1
|
Vu TQ, Sant'Anna LE, Kamat NP. Tuning Targeted Liposome Avidity to Cells via Lipid Phase Separation. Biomacromolecules 2023; 24:1574-1584. [PMID: 36943688 PMCID: PMC10874583 DOI: 10.1021/acs.biomac.2c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The addition of both cell-targeting moieties and polyethylene glycol (PEG) to nanoparticle (NP) drug delivery systems is a standard approach to improve the biodistribution, specificity, and uptake of therapeutic cargo. The spatial presentation of these molecules affects avidity of the NP to target cells in part through an interplay between the local ligand concentration and the steric hindrance imposed by PEG molecules. Here, we show that lipid phase separation in nanoparticles can modulate liposome avidity by changing the proximity of PEG and targeting protein molecules on a nanoparticle surface. Using lipid-anchored nickel-nitrilotriacetic acid (Ni-NTA) as a model ligand, we demonstrate that the attachment of lipid anchored Ni-NTA and PEG molecules to distinct lipid domains in nanoparticles can enhance liposome binding to cancer cells by increasing ligand clustering and reducing steric hindrance. We then use this technique to enhance the binding of RGD-modified liposomes, which can bind to integrins overexpressed on many cancer cells. These results demonstrate the potential of lipid phase separation to modulate the spatial presentation of targeting and shielding molecules on lipid nanocarriers, offering a powerful tool to enhance the efficacy of NP drug delivery systems.
Collapse
Affiliation(s)
- Timothy Q Vu
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lucas E Sant'Anna
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Neha P Kamat
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Singla A, Simbassa SB, Chirra B, Gairola A, Southerland MR, Shah KN, Rose RE, Chen Q, Basharat A, Baeza J, Raina R, Chapman MJ, Hassan AM, Ivanov I, Sen A, Wu HJ, Cannon CL. Hetero-Multivalent Targeted Liposomal Drug Delivery to Treat Pseudomonas aeruginosa Infections. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40724-40737. [PMID: 36018830 PMCID: PMC9480101 DOI: 10.1021/acsami.2c12943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas aeruginosa is the leading nosocomial and community-acquired pathogen causing a plethora of acute and chronic infections. The Centers for Disease Control and Prevention has designated multidrug-resistant isolates of P. aeruginosa as a serious threat. A novel delivery vehicle capable of specifically targeting P. aeruginosa, and encapsulating antimicrobials, may address the challenges associated with these infections. We have developed hetero-multivalent targeted liposomes functionalized with host cell glycans to increase the delivery of antibiotics to the site of infection. Previously, we have demonstrated that compared with monovalent liposomes, these hetero-multivalent liposomes bind with higher affinity to P. aeruginosa. Here, compared with nontargeted liposomes, we have shown that greater numbers of targeted liposomes are found in the circulation, as well as at the site of P. aeruginosa (PAO1) infection in the thighs of CD-1 mice. No significant difference was found in the uptake of targeted, nontargeted, and PEGylated liposomes by J774.A1 macrophages. Ciprofloxacin-loaded liposomes were formulated and characterized for size, encapsulation, loading, and drug release. In vitro antimicrobial efficacy was assessed using CLSI broth microdilution assays and time-kill kinetics. Lastly, PAO1-inoculated mice treated with ciprofloxacin-loaded, hetero-multivalent targeted liposomes survived longer than mice treated with ciprofloxacin-loaded, monovalent targeted, or nontargeted liposomes and free ciprofloxacin. Thus, liposomes functionalized with host cell glycans target P. aeruginosa resulting in increased retention of the liposomes in the circulation, accumulation at the site of infection, and increased survival time in a mouse surgical site infection model. Consequently, this formulation strategy may improve outcomes in patients infected with P. aeruginosa.
Collapse
Affiliation(s)
- Akshi Singla
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Sabona B. Simbassa
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Bhagath Chirra
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Anirudh Gairola
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Marie R. Southerland
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Kush N. Shah
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Robert E. Rose
- Comparative
Medicine Program, Texas A&M University, College Station, Texas 77843, United States
| | - Qingquan Chen
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Ahmed Basharat
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Jaime Baeza
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Rohit Raina
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Morgan J. Chapman
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Adel M. Hassan
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| | - Ivan Ivanov
- Department
of Veterinary Physiology and Pharmacology, Texas A&M University, College
Station, Texas 77843, United States
| | - Anindito Sen
- Microscopy
and Imaging Center, Texas A&M University, College Station, Texas 77843, United States
| | - Hung-Jen Wu
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Carolyn L. Cannon
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan Texas 77807, United States
| |
Collapse
|
3
|
Lopez-Cazares G, Eniola-Adefeso O. Dual Coating of Chitosan and Albumin Negates the Protein Corona-Induced Reduced Vascular Adhesion of Targeted PLGA Microparticles in Human Blood. Pharmaceutics 2022; 14:pharmaceutics14051018. [PMID: 35631604 PMCID: PMC9143524 DOI: 10.3390/pharmaceutics14051018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Vascular-targeted carriers (VTCs) have the potential to localize therapeutics and imaging agents to inflamed, diseased sites. Poly (lactic-co-glycolic acid) (PLGA) is a negatively charged copolymer commonly used to construct VTCs due to its biodegradability and FDA approval. Unfortunately, PLGA VTCs experienced reduced adhesion to inflamed endothelium in the presence of human plasma proteins. In this study, PLGA microparticles were coated with chitosan (CS), human serum albumin (HSA), or both (HSA-CS) to improve adhesion. The binding of sialyl Lewis A (a ligand for E-selectin)-targeted PLGA, HSA-PLGA, CSPLGA, and HSA-CSPLGA to activated endothelial cells was evaluated in red blood cells in buffer or plasma flow conditions. PLGA VTCs with HSA-only coating showed improvement and experienced 35–52% adhesion in plasma compared to plasma-free buffer conditions across all shear rates. PLGA VTCs with dual coating—CS and HSA—maintained 80% of their adhesion after exposure to plasma at low and intermediate shears and ≈50% at high shear. Notably, the protein corona characterization showed increases at the 75 and 150 kDa band intensities for HSA-PLGA and HSA-CSPLGA, which could correlate to histidine-rich glycoprotein and immunoglobulin G. The changes in protein corona on HSA-coated particles seem to positively influence particle binding, emphasizing the importance of understanding plasma protein–particle interactions.
Collapse
Affiliation(s)
- Genesis Lopez-Cazares
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-936-0856
| |
Collapse
|
4
|
Vu TQ, Peruzzi JA, Sant'Anna LE, Roth EW, Kamat NP. Lipid Phase Separation in Vesicles Enhances TRAIL-Mediated Cytotoxicity. NANO LETTERS 2022; 22:2627-2634. [PMID: 35298184 PMCID: PMC9680886 DOI: 10.1021/acs.nanolett.1c04365] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ligand spatial presentation and density play important roles in signaling pathways mediated by cell receptors and are critical parameters when designing protein-conjugated therapeutic nanoparticles. Here, we harness lipid phase separation to spatially control the protein presentation on lipid vesicles. We use this system to improve the cytotoxicity of TNF-related apoptosis inducing ligand (TRAIL), a therapeutic anticancer protein. Vesicles with phase-separated TRAIL presentation induce more cell death in Jurkat cancer cells than vesicles with uniformly presented TRAIL, and cytotoxicity is dependent on TRAIL density. We assess this relationship in other cancer cell lines and demonstrate that phase-separated vesicles with TRAIL only enhance cytotoxicity through one TRAIL receptor, DR5, while another TRAIL receptor, DR4, is less sensitive to TRAIL density. This work demonstrates a rapid and accessible method to control protein conjugation and density on vesicles that can be adopted to other nanoparticle systems to improve receptor signaling by nanoparticles.
