanistic understanding of tumor cell-TME interactions comes from the complexity of the TME, which consists of extracellular matrices, fluid flows, cytokine gradients and other cell types. It is difficult to control TME parameters in conventional in vitro experimental designs such as Boyden chambers or in vivo such as in mouse models. Microfluidics has emerged as an enabling tool for exploring the TME parameter space because of its ease of use in recreating a complex and physiologically realistic three dimensional TME with well-defined spatial and temporal control. In this perspective, we will discuss designing principles for modeling the biophysical microenvironment (biological flows and ECM) for tumor cells using microfluidic devices and the potential microfluidic technology holds in recreating a physiologically realistic tumor microenvironment. The focus will be on applications of microfluidic models in tumor cell invasion.
Collapse
Affiliation(s)
- Yu Ling Huang
- Department of Biological and Environmental Engineering, Cornell University, 306 Riley-Robb Hall, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
40
|
Kim JJ, Hou L, Yang G, Mezak NP, Wanjare M, Joubert LM, Huang NF. Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells. Cell Mol Bioeng 2017; 10:417-432. [PMID: 28936269 DOI: 10.1007/s12195-017-0502-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Human induced pluripotent stem cells (iPSCs) are a promising source of endothelial cells (iPSC-ECs) for engineering three-dimensional (3D) vascularized cardiac tissues. To mimic cardiac microvasculature, in which capillaries are oriented in parallel, we hypothesized that endothelial differentiation of iPSCs within topographically aligned 3D scaffolds would be a facile one-step approach to generate iPSC-ECs as well as induce aligned vascular organization. METHODS Human iPSCs underwent endothelial differentiation within electrospun 3D polycaprolactone (PCL) scaffolds having either randomly oriented or parallel-aligned microfibers. Using transcriptional, protein, and endothelial functional assays, endothelial differentiation was compared between conventional two-dimensional (2D) films and 3D scaffolds having either randomly oriented or aligned microfibers. Furthermore, the role of parallel-aligned microfiber patterning on the organization of vessel-like networks was assessed. RESULTS The cells in both the randomly oriented and aligned 3D scaffolds demonstrated an 11-fold upregulation in gene expression of the endothelial phenotypic marker, CD31, compared to cells on 2D films. This upregulation corresponded to >3-fold increase in CD31 protein expression in 3D scaffolds, compared to 2D films. Concomitantly, other endothelial phenotypic markers including CD144 and endothelial nitric oxide synthase also showed significant transcriptional upregulation in 3D scaffolds by >7-fold, compared to 2D films. Nitric oxide production, which is characteristic of endothelial function, was produced 4-fold more abundantly in 3D scaffolds, compared to on 2D PCL films. Within aligned scaffolds, the iPSC-ECs displayed parallel-aligned vascular-like networks with 70% longer branch length, compared to cells in randomly oriented scaffolds, suggesting that fiber topography modulates vascular network-like formation and patterning. CONCLUSION Together, these results demonstrate that 3D scaffold structure promotes endothelial differentiation, compared to 2D substrates, and that aligned topographical patterning induces anisotropic vascular network organization.
Collapse
Affiliation(s)
- Joseph J Kim
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Luqia Hou
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Guang Yang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Nicholas P Mezak
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Maureen Wanjare
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lydia M Joubert
- Cell Sciences Imaging Facility, Stanford University Medical School, Stanford, CA, USA
| | - Ngan F Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
41
|
Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network. Nat Commun 2017; 8:14346. [PMID: 28146148 PMCID: PMC5296669 DOI: 10.1038/ncomms14346] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
In native tissues, cellular and acellular components are anisotropically organized and often aligned in specific directions, providing structural and mechanical properties for actuating biological functions. Thus, engineering alignment not only allows for emulation of native tissue structures but might also enable implementation of specific functionalities. However, achieving desired alignment is challenging, especially in three-dimensional constructs. By exploiting the elastomeric property of polydimethylsiloxane and fibrillogenesis kinetics of collagen, here we introduce a simple yet effective method to assemble and align fibrous structures in a multi-modular three-dimensional conglomerate. Applying this method, we have reconstructed the CA3–CA1 hippocampal neural circuit three-dimensionally in a monolithic gel, in which CA3 neurons extend parallel axons to and synapse with CA1 neurons. Furthermore, we show that alignment of the fibrous scaffold facilitates the establishment of functional connectivity. This method can be applied for reconstructing other neural circuits or tissue units where anisotropic organization in a multi-modular structure is desired. Alignment or anisotropic organisation within and between cells enables biological function but is challenging to engineer. Here, the authors align collagen fibres in a pre-strained polydimethylsiloxane mould to generate a 3D scaffold that guides hippocampal neuron axon growth to form CA3–CA1 neural circuits.
Collapse
|
42
|
Yang W, Li L, Su G, Zhang Z, Cao Y, Li X, Shi Y, Zhang Q. A collagen telopeptide binding peptide shows potential in aiding collagen bundle formation and fibril orientation. Biomater Sci 2017. [DOI: 10.1039/c6bm00574h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A double-armed CTBP-PEG-CTBP derivative of a collagen telopeptide binding peptide (CTBP), shows potential in aiding collagen bundle formation and fibril orientation by interacting with fibrils.
Collapse
Affiliation(s)
- Wenyu Yang
- The Key Laboratory of Biomedical Material of Tianjin
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Tianjin
| | - Lin Li
- The Key Laboratory of Biomedical Material of Tianjin
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Tianjin
| | - Guanghao Su
- The Key Laboratory of Biomedical Material of Tianjin
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Tianjin
| | - Zhe Zhang
- The Key Laboratory of Biomedical Material of Tianjin
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Tianjin
| | - Yiting Cao
- The Key Laboratory of Biomedical Material of Tianjin
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Tianjin
| | - Xuemin Li
- The Key Laboratory of Biomedical Material of Tianjin
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Tianjin
| | - Yanping Shi
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin
- PR China
| | - Qiqing Zhang
- The Key Laboratory of Biomedical Material of Tianjin
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Tianjin
| |
Collapse
|
43
|
Heidari K S, Biazar E, Seyedbarzegar SM, Mousavi N, Vosoughi F, Khademi S N, Nami F, Hosseinkazemi H. Simple design of an aligned transparent biofilm by magnetic particles and its cellular study. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Saeed Heidari K
- Ophtalmoproteomics Lab, Stem Cell Preparation Unit, Eye Research Center, Farabi Eye Hospital; Tehran University of Medical Sciences; Tehran Iran
| | - Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| | - S. Meysam Seyedbarzegar
- Department of Electric power Engineering, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| | - Nayerehsadat Mousavi
- Department of Biomaterials Engineering, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| | - Fina Vosoughi
- Department of Biomaterials Engineering, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| | - Naghmeh Khademi S
- Department of Biomaterials Engineering, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| | - Fariba Nami
- Department of Biomaterials Engineering, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| | - Hesam Hosseinkazemi
- Department of Biomaterials Engineering; Amirkabir University of Technology; Tehran Iran
| |
Collapse
|
44
|
Sakai H, Watanabe K, Kudoh F, Kamada R, Chuman Y, Sakaguchi K. Patterning nanofibrils through the templated growth of multiple modified amyloid peptides. Sci Rep 2016; 6:31993. [PMID: 27559011 PMCID: PMC4997568 DOI: 10.1038/srep31993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/01/2016] [Indexed: 01/08/2023] Open
Abstract
There has been considerable interest in the patterning of functionalized nanowires because of the potential applications of these materials to the construction of nanodevices. A variety of biomolecular building blocks containing amyloid peptides have been used to functionalize nanowires. However, the patterning of self-assembled nanowires can be challenging because of the difficulties associated with controlling the self-assembly of these functionalized building blocks. Herein, we present a versatile approach for the patterning of nanowires based on the combination of templated fibril growth with a versatile functionalization method using our structure-controllable amyloid peptides (SCAPs). Using this approach, we have succeeded in the formation of multi-type nanowires with tandem domain structures in high yields. Given that the mixing-SCAP method can lead to the formation of tandem fibrils, it is noteworthy that our method allowed us to control the initiation of fibril formation from the gold nanoparticles, which were attached to a short fibril as initiation points. This approach could be used to prepare a wide variety of fibril patterns, and therefore holds great potential for the development of novel self-assembled nanodevices.
Collapse
Affiliation(s)
- Hiroki Sakai
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo 060-0810, Japan
| | - Ken Watanabe
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo 060-0810, Japan
| | - Fuki Kudoh
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo 060-0810, Japan
| | - Rui Kamada
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo 060-0810, Japan
| | - Yoshiro Chuman
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo 060-0810, Japan
| | - Kazuyasu Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
45
|
Hapach LA, VanderBurgh JA, Miller JP, Reinhart-King CA. Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance. Phys Biol 2015; 12:061002. [PMID: 26689380 DOI: 10.1088/1478-3975/12/6/061002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix.
Collapse
|
46
|
Sun M, Bloom AB, Zaman MH. Rapid Quantification of 3D Collagen Fiber Alignment and Fiber Intersection Correlations with High Sensitivity. PLoS One 2015; 10:e0131814. [PMID: 26158674 PMCID: PMC4497681 DOI: 10.1371/journal.pone.0131814] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/07/2015] [Indexed: 01/19/2023] Open
Abstract
Metastatic cancers aggressively reorganize collagen in their microenvironment. For example, radially orientated collagen fibers have been observed surrounding tumor cell clusters in vivo. The degree of fiber alignment, as a consequence of this remodeling, has often been difficult to quantify. In this paper, we present an easy to implement algorithm for accurate detection of collagen fiber orientation in a rapid pixel-wise manner. This algorithm quantifies the alignment of both computer generated and actual collagen fiber networks of varying degrees of alignment within 5°°. We also present an alternative easy method to calculate the alignment index directly from the standard deviation of fiber orientation. Using this quantitative method for determining collagen alignment, we demonstrate that the number of collagen fiber intersections has a negative correlation with the degree of fiber alignment. This decrease in intersections of aligned fibers could explain why cells move more rapidly along aligned fibers than unaligned fibers, as previously reported. Overall, our paper provides an easier, more quantitative and quicker way to quantify fiber orientation and alignment, and presents a platform in studying effects of matrix and cellular properties on fiber alignment in complex 3D environments.
Collapse
Affiliation(s)
- Meng Sun
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Alexander B. Bloom
- Department of Molecular Biology, Cellular Biology and Biochemistry, Boston University, Boston, Massachusetts, United States of America
| | - Muhammad H. Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
47
|
Hsu HT, Rau LR, Zeng YN, Kang YL, Tsai SW, Wu MH. External vibration enhances macromolecular crowding for construction of aligned three-dimensional collagen fibril scaffolds. Biofabrication 2015; 7:025004. [DOI: 10.1088/1758-5090/7/2/025004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Yunoki S, Hatayama H, Ebisawa M, Kondo E, Yasuda K. A novel fabrication method to create a thick collagen bundle composed of uniaxially aligned fibrils: An essential technology for the development of artificial tendon/ligament matrices. J Biomed Mater Res A 2015; 103:3054-65. [DOI: 10.1002/jbm.a.35440] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/15/2015] [Accepted: 02/23/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Shunji Yunoki
- Biotechnology Group; Tokyo Metropolitan Industrial Technology Research Institute (TIRI); Koto-Ku Tokyo 135-0064 Japan
| | - Hirosuke Hatayama
- Biotechnology Group; Tokyo Metropolitan Industrial Technology Research Institute (TIRI); Koto-Ku Tokyo 135-0064 Japan
| | - Mizue Ebisawa
- Optical Radiation and Acoustics Technology Group; Tokyo Metropolitan Industrial Technology Research Institute (TIRI); Koto-Ku Tokyo 135-0064 Japan
| | - Eiji Kondo
- Department of Advanced Therapeutic Research for Sports Medicine; Hokkaido University Graduate School of Medicine; Kita-Ku Sapporo 060-8638 Japan
| | - Kazunori Yasuda
- Department of Sports Medicine and Joint Surgery; Hokkaido University Graduate School of Medicine; Kita-Ku Sapporo 060-8638 Japan
| |
Collapse
|
49
|
Jang JM, Tran SHT, Na SC, Jeon NL. Engineering controllable architecture in matrigel for 3D cell alignment. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2183-2188. [PMID: 25585718 DOI: 10.1021/am508292t] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a microfluidic approach to impart alignment in ECM components in 3D hydrogels by continuously applying fluid flow across the bulk gel during the gelation process. The microfluidic device where each channel can be independently filled was tilted at 90° to generate continuous flow across the Matrigel as it gelled. The presence of flow helped that more than 70% of ECM components were oriented along the direction of flow, compared with randomly cross-linked Matrigel. Following the oriented ECM components, primary rat cortical neurons and mouse neural stem cells showed oriented outgrowth of neuronal processes within the 3D Matrigel matrix.
Collapse
Affiliation(s)
- Jae Myung Jang
- Interdisciplinary Program in Neuroscience and ‡School of Mechanical and Aerospace Engineering, Seoul National University , Seoul, Republic of Korea
| | | | | | | |
Collapse
|
50
|
Gang A, Haustein N, Baraban L, Weber W, Mikolajick T, Thiele J, Cuniberti G. Microfluidic alignment and trapping of 1D nanostructures – a simple fabrication route for single-nanowire field effect transistors. RSC Adv 2015. [DOI: 10.1039/c5ra20414c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microfluidic trapping of 1D nanostructures at predefined positions for subsequent facile contacting via UV-lithography.
Collapse
Affiliation(s)
- A. Gang
- Institute for Materials Science and Max Bergmann Center of Biomaterials
- TU Dresden
- 01062 Dresden, Germany
- Center for Advancing Electronics Dresden (CfAED)
- TU Dresden
| | - N. Haustein
- Institute for Materials Science and Max Bergmann Center of Biomaterials
- TU Dresden
- 01062 Dresden, Germany
| | - L. Baraban
- Institute for Materials Science and Max Bergmann Center of Biomaterials
- TU Dresden
- 01062 Dresden, Germany
| | - W. Weber
- Center for Advancing Electronics Dresden (CfAED)
- TU Dresden
- 01062 Dresden, Germany
- NaMLab gGmbH
- 01187 Dresden, Germany
| | - T. Mikolajick
- Center for Advancing Electronics Dresden (CfAED)
- TU Dresden
- 01062 Dresden, Germany
- NaMLab gGmbH
- 01187 Dresden, Germany
| | - J. Thiele
- Institute for Materials Science and Max Bergmann Center of Biomaterials
- TU Dresden
- 01062 Dresden, Germany
| | - G. Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials
- TU Dresden
- 01062 Dresden, Germany
- Center for Advancing Electronics Dresden (CfAED)
- TU Dresden
| |
Collapse
|