1
|
Komatsu K, Matsuura T, Suzumura T, Shibata R, Chen PC, Ogawa T. Vacuum Ultraviolet (VUV)-Induced Physicochemical Engineering of Titanium: Enhanced Fibroblast Activity, Redox System, and Glycosaminoglycan Binding for Soft Tissue Integration. ACS APPLIED BIO MATERIALS 2025. [PMID: 40249645 DOI: 10.1021/acsabm.5c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Bacterial invasion at the titanium-tissue interface causes peri-implant inflammation, posing challenges for implants in orthopedics, maxillofacial prosthetics, and dentistry. This study hypothesized that titanium surface decarbonization improves soft tissue cell adhesion and growth. One-minute vacuum ultraviolet (VUV) light treatment at 172 nm reduced surface carbon from 60% to 29% without altering surface topography, making surfaces hydrophilic and hydro-attractive. Human fibroblasts attached to VUV-treated surfaces 2-4 times more frequently than untreated surfaces, with an even greater increase on tilted and curved surfaces. Fibroblast proliferation rose 2-6 times, with an expedited G1-to-S phase transition. Cell retention under dislodging forces increased 2-5 times on VUV-treated surfaces. RNA sequencing showed upregulation of extracellular matrix production, growth factors, cell cycle progression, antioxidant defenses, and proteoglycan/glycosaminoglycan (GAG)-binding, alongside downregulation of the inflammatory response on VUV-treated titanium surfaces. An oxidative stress test showed minimal adverse effects from hydrogen peroxide on cells on VUV-treated surfaces, attributed to increased intracellular glutathione reserves. Enhanced adhesion on VUV-treated titanium was negated by treating the cells with GAG-cleaving enzymes. These findings demonstrate that VUV-mediated decarbonization enhances fibroblast attachment, proliferation, and adhesion by fostering homeostatic cellular phenotypes involving proteoglycan/GAG interactions and antioxidant defense, offering a strategy to improve the soft tissue sealing around titanium implants.
Collapse
Affiliation(s)
- Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California 90095, United States
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, 113-8549, Japan
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Toshikatsu Suzumura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Rune Shibata
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Po-Chun Chen
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California 90095, United States
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Park G, Matsuura T, Komatsu K, Ogawa T. Optimizing implant osseointegration, soft tissue responses, and bacterial inhibition: A comprehensive narrative review on the multifaceted approach of the UV photofunctionalization of titanium. J Prosthodont Res 2025; 69:136-152. [PMID: 38853001 DOI: 10.2186/jpr.jpr_d_24_00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Titanium implants have revolutionized restorative and reconstructive therapy, yet achieving optimal osseointegration and ensuring long-term implant success remain persistent challenges. In this review, we explore a cutting-edge approach to enhancing implant properties: ultraviolet (UV) photofunctionalization. By harnessing UV energy, photofunctionalization rejuvenates aging implants, leveraging and often surpassing the intrinsic potential of titanium materials. The primary aim of this narrative review is to offer an updated perspective on the advancements made in the field, providing a comprehensive overview of recent findings and exploring the relationship between UV-induced physicochemical alterations and cellular responses. There is now compelling evidence of significant transformations in titanium surface chemistry induced by photofunctionalization, transitioning from hydrocarbon-rich to carbon pellicle-free surfaces, generating superhydrophilic surfaces, and modulating the electrostatic properties. These changes are closely associated with improved cellular attachment, spreading, proliferation, differentiation, and, ultimately, osseointegration. Additionally, we discuss clinical studies demonstrating the efficacy of UV photofunctionalization in accelerating and enhancing the osseointegration of dental implants. Furthermore, we delve into recent advancements, including the development of one-minute vacuum UV (VUV) photofunctionalization, which addresses the limitations of conventional UV methods as well as the newly discovered functions of photofunctionalization in modulating soft tissue and bacterial interfaces. By elucidating the intricate relationship between surface science and biology, this body of research lays the groundwork for innovative strategies aimed at enhancing the clinical performance of titanium implants, marking a new era in implantology.
Collapse
Affiliation(s)
- Gunwoo Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| |
Collapse
|
3
|
Matsuura T, Komatsu K, Suzumura T, Stavrou S, Juanatas ML, Park W, Ogawa T. Enhanced functionality and migration of human gingival fibroblasts on vacuum ultraviolet light-treated titanium: An implication for mitigating cellular stress to improve peri-implant cellular reaction. J Prosthodont Res 2025; 69:249-258. [PMID: 39198200 DOI: 10.2186/jpr.jpr_d_24_00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
PURPOSE The maintenance of peri-implant health relies significantly on the integrity of the peri-implant seal, particularly vulnerable at the interface between implant abutment and soft tissue. Early healing stages around implants involve cellular exposure to oxidative stress. This study aimed to investigate whether vacuum ultraviolet (VUV)-treated titanium augments the growth and functionality of human gingival fibroblasts while mitigating cellular stress. METHODS Machined titanium plates underwent treatment with 172 nm VUV light for one minute, with untreated plates as controls. Human gingival fibroblasts were cultured on treated and untreated plates, and their behavior, growth, and functionality were assessed. Functionally impaired fibroblasts, treated with hydrogen peroxide, were also cultured on these titanium plates, and plate-to-plate transmigration ability was evaluated. RESULTS Fibroblasts on VUV-treated titanium exhibited a 50% reduction in intracellular reactive oxygen species production compared to controls. Additionally, glutathione, an antioxidant, remained undepleted in cells on VUV-treated titanium. Furthermore, the expression levels of inflammatory cytokines IL-1β and IL-8 decreased by 40-60% on VUV-treated titanium. Consequently, fibroblast attachment and proliferation doubled on VUV-treated titanium compared to those in the controls, leading to enhanced cell retention. Plate-to-plate transmigration assays demonstrated that fibroblasts migrated twice as far on VUV-treated surfaces compared to those in the controls. In particular, the transmigration ability, impaired in functionally impaired fibroblasts on the controls, was preserved on VUV-treated titanium. CONCLUSIONS VUV-treated titanium promotes the growth, function, and migration of human gingival fibroblasts by reducing cellular stress and enhancing antioxidative capacity. Notably, the transmigration ability significantly improved on VUV-treated titanium.
Collapse
Affiliation(s)
- Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Department of Periodontology, Graduated School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Toshikatsu Suzumura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Stella Stavrou
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| | - Mary Lou Juanatas
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| | - Wonhee Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Department of Dentistry, College of Medicine, Hanyang University, Seoul, Korea
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| |
Collapse
|
4
|
Matsuura T, Komatsu K, Cheng J, Park G, Ogawa T. Beyond microroughness: novel approaches to navigate osteoblast activity on implant surfaces. Int J Implant Dent 2024; 10:35. [PMID: 38967690 PMCID: PMC11226592 DOI: 10.1186/s40729-024-00554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
Considering the biological activity of osteoblasts is crucial when devising new approaches to enhance the osseointegration of implant surfaces, as their behavior profoundly influences clinical outcomes. An established inverse correlation exists between osteoblast proliferation and their functional differentiation, which constrains the rapid generation of a significant amount of bone. Examining the surface morphology of implants reveals that roughened titanium surfaces facilitate rapid but thin bone formation, whereas smooth, machined surfaces promote greater volumes of bone formation albeit at a slower pace. Consequently, osteoblasts differentiate faster on roughened surfaces but at the expense of proliferation speed. Moreover, the attachment and initial spreading behavior of osteoblasts are notably compromised on microrough surfaces. This review delves into our current understanding and recent advances in nanonodular texturing, meso-scale texturing, and UV photofunctionalization as potential strategies to address the "biological dilemma" of osteoblast kinetics, aiming to improve the quality and quantity of osseointegration. We discuss how these topographical and physicochemical strategies effectively mitigate and even overcome the dichotomy of osteoblast behavior and the biological challenges posed by microrough surfaces. Indeed, surfaces modified with these strategies exhibit enhanced recruitment, attachment, spread, and proliferation of osteoblasts compared to smooth surfaces, while maintaining or amplifying the inherent advantage of cell differentiation. These technology platforms suggest promising avenues for the development of future implants.
Collapse
Affiliation(s)
- Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - James Cheng
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| | - Gunwoo Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA.
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA.
| |
Collapse
|
5
|
Komatsu K, Matsuura T, Cheng J, Kido D, Park W, Ogawa T. Nanofeatured surfaces in dental implants: contemporary insights and impending challenges. Int J Implant Dent 2024; 10:34. [PMID: 38963524 PMCID: PMC11224214 DOI: 10.1186/s40729-024-00550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Dental implant therapy, established as standard-of-care nearly three decades ago with the advent of microrough titanium surfaces, revolutionized clinical outcomes through enhanced osseointegration. However, despite this pivotal advancement, challenges persist, including prolonged healing times, restricted clinical indications, plateauing success rates, and a notable incidence of peri-implantitis. This review explores the biological merits and constraints of microrough surfaces and evaluates the current landscape of nanofeatured dental implant surfaces, aiming to illuminate strategies for addressing existing impediments in implant therapy. Currently available nanofeatured dental implants incorporated nano-structures onto their predecessor microrough surfaces. While nanofeature integration into microrough surfaces demonstrates potential for enhancing early-stage osseointegration, it falls short of surpassing its predecessors in terms of osseointegration capacity. This discrepancy may be attributed, in part, to the inherent "dichotomy kinetics" of osteoblasts, wherein increased surface roughness by nanofeatures enhances osteoblast differentiation but concomitantly impedes cell attachment and proliferation. We also showcase a controllable, hybrid micro-nano titanium model surface and contrast it with commercially-available nanofeatured surfaces. Unlike the commercial nanofeatured surfaces, the controllable micro-nano hybrid surface exhibits superior potential for enhancing both cell differentiation and proliferation. Hence, present nanofeatured dental implants represent an evolutionary step from conventional microrough implants, yet they presently lack transformative capacity to surmount existing limitations. Further research and development endeavors are imperative to devise optimized surfaces rooted in fundamental science, thereby propelling technological progress in the field.
Collapse
Affiliation(s)
- Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - James Cheng
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Section of Periodontics, UCLA School of Dentistry, Los Angeles, USA
| | - Daisuke Kido
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Wonhee Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Department of Dentistry, College of Medicine, Hanyang University, Seoul, Korea
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA.
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA.