Collapse
Affiliation(s)
- Timothy Q Vu
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin A Peruzzi
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lucas E Sant'Anna
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization and Experimentation Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Neha P Kamat
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Biomedical nanoparticle design: What we can learn from viruses. J Control Release 2021; 329:552-569. [PMID: 33007365 PMCID: PMC7525328 DOI: 10.1016/j.jconrel.2020.09.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/02/2023]
Abstract
Viruses are nanomaterials with a number of properties that surpass those of many synthetic nanoparticles (NPs) for biomedical applications. They possess a rigorously ordered structure, come in a variety of shapes, and present unique surface elements, such as spikes. These attributes facilitate propitious biodistribution, the crossing of complex biological barriers and a minutely coordinated interaction with cells. Due to the orchestrated sequence of interactions of their stringently arranged particle corona with cellular surface receptors they effectively identify and infect their host cells with utmost specificity, while evading the immune system at the same time. Furthermore, their efficacy is enhanced by their response to stimuli and the ability to spread from cell to cell. Over the years, great efforts have been made to mimic distinct viral traits to improve biomedical nanomaterial performance. However, a closer look at the literature reveals that no comprehensive evaluation of the benefit of virus-mimetic material design on the targeting efficiency of nanomaterials exists. In this review we, therefore, elucidate the impact that viral properties had on fundamental advances in outfitting nanomaterials with the ability to interact specifically with their target cells. We give a comprehensive overview of the diverse design strategies and identify critical steps on the way to reducing them to practice. More so, we discuss the advantages and future perspectives of a virus-mimetic nanomaterial design and try to elucidate if viral mimicry holds the key for better NP targeting.
Collapse
|
6
|
Glassman PM, Myerson JW, Ferguson LT, Kiseleva RY, Shuvaev VV, Brenner JS, Muzykantov VR. Targeting drug delivery in the vascular system: Focus on endothelium. Adv Drug Deliv Rev 2020; 157:96-117. [PMID: 32579890 PMCID: PMC7306214 DOI: 10.1016/j.addr.2020.06.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
The bloodstream is the main transporting pathway for drug delivery systems (DDS) from the site of administration to the intended site of action. In many cases, components of the vascular system represent therapeutic targets. Endothelial cells, which line the luminal surface of the vasculature, play a tripartite role of the key target, barrier, or victim of nanomedicines in the bloodstream. Circulating DDS may accumulate in the vascular areas of interest and in off-target areas via mechanisms bypassing specific molecular recognition, but using ligands of specific vascular determinant molecules enables a degree of precision, efficacy, and specificity of delivery unattainable by non-affinity DDS. Three decades of research efforts have focused on specific vascular targeting, which have yielded a multitude of DDS, many of which are currently undergoing a translational phase of development for biomedical applications, including interventions in the cardiovascular, pulmonary, and central nervous systems, regulation of endothelial functions, host defense, and permeation of vascular barriers. We discuss the design of endothelial-targeted nanocarriers, factors underlying their interactions with cells and tissues, and describe examples of their investigational use in models of acute vascular inflammation with an eye on translational challenges.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| | - Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Laura T Ferguson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Raisa Y Kiseleva
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
7
|
Zukerman H, Khoury M, Shammay Y, Sznitman J, Lotan N, Korin N. Targeting functionalized nanoparticles to activated endothelial cells under high wall shear stress. Bioeng Transl Med 2020; 5:e10151. [PMID: 32440559 PMCID: PMC7237145 DOI: 10.1002/btm2.10151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 11/26/2022] Open
Abstract
Local inflammation of the endothelium is associated with a plethora of cardiovascular diseases. Vascular-targeted carriers (VTCs) have been advocated to provide focal effective therapeutics to these disease sites. Here, we examine the design of functionalized nanoparticles (NPs) as VTCs that can specifically localize at an inflamed vessel wall under pathological levels of high shear stress, associated for example with clinical (or in vivo) conditions of vascular narrowing and arteriogenesis. To test this, carboxylated fluorescent 200 nm polystyrene particles were functionalized with ligands to activated endothelium, that is, an E-selectin binding peptide (Esbp), an anti ICAM-1 antibody, or using a combination of both. The functionalized NPs were investigated in vitro using microfluidic models lined with inflamed (TNF-α stimulated) and control endothelial cells (EC). Specifically, their adhesion was monitored under different relevant wall shear stresses (i.e., 40-300 dyne/cm2) via real-time confocal microscopy. Experiments reveal a significantly higher specific adhesion of the examined functionalized NPs to activated EC for the window of examined wall shear stresses. Moreover, particle adhesion correlated with the surface coating density whereby under high surface coating (i.e., ~10,000 molecule/particle), shear-dependent particle adhesion increased significantly. Altogether, our results show that functionalized NPs can be designed to target inflamed endothelial cells under high shear stress. Such VTCs underscore the potential for attractive avenues in targeting drugs to vasoconstriction and arteriogenesis sites.
Collapse
Affiliation(s)
- Hila Zukerman
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Maria Khoury
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Yosi Shammay
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Josué Sznitman
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Noah Lotan
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Netanel Korin
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
8
|
Ramesh A, Kumar S, Nguyen A, Brouillard A, Kulkarni A. Lipid-based phagocytosis nanoenhancer for macrophage immunotherapy. NANOSCALE 2020; 12:1875-1885. [PMID: 31903467 DOI: 10.1039/c9nr08670f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tumor associated macrophages (TAMs) play an important role in initiating the immunosuppressive environment that negatively impacts the immunotherapy efficacy and has long been linked with cancer progression. On the other hand, activated macrophages display immense phagocytic potential and can be used as an effector cell for cancer therapy. But, activating TAMs to effectively phagocytose cancer cells is challenging. Cancer cells upregulate CD47, a "don't eat me" receptor that ligates with SIRPα present on macrophages to downregulate the phagocytosis. Since phagocytosis is a physical phenomenon based on engulfment of aberrant cells, we hypothesized that the phagocytic function of macrophages can be enhanced by blocking both CD47 and SIRPα in tandem and at the same time, engaging both macrophages and cancer cells can favor increased macrophage-cancer cellular interactions. Here, we demonstrate that a simple approach of anti-CD47 and anti-SIRPα antibodies conjugated lipid-based phagocytosis nanoenhancer (LPN) can perform both of these functions. The LPNs were stable in both physiological and biologically relevant conditions, bound to both macrophages and cancer cells and significantly enhanced phagocytosis of cancer cells as compared to combination of free antibodies. LPN treatment showed significant tumor growth inhibition and increased survival in B16F10 melanoma tumor bearing mice with no systemic toxicity. Mechanistic analysis of efficacy revealed an increase in intra-tumoral infiltration of effector T cells and NK cells. Cytokine analysis revealed increased secretion of intracellular iNOS, a hallmark of activated macrophages. This study shows that LPN can simultaneously block both CD47 and SIRPα and can effectively engage macrophage and cancer cell in close proximity. Combining these facets provide a simple approach to enhance phagocytosis and improve anti-cancer macrophage immunotherapy.
Collapse
Affiliation(s)
- Anujan Ramesh
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
| | | | | | | | | |
Collapse
|
9
|
Trementozzi AN, Imam ZI, Mendicino M, Hayden CC, Stachowiak JC. Liposome-Mediated Chemotherapeutic Delivery Is Synergistically Enhanced by Ternary Lipid Compositions and Cationic Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12532-12542. [PMID: 31476123 PMCID: PMC6918482 DOI: 10.1021/acs.langmuir.9b01965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Most small molecule chemotherapeutics must cross one or more cellular membrane barriers to reach their biochemical targets. Owing to the relatively low solubility of chemotherapeutics in the lipid membrane environment, high doses are often required to achieve a therapeutic effect. The resulting systemic toxicity has motivated efforts to improve the efficiency of chemotherapeutic delivery to the cellular interior. Toward this end, liposomes containing lipids with cationic head groups have been shown to permeabilize cellular membranes, resulting in the more efficient release of encapsulated drugs into the cytoplasm. However, the high concentrations of cationic lipids required to achieve efficient delivery remain a key limitation, frequently resulting in toxicity. Toward overcoming this limitation, here, we investigate the ability of ternary lipid mixtures to enhance liposomal delivery. Specifically, we investigate the delivery of the chemotherapeutic, doxorubicin, using ternary liposomes that are homogeneous at physiological temperature but have the potential to undergo membrane phase separation upon contact with the cell surface. This approach, which relies upon the ability of membrane phase boundaries to promote drug release, provides a novel method for reducing the overall concentration of cationic lipids required for efficient delivery. Our results show that this approach improves the performance of doxorubicin by up to 5-fold in comparison to the delivery of the same drug by conventional liposomes. These data demonstrate that ternary lipid compositions and cationic lipids can be combined synergistically to substantially improve the efficiency of chemotherapeutic delivery in vitro.
Collapse
Affiliation(s)
| | - Zachary I. Imam
- Department of Biomedical Engineering, The University of Texas at Austin, TX
| | - Morgan Mendicino
- Department of Biomedical Engineering, The University of Texas at Austin, TX
| | - Carl C. Hayden
- Department of Biomedical Engineering, The University of Texas at Austin, TX
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, TX
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX
| |
Collapse
|
10
|
Guo P, Yang J, Liu D, Huang L, Fell G, Huang J, Moses MA, Auguste DT. Dual complementary liposomes inhibit triple-negative breast tumor progression and metastasis. SCIENCE ADVANCES 2019; 5:eaav5010. [PMID: 30906868 PMCID: PMC6426465 DOI: 10.1126/sciadv.aav5010] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/31/2019] [Indexed: 05/10/2023]
Abstract
Distinguishing malignant cells from non-neoplastic ones is a major challenge in triple-negative breast cancer (TNBC) treatment. Here, we developed a complementary targeting strategy that uses precisely matched, multivalent ligand-receptor interactions to recognize and target TNBC tumors at the primary site and metastatic lesions. We screened a panel of cancer cell surface markers and identified intercellular adhesion molecule-1 (ICAM1) and epithelial growth factor receptor (EGFR) as optimal candidates for TNBC complementary targeting. We engineered a dual complementary liposome (DCL) that precisely complements the molecular ratio and organization of ICAM1 and EGFR specific to TNBC cell surfaces. Our in vitro mechanistic studies demonstrated that DCLs, compared to single-targeting liposomes, exhibited increased binding, enhanced internalization, and decreased receptor signaling. DCLs consistently exhibited substantially increased tumor targeting activity and antitumor efficacy in orthotopic and lung metastasis models, indicating that DCLs are a platform technology for the design of personalized nanomedicines for TNBC.
Collapse
Affiliation(s)
- Peng Guo
- Vascular Biology Program, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Jiang Yang
- Vascular Biology Program, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Daxing Liu
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Lan Huang
- Vascular Biology Program, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Gillian Fell
- Vascular Biology Program, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jing Huang
- Vascular Biology Program, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Marsha A. Moses
- Vascular Biology Program, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Debra T. Auguste
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
11
|
Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018; 130:90-112. [PMID: 30149885 PMCID: PMC6588191 DOI: 10.1016/j.addr.2018.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Humoral and cellular host defense mechanisms including diverse phagocytes, leukocytes, and immune cells have evolved over millions of years to protect the body from microbes and other external and internal threats. These policing forces recognize engineered sub-micron drug delivery systems (DDS) as such a threat, and react accordingly. This leads to impediment of the therapeutic action, extensively studied and discussed in the literature. Here, we focus on side effects of DDS interactions with host defenses. We argue that for nanomedicine to reach its clinical potential, the field must redouble its efforts in understanding the interaction between drug delivery systems and the host defenses, so that we can engineer safer interventions with the greatest potential for clinical success.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Hood
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyal N Patel
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Targeted Therapeutics and Translational Nanomedicine (CT3N), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Deci MB, Liu M, Dinh QT, Nguyen J. Precision engineering of targeted nanocarriers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1511. [PMID: 29436157 DOI: 10.1002/wnan.1511] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Since their introduction in 1980, the number of advanced targeted nanocarrier systems has grown considerably. Nanocarriers capable of targeting single receptors, multiple receptors, or multiple epitopes have all been used to enhance delivery efficiency and selectivity. Despite tremendous progress, preclinical studies and clinically translatable nanotechnology remain disconnected. The disconnect in targeting efficacy may stem from poorly-understood factors such as receptor clustering, spatial control of targeting ligands, ligand mobility, and ligand architecture. Further, the relationship between receptor distribution and ligand architecture remains elusive. Traditionally, targeted nanocarriers were engineered assuming a "static" target. However, it is becoming increasingly clear that receptor expression patterns change in response to external stimuli and disease progression. Here, we discuss how cutting-edge technologies will enable a better characterization of the spatiotemporal distribution of membrane receptors and their clustering. We further describe how this will enable the design of new nanocarriers that selectively target the site of disease. Ultimately, we explore how the precision engineering of targeted nanocarriers that adapt to receptor dynamics will have the potential to drive nanotechnology to the forefront of therapy and make targeted nanomedicine a clinical reality. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Michael B Deci
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, New York
| | - Maixian Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, New York
| | - Quoc Thai Dinh
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Homburg/Saar, Germany
| | - Juliane Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, New York
| |
Collapse
|
13
|
Feng X, Chen Y. Drug delivery targets and systems for targeted treatment of rheumatoid arthritis. J Drug Target 2018; 26:845-857. [DOI: 10.1080/1061186x.2018.1433680] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xun Feng
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Imam ZI, Kenyon LE, Ashby G, Nagib F, Mendicino M, Zhao C, Gadok AK, Stachowiak JC. Phase-Separated Liposomes Enhance the Efficiency of Macromolecular Delivery to the Cellular Cytoplasm. Cell Mol Bioeng 2017; 10:387-403. [PMID: 29104698 PMCID: PMC5665383 DOI: 10.1007/s12195-017-0489-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/11/2017] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION From viruses to organelles, fusion of biological membranes is used by diverse biological systems to deliver macromolecules across membrane barriers. Membrane fusion is also a potentially efficient mechanism for the delivery of macromolecular therapeutics to the cellular cytoplasm. However, a key shortcoming of existing fusogenic liposomal systems is that they are inefficient, requiring a high concentration of fusion-promoting lipids in order to cross cellular membrane barriers. OBJECTIVES Toward addressing this limitation, our experiments explore the extent to which membrane fusion can be amplified by using the process of lipid membrane phase separation to concentrate fusion-promoting lipids within distinct regions of the membrane surface. METHODS We used confocal fluorescence microscopy to investigate the integration of fusion-promoting lipids into a ternary lipid membrane system that separated into liquid-ordered and liquid-disordered membrane phases. Additionally, we quantified the impact of membrane phase separation on the efficiency with which liposomes transferred lipids and encapsulated macromolecules to cells, using a combination of confocal fluorescence imaging and flow cytometry. RESULTS Here we report that concentrating fusion-promoting lipids within phase-separated lipid domains on the surfaces of liposomes significantly increases the efficiency of liposome fusion with model membranes and cells. In particular, membrane phase separation enhanced the delivery of lipids and model macromolecules to the cytoplasm of tumor cells by at least 4-fold in comparison to homogenous liposomes. CONCLUSIONS Our findings demonstrate that phase separation can enhance membrane fusion by locally concentrating fusion-promoting lipids on the surface of liposomes. This work represents the first application of lipid membrane phase separation in the design of biomaterials-based delivery systems. Additionally, these results lay the ground work for developing fusogenic liposomes that are triggered by physical and molecular cues associated with target cells.
Collapse
Affiliation(s)
- Zachary I. Imam
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Laura E. Kenyon
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Fatema Nagib
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Morgan Mendicino
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Chi Zhao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Avinash K. Gadok
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| |
Collapse
|
15
|
Eloy JO, Petrilli R, Trevizan LNF, Chorilli M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids Surf B Biointerfaces 2017; 159:454-467. [PMID: 28837895 DOI: 10.1016/j.colsurfb.2017.07.085] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/26/2017] [Accepted: 07/29/2017] [Indexed: 12/31/2022]
Abstract
Nanoparticles, especially liposomes, have gained prominence in the field of drug delivery for the treatment of human diseases, particularly cancer; they provide several advantages, including controlled drug release, protection of the drug against degradation, improved pharmacokinetics, long circulation, and passive targeting to tumors and inflammatory sites due to the enhanced permeability and retention effect. The functionalization of liposomes with monoclonal antibodies or antibody fragments to generate immunoliposomes has emerged as a promising strategy for targeted delivery to and uptake by cells overexpressing the antigens to these antibodies, with a consequent reduction in side effects. In this review, we address functionalization strategies for the non-covalent and covalent attachment of monoclonal antibodies and their fragments to liposomal surfaces. The main reaction occurs between the sulfhydryl groups of thiolated antibodies and maleimide-containing liposomes. Furthermore, we explore the main targeting possibilities with these ligands for the treatment of a variety of pathologies, including HER2- and EGFR-positive cancers, inflammatory and cardiovascular diseases, infectious diseases, and autoimmune and neurodegenerative diseases, which have not previously been reviewed together. Overall, many studies have shown selective delivery of immunoliposomes to target cells, with promising in vivo results, particularly for cancer treatment. Although clinical trials have been conducted, immunoliposomes have not yet received clinical approval. However, immunoliposomes are promising formulations that are expected to become available for therapeutic use after clinical trials prove their safety and efficacy, and after scaling issues are resolved.
Collapse
Affiliation(s)
- Josimar O Eloy
- School of Pharmaceutical Sciences of Araraquara, São Paulo State University, UNESP, Department of Drugs and Medicines, Araraquara, SP, Brazil.
| | - Raquel Petrilli
- School of Pharmaceutical Sciences of Ribeirão Preto, São Paulo State University, USP, Department of Pharmaceutical Sciences, Ribeirão Preto, SP, Brazil
| | - Lucas Noboru Fatori Trevizan
- School of Pharmaceutical Sciences of Araraquara, São Paulo State University, UNESP, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences of Araraquara, São Paulo State University, UNESP, Department of Drugs and Medicines, Araraquara, SP, Brazil
| |
Collapse
|
16
|
Levine RM, Kokkoli E. Dual-ligand α5β1 and α6β4 integrin targeting enhances gene delivery and selectivity to cancer cells. J Control Release 2017; 251:24-36. [DOI: 10.1016/j.jconrel.2017.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/20/2017] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
|
17
|
Guo P, Yang J, Bielenberg DR, Dillon D, Zurakowski D, Moses MA, Auguste DT. A quantitative method for screening and identifying molecular targets for nanomedicine. J Control Release 2017; 263:57-67. [PMID: 28341549 DOI: 10.1016/j.jconrel.2017.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022]
Abstract
Identifying a molecular target is essential for tumor-targeted nanomedicine. Current cancer nanomedicines commonly suffer from poor tumor specificity, "off-target" toxicity, and limited clinical efficacy. Here, we report a method to screen and identify new molecular targets for tumor-targeted nanomedicine based on a quantitative analysis. In our proof-of-principle study, we used comparative flow cytometric screening to identify ICAM-1 as a potential target for metastatic melanoma (MM). We further evaluated ICAM-1 as a MM targeting moiety by characterizing its (1) tumor specificity, (2) expression level, (3) cellular internalization, (4) therapeutic function, and (5) potential clinical impact. Quantitation of ICAM-1 protein expression on cells and validation by immunohistochemistry on human tissue specimens justified the synthesis of antibody-functionalized drug delivery vehicles, which were benchmarked against appropriate controls. We engineered ICAM-1 antibody conjugated, doxorubicin encapsulating immunoliposomes (ICAM-Dox-LPs) to selectively recognize and deliver doxorubicin to MM cells and simultaneously neutralize ICAM-1 signaling via an antibody blockade, demonstrating significant and simultaneous inhibitory effects on MM cell proliferation and migration. This paper describes a novel, quantitative metric system that identifies and evaluates new cancer targets for tumor-targeting nanomedicine.
Collapse
Affiliation(s)
- Peng Guo
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, United States; Vascular Biology Program, Boston Children's Hospital, 1 Blackfan Circle, Boston, MA 02115, United States; Department of Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Jiang Yang
- Vascular Biology Program, Boston Children's Hospital, 1 Blackfan Circle, Boston, MA 02115, United States; Department of Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, 1 Blackfan Circle, Boston, MA 02115, United States; Department of Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Deborah Dillon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States
| | - David Zurakowski
- Department of Anesthesia, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, 1 Blackfan Circle, Boston, MA 02115, United States; Department of Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Debra T Auguste
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, United States.
| |
Collapse
|
18
|
Kuang H, Ku SH, Kokkoli E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Adv Drug Deliv Rev 2017; 110-111:80-101. [PMID: 27539561 DOI: 10.1016/j.addr.2016.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 08/05/2016] [Indexed: 12/25/2022]
Abstract
Liposomal nanomedicine has led to clinically useful cancer therapeutics like Doxil and DaunoXome. In addition, peptide-functionalized liposomes represent an effective drug and gene delivery vehicle with increased cancer cell specificity, enhanced tumor-penetrating ability and high tumor growth inhibition. The goal of this article is to review the recently published literature of the peptide-amphiphiles that were used to functionalize liposomes, to highlight successful designs that improved drug and gene delivery to cancer cells in vitro, and cancer tumors in vivo, and to discuss the current challenges of designing these peptide-decorated liposomes for effective cancer treatment.
Collapse
|
19
|
Kermanizadeh A, Villadsen K, Østrem RG, Jensen KJ, Møller P, Loft S. Integrin Targeting and Toxicological Assessment of Peptide-Conjugated Liposome Delivery Systems to Activated Endothelial Cells. Basic Clin Pharmacol Toxicol 2017; 120:380-389. [DOI: 10.1111/bcpt.12692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/18/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Ali Kermanizadeh
- Section of Environmental Health; Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | - Klaus Villadsen
- Biomolecular Nanoscale Engineering Center (BioNEC); Department of Chemistry; University of Copenhagen; Copenhagen Denmark
| | - Ragnhild G. Østrem
- Colloids and Biological Interfaces Group; Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; Technical University of Denmark; Lyngby Denmark
| | - Knud J. Jensen
- Biomolecular Nanoscale Engineering Center (BioNEC); Department of Chemistry; University of Copenhagen; Copenhagen Denmark
| | - Peter Møller
- Section of Environmental Health; Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | - Steffen Loft
- Section of Environmental Health; Department of Public Health; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
20
|
Myerson JW, Anselmo AC, Liu Y, Mitragotri S, Eckmann DM, Muzykantov VR. Non-affinity factors modulating vascular targeting of nano- and microcarriers. Adv Drug Deliv Rev 2016; 99:97-112. [PMID: 26596696 PMCID: PMC4798918 DOI: 10.1016/j.addr.2015.10.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/29/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022]
Abstract
Particles capable of homing and adhering to specific vascular biomarkers have potential as fundamental tools in drug delivery for mediation of a wide variety of pathologies, including inflammation, thrombosis, and pulmonary disorders. The presentation of affinity ligands on the surface of a particle provides a means of targeting the particle to sites of therapeutic interest, but a host of other factors come into play in determining the targeting capacity of the particle. This review presents a summary of several key considerations in nano- and microparticle design that modulate targeted delivery without directly altering epitope-specific affinity. Namely, we describe the effect of factors in definition of the base carrier (including shape, size, and flexibility) on the capacity of carriers to access, adhere to, and integrate in target biological milieus. Furthermore, we present a summary of fundamental dynamics of carrier behavior in circulation, taking into account interactions with cells in circulation and the role of hemodynamics in mediating the direction of carriers to target sites. Finally, we note non-affinity aspects to uptake and intracellular trafficking of carriers in target cells. In total, recent findings presented here may offer an opportunity to capitalize on mitigating factors in the behavior of ligand-targeted carriers in order to optimize targeting.
Collapse
|
21
|
Fromen CA, Fish MB, Zimmerman A, Adili R, Holinstat M, Eniola-Adefeso O. Evaluation of Receptor-Ligand Mechanisms of Dual-Targeted Particles to an Inflamed Endothelium. Bioeng Transl Med 2016; 1:103-115. [PMID: 28066821 PMCID: PMC5217161 DOI: 10.1002/btm2.10008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022] Open
Abstract
Vascular-targeted carriers (VTCs) are designed as leukocyte mimics, decorated with ligands that target leukocyte adhesion molecules (LAMs) and facilitate adhesion to diseased endothelium. VTCs require different design considerations than other targeted particle therapies; adhesion of VTCs in regions with dynamic blood flow requires multiple ligand-receptor (LR) pairs that provide particle adhesion and disease specificity. Despite the ultimate goal of leukocyte mimicry, the specificity of multiple LAM-targeted VTCs remains poorly understood, especially in physiological environments. Here, we investigate particle binding to an inflamed mesentery via intravital microscopy using a series of particles with well-controlled ligand properties. We find that the total number of sites of a single ligand can drive particle adhesion to the endothelium, however, combining ligands that target multiple LR pairs provides a more effective approach. Combining sites of sialyl Lewis A (sLeA) and anti-intercellular adhesion molecule-1 (aICAM), two adhesive molecules, resulted in ~3-7-fold increase of adherent particles at the endothelium over single-ligand particles. At a constant total ligand density, a particle with a ratio of 75% sLeA: 25% aICAM resulted in more than 3-fold increase over all over other ligand ratios tested in our in vivo model. Combined with in vitro and in silico data, we find the best dual-ligand design of a particle is heavily dependent on the surface expression of the endothelial cells, producing better adhesion with more particle ligand for the lesser-expressed receptor. These results establish the importance of considering LR-kinetics in intelligent VTC ligand design for future therapeutics.
Collapse
Affiliation(s)
- Catherine A Fromen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Margaret B Fish
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Anthony Zimmerman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Reheman Adili
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109; Division of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | | |
Collapse
|
22
|
Suzuki R, Omata D, Oda Y, Unga J, Negishi Y, Maruyama K. Cancer Therapy with Nanotechnology-Based Drug Delivery Systems: Applications and Challenges of Liposome Technologies for Advanced Cancer Therapy. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3121-7_23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Shuvaev VV, Brenner JS, Muzykantov VR. Targeted endothelial nanomedicine for common acute pathological conditions. J Control Release 2015; 219:576-595. [PMID: 26435455 DOI: 10.1016/j.jconrel.2015.09.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is the key regulatory interface between blood and tissues. Endothelial abnormalities are implicated in many diseases, including common acute conditions with high morbidity and mortality lacking therapy, in part because drugs and drug carriers have no natural endothelial affinity. Precise endothelial drug delivery may improve management of these conditions. Using ligands of molecules exposed to the bloodstream on the endothelial surface enables design of diverse targeted endothelial nanomedicine agents. Target molecules and binding epitopes must be accessible to drug carriers, carriers must be free of harmful effects, and targeting should provide desirable sub-cellular addressing of the drug cargo. The roster of current candidate target molecules for endothelial nanomedicine includes peptidases and other enzymes, cell adhesion molecules and integrins, localized in different domains of the endothelial plasmalemma and differentially distributed throughout the vasculature. Endowing carriers with an affinity to specific endothelial epitopes enables an unprecedented level of precision of control of drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and duration of therapeutic effects. Features of nanocarrier design such as choice of epitope and ligand control delivery and effect of targeted endothelial nanomedicine agents. Pathological factors modulate endothelial targeting and uptake of nanocarriers. Selection of optimal binding sites and design features of nanocarriers are key controllable factors that can be iteratively engineered based on their performance from in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable by non-targeted counterparts in animal models of common acute severe human disease conditions. The results of animal studies provide the basis for the challenging translation endothelial nanomedicine into the clinical domain.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
24
|
Tila D, Ghasemi S, Yazdani-Arazi SN, Ghanbarzadeh S. Functional liposomes in the cancer-targeted drug delivery. J Biomater Appl 2015; 30:3-16. [PMID: 25823898 DOI: 10.1177/0885328215578111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is considered as one of the most severe health problems and is currently the third most common cause of death in the world after heart and infectious diseases. Novel therapies are constantly being discovered, developed and trialed. Many of the current anticancer agents exhibit non-ideal pharmaceutical and pharmacological properties and are distributed non-specifically throughout the body. This results in death of the both normal healthy and malignant cells and substantially leads to accruing a variety of serious toxic side effects. Therefore, the efficient systemic therapy of cancer is almost impossible due to harmful side effects of anticancer agents to the healthy organs and tissues. Furthermore, several problems such as low bioavailability of the drugs, low drug concentrations at the site of action, lack of drug specificity and drug-resistance also cause many restrictions on clinical applications of these drugs in the tumor therapy. Different types of the liposomal formulations have been used in medicine due to their distinctive advantages associated with their structural flexibility in the encapsulation of various agents with different physicochemical properties. They can also mediate delivery of the cargo to the appropriate cell type and subcellular compartment, reducing the effective dosage and possible side effects which are related to high systemic concentrations. Therefore, these novel systems were found very promising and encouraging dosage forms for the treatment of different types of cancer by increasing efficiency and reducing the systemic toxicity due to the specific drug delivery and targeting.
Collapse
Affiliation(s)
- Dena Tila
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Ghasemi
- Department of Medicinal Chemistry, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Saeed Ghanbarzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Almeda D, Wang B, Auguste DT. Minimizing antibody surface density on liposomes while sustaining cytokine-activated EC targeting. Biomaterials 2015; 41:37-44. [DOI: 10.1016/j.biomaterials.2014.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/31/2014] [Accepted: 11/08/2014] [Indexed: 01/03/2023]
|
26
|
Wang X, Li S, Shi Y, Chuan X, Li J, Zhong T, Zhang H, Dai W, He B, Zhang Q. The development of site-specific drug delivery nanocarriers based on receptor mediation. J Control Release 2014; 193:139-53. [DOI: 10.1016/j.jconrel.2014.05.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/13/2014] [Accepted: 05/17/2014] [Indexed: 01/28/2023]
|
27
|
Combination-targeting to multiple endothelial cell adhesion molecules modulates binding, endocytosis, and in vivo biodistribution of drug nanocarriers and their therapeutic cargoes. J Control Release 2014; 188:87-98. [PMID: 24933603 DOI: 10.1016/j.jconrel.2014.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/24/2014] [Accepted: 06/07/2014] [Indexed: 01/11/2023]
Abstract
Designing of drug nanocarriers to aid delivery of therapeutics is an expanding field that can improve medical treatments. Nanocarriers are often functionalized with elements that recognize cell-surface molecules involved in subcellular transport to improve targeting and endocytosis of therapeutics. Combination-targeting using several affinity elements further modulates this outcome. The most studied example is endothelial targeting via multiple cell adhesion molecules (CAMs), which mimics the strategy of leukocytes to adhere and traverse the vascular endothelium. Yet, the implications of this strategy on intracellular transport and in vivo biodistribution remain uncharacterized. We examined this using nanocarriers functionalized for dual- or triple-targeting to intercellular, platelet-endothelial, and/or vascular CAMs (ICAM-1, PECAM-1, VCAM-1). These molecules differ in expression level, location, pathological stimulation, and/or endocytic pathway. In endothelial cells, binding of PECAM-1/VCAM-1-targeted nanocarriers was intermediate to single-targeted counterparts and enhanced in disease-like conditions. ICAM-1/PECAM-1-targeted nanocarriers surpassed PECAM-1/VCAM-1 in control, but showed lower selectivity toward disease-like conditions. Triple-targeting resulted in binding similar to ICAM-1/PECAM-1 combination and displayed the highest selectivity in disease-like conditions. All combinations were effectively internalized by the cells, with slightly better performance when targeting receptors of different endocytic pathways. In vivo, ICAM-1/PECAM-1-targeted nanocarriers outperformed PECAM-1/VCAM-1 in control and disease-like conditions, and triple-targeted counterparts slightly enhanced this outcome in some organs. As a result, delivery of a model therapeutic cargo (acid sphingomyelinase, deficient in Niemann-Pick disease A-B) was enhanced to all affected organs by triple-targeted nanocarriers, particularly in disease-like conditions. Therefore, multi-CAM targeting may aid the optimization of some therapeutic nanocarriers, where the combination and multiplicity of the affinity moieties utilized allow modulation of targeting performance.
Collapse
|
28
|
Howard M, Zern BJ, Anselmo AC, Shuvaev VV, Mitragotri S, Muzykantov V. Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS NANO 2014; 8:4100-32. [PMID: 24787360 PMCID: PMC4046791 DOI: 10.1021/nn500136z] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/30/2014] [Indexed: 05/18/2023]
Abstract
Targeted nanomedicine holds promise to find clinical use in many medical areas. Endothelial cells that line the luminal surface of blood vessels represent a key target for treatment of inflammation, ischemia, thrombosis, stroke, and other neurological, cardiovascular, pulmonary, and oncological conditions. In other cases, the endothelium is a barrier for tissue penetration or a victim of adverse effects. Several endothelial surface markers including peptidases (e.g., ACE, APP, and APN) and adhesion molecules (e.g., ICAM-1 and PECAM) have been identified as key targets. Binding of nanocarriers to these molecules enables drug targeting and subsequent penetration into or across the endothelium, offering therapeutic effects that are unattainable by their nontargeted counterparts. We analyze diverse aspects of endothelial nanomedicine including (i) circulation and targeting of carriers with diverse geometries, (ii) multivalent interactions of carrier with endothelium, (iii) anchoring to multiple determinants, (iv) accessibility of binding sites and cellular response to their engagement, (v) role of cell phenotype and microenvironment in targeting, (vi) optimization of targeting by lowering carrier avidity, (vii) endocytosis of multivalent carriers via molecules not implicated in internalization of their ligands, and (viii) modulation of cellular uptake and trafficking by selection of specific epitopes on the target determinant, carrier geometry, and hydrodynamic factors. Refinement of these aspects and improving our understanding of vascular biology and pathology is likely to enable the clinical translation of vascular endothelial targeting of nanocarriers.
Collapse
Affiliation(s)
- Melissa Howard
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Blaine J. Zern
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Aaron C. Anselmo
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir V. Shuvaev
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Samir Mitragotri
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir Muzykantov
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
29
|
Guo P, You JO, Yang J, Jia D, Moses MA, Auguste DT. Inhibiting metastatic breast cancer cell migration via the synergy of targeted, pH-triggered siRNA delivery and chemokine axis blockade. Mol Pharm 2014; 11:755-65. [PMID: 24467226 PMCID: PMC3993942 DOI: 10.1021/mp4004699] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Because breast cancer patient survival inversely correlates with metastasis, we engineered vehicles to inhibit both the C-X-C chemokine receptor type 4 (CXCR4) and lipocalin-2 (Lcn2) mediated migratory pathways. pH-responsive liposomes were designed to protect and trigger the release of Lcn2 siRNA. Liposomes were modified with anti-CXCR4 antibodies to target metastatic breast cancer (MBC) cells and block migration along the CXCR4-CXCL12 axis. This synergistic approach--coupling the CXCR4 axis blockade with Lcn2 silencing--significantly reduced migration in triple-negative human breast cancer cells (88% for MDA-MB-436 and 92% for MDA-MB-231). The results suggested that drug delivery vehicles engineered to attack multiple migratory pathways may effectively slow progression of MBC.
Collapse
Affiliation(s)
- Peng Guo
- Department of Biomedical Engineering, The City College of New York , 160 Convent Avenue, New York, New York 10031, United States
| | | | | | | | | | | |
Collapse
|
30
|
Modery-Pawlowski CL, Gupta AS. Heteromultivalent ligand-decoration for actively targeted nanomedicine. Biomaterials 2014; 35:2568-79. [PMID: 24411677 DOI: 10.1016/j.biomaterials.2013.12.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/19/2013] [Indexed: 12/25/2022]
Abstract
Active targeting has become an important component of nanomedicine design where nanovehicles are surface-decorated with cell receptor-specific or disease matrix-specific ligands to enable site-selective binding, retention and delivery of theranostic cargo. In this context, there have been numerous reports regarding surface-modification of nanovehicles with antibodies, antibody fragments, carbohydrates, aptamers and peptides as targeting ligands. However, majority of these reports have focused on using a single type of targeting moiety on the vehicle surface. In any disease development and progression, multiple receptors and proteins are often spatio-temporally upregulated simultaneously and heterogeneously. Rationalizing from this, a significant advantage can be envisioned in targeting multiple entities simultaneously using vehicle co-decoration with multiple types of ligands, to enhance binding activity and targeting specificity. To this end, we present a comprehensive up-to-date review on research endeavors in heteromultivalent ligand-modification of nanovehicles and provide a mechanistic rationale as well as an insightful discussion of this promising area, including findings from our own research.
Collapse
Affiliation(s)
| | - Anirban Sen Gupta
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA.
| |
Collapse
|
31
|
Markoutsa E, Papadia K, Giannou AD, Spella M, Cagnotto A, Salmona M, Stathopoulos GT, Antimisiaris SG. Mono and dually decorated nanoliposomes for brain targeting, in vitro and in vivo studies. Pharm Res 2013; 31:1275-89. [PMID: 24338512 DOI: 10.1007/s11095-013-1249-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/10/2013] [Indexed: 12/12/2022]
Abstract
PURPOSE Mono- and dual-decorated (DUAL) liposomes (LIP) were prepared, by immobilization of MAb against transferrin (TfR[OX26 or RI7217]) and/or a peptide analogue of ApoΕ3 (APOe) -to target low-density lipoprotein receptor(LPR)-, characterized physicochemically and investigated for BBB-targeting, in-vitro and in-vivo. METHODS Human microvascular endothelial cells (hCMEC/D3) were used as BBB model, and brain targeting was studied by in-vivo imaging of DiR-labelled formulations (at two doses and surface ligand densities), followed by ex-vivo organ imaging. RESULTS LIP diameter was between 100 nm and 150 nm, their stability was good and they were non-cytotoxic. LIP uptake and transport across the hCMEC/D3 cell monolayer was significantly affected by decoration with APOe or MAb, the DUAL exerting an additive effect. Intact vesicle-transcytosis was confirmed by equal transport of hydrophilic and lipophilic labels. In-vivo and ex-vivo results confirmed MAb and DUAL-LIP increased brain targeting compared to non-targeted PEG-LIPs, but not for APOe (also targeting ability of DUAL-LIP was not higher than MAb-LIP). The contradiction between in-vitro and in-vivo results was overruled when in-vitro studies (uptake and monolayer transport) were carried out in presence of serum proteins, revealing their important role in targeted-nanoformulation performance. CONCLUSIONS A peptide analogue of ApoΕ3 was found to target BBB and increase the targeting potential of TfR-MAb decorated LIP, in-vitro, but not in-vivo, indicating that different types of ligands (small peptides and antibodies) are affected differently by in-vivo applying conditions. In-vitro tests, carried out in presence of serum proteins, may be a helpful predictive "targetability" tool.
Collapse
Affiliation(s)
- E Markoutsa
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio, Patras, 26510, Greece
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Endothelial cells represent important targets for therapeutic and diagnostic interventions in many cardiovascular, pulmonary, neurological, inflammatory, and metabolic diseases. Targeted delivery of drugs (especially potent and labile biotherapeutics that require specific subcellular addressing) and imaging probes to endothelium holds promise to improve management of these maladies. In order to achieve this goal, drug cargoes or their carriers including liposomes and polymeric nanoparticles are chemically conjugated or fused using recombinant techniques with affinity ligands of endothelial surface molecules. Cell adhesion molecules, constitutively expressed on the endothelial surface and exposed on the surface of pathologically altered endothelium—selectins, VCAM-1, PECAM-1, and ICAM-1—represent good determinants for such a delivery. In particular, PECAM-1 and ICAM-1 meet criteria of accessibility, safety, and relevance to the (patho)physiological context of treatment of inflammation, ischemia, and thrombosis and offer a unique combination of targeting options including surface anchoring as well as intra- and transcellular targeting, modulated by parameters of the design of drug delivery system and local biological factors including flow and endothelial phenotype. This review includes analysis of these factors and examples of targeting selected classes of therapeutics showing promising results in animal studies, supporting translational potential of these interventions.
Collapse
|
33
|
Modery-Pawlowski CL, Master AM, Pan V, Howard G, Gupta AS. A platelet-mimetic paradigm for metastasis-targeted nanomedicine platforms. Biomacromolecules 2013; 14:910-9. [PMID: 23360320 PMCID: PMC3690560 DOI: 10.1021/bm301996p] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is compelling evidence that, beyond their traditional role in hemostasis and thrombosis, platelets play a significant role in mediating hematologic mechanisms of tumor metastasis by directly and indirectly interacting with pro-metastatic cancer cells. With this rationale, we hypothesized that platelets can be an effective paradigm to develop nanomedicine platforms that utilize platelet-mimetic interaction mechanisms for targeted diagnosis and therapy of metastatic cancer cells. Here we report on our investigation of the development of nanoconstructs that interact with metastatic cancer cells via platelet-mimetic heteromultivalent ligand-receptor pathways. For our studies, pro-metastatic human breast cancer cell line MDA-MB-231 was studied for its surface expression of platelet-interactive receptors, in comparison to another low-metastatic human breast cancer cell line, MCF-7. Certain platelet-interactive receptors were found to be significantly overexpressed on the MDA-MB-231 cells, and these cells showed significantly enhanced binding interactions with active platelets compared to MCF-7 cells. Based upon these observations, two specific receptor interactions were selected, and corresponding ligands were engineered onto the surface of liposomes as model nanoconstructs, to enable platelet-mimetic binding to the cancer cells. Our model platelet-mimetic liposomal constructs showed enhanced targeting and attachment of MDA-MB-231 cells compared to the MCF-7 cells. These results demonstrate the promise of utilizing platelet-mimetic constructs in modifying nanovehicle constructs for metastasis-targeted drug as well as modifying surfaces for ex-vivo cell enrichment diagnostic technologies.
Collapse
Affiliation(s)
- Christa L. Modery-Pawlowski
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Drive, Cleveland, OH 44106
| | - Alyssa M. Master
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Drive, Cleveland, OH 44106
| | - Victor Pan
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Drive, Cleveland, OH 44106
| | - Gregory Howard
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Drive, Cleveland, OH 44106
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Drive, Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106
| |
Collapse
|
34
|
Guo P, You JO, Yang J, Moses MA, Auguste DT. Using breast cancer cell CXCR4 surface expression to predict liposome binding and cytotoxicity. Biomaterials 2012; 33:8104-10. [PMID: 22884683 DOI: 10.1016/j.biomaterials.2012.07.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/21/2012] [Indexed: 01/13/2023]
Abstract
The primary cause of mortality in breast cancer is tumor aggressiveness, characterized by metastases to regional lymph nodes, bone marrow, lung, and liver. C-X-C chemokine receptor type 4 (CXCR4) has been shown to mobilize breast cancer cells along chemokine gradients. Quantification of CXCR4 surface expression may predict the efficacy of anti-CXCR4 labeled liposomal therapeutics to target and kill breast cancer cells. We evaluated gene and surface receptor expression of CXCR4 on breast cancer cell lines distinguished as having low and high invasiveness, MDA-MB-175VII and HCC1500, respectively. CXCR4 surface expression did not correlate with invasiveness. MDA-MB-175VII exhibited more binding to anti-CXCR4 labeled liposomes relative to HCC1500. Increased binding correlated with greater cell death relative to IgG labeled liposomes. Quantitative cell characterization may be used to select targeted therapeutics with enhanced efficacy and minimal side effects.
Collapse
Affiliation(s)
- Peng Guo
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
35
|
Dual Targeting of Tumor Cells with Bispecific Single-Chain Fv-Immunoliposomes. Antibodies (Basel) 2012. [DOI: 10.3390/antib1020199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
36
|
Rafat M, Rotenstein LS, Hu JL, Auguste DT. Engineered endothelial cell adhesion via VCAM1 and E-selectin antibody-presenting alginate hydrogels. Acta Biomater 2012; 8:2697-703. [PMID: 22504076 DOI: 10.1016/j.actbio.2012.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/14/2012] [Accepted: 04/04/2012] [Indexed: 11/19/2022]
Abstract
Materials that adhere to the endothelial cell (EC) lining of blood vessels may be useful for treating vascular injury. Cell adhesion molecules (CAMs), such as endothelial leukocyte adhesion molecule-1 (E-selectin) and vascular cell adhesion molecule-1 (VCAM1), modulate EC-leukocyte interactions. In this study, we mimicked cell-cell interactions by seeding cells on alginate hydrogels modified with antibodies against E-selectin and VCAM1, which are upregulated during inflammation. ECs were activated with interleukin-1α to increase CAM expression and subsequently seeded onto hydrogels. The strength of cell adhesion onto gels was assessed via a centrifugation assay. Strong, cooperative EC adhesion was observed on hydrogels presenting a 1:1 ratio of anti-VCAM1:anti-E-selectin. Cell adhesion was stronger on dual functionalized gels than on gels modified with anti-VCAM1, anti-E-selectin or the arginine-glycine-aspartic acid (RGD) peptide alone. Anti-VCAM1:anti-E-selectin-modified hydrogels may be engineered to adhere the endothelium cooperatively.
Collapse
Affiliation(s)
- Marjan Rafat
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
37
|
Rafat M, Rotenstein LS, You JO, Auguste DT. Dual functionalized PVA hydrogels that adhere endothelial cells synergistically. Biomaterials 2012; 33:3880-6. [PMID: 22364701 DOI: 10.1016/j.biomaterials.2012.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
Cell adhesion molecules govern leukocyte-endothelial cell (EC) interactions that are essential in regulating leukocyte recruitment, adhesion, and transmigration in areas of inflammation. In this paper, we synthesized hydrogel matrices modified with antibodies against vascular cell adhesion molecule-1 (VCAM1) and endothelial leukocyte adhesion molecule-1 (E-Selectin) to mimic leukocyte-EC interactions. Adhesion of human umbilical vein ECs to polyvinyl alcohol (PVA) hydrogels was examined as a function of the relative antibody ratio (anti-VCAM1:anti-E-Selectin) and substrate elasticity. Variation of PVA backbone methacrylation was used to affect hydrogel matrix stiffness, ranging from 130 to 720 kPa. Greater EC adhesion was observed on hydrogels presenting 1:1 anti-VCAM1:anti-E-Selectin than on gels presenting either arginine-glycine-asparagine (RGD) peptide, anti-VCAM1, or anti-E-Selectin alone. Engineered cell adhesion - based on complementing the EC surface presentation - may be used to increase the strength of EC-matrix interactions. Hydrogels with tunable and synergistic adhesion may be useful in vascular remodeling.
Collapse
Affiliation(s)
- Marjan Rafat
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
38
|
Bowey K, Tanguay JF, Tabrizian M. Liposome technology for cardiovascular disease treatment and diagnosis. Expert Opin Drug Deliv 2012; 9:249-65. [PMID: 22235930 DOI: 10.1517/17425247.2012.647908] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Over the past several decades, liposomes have been used in a variety of applications, from delivery vehicles to cell membrane models. In terms of pharmaceutical use, they can offer control over the release of active agents encapsulated into their lipid bilayer or aqueous core, while providing protection from degradation in the body. In addition, liposomes are versatile carriers, because targeting moieties can be conjugated on the surface to enhance delivery efficiency. It is for these reasons that liposomes have been applied as carriers for a multitude of drugs and genetic material, and as contrast agents, aimed to treat and diagnose cardiovascular diseases. AREAS COVERED This review details advancements in liposome technology used in the field of cardiovascular medicine. In particular, the application of liposomes to cardiovascular disease treatment and diagnosis, with a focus on delivering drugs, genetic material and improving cardiovascular imaging, will be explored. Advances in targeting liposomes to the vasculature will also be detailed. EXPERT OPINION Liposomes may provide the means to deliver drugs and other pharmaceutical agents for cardiovascular applications; however, there is still a vast amount of research and clinical trials that must be performed before a formulation is brought to market. Advancements in targeting abilities within the body, as well as the introduction of theranostic liposomes, capable of both delivering treating and imaging cardiac diseases, may be expected in the future of this burgeoning field.
Collapse
Affiliation(s)
- Kristen Bowey
- McGill University, Department of Biomedical Engineering, Montréal, Québec, H3A 1A4, Canada
| | | | | |
Collapse
|
39
|
Jubeli E, Moine L, Vergnaud-Gauduchon J, Barratt G. E-selectin as a target for drug delivery and molecular imaging. J Control Release 2011; 158:194-206. [PMID: 21983284 DOI: 10.1016/j.jconrel.2011.09.084] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/22/2011] [Indexed: 01/02/2023]
Abstract
E-selectin, also known as CD62E, is a cell adhesion molecule expressed on endothelial cells activated by cytokines. Like other selectins, it plays an important part in inflammation and in the adhesion of metastatic cancer cells to the endothelium. E-selectin recognizes and binds to sialylated carbohydrates present on the surface proteins of certain leukocytes. E-selectin has been chosen as a target for several therapeutic and medical imaging applications, based on its expression in the vicinity of inflammation, infection or cancer. These systems for drug delivery and molecular imaging include immunoconjugates, liposomes, nanoparticles, and microparticles prepared from a wide range of starting materials including lipids, synthetic polymers, polypeptides and organo-metallic structures. After a brief introduction presenting the selectin family and their implication in physiology and pathology, this review focuses on the formulation of these new delivery systems targeting E-selectin at a molecular level.
Collapse
Affiliation(s)
- Emile Jubeli
- Université Paris-Sud 11, Faculté de Pharmacie 5 rue J.B. Clément Chatenay-Malabry, FR 92296, UMR 8612 CNRS, LabEx LERMIT, France
| | | | | | | |
Collapse
|
40
|
Abstract
BACKGROUND Ligand targeted therapy (LTT) is a powerful pharmaceutical strategy to achieve selective drug delivery to pathological cells, for both therapeutic and diagnostic purposes, with the advantage of limited side effects and toxicity. This active drug targeting approach is based on the discovery that there are receptors overexpressed on pathological cells, compared to their expression in normal tissues. PURPOSE The purpose of this article is to review recently published data on LTT with applications, both in the field of cancer therapy and other diseases. Moreover, data on LTT exploiting receptors overexpressed at cytoplasmatic level are also reviewed. METHODS Data were deduced from Medline (PubMed) and SciFinder and their selections were made with preference to papers where the most relevant receptors were involved. RESULTS Several groups have reported improved delivery of targeted nanocarriers, as compared to nontargeted ones, to pathological cells. LTT offers several advantages, but there are also limitations in the development of this strategy. Moreover, LTT have shown encouraging results in in vitro and in animal models in vivo; hence their clinical potential awaits investigation. CONCLUSION Recent studies highlight that the ligand density plays an important role in targeting efficacy. Furthermore, LTT applications in diseases different from cancer and those exploiting receptors overexpressed at cytoplasmatic level are growing.
Collapse
|
41
|
Gunawan RC, Almeda D, Auguste DT. Complementary targeting of liposomes to IL-1α and TNF-α activated endothelial cells via the transient expression of VCAM1 and E-selectin. Biomaterials 2011; 32:9848-53. [PMID: 21944721 DOI: 10.1016/j.biomaterials.2011.08.093] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 08/31/2011] [Indexed: 11/18/2022]
Abstract
Inflammation is in part defined by the transient upregulation of cell adhesion molecules on the surface of endothelial cells (ECs) in response to cytokines. We hypothesized that liposomes with a complementary surface presentation of antibodies to the pattern of molecules on the EC surface may enhance targeting. We quantified the expression of vascular cell adhesion molecule-1 (VCAM1) and endothelial leukocyte cell adhesion molecule-1 (E-selectin) on ECs upon exposure to either tumor necrosis factor-α (TNF-α) or interleukin-1α (IL-1α) as a function of time. Liposomes, composed of 95 mol% dioleoyl phosphatidylcholine (DOPC) and 5 mol% dodecanyl phosphatidylethanolamine (N-dod-PE), were prepared by conjugating different molar ratios of antibodies against VCAM1 (aVCAM1) and E-selectin (aE-selectin). Increased binding was observed when immunoliposomes complemented the presentation of VCAM1:E-selectin expressed on TNF-α activated ECs. The 1:1 aVCAM1:aE-selectin liposomes had maximal binding at both 6 and 24 h on IL-1α activated ECs due to differences in molecular organization. The results demonstrate that liposomes targeting to inflamed endothelium may be optimized by exploiting the dynamic expression of VCAM1 and E-selectin on the EC surface.
Collapse
Affiliation(s)
- Rico C Gunawan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
42
|
Gunawan RC, Auguste DT. Immunoliposomes That Target Endothelium In Vitro Are Dependent on Lipid Raft Formation. Mol Pharm 2010; 7:1569-75. [DOI: 10.1021/mp9003095] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Rico C. Gunawan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Debra T. Auguste
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
43
|
Engineering liposomes and nanoparticles for biological targeting. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 125:251-80. [PMID: 21049296 DOI: 10.1007/10_2010_92] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Our ability to engineer nanomaterials for biological and medical applications is continuously increasing, and nanomaterial designs are becoming more and more complex. One very good example of this is the drug delivery field where nanoparticle systems can be used to deliver drugs specifically to diseased tissue. In the early days, the design of the nanoparticles was relatively simple, but today we can surface functionalize and manipulate material properties to target diseased tissue and build highly complex drug release mechanisms into our designs. One of the most promising strategies in drug delivery is to use ligands that target overexpressed or selectively expressed receptors on the surface of diseased cells. To utilize this approach, it is necessary to control the chemistry involved in surface functionalization of nanoparticles and construct highly specific functionalities that can be used as attachment points for a diverse range of targeting ligands such as antibodies, peptides, carbohydrates and vitamins. In this review we provide an overview and a critical evaluation of the many strategies that have been developed for surface functionalization of nanoparticles and furthermore provide an overview of how these methods have been used in drug delivery systems.
Collapse
|