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA.
| |
Collapse
|
6
|
Bae GH, Cho WT, Lee JH, Huh JB. Efficacy of plasma treatment for surface cleansing and osseointegration of sandblasted and acid-etched titanium implants. J Adv Prosthodont 2024; 16:189-199. [PMID: 38957293 PMCID: PMC11215036 DOI: 10.4047/jap.2024.16.3.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE This study was conducted to evaluate the effects of plasma treatment of sandblasted and acid-etched (SLA) titanium implants on surface cleansing and osseointegration in a beagle model. MATERIALS AND METHODS For morphological analysis and XPS analysis, scanning electron microscope and x-ray photoelectron spectroscopy were used to analyze the surface topography and chemical compositions of implant before and after plasma treatment. For this animal experiment, twelve SLA titanium implants were divided into two groups: a control group (untreated implants) and a plasma group (implants treated with plasma). Each group was randomly located in the mandibular bone of the beagle dog (n = 6). After 8 weeks, the beagle dogs were sacrificed, and volumetric analysis and histometric analysis were performed within the region of interest. RESULTS In morphological analysis, plasma treatment did not alter the implant surface topography or cause any physical damage. In XPS analysis, the atomic percentage of carbon at the inspection point before the plasma treatment was 34.09%. After the plasma treatment, it was reduced to 18.74%, indicating a 45% reduction in carbon. In volumetric analysis and histometric analysis, the plasma group exhibited relatively higher mean values for new bone volume (NBV), bone to implant contact (BIC), and inter-thread bone density (ITBD) compared to the control group. However, there was no significant difference between the two groups (P > .05). CONCLUSION Within the limits of this study, plasma treatment effectively eliminated hydrocarbons without changing the implant surface.
Collapse
Affiliation(s)
- Gang-Ho Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Won-Tak Cho
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Jong-Ho Lee
- Research and Development Institute, PNUADD Co., Ltd., Busan, Republic of Korea
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
7
|
Li Y, Stewart CA, Finer Y. Advanced Antimicrobial and Anti-Infective Strategies to Manage Peri-Implant Infection: A Narrative Review. Dent J (Basel) 2024; 12:125. [PMID: 38786523 PMCID: PMC11120417 DOI: 10.3390/dj12050125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Despite reductions in bacterial infection and enhanced success rate, the widespread use of systemic antibiotic prophylaxis in implant dentistry is controversial. This use has contributed to the growing problem of antimicrobial resistance, along with creating significant health and economic burdens. The basic mechanisms that cause implant infection can be targeted by new prevention and treatment methods which can also lead to the reduction of systemic antibiotic exposure and its associated adverse effects. This review aims to summarize advanced biomaterial strategies applied to implant components based on anti-pathogenic mechanisms and immune balance mechanisms. It emphasizes that modifying the dental implant surface and regulating the early immune response are promising strategies, which may further prevent or slow the development of peri-implant infection, and subsequent failure.
Collapse
Affiliation(s)
- Yihan Li
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada; (Y.L.); (C.A.S.)
| | - Cameron A. Stewart
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada; (Y.L.); (C.A.S.)
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3E2, Canada
| | - Yoav Finer
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada; (Y.L.); (C.A.S.)
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3E2, Canada
| |
Collapse
|
8
|
Kitajima H, Hirota M, Osawa K, Iwai T, Saruta J, Mitsudo K, Ogawa T. Optimization of blood and protein flow around superhydrophilic implant surfaces by promoting contact hemodynamics. J Prosthodont Res 2023; 67:568-582. [PMID: 36543189 DOI: 10.2186/jpr.jpr_d_22_00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
PURPOSE We examined blood and protein dynamics potentially influenced by implant threads and hydrophilic/hydrophobic states of implant surfaces. METHODS A computational fluid dynamics model was created for a screw-shaped implant with a water contact angle of 70° (hydrophobic surface) and 0° (superhydrophilic surface). Movements and density of blood and fibrinogen as a representative wound healing protein were visualized and quantified during constant blood inflow. RESULTS Blood plasma did not occupy 40-50% of the implant interface or the inside of threads around hydrophobic implants, whereas such blood voids were nearly completely eliminated around superhydrophilic implants. Whole blood field vectors were disorganized and random within hydrophobic threads but formed vortex nodes surrounded by stable blood streams along the superhydrophilic implant surface. The averaged vector within threads was away from the implant surface for the hydrophobic implant and towards the implant surface for the superhydrophilic implant. Rapid and massive whole blood influx into the thread zone was only seen for the superhydrophilic implant, whereas a line of conflicting vectors formed at the entrance of the thread area of the hydrophobic implant to prevent blood influx. The fibrinogen density was up to 20-times greater at the superhydrophilic implant interface than the hydrophobic one. Fibrinogen density was higher at the interface than outside the threads only for the superhydrophilic implant. CONCLUSIONS Implant threads and surface hydrophilicity have profound effects on vector and distribution of blood and proteins. Critically, implant threads formed significant biological voids at the interface that were negated by superhydrophilicity-induced contact hemodynamics.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, Yokohama, Japan
| | - Kohei Osawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Toshinori Iwai
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Juri Saruta
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Department of Education Planning, School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| |
Collapse
|
9
|
Kitajima H, Hirota M, Osawa K, Iwai T, Mitsudo K, Saruta J, Ogawa T. The Effects of a Biomimetic Hybrid Meso- and Nano-Scale Surface Topography on Blood and Protein Recruitment in a Computational Fluid Dynamics Implant Model. Biomimetics (Basel) 2023; 8:376. [PMID: 37622981 PMCID: PMC10452410 DOI: 10.3390/biomimetics8040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The mechanisms underlying bone-implant integration, or osseointegration, are still incompletely understood, in particular how blood and proteins are recruited to implant surfaces. The objective of this study was to visualize and quantify the flow of blood and the model protein fibrinogen using a computational fluid dynamics (CFD) implant model. Implants with screws were designed with three different surface topographies: (1) amorphous, (2) nano-trabecular, and (3) hybrid meso-spikes and nano-trabeculae. The implant with nano-topography recruited more blood and fibrinogen to the implant interface than the amorphous implant. Implants with hybrid topography further increased recruitment, with particularly efficient recruitment from the thread area to the interface. Blood movement significantly slowed at the implant interface compared with the thread area for all implants. The blood velocity at the interface was 3- and 4-fold lower for the hybrid topography compared with the nano-topography and amorphous surfaces, respectively. Thus, this study for the first time provides insights into how different implant surfaces regulate blood dynamics and the potential advantages of surface texturization in blood and protein recruitment and retention. In particular, co-texturization with a hybrid meso- and nano-topography created the most favorable microenvironment. The established CFD model is simple, low-cost, and expected to be useful for a wide range of studies designing and optimizing implants at the macro and micro levels.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (J.S.)
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (K.O.); (T.I.); (K.M.)
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (J.S.)
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama 232-0024, Japan
| | - Kohei Osawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (K.O.); (T.I.); (K.M.)
| | - Toshinori Iwai
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (K.O.); (T.I.); (K.M.)
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (K.O.); (T.I.); (K.M.)
| | - Juri Saruta
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (J.S.)
- Department of Education Planning, School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 238-8580, Japan
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (J.S.)
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
10
|
In-Vitro Evaluation of Photofunctionalized Implant Surfaces in a High-Glucose Microenvironment Simulating Diabetics. J Funct Biomater 2023; 14:jfb14030130. [PMID: 36976054 PMCID: PMC10056823 DOI: 10.3390/jfb14030130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The present study aimed to assess the efficacy of photofunctionalization on commercially available dental implant surfaces in a high-glucose environment. Discs of three commercially available implant surfaces were selected with various nano- and microstructural alterations (Group 1—laser-etched implant surface, Group 2—titanium–zirconium alloy surface, Group 3—air-abraded, large grit, acid-etched surface). They were subjected to photo-functionalization through UV irradiation for 60 and 90 min. X-ray photoelectron spectroscopy (XPS) was used to analyze the implant surface chemical composition before and after photo-functionalization. The growth and bioactivity of MG63 osteoblasts in the presence of photofunctionalized discs was assessed in cell culture medium containing elevated glucose concentration. The normal osteoblast morphology and spreading behavior were assessed under fluorescence and phase-contrast microscope. MTT (3-(4,5 Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and alizarin red assay were performed to assess the osteoblastic cell viability and mineralization efficiency. Following photofunctionalization, all three implant groups exhibited a reduced carbon content, conversion of Ti4+ to Ti3+, increased osteoblastic adhesion, viability, and increased mineralization. The best osteoblastic adhesion in the medium with increased glucose was seen in Group 3. Photofunctionalization altered the implant surface chemistry by reducing the surface carbon content, probably rendering the surfaces more hydrophilic and conducive for osteoblastic adherence and subsequent mineralization in high-glucose environment.
Collapse
|
11
|
Decomposing Organic Molecules on Titanium with Vacuum Ultraviolet Light for Effective and Rapid Photofunctionalization. J Funct Biomater 2022; 14:jfb14010011. [PMID: 36662058 PMCID: PMC9861116 DOI: 10.3390/jfb14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Ultraviolet (UV) photofunctionalization counteracts the biological aging of titanium to increase the bioactivity and osseointegration of titanium implants. However, UV photofunctionalization currently requires long treatment times of between 12 min and 48 h, precluding routine clinical use. Here, we tested the ability of a novel, xenon excimer lamp emitting 172 nm vacuum UV (VUV) to decompose organic molecules coated on titanium as a surrogate of photofunctionalization. Methylene blue as a model organic molecule was coated on grade 4 commercially pure titanium and treated with four UV light sources: (i) ultraviolet C (UVC), (ii) high-energy UVC (HUVC), (iii) proprietary UV (PUV), and (iv) VUV. After one minute of treatment, VUV decomposed 57% of methylene blue compared with 2%, 36%, and 42% for UVC, HUVC, and PUV, respectively. UV dose-dependency testing revealed maximal methylene blue decomposition with VUV within one minute. Equivalent decomposition was observed on grade 5 titanium alloy specimens, and placing titanium specimens in quartz ampoules did not compromise efficacy. Methylene blue was decomposed even on polymethyl methacrylate acrylic specimens at 20-25% lower efficiency than on titanium specimens, indicating a relatively small contribution of titanium dioxide-mediated photocatalytic decomposition to the total decomposition. Load-testing revealed that VUV maintained high efficacy of methylene blue decomposition regardless of the coating density, whereas other UV light sources showed low efficacy with thin coatings and plateauing efficacy with thicker coatings. This study provides foundational data on rapid and efficient VUV-mediated organic decomposition on titanium. In synergy with quartz ampoules used as containers, VUV has the potential to overcome current technical challenges hampering the clinical application of UV photofunctionalization.
Collapse
|
12
|
Kitajima H, Hirota M, Komatsu K, Isono H, Matsuura T, Mitsudo K, Ogawa T. Ultraviolet Light Treatment of Titanium Microfiber Scaffolds Enhances Osteoblast Recruitment and Osteoconductivity in a Vertical Bone Augmentation Model: 3D UV Photofunctionalization. Cells 2022; 12:cells12010019. [PMID: 36611812 PMCID: PMC9818481 DOI: 10.3390/cells12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Vertical bone augmentation to create host bone prior to implant placement is one of the most challenging regenerative procedures. The objective of this study is to evaluate the capacity of a UV-photofunctionalized titanium microfiber scaffold to recruit osteoblasts, generate intra-scaffold bone, and integrate with host bone in a vertical augmentation model with unidirectional, limited blood supply. Scaffolds were fabricated by molding and sintering grade 1 commercially pure titanium microfibers (20 μm diameter) and treated with UVC light (200-280 nm wavelength) emitted from a low-pressure mercury lamp for 20 min immediately before experiments. The scaffolds had an even and dense fiber network with 87% porosity and 20-50 mm inter-fiber distance. Surface carbon reduced from 30% on untreated scaffold to 10% after UV treatment, which corresponded to hydro-repellent to superhydrophilic conversion. Vertical infiltration testing revealed that UV-treated scaffolds absorbed 4-, 14-, and 15-times more blood, water, and glycerol than untreated scaffolds, respectively. In vitro, four-times more osteoblasts attached to UV-treated scaffolds than untreated scaffolds three hours after seeding. On day 2, there were 70% more osteoblasts on UV-treated scaffolds. Fluorescent microscopy visualized confluent osteoblasts on UV-treated microfibers two days after seeding but sparse and separated cells on untreated microfibers. Alkaline phosphatase activity and osteocalcin gene expression were significantly greater in osteoblasts grown on UV-treated microfiber scaffolds. In an in vivo model of vertical augmentation on rat femoral cortical bone, the interfacial strength between innate cortical bone and UV-treated microfiber scaffold after two weeks of healing was double that observed between bone and untreated scaffold. Morphological and chemical analysis confirmed seamless integration of the innate cortical and regenerated bone within microfiber networks for UV-treated scaffolds. These results indicate synergy between titanium microfiber scaffolds and UV photofunctionalization to provide a novel and effective strategy for vertical bone augmentation.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Makoto Hirota
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: ; Tel./Fax: +81-45-785-8438
| | - Keiji Komatsu
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Hitoshi Isono
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Takanori Matsuura
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Takahiro Ogawa
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
13
|
Matsuura T, Komatsu K, Chao D, Lin YC, Oberoi N, McCulloch K, Cheng J, Orellana D, Ogawa T. Cell Type-Specific Effects of Implant Provisional Restoration Materials on the Growth and Function of Human Fibroblasts and Osteoblasts. Biomimetics (Basel) 2022; 7:biomimetics7040243. [PMID: 36546943 PMCID: PMC9775359 DOI: 10.3390/biomimetics7040243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Implant provisional restorations should ideally be nontoxic to the contacting and adjacent tissues, create anatomical and biophysiological stability, and establish a soft tissue seal through interactions between prosthesis, soft tissue, and alveolar bone. However, there is a lack of robust, systematic, and fundamental data to inform clinical decision making. Here we systematically explored the biocompatibility of fibroblasts and osteoblasts in direct contact with, or close proximity to, provisional restoration materials. Human gingival fibroblasts and osteoblasts were cultured on the "contact" effect and around the "proximity" effect with various provisional materials: bis-acrylic, composite, self-curing acrylic, and milled acrylic, with titanium alloy as a bioinert control. The number of fibroblasts and osteoblasts surviving and attaching to and around the materials varied considerably depending on the material, with milled acrylic the most biocompatible and similar to titanium alloy, followed by self-curing acrylic and little to no attachment on or around bis-acrylic and composite materials. Milled and self-curing acrylics similarly favored subsequent cellular proliferation and physiological functions such as collagen production in fibroblasts and alkaline phosphatase activity in osteoblasts. Neither fibroblasts nor osteoblasts showed a functional phenotype when cultured with bis-acrylic or composite. By calculating a biocompatibility index for each material, we established that fibroblasts were more resistant to the cytotoxicity induced by most materials in direct contact, however, the osteoblasts were more resistant when the materials were in close proximity. In conclusion, there was a wide variation in the cytotoxicity of implant provisional restoration materials ranging from lethal and tolerant to near inert, and this cytotoxicity may be received differently between the different cell types and depending on their physical interrelationships.
Collapse
|
14
|
Roy M, Corti A, Dorocka-Bobkowska B, Pompella A. Positive Effects of UV-Photofunctionalization of Titanium Oxide Surfaces on the Survival and Differentiation of Osteogenic Precursor Cells-An In Vitro Study. J Funct Biomater 2022; 13:jfb13040265. [PMID: 36547525 PMCID: PMC9783962 DOI: 10.3390/jfb13040265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The UVC-irradiation ("UV-photofunctionalization") of titanium dental implants has proved to be capable of removing carbon contamination and restoring the ability of titanium surfaces to attract cells involved in the process of osteointegration, thus significantly enhancing the biocompatibility of implants and favoring the post-operative healing process. To what extent the effect of UVC irradiation is dependent on the type or the topography of titanium used, is still not sufficiently established. OBJECTIVE The present study was aimed at analyzing the effects of UV-photofunctionalization on the TiO2 topography, as well as on the gene expression patterns and the biological activity of osteogenic cells, i.e., osteogenic precursors cultured in vitro in the presence of different titanium specimens. METHODOLOGY The analysis of the surface roughness was performed by atomic force microscopy (AFM) on machined surface grade 2, and sand-blasted/acid-etched surface grades 2 and 4 titanium specimens. The expression of the genes related with the process of healing and osteogenesis was studied in the MC3T3-E1 pre-osteoblastic murine cells, as well as in MSC murine stem cells, before and after exposure to differently treated TiO2 surfaces. RESULTS The AFM determinations showed that the surface topographies of titanium after the sand-blasting and acid-etching procedures, look very similar, independently of the grade of titanium. The UVC-irradiation of the TiO2 surface was found to induce an increase in the cell survival, attachment and proliferation, which was positively correlated with an increased expression of the osteogenesis-related genes Runx2 and alkaline phosphatase (ALP). CONCLUSION Overall, our findings expand and further support the current view that UV-photofunctionalization can indeed restore biocompatibility and osteointegration of TiO2 implants, and suggest that this at least in part occurs through a stimulation of the osteogenic differentiation of the precursor cells.
Collapse
Affiliation(s)
- Marco Roy
- Department of Prosthodontics and Gerostomatology, Poznan University of Medical Sciences, 60-792 Poznan, Poland
- Correspondence:
| | - Alessandro Corti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Medical School, 56126 Pisa, Italy
| | - Barbara Dorocka-Bobkowska
- Department of Prosthodontics and Gerostomatology, Poznan University of Medical Sciences, 60-792 Poznan, Poland
| | - Alfonso Pompella
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Medical School, 56126 Pisa, Italy
| |
Collapse
|
15
|
Martins SHL, Cadore UB, Novaes AB, Messora MR, Ghiraldini B, Bezerra FJB, Botticelli D, de Souza SLS. Evaluation of Bone Response to a Nano HA Implant Surface on Sinus Lifting Procedures: Study in Rabbits. J Funct Biomater 2022; 13:jfb13030122. [PMID: 35997460 PMCID: PMC9397014 DOI: 10.3390/jfb13030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the bone response to two different implant surfaces on sinus lift procedures in rabbits. Bilateral sinus lifting with inorganic bovine bone associated with collagen membrane and immediate implantation were performed in 16 rabbits. Custom mini-implants were randomly installed in the prepared sites: one side received a double acid-etched (DAE) surface and the other a nano-hydroxyapatite (NHA) surface. The animals were euthanized 30 and 60 days after surgery, and biopsies were collected for microtomographic and histomorphometric analysis. After 30 days, no intra- and inter-group statistical differences were observed in microtomographic analysis, while at 60 days, bone analysis showed statistically significant differences between groups (p < 0.05) for all the evaluated parameters. Histomorphometric analysis showed, after 30 days, mean % of Bone-to-Implant Contact (BIC) for DAE and NHA of 31.70 ± 10.42% vs. 40.60 ± 10.22% (p > 0.05), respectively; for % of Bone Area Fraction Occupancy (BAFO), mean values were 45.43 ± 3.597% for DAE and 57.04 ± 5.537% for NHA (p < 0.05). After 60 days, mean %BIC and %BAFO for DAE and NHA implants were statistically significant (p < 0.05). The NHA surface showed superior biological features compared to the DAE treatment, promoting higher bone formation around the implants in an experimental model of bone repair in a grafted area.
Collapse
Affiliation(s)
- Sergio H. L. Martins
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, SP, Brazil
| | - Uislen B. Cadore
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, SP, Brazil
| | - Arthur B. Novaes
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, SP, Brazil
| | - Michel R. Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, SP, Brazil
| | - Bruna Ghiraldini
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, SP, Brazil
| | - Fabio J. B. Bezerra
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, SP, Brazil
| | - Daniele Botticelli
- ARDEC (Ariminum Research & Dental Education Center) Academy, Viale Giovanni Pascoli 67, 47923 Rimini, Italy
| | - Sergio L. S. de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-3980
| |
Collapse
|
16
|
Kitajima H, Komatsu K, Matsuura T, Ozawa R, Saruta J, Taleghani SR, Cheng J, Ogawa T. Impact of nano-scale trabecula size on osteoblastic behavior and function in a meso-nano hybrid rough biomimetic zirconia model. J Prosthodont Res 2022; 67:288-299. [PMID: 35858802 DOI: 10.2186/jpr.jpr_d_22_00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE A novel implant model consisting of meso-scale cactus-inspired spikes and nano-scale bone-inspired trabeculae was recently developed to optimize meso-scale roughness on zirconia. In this model, the meso-spike dimension had a significant impact on osteoblast function. To explore how different nano-textures impact this model, here we examined the effect of different nano-trabecula sizes on osteoblast function while maintaining the same meso-spike conformation. METHODS Zirconia disks with meso-nano hybrid surfaces were created by laser etching. The meso-spikes were fixed to 40 μm high, whereas the nano-texture was etched as large and small trabeculae of average Feret diameter 237.0 and 134.1 nm, respectively. A polished surface was also prepared. Rat bone marrow-derived and human mesenchymal stromal cell-induced osteoblasts were cultured on these disks. RESULTS Hybrid rough surfaces, regardless of nano-trabecula dimension, robustly promoted the osteoblastic differentiation of both rat and human osteoblasts compared to those on polished surfaces. Hybrid surfaces with small nano-trabeculae further enhanced osteoblastic differentiation compared with large nano-trabeculae. However, the difference in osteoblastic differentiation between small and large nano-trabeculae was much smaller than the difference between the polished and hybrid rough surfaces. The nano-trabecula size did not influence osteoblast attachment and proliferation, or protein adsorption. Both hybrid surfaces were hydro-repellent. The atomic percentage of surface carbon was lower on the hybrid surface with small nano-trabeculae. CONCLUSIONS Small nano-trabeculae promoted osteoblastic differentiation more than large nano-trabeculae when combined with meso-scale spikes. However, the biological impact of different nano-trabeculae was relatively small compared with that of different dimensions of meso-spikes.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| | - Ryotaro Ozawa
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| | - Juri Saruta
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| | - Samira Rahim Taleghani
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| | - James Cheng
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668
| |
Collapse
|
17
|
A Novel Cell Delivery System Exploiting Synergy between Fresh Titanium and Fibronectin. Cells 2022; 11:cells11142158. [PMID: 35883601 PMCID: PMC9317518 DOI: 10.3390/cells11142158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Delivering and retaining cells in areas of interest is an ongoing challenge in tissue engineering. Here we introduce a novel approach to fabricate osteoblast-loaded titanium suitable for cell delivery for bone integration, regeneration, and engineering. We hypothesized that titanium age influences the efficiency of protein adsorption and cell loading onto titanium surfaces. Fresh (newly machined) and 1-month-old (aged) commercial grade 4 titanium disks were prepared. Fresh titanium surfaces were hydrophilic, whereas aged surfaces were hydrophobic. Twice the amount of type 1 collagen and fibronectin adsorbed to fresh titanium surfaces than aged titanium surfaces after a short incubation period of three hours, and 2.5-times more fibronectin than collagen adsorbed regardless of titanium age. Rat bone marrow-derived osteoblasts were incubated on protein-adsorbed titanium surfaces for three hours, and osteoblast loading was most efficient on fresh titanium adsorbed with fibronectin. The number of osteoblasts loaded using this synergy between fresh titanium and fibronectin was nine times greater than that on aged titanium with no protein adsorption. The loaded cells were confirmed to be firmly attached and functional. The number of loaded cells was strongly correlated with the amount of protein adsorbed regardless of the protein type, with fibronectin simply more efficiently adsorbed on titanium surfaces than collagen. The role of surface hydrophilicity of fresh titanium surfaces in increasing protein adsorption or cell loading was unclear. The hydrophilicity of protein-adsorbed titanium increased with the amount of protein but was not the primary determinant of cell loading. In conclusion, the osteoblast loading efficiency was dependent on the age of the titanium and the amount of protein adsorption. In addition, the efficiency of protein adsorption was specific to the protein, with fibronectin being much more efficient than collagen. This is a novel strategy to effectively deliver osteoblasts ex vivo and in vivo using titanium as a vehicle.
Collapse
|
18
|
Wang Z, Li B, Cai Q, Li X, Yin Z, Li B, Li Z, Meng W. Advances and Prospects in Antibacterial-Osteogenic Multifunctional Dental Implant Surface. Front Bioeng Biotechnol 2022; 10:921338. [PMID: 35685091 PMCID: PMC9171039 DOI: 10.3389/fbioe.2022.921338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, dental implantation has become the preferred protocol for restoring dentition defects. Being the direct contact between implant and bone interface, osseointegration is the basis for implant exerting physiological functions. Nevertheless, biological complications such as insufficient bone volume, poor osseointegration, and postoperative infection can lead to implant failure. Emerging antibacterial-osteogenic multifunctional implant surfaces were designed to make up for these shortcomings both during the stage of forming osseointegration and in the long term of supporting the superstructure. In this mini-review, we summarized the recent antibacterial-osteogenic modifications of the dental implant surface. The effects of these modifications on biological performance like soft tissue integration, bone osteogenesis, and immune response were discussed. In addition, the clinical findings and prospects of emerging antibacterial-osteogenic implant materials were also discussed.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Changchun, China
| | - Baosheng Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qing Cai
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoyu Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhaoyi Yin
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Birong Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhen Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiyan Meng
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
19
|
Kim HS, Ji MK, Jang WH, Alam K, Kim HS, Cho HS, Lim HP. Biological Effects of the Novel Mulberry Surface Characterized by Micro/Nanopores and Plasma-Based Graphene Oxide Deposition on Titanium. Int J Nanomedicine 2021; 16:7307-7317. [PMID: 34737568 PMCID: PMC8560131 DOI: 10.2147/ijn.s311872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose This paper presents a technique for developing a novel surface for dental implants using a combination of nitriding and anodic oxidation, followed by the deposition of graphene oxide using atmospheric plasma. The effects of various surface treatments on bacterial adhesion and osteoblast activation were also evaluated. Methods CP titanium (control) was processed into disk-shaped specimens. Nitriding was conducted using vacuum nitriding, followed by anodic oxidation, which was performed in an electrolyte using a DC power supply, to form the novel “mulberry surface.” Graphene oxide deposition was performed using atmospheric plasma with an inflow of carbon sources. After analyzing the sample surfaces, antibacterial activity was evaluated using Streptococcus mutans and Porphyromonas gingivalis bacteria. The viability, adhesion, proliferation, and differentiation of osteoblasts were also assessed. Analysis of variance (ANOVA) with Tukey’s post-hoc test was used to calculate statistical differences. Results We observed that the mulberry surface was formed on samples treated with nitriding and anodic oxidation, and these samples exhibited more effective antibacterial activity than the control. We also found that the samples with additional graphene oxide deposition exhibited better biocompatibility, which was validated by osteoblast adhesion, proliferation, and differentiation. Conclusion The development of the mulberry surface along with graphene oxide deposition inhibits bacterial adhesion to the implant and enhances the adhesion, proliferation, and differentiation of osteoblasts. These results indicate that the mulberry surface and graphene oxide deposition together can inhibit peri-implantitis and promote osseointegration.
Collapse
Affiliation(s)
- Hee-Seon Kim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Kyung Ji
- Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woo-Hyung Jang
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Khurshed Alam
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun-Seung Kim
- Department of Division of New Projects, KJ Meditech Co, Ltd, Gwangju, 61009, Republic of Korea
| | - Hoon-Sung Cho
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun-Pil Lim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
20
|
Yang Y, Zhang H, Komasa S, Morimoto Y, Sekino T, Kawazoe T, Okazaki J. UV/ozone irradiation manipulates immune response for antibacterial activity and bone regeneration on titanium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112377. [PMID: 34579896 DOI: 10.1016/j.msec.2021.112377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
The immunomodulatory antibacterial activity and osteoimmunomodulatory properties of implantable biomaterials significantly influence bone regeneration. Various types of ultraviolet (UV) instrument are currently in use to greatly enhance the antibacterial activity and osteoconductive capability of titanium, it remains unclear how UV treatment modulates immune response. Compared to traditional UV treatment, the combination of low-dose ozone with UV irradiation is considered a new option to give benefits to surface modification and reduce the drawbacks of UV and ozone individually. Herein, the aim of this study was to elucidate the immune-modulatory properties of macrophages on UV/ozone-irradiated titanium that serve as defense against S. aureus and the crosstalk between immune cells and osteoblasts. Three different cell and bacteria co-culture systems were developed in order to investigate the race between host cells and bacteria to occupy the surface. In vitro immunological experiments indicated that UV/ozone irradiation significantly enhanced the phagocytic and bactericidal activity of macrophages against S. aureus. Further, in vitro and in vivo studies evidenced the favorable osteoimmune environment for osteogenic differentiation and bone formation. This research suggests vital therapeutic potential of UV/ozone irradiation for preventing the biomaterial-associated infections and achieving favorable bone formation simultaneously.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan.
| | - Honghao Zhang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan.
| | - Satoshi Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan
| | - Yukihiro Morimoto
- The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tohru Sekino
- The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takayoshi Kawazoe
- Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan
| | - Joji Okazaki
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan
| |
Collapse
|
21
|
Osteoblast Attachment Compromised by High and Low Temperature of Titanium and Its Restoration by UV Photofunctionalization. MATERIALS 2021; 14:ma14195493. [PMID: 34639891 PMCID: PMC8509491 DOI: 10.3390/ma14195493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 01/19/2023]
Abstract
Titanium implants undergo temperature fluctuations during manufacturing, transport, and storage. However, it is unknown how this affects their bioactivity. Herein, we explored how storage (six months, dark conditions) and temperature fluctuations (5-50 °C) affected the bioactivity of titanium implants. Stored and fresh acid-etched titanium disks were exposed to different temperatures for 30 min under wet or dry conditions, and their hydrophilicity/hydrophobicity and bioactivity (using osteoblasts derived from rat bone marrow) were evaluated. Ultraviolet (UV) treatment was evaluated as a method of restoring the bioactivity. The fresh samples were superhydrophilic after holding at 5 or 25 °C under wet or dry conditions, and hydrophilic after holding at 50 °C. In contrast, all the stored samples were hydrophobic. For both fresh and stored samples, exposure to 5 or 50 °C reduced osteoblast attachment compared to holding at 25 °C under both wet and dry conditions. Regression analysis indicated that holding at 31 °C would maximize cell attachment (p < 0.05). After UV treatment, cell attachment was the same or better than that before temperature fluctuations. Overall, titanium surfaces may have lower bioactivity when the temperature fluctuates by ≥20 °C (particularly toward lower temperatures), independent of the hydrophilicity/hydrophobicity. UV treatment was effective in restoring the temperature-compromised bioactivity.
Collapse
|
22
|
Biomimetic Zirconia with Cactus-Inspired Meso-Scale Spikes and Nano-Trabeculae for Enhanced Bone Integration. Int J Mol Sci 2021; 22:ijms22157969. [PMID: 34360734 PMCID: PMC8347469 DOI: 10.3390/ijms22157969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023] Open
Abstract
Biomimetic design provides novel opportunities for enhancing and functionalizing biomaterials. Here we created a zirconia surface with cactus-inspired meso-scale spikes and bone-inspired nano-scale trabecular architecture and examined its biological activity in bone generation and integration. Crisscrossing laser etching successfully engraved 60 μm wide, cactus-inspired spikes on yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) with 200–300 nm trabecular bone-inspired interwoven structures on the entire surface. The height of the spikes was varied from 20 to 80 μm for optimization. Average roughness (Sa) increased from 0.10 μm (polished smooth surface) to 18.14 μm (80 μm-high spikes), while the surface area increased by up to 4.43 times. The measured dimensions of the spikes almost perfectly correlated with their estimated dimensions (R2 = 0.998). The dimensional error of forming the architecture was 1% as a coefficient of variation. Bone marrow-derived osteoblasts were cultured on a polished surface and on meso- and nano-scale hybrid textured surfaces with different spike heights. The osteoblastic differentiation was significantly promoted on the hybrid-textured surfaces compared with the polished surface, and among them the hybrid-textured surface with 40 μm-high spikes showed unparalleled performance. In vivo bone-implant integration also peaked when the hybrid-textured surface had 40 μm-high spikes. The relationships between the spike height and measures of osteoblast differentiation and the strength of bone and implant integration were non-linear. The controllable creation of meso- and nano-scale hybrid biomimetic surfaces established in this study may provide a novel technological platform and design strategy for future development of biomaterial surfaces to improve bone integration and regeneration.
Collapse
|
23
|
UV Light-Generated Superhydrophilicity of a Titanium Surface Enhances the Transfer, Diffusion and Adsorption of Osteogenic Factors from a Collagen Sponge. Int J Mol Sci 2021; 22:ijms22136811. [PMID: 34202795 PMCID: PMC8268603 DOI: 10.3390/ijms22136811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
It is a significant challenge for a titanium implant, which is a bio-inert material, to recruit osteogenic factors, such as osteoblasts, proteins and blood effectively when these are contained in a biomaterial. The objective of this study was to examine the effect of ultraviolet (UV)-treatment of titanium on surface wettability and the recruitment of osteogenic factors when they are contained in an atelocollagen sponge. UV treatment of a dental implant made of commercially pure titanium was performed with UV-light for 12 min immediately prior to the experiments. Superhydrophilicity on dental implant surfaces was generated with UV-treatment. The collagen sponge containing blood, osteoblasts, or albumin was directly placed on the dental implant. Untreated implants absorbed only a little blood from the collagen sponge, while the UV-treated implants absorbed blood rapidly and allowed it to spread widely, almost over the entire implant surface. Blood coverage was 3.5 times greater for the UV-treated implants (p < 0.001). Only 6% of the osteoblasts transferred from the collagen sponge to the untreated implants, whereas 16% of the osteoblasts transferred to the UV-treated implants (p < 0.001). In addition, a weight ratio between transferred albumin on the implant and measured albumin adsorbed on the implant was 17.3% in untreated implants and 38.5% in UV-treated implants (p < 0.05). These results indicated that UV treatment converts a titanium surface into a superhydrophilic and bio-active material, which could recruite osteogenic factors even when they were contained in a collagen sponge. The transfer and subsequent diffusion and adsorption efficacy of UV-treated titanium surfaces could be useful for bone formation when titanium surfaces and osteogenic factors are intervened with a biomaterial.
Collapse
|
24
|
Nakhaei K, Ishijima M, Ikeda T, Ghassemi A, Saruta J, Ogawa T. Ultraviolet Light Treatment of Titanium Enhances Attachment, Adhesion, and Retention of Human Oral Epithelial Cells via Decarbonization. MATERIALS (BASEL, SWITZERLAND) 2020; 14:E151. [PMID: 33396339 PMCID: PMC7796045 DOI: 10.3390/ma14010151] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 01/01/2023]
Abstract
Early establishment of soft-tissue adhesion and seal at the transmucosal and transcutaneous surface of implants is crucial to prevent infection and ensure the long-term stability and function of implants. Herein, we tested the hypothesis that treatment of titanium with ultraviolet (UV) light would enhance its interaction with epithelial cells. X-ray spectroscopy showed that UV treatment significantly reduced the atomic percentage of surface carbon on titanium from 46.1% to 28.6%. Peak fitting analysis revealed that, among the known adventitious carbon contaminants, C-C and C=O groups were significantly reduced after UV treatment, while other groups were increased or unchanged in percentage. UV-treated titanium attracted higher numbers of human epithelial cells than untreated titanium and allowed more rapid cell spread. Hemi-desmosome-related molecules, integrin β4 and laminin-5, were upregulated at the gene and protein levels in the cells on UV-treated surfaces. The result of the detachment test revealed twice as many cells remaining adherent on UV-treated than untreated titanium. The enhanced cellular affinity of UV-treated titanium was equivalent to laminin-5 coating of titanium. These data indicated that UV treatment of titanium enhanced the attachment, adhesion, and retention of human epithelial cells associated with disproportional removal of adventitious carbon contamination, providing a new strategy to improve soft-tissue integration with implant devices.
Collapse
Affiliation(s)
- Kourosh Nakhaei
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (K.N.); (M.I.); (T.I.); (A.G.); (T.O.)
| | - Manabu Ishijima
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (K.N.); (M.I.); (T.I.); (A.G.); (T.O.)
| | - Takayuki Ikeda
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (K.N.); (M.I.); (T.I.); (A.G.); (T.O.)
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku 101-8310, Tokyo, Japan
| | - Amirreza Ghassemi
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (K.N.); (M.I.); (T.I.); (A.G.); (T.O.)
- Section of Periodontics, Department of Applied Dental Medicine, Southern Illinois University School of Dental Medicine, 2800 College Ave, Alton, IL 62002, USA
| | - Juri Saruta
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (K.N.); (M.I.); (T.I.); (A.G.); (T.O.)
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 238-8580, Kanagawa, Japan
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (K.N.); (M.I.); (T.I.); (A.G.); (T.O.)
| |
Collapse
|
25
|
Gao Y, Lin X, Zhao Y, Xu S, Lai C, Guo Z, Wu W, Ding X, Jia F, Zhou L, Liu Y. The Cleaning Effect of the Photocatalysis of TiO 2-B@anatase Nanowires on Biological Activity on a Titanium Surface. Int J Nanomedicine 2020; 15:9639-9655. [PMID: 33299309 PMCID: PMC7719464 DOI: 10.2147/ijn.s275373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Background Improvements in the early osseointegration of titanium implants require investigations on the bone-implant interface, which is a critical and complex challenge. The surface cleanliness of titanium implants plays an important role at this interface. However, the implant surface would inevitably absorb contamination such as organic hydrocarbons, which is not conductive to the establishment of early osseointegration. Herein, an optimized approach for removing contamination from titanium surfaces was studied. Methods The TiO2-B@anatase NWs (nanowires) were prepared on titanium substrates through a hydrothermal process. A methylene blue degradation experiment was performed to assess the photodegradation activity. The cleaning effect of the photocatalysis of TiO2-B@anatase NWs on a titanium surface and the cellular early response was determined by analyzing cell morphology, attachment, proliferation and differentiation. Results The results indicated that the photocatalysis of TiO2-B@anatase NWs could effectively remove hydrocarbons on titanium surfaces without sacrificing the favourable titanium surface morphology. The methylene blue degradation experiment revealed that the photocatalysis of TiO2-B@anatase NWs had powerful degradation activity, which is attributed to the presence of strong oxidants such as ·OH. In addition, compared to the merely ultraviolet-treated titanium surfaces, the titanium surfaces treated after the NWs photocatalytic cleaning process markedly enhanced cellular early response. Conclusion The photocatalysis of TiO2-B@anatase NWs for the removal of contamination from titanium surfaces has the potential to enable the rapid and complete establishment of early osseointegration.
Collapse
Affiliation(s)
- Yan Gao
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, People's Republic of China
| | - Xi Lin
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, People's Republic of China
| | - Yadong Zhao
- Department of Oral and Maxillofacial Surgery, Inner Mongolia People' Hospital, Huhhot, Inner Mongolia 010017, People's Republic of China
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, People's Republic of China
| | - Chunhua Lai
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, People's Republic of China
| | - Zehong Guo
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, People's Republic of China
| | - Wangxi Wu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, People's Republic of China
| | - Xianglong Ding
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, People's Republic of China
| | - Fang Jia
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, People's Republic of China
| | - Lei Zhou
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, People's Republic of China
| | - Ying Liu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, People's Republic of China
| |
Collapse
|
26
|
Decontamination of Ti Oxide Surfaces by Using Ultraviolet Light: Hg-Vapor vs. LED-Based Irradiation. Antibiotics (Basel) 2020; 9:antibiotics9110724. [PMID: 33105704 PMCID: PMC7690427 DOI: 10.3390/antibiotics9110724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
C-range Ultraviolet (UVC) mercury (Hg)-vapor lamps have shown the successful decontamination of hydrocarbons and antimicrobial effects from titanium surfaces. This study focused on surface chemistry modifications of titanium dental implants by using two different light sources, Hg-vapor lamps and Light Emitting Diodes (LEDs), so as to compare the effectivity of both photofunctionalization technologies. Two different devices, a small Hg-vapor lamp (λ = 254 nm) and a pair of closely placed LEDs (λ = 278 nm), were used to irradiate the implants for 12 min. X-ray Photoelectron Spectroscopy (XPS) was employed to characterize the chemical composition of the surfaces, analysing the samples before and after the lighting treatment, performing a wide and narrow scan around the energy peaks of carbon, oxygen and titanium. XPS analysis showed a reduction in the concentration of surface hydrocarbons in both UVC technologies from around 26 to 23.4 C at.% (carbon atomic concentration). Besides, simultaneously, an increase in concentration of oxygen and titanium was observed. LED-based UVC photofunctionalization has been suggested to be as effective a method as Hg-vapor lamps to remove the hydrocarbons from the surface of titanium dental implants. Therefore, due to the increase in worldwide mercury limitations, LED-based technology could be a good alternative decontamination source.
Collapse
|
27
|
Liu C, Sun M, Wang Y, Zhu T, Ye G, You D, Dong L, Zhao W, Cheng K, Weng W, Zhang YS, Yu M, Wang H. Ultraviolet Radiant Energy-Dependent Functionalization Regulates Cellular Behavior on Titanium Dioxide Nanodots. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31793-31803. [PMID: 32485098 DOI: 10.1021/acsami.0c07761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Titanium dioxide (TiO2) photofunctionalization has been demonstrated as an effective surface modification method for the osseointegration of implants. However, the insufficient understanding of the mechanism underlying photofunctionalization limits its clinical applications. Here, we report an ultraviolet (UV) radiant energy-dependent functionalization on TiO2 nanodots (TN) surfaces. We found the cell adhesion, proliferation, and osteogenic differentiation gradually increased with the accumulation of UV radiant energy (URE). The optimal functionalizing treatment energy was found to be 2000 mJ/cm2, which could regulate cell-specific behaviors on TN surfaces. The enhanced cell behaviors were regulated by the adsorption and functional site exposure of the extracellular matrix (ECM) proteins, which were the result of the surface physicochemical changes induced by the URE. The correlation between the URE and the reconstruction of surface hydroxyl groups was considered as an alternative mechanism of this energy-dependent functionalization. We also demonstrated the synergistic effects of FAK-RHOA and ERK1/2 signaling pathways on mediating the URE-dependent cell behaviors. Overall, this study provides a novel insight into the mechanisms of photofunctionalization, guiding the design of implants and the clinical practice of photofunctionalization.
Collapse
Affiliation(s)
- Chao Liu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Mouyuan Sun
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Yu Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Tianer Zhu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Guanchen Ye
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Dongqi You
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Lingqing Dong
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenquan Zhao
- The First Affiliated Hospital of Medical College, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kui Cheng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Mengfei Yu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Huiming Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
- The First Affiliated Hospital of Medical College, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
28
|
UV-Pre-Treated and Protein-Adsorbed Titanium Implants Exhibit Enhanced Osteoconductivity. Int J Mol Sci 2020; 21:ijms21124194. [PMID: 32545509 PMCID: PMC7349557 DOI: 10.3390/ijms21124194] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Titanium materials are essential treatment modalities in the medical field and serve as a tissue engineering scaffold and coating material for medical devices. Thus, there is a significant demand to improve the bioactivity of titanium for therapeutic and experimental purposes. We showed that ultraviolet light (UV)-pre-treatment changed the protein-adsorption ability and subsequent osteoconductivity of titanium. Fibronectin (FN) adsorption on UV-treated titanium was 20% and 30% greater after 1-min and 1-h incubation, respectively, than that of control titanium. After 3-h incubation, FN adsorption on UV-treated titanium remained 30% higher than that on the control. Osteoblasts were cultured on titanium disks after 1-h FN adsorption with or without UV-pre-treatment and on titanium disks without FN adsorption. The number of attached osteoblasts during the early stage of culture was 80% greater on UV-treated and FN-adsorbed (UV/FN) titanium than on FN-adsorbed (FN) titanium; osteoblasts attachment on UV/FN titanium was 2.6- and 2.1-fold greater than that on control- and UV-treated titanium, respectively. The alkaline phosphatase activity of osteoblasts on UV/FN titanium was increased 1.8-, 1.8-, and 2.4-fold compared with that on FN-adsorbed, UV-treated, and control titanium, respectively. The UV/FN implants exhibited 25% and 150% greater in vivo biomechanical strength of bone integration than the FN- and control implants, respectively. Bone morphogenetic protein-2 (BMP-2) adsorption on UV-treated titanium was 4.5-fold greater than that on control titanium after 1-min incubation, resulting in a 4-fold increase in osteoblast attachment. Thus, UV-pre-treatment of titanium accelerated its protein adsorptivity and osteoconductivity, providing a novel strategy for enhancing its bioactivity.
Collapse
|
29
|
Hamajima K, Ozawa R, Saruta J, Saita M, Kitajima H, Taleghani SR, Usami D, Goharian D, Uno M, Miyazawa K, Goto S, Tsukinoki K, Ogawa T. The Effect of TBB, as an Initiator, on the Biological Compatibility of PMMA/MMA Bone Cement. Int J Mol Sci 2020; 21:ijms21114016. [PMID: 32512780 PMCID: PMC7312717 DOI: 10.3390/ijms21114016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/24/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Acrylic bone cement is widely used in orthopedic surgery for treating various conditions of the bone and joints. Bone cement consists of methyl methacrylate (MMA), polymethyl methacrylate (PMMA), and benzoyl peroxide (BPO), functioning as a liquid monomer, solid phase, and polymerization initiator, respectively. However, cell and tissue toxicity caused by bone cement has been a concern. This study aimed to determine the effect of tri-n-butyl borane (TBB) as an initiator on the biocompatibility of bone cement. Rat spine bone marrow-derived osteoblasts were cultured on two commercially available PMMA-BPO bone cements and a PMMA-TBB experimental material. After a 24-h incubation, more cells survived on PMMA-TBB than on PMMA-BPO. Cytomorphometry showed that the area of cell spread was greater on PMMA-TBB than on PMMA-BPO. Analysis of alkaline phosphatase activity, gene expression, and matrix mineralization showed that the osteoblastic differentiation was substantially advanced on the PMMA-TBB. Electron spin resonance (ESR) spectroscopy revealed that polymerization radical production within the PMMA-TBB was 1/15–1/20 of that within the PMMA-BPO. Thus, the use of TBB as an initiator, improved the biocompatibility and physicochemical properties of the PMMA-based material.
Collapse
Affiliation(s)
- Kosuke Hamajima
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (K.H.); (R.O.); (J.S.); (M.S.); (H.K.); (S.R.T.); (D.U.); (D.G.); (M.U.)
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 1-1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan; (K.M.); (S.G.)
| | - Ryotaro Ozawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (K.H.); (R.O.); (J.S.); (M.S.); (H.K.); (S.R.T.); (D.U.); (D.G.); (M.U.)
- Department of Oral Interdisciplinary Medicine (Prosthodontics & Oral Implantology), Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-8580, Japan
| | - Juri Saruta
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (K.H.); (R.O.); (J.S.); (M.S.); (H.K.); (S.R.T.); (D.U.); (D.G.); (M.U.)
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-8580, Japan;
| | - Makiko Saita
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (K.H.); (R.O.); (J.S.); (M.S.); (H.K.); (S.R.T.); (D.U.); (D.G.); (M.U.)
- Department of Oral Interdisciplinary Medicine (Prosthodontics & Oral Implantology), Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-8580, Japan
| | - Hiroaki Kitajima
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (K.H.); (R.O.); (J.S.); (M.S.); (H.K.); (S.R.T.); (D.U.); (D.G.); (M.U.)
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Samira Rahim Taleghani
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (K.H.); (R.O.); (J.S.); (M.S.); (H.K.); (S.R.T.); (D.U.); (D.G.); (M.U.)
| | - Dan Usami
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (K.H.); (R.O.); (J.S.); (M.S.); (H.K.); (S.R.T.); (D.U.); (D.G.); (M.U.)
| | - Donya Goharian
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (K.H.); (R.O.); (J.S.); (M.S.); (H.K.); (S.R.T.); (D.U.); (D.G.); (M.U.)
| | - Mitsunori Uno
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (K.H.); (R.O.); (J.S.); (M.S.); (H.K.); (S.R.T.); (D.U.); (D.G.); (M.U.)
- Department of Prosthodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 1-1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan; (K.M.); (S.G.)
| | - Shigemi Goto
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 1-1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan; (K.M.); (S.G.)
| | - Keiichi Tsukinoki
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-8580, Japan;
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (K.H.); (R.O.); (J.S.); (M.S.); (H.K.); (S.R.T.); (D.U.); (D.G.); (M.U.)
- Correspondence: ; Tel.: +1-310-825-0727; Fax: +1-310-825-6345
| |
Collapse
|
30
|
Sanchez-Perez A, Cachazo-Jiménez C, Sánchez-Matás C, Martín-de-Llano JJ, Davis S, Carda-Batalla C. Effects of Ultraviolet Photoactivation on Osseointegration of Commercial Pure Titanium Dental Implant After 8 Weeks in a Rabbit Model. J ORAL IMPLANTOL 2020; 46:101-107. [PMID: 31905048 DOI: 10.1563/aaid-joi-d-19-00122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated whether a 6-Watt ultraviolet C-lamp was capable of producing photofunctionalization on commercial implants during a medium observation term of 8 weeks. A total of 20 implants were inserted in 5 New Zealand rabbits, with each animal receiving 2 implants per tibia (one photofunctionalized and one untreated), according to a previously established randomization sequence. All implants were inserted by a single surgeon following the manufacturer's instructions. Histological analysis was performed by an evaluator who was blinded to the treatment condition. After 8 weeks of healing, the 2 groups showed no statistically significant differences in terms of bone-to-implant contact. Compared to control implants, the photofunctionalized implants showed improved wettability and more homogenous results. Within the limits of the present study, the use of this 6-W ultraviolet C-lamp, for an irradiation time of 15 minutes at a distance of 15 cm, did not improve the percentages of bone-to-implant contact in rabbits at an osseointegration time of 8 weeks.
Collapse
Affiliation(s)
| | | | | | | | - Scott Davis
- Private practice in Port Macquarie and Coffs Harbour, NSW Australia
| | - Carmen Carda-Batalla
- Department of Pathology, Medicine and Dentistry, University of Valencia, Spain; INCLIVA, Valencia, Spain
| |
Collapse
|
31
|
Novel Osteogenic Behaviors around Hydrophilic and Radical-Free 4-META/MMA-TBB: Implications of an Osseointegrating Bone Cement. Int J Mol Sci 2020; 21:ijms21072405. [PMID: 32244335 PMCID: PMC7177939 DOI: 10.3390/ijms21072405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022] Open
Abstract
Poly(methyl methacrylate) (PMMA)-based bone cement, which is widely used to affix orthopedic metallic implants, is considered bio-tolerant but lacks osteoconductivity and is cytotoxic. Implant loosening and toxic complications are significant and recognized problems. Here we devised two strategies to improve PMMA-based bone cement: (1) adding 4-methacryloyloxylethyl trimellitate anhydride (4-META) to MMA monomer to render it hydrophilic; and (2) using tri-n-butyl borane (TBB) as a polymerization initiator instead of benzoyl peroxide (BPO) to reduce free radical production. Rat bone marrow-derived osteoblasts were cultured on PMMA-BPO, common bone cement ingredients, and 4-META/MMA-TBB, newly formulated ingredients. After 24 h of incubation, more cells survived on 4-META/MMA-TBB than on PMMA-BPO. The mineralized area was 20-times greater on 4-META/MMA-TBB than PMMA-BPO at the later culture stage and was accompanied by upregulated osteogenic gene expression. The strength of bone-to-cement integration in rat femurs was 4- and 7-times greater for 4-META/MMA-TBB than PMMA-BPO during early- and late-stage healing, respectively. MicroCT and histomorphometric analyses revealed contact osteogenesis exclusively around 4-META/MMA-TBB, with minimal soft tissue interposition. Hydrophilicity of 4-META/MMA-TBB was sustained for 24 h, particularly under wet conditions, whereas PMMA-BPO was hydrophobic immediately after mixing and was unaffected by time or condition. Electron spin resonance (ESR) spectroscopy revealed that the free radical production for 4-META/MMA-TBB was 1/10 to 1/20 that of PMMA-BPO within 24 h, and the substantial difference persisted for at least 10 days. The compromised ability of PMMA-BPO in recruiting cells was substantially alleviated by adding free radical-scavenging amino-acid N-acetyl cysteine (NAC) into the material, whereas adding NAC did not affect the ability of 4-META/MMA-TBB. These results suggest that 4-META/MMA-TBB shows significantly reduced cytotoxicity compared to PMMA-BPO and induces osteoconductivity due to uniquely created hydrophilic and radical-free interface. Further pre-clinical and clinical validations are warranted.
Collapse
|
32
|
Hasegawa M, Saruta J, Hirota M, Taniyama T, Sugita Y, Kubo K, Ishijima M, Ikeda T, Maeda H, Ogawa T. A Newly Created Meso-, Micro-, and Nano-Scale Rough Titanium Surface Promotes Bone-Implant Integration. Int J Mol Sci 2020; 21:ijms21030783. [PMID: 31991761 PMCID: PMC7036846 DOI: 10.3390/ijms21030783] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
Titanium implants are the standard therapeutic option when restoring missing teeth and reconstructing fractured and/or diseased bone. However, in the 30 years since the advent of micro-rough surfaces, titanium’s ability to integrate with bone has not improved significantly. We developed a method to create a unique titanium surface with distinct roughness features at meso-, micro-, and nano-scales. We sought to determine the biological ability of the surface and optimize it for better osseointegration. Commercially pure titanium was acid-etched with sulfuric acid at different temperatures (120, 130, 140, and 150 °C). Although only the typical micro-scale compartmental structure was formed during acid-etching at 120 and 130 °C, meso-scale spikes (20–50 μm wide) and nano-scale polymorphic structures as well as micro-scale compartmental structures formed exclusively at 140 and 150 °C. The average surface roughness (Ra) of the three-scale rough surface was 6–12 times greater than that with micro-roughness only, and did not compromise the initial attachment and spreading of osteoblasts despite its considerably increased surface roughness. The new surface promoted osteoblast differentiation and in vivo osseointegration significantly; regression analysis between osteoconductivity and surface variables revealed these effects were highly correlated with the size and density of meso-scale spikes. The overall strength of osseointegration was the greatest when the acid-etching was performed at 140 °C. Thus, we demonstrated that our meso-, micro-, and nano-scale rough titanium surface generates substantially increased osteoconductive and osseointegrative ability over the well-established micro-rough titanium surface. This novel surface is expected to be utilized in dental and various types of orthopedic surgical implants, as well as titanium-based bone engineering scaffolds.
Collapse
Affiliation(s)
- Masakazu Hasegawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (M.I.); (T.I.)
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Juri Saruta
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (M.I.); (T.I.)
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-8580, Japan
- Correspondence: ; Tel./Fax: +81-46-822-9537
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (M.I.); (T.I.)
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Urafune-cho, Yokohama, Kanagawa 232-0024, Japan
| | - Takashi Taniyama
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (M.I.); (T.I.)
- Department of Orthopedic Surgery, Yokohama City Minato Red Cross Hospital, 3-12-1 Shinyamashita, Yokohama, Kanagawa 231-8682, Japan
| | - Yoshihiko Sugita
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Katsutoshi Kubo
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Manabu Ishijima
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (M.I.); (T.I.)
| | - Takayuki Ikeda
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (M.I.); (T.I.)
| | - Hatsuhiko Maeda
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (M.I.); (T.I.)
| |
Collapse
|
33
|
Liddell RS, Liu Z, Mendes VC, Davies JE. Relative contributions of implant hydrophilicity and nanotopography to implant anchorage in bone at Early Time Points. Clin Oral Implants Res 2019; 31:49-63. [DOI: 10.1111/clr.13546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/29/2019] [Accepted: 09/08/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Robert S. Liddell
- Dental Research Institute Faculty of Dentistry University of Toronto Toronto ON Canada
| | - Zhen‐Mei Liu
- Dental Research Institute Faculty of Dentistry University of Toronto Toronto ON Canada
| | - Vanessa C. Mendes
- Dental Research Institute Faculty of Dentistry University of Toronto Toronto ON Canada
| | - John E. Davies
- Dental Research Institute Faculty of Dentistry University of Toronto Toronto ON Canada
- Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto ON Canada
| |
Collapse
|
34
|
de Avila ED, van Oirschot BA, van den Beucken JJJP. Biomaterial-based possibilities for managing peri-implantitis. J Periodontal Res 2019; 55:165-173. [PMID: 31638267 PMCID: PMC7154698 DOI: 10.1111/jre.12707] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/22/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022]
Abstract
Peri‐implantitis is an inflammatory disease of hard and soft tissues around osseointegrated implants, followed by a progressive damage of alveolar bone. Oral microorganisms can adhere to all types of surfaces by the production of multiple adhesive factors. Inherent properties of materials will influence not only the number of microorganisms, but also their profile and adhesion force onto the material surface. In this perspective, strategies to reduce the adhesion of pathogenic microorganisms on dental implants and their components should be investigated in modern rehabilitation concepts in implant dentistry. To date, several metallic nanoparticle films have been developed to reduce the growth of pathogenic bacteria. However, the main drawback in these approaches is the potential toxicity and accumulative effect of the metals over time. In view of biological issues and in attempt to prevent and/or treat peri‐implantitis, biomaterials as carriers of antimicrobial substances have attracted special attention for application as coatings on dental implant devices. This review will focus on biomaterial‐based possibilities to prevent and/or treat peri‐implantitis by describing concepts and dental implant components suitable for engagement in preventing and treating this disease. Additionally, we raise important criteria referring to the geometric parameters of dental implants and their components, which can directly affect peri‐implant tissue conditions. Finally, we overview currently available biomaterial systems that can be used in the field of oral implantology.
Collapse
Affiliation(s)
- Erica D de Avila
- Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands.,Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| | - Bart A van Oirschot
- Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands.,Department of Implantology & Periodontology, Radboudumc, Nijmegen, The Netherlands
| | | |
Collapse
|
35
|
Liu W, Du B, Zhou L, Wang Q, Wu J. Ultraviolet Functionalization Improved Bone Integration on Titanium Surfaces by Fluorescent Analysis in Rabbit Calvarium. J ORAL IMPLANTOL 2019; 45:107-115. [PMID: 30540542 DOI: 10.1563/aaid-joi-d-17-00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated the effect of ultraviolet functionalization (UV) on bone integration ability in rabbit model, using epifluorescence microscopy. Each of 12 rabbits (n = 6) received randomly four titanium domes prepared with or without ultraviolet for 48 hours (UVC, λ = 250 ± 20 nm; Philips, Tokyo, Japan): (1) turned surface (T), (2) turned surface with UV (T-UV), (3) sandblasted (120 μm aluminum oxide) and etched by 18% hydrochloric acid and 49% sulphuric acid at 60°C for 30 min (SLA) and (4) SLA surface with UV (SLA-UV). Fluorochrome bone labels were marked by oxytetracycline at 25 mg/kg on 13th days and 14th days and calcein at 5 mg/kg on 3th days and 4th days before euthanization. The study samples were sacrified at 2 weeks and 4 weeks. The undecalcified specimens were prepared. The newly formed total bone of cross-sectional area (TB, %), the mineralized trabecular bone of cross-sectional area (MB, %), and the new bone and dome contact (BDC, %) were measured and analyzed by fluorescence microscope and Image Pro Express 6.0. The data of MB and TB showed new bone regeneration was increased in all groups, but no signs of difference were found. However, the means BDC of UV treatment on turned surface at 4 weeks, the UV treated on SLA surface at 2 weeks and 4 weeks were statistically significantly higher than the control group (P < .05). Within the limitations of the study, it can be concluded that ultraviolet functionalization on the titanium surface could enhance the new bone tissues and titanium surface integration.
Collapse
Affiliation(s)
- Weizhen Liu
- Department of Periodontics, Stomatological Hospital, Southern Medical University (Guangdong Stomatological Hospital), Guangzhou, Guangdong, China
| | - Bing Du
- Center of Stomatology, The Second People's Hospital of Foshan, Foshan, Guangdong, China
| | - Lei Zhou
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University (Guangdong Stomalogical Hospital), Guangzhou, Guangdong, China
| | - Qin Wang
- Department of Oral Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingyi Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Surface Deposition on Titania in a Physiological Solution with Ultraviolet Irradiation In Situ and Effect of Heat Treatment. COATINGS 2019. [DOI: 10.3390/coatings9020080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Photocatalysis-enhanced surface deposition on titanium surfaces for biomedical applications is investigated in this work. Immersion tests of commercially pure titanium (CP-Ti) pieces in a simulated body fluid adding bovine serum albumin (BSA) under ultraviolet (UV) irradiation in situ are carried out. The morphologies of deposition are characterized by SEM and stereo imaging microscopy, and the quantity and composition of the deposition is examined by SEM, energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy. The results show a deposition layer with thickness 89 μm is produced on 600 °C heat-treated specimens. An irradiation pattern of lighting/dark repeated results in more deposition on heat-treated CP-Ti. It is confirmed that a mixture of anatase and rutile phases generated on 600 °C heat-treated specimens has enhanced photocatalysis. The decomposition of BSA by photocatalysis, a possible product of nitrite also results in enhanced deposition on Ti. EDS analysis shows large reduction of carbon in the deposition on UV-light exposed surfaces compared to no UV-light-exposed surfaces. Furthermore, C–H bond decreases and C–C, Ca–O, and P–O bond increases are found on photoactivated surfaces. The deposition produced by this method is expected to be useful for applications to biomaterials with high bioactivity.
Collapse
|
37
|
Rezaei NM, Hasegawa M, Ishijima M, Nakhaei K, Okubo T, Taniyama T, Ghassemi A, Tahsili T, Park W, Hirota M, Ogawa T. Biological and osseointegration capabilities of hierarchically (meso-/micro-/nano-scale) roughened zirconia. Int J Nanomedicine 2018; 13:3381-3395. [PMID: 29922058 PMCID: PMC5997135 DOI: 10.2147/ijn.s159955] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Zirconia is a potential alternative to titanium for dental and orthopedic implants. Here we report the biological and bone integration capabilities of a new zirconia surface with distinct morphology at the meso-, micro-, and nano-scales. METHODS Machine-smooth and roughened zirconia disks were prepared from yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), with rough zirconia created by solid-state laser sculpting. Morphology of the surfaces was analyzed by three-dimensional imaging and profiling. Rat femur-derived bone marrow cells were cultured on zirconia disks. Zirconia implants were placed in rat femurs and the strength of osseointegration was evaluated by biomechanical push-in test. RESULTS The rough zirconia surface was characterized by meso-scale (50 µm wide, 6-8 µm deep) grooves, micro-scale (1-10 µm wide, 0.1-3 µm deep) valleys, and nano-scale (10-400 nm wide, 10-300 nm high) nodules, whereas the machined surface was flat and uniform. The average roughness (Ra) of rough zirconia was five times greater than that of machined zirconia. The expression of bone-related genes such as collagen I, osteopontin, osteocalcin, and BMP-2 was 7-25 times upregulated in osteoblasts on rough zirconia at the early stage of culture. The number of attached cells and rate of proliferation were similar between machined and rough zirconia. The strength of osseointegration for rough zirconia was twice that of machined zirconia at weeks two and four of healing, with evidence of mineralized tissue persisting around rough zirconia implants as visualized by electron microscopy and elemental analysis. CONCLUSION This unique meso-/micro-/nano-scale rough zirconia showed a remarkable increase in osseointegration compared to machine-smooth zirconia associated with accelerated differentiation of osteoblasts. Cell attachment and proliferation were not compromised on rough zirconia unlike on rough titanium. This is the first report introducing a rough zirconia surface with distinct hierarchical morphology and providing an effective strategy to improve and develop zirconia implants.
Collapse
Affiliation(s)
- Naser Mohammadzadeh Rezaei
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Masakazu Hasegawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Manabu Ishijima
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Kourosh Nakhaei
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Takahisa Okubo
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Takashi Taniyama
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Amirreza Ghassemi
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Tania Tahsili
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Wonhee Park
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
38
|
Jeong WS, Kwon JS, Lee JH, Uhm SH, Ha Choi E, Kim KM. Bacterial attachment on titanium surfaces is dependent on topography and chemical changes induced by nonthermal atmospheric pressure plasma. Biomed Mater 2017; 12:045015. [DOI: 10.1088/1748-605x/aa734e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Beltrán-Partida E, Valdez-Salas B, Curiel-Álvarez M, Castillo-Uribe S, Escamilla A, Nedev N. Enhanced antifungal activity by disinfected titanium dioxide nanotubes via reduced nano-adhesion bonds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:59-65. [PMID: 28482568 DOI: 10.1016/j.msec.2017.02.153] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 11/26/2022]
Abstract
We have provided evidence that the beneficial effect of super-oxidized water (SOW) disinfected Ti6Al4V-TiO2 nanotubes (NTs) can reduce bacterial adhesion and biofilm formation. However, the need of antifungal nanostructured surfaces with osteoactive capabilities is an important goal that has been arising for dental implants (DI) applications. Thus, in the present study we isolated and tested the effects of Candida albicans (C. albicans) on disinfected, wetter and nanoroughness NTs compared to a non-modified control. Moreover, we elucidated part of the fungal adhesion mechanism by studying and relating the mycotic adhesion kinetics and the formation of fungal nanoadhesion bonds among the experimental materials, to gain new insight of the fungal-material-interface. Similarly, the initial behavior of human alveolar bone osteoblasts (HAOb) was microscopically evaluated. NTs significantly reduced the yeasts adhesion and viability with non-outcomes of biofilm than the non-modified surface. Cross-sectioning of the fungal cells revealed promoted nano-contact bonds with superior fungal spread on the control alloy interface; meanwhile NTs evidenced decreased tendency along time; suggesting, down-regulation by the nanostructured morphology and the SOW treatment. Importantly, the initial performance of HAOb demonstrated strikingly promoted anchorage with effects of filopodia formation and increased vital cell on NTs with SOW. The present study proposes SOW treatment as an active protocol for synthesis and disinfection of NTs with potent antifungal capability, acting in part by the reduction of nano-adhesion bonds at the surface-fungal interface; opening up a novel route for the investigation of mycotic-adhesion processes at the nanoscale for bone implants applications.
Collapse
Affiliation(s)
- Ernesto Beltrán-Partida
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico; Department of Biomaterials, Dental Materials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California, Av. Zotoluca and Chinampas St., 21040 Mexicali, Baja California, Mexico.
| | - Benjamín Valdez-Salas
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico.
| | - Mario Curiel-Álvarez
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico
| | - Sandra Castillo-Uribe
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico; Department of Biomaterials, Dental Materials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California, Av. Zotoluca and Chinampas St., 21040 Mexicali, Baja California, Mexico
| | - Alan Escamilla
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico
| | - Nicola Nedev
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California, Mexico
| |
Collapse
|
40
|
Soltanzadeh P, Ghassemi A, Ishijima M, Tanaka M, Park W, Iwasaki C, Hirota M, Ogawa T. Success rate and strength of osseointegration of immediately loaded UV-photofunctionalized implants in a rat model. J Prosthet Dent 2017; 118:357-362. [PMID: 28222880 DOI: 10.1016/j.prosdent.2016.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 11/16/2022]
Abstract
STATEMENT OF PROBLEM Despite its clinical benefits, the immediate loading protocol might have a higher risk of implant failure than the regular protocol. Ultraviolet (UV) photofunctionalization is a novel surface enhancement technique for dental implants. However, the effect of photofunctionalization under loading conditions is unclear. PURPOSE The purpose of this animal study was to evaluate the effect of photofunctionalization on the biomechanical quality and strength of osseointegration under loaded conditions in a rat model. MATERIAL AND METHODS Untreated and photofunctionalized, acid-etched titanium implants were placed into rat femurs. The implants were immediately loaded with 0.46 N of constant lateral force. The implant positions were evaluated after 2 weeks of healing. The strength of osseointegration was evaluated by measuring the bone-implant interfacial breakdown point during biomechanical push-in testing. RESULTS Photofunctionalization induced hydrophilic surfaces on the implants. Osseointegration was successful in 28.6% of untreated implants and 100% of photofunctionalized implants. The strength of osseointegration in successful implants was 2.4 times higher in photofunctionalized implants than in untreated implants. The degree of tilt of untreated implants toward the origin of force was twice that of photofunctionalized implants. CONCLUSIONS Within the limit of an animal model, photofunctionalization significantly increased the success of osseointegration and prevented implant tilt. Even for the implants that underwent successful osseointegration, the strength of osseointegration was significantly higher for photofunctionalized implants than for untreated implants. Further experiments are warranted to determine the effectiveness of photofunctionalization on immediately loaded dental implants.
Collapse
Affiliation(s)
- Pooya Soltanzadeh
- Research Assistant, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, Calif; and Resident, Advanced Specialty Education Program in Prosthodontics, Loma Linda University, School of Dentistry, Loma Linda, Calif
| | - Amirreza Ghassemi
- Research Assistant, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, Calif; and Resident, Periodontics Department, Saint Louis University, Center for Advanced Dental Education, St Louis, Mo
| | - Manabu Ishijima
- Visiting Assistant Project Scientist, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, Calif.
| | - Miyuki Tanaka
- Visiting scholar, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, Calif
| | - Wonhee Park
- Visiting scholar, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, Calif
| | - Chika Iwasaki
- Visiting scholar, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, Calif
| | - Makoto Hirota
- Visiting scholar, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, Calif
| | - Takahiro Ogawa
- Professor, Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, Calif
| |
Collapse
|
41
|
Yang Y, Wang K, Gu X, Leong KW. Biophysical Regulation of Cell Behavior-Cross Talk between Substrate Stiffness and Nanotopography. ENGINEERING (BEIJING, CHINA) 2017; 3:36-54. [PMID: 29071164 PMCID: PMC5653318 DOI: 10.1016/j.eng.2017.01.014] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Kai Wang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
42
|
Moroi A, Okuno M, Kobayashi G, Gamo H, Serizawa I, Yoshizawa K, Ikawa H, Ueki K. Effect on surface character and mechanical property of unsintered hydroxyapatite/poly-l
-lactic acid (uHA/PLLA) material by UV treatment. J Biomed Mater Res B Appl Biomater 2016; 106:191-200. [DOI: 10.1002/jbm.b.33833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Akinori Moroi
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research; University of Yamanashi, 1110 Shimokato; Chuo Yamanashi Japan
| | - Masaki Okuno
- Depatment of Medical Institure; Takiron Co. Ltd, 7-1-9, Minatojimaminamimachi, Chuo-ku; Kobe Hyogo Japan
| | - Go Kobayashi
- Suwa factory ORC Manufacturing Co., Ltd, 4896 Tamagawa; Chinoshi Nagano Japan
| | - Hitoshi Gamo
- Suwa factory ORC Manufacturing Co., Ltd, 4896 Tamagawa; Chinoshi Nagano Japan
| | - Izumi Serizawa
- Suwa factory ORC Manufacturing Co., Ltd, 4896 Tamagawa; Chinoshi Nagano Japan
| | - Kunio Yoshizawa
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research; University of Yamanashi, 1110 Shimokato; Chuo Yamanashi Japan
| | - Hiroumi Ikawa
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research; University of Yamanashi, 1110 Shimokato; Chuo Yamanashi Japan
| | - Koichiro Ueki
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research; University of Yamanashi, 1110 Shimokato; Chuo Yamanashi Japan
| |
Collapse
|
43
|
Chen J, Zhang X, Huang C, Cai H, Hu S, Wan Q, Pei X, Wang J. Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films. J Biomed Mater Res A 2016; 105:834-846. [PMID: 27885785 DOI: 10.1002/jbm.a.35960] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Junyu Chen
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- Department of Prosthodontics; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- Department of Prosthodontics; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- College of Chemistry; Sichuan University; Chengdu, Sichuan 610041 China
| | - Chao Huang
- College of Chemistry; Sichuan University; Chengdu, Sichuan 610041 China
| | - He Cai
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- Department of Prosthodontics; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
| | - Shanshan Hu
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- Department of Prosthodontics; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- Department of Prosthodontics; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- Department of Prosthodontics; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
| | - Jian Wang
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- Department of Prosthodontics; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
| |
Collapse
|
44
|
Ueno T, Ikeda T, Tsukimura N, Ishijima M, Minamikawa H, Sugita Y, Yamada M, Wakabayashi N, Ogawa T. Novel antioxidant capability of titanium induced by UV light treatment. Biomaterials 2016; 108:177-86. [PMID: 27639113 DOI: 10.1016/j.biomaterials.2016.08.050] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/08/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
The intracellular production of reactive oxygen species (ROS) is a representative form of cellular oxidative stress and plays an important role in triggering adverse cellular events, such as the inflammatory reaction and delayed or compromised differentiation. Osteoblastic reaction to titanium with particular focus on ROS production remains unknown. Ultraviolet (UV) light treatment improves the physicochemical properties of titanium, specifically the induction of super hydrophilicity and removal of hydrocarbon, and eventually enhances its osteoconductivity. We hypothesized that there is a favorable regulatory change of ROS production within osteoblasts in contact with UV-treated titanium. Osteoblasts were cultured on titanium disks with or without UV-pretreatment. The intracellular production of ROS was higher on acid-etch-created rough titanium surfaces than on machine-prepared smooth ones. The ROS production was reduced by 40-50% by UV pretreatment of titanium regardless of the surface roughness. Oxidative DNA damage, as detected by 8-OHdG expression, was alleviated by 50% on UV-treated titanium surfaces. The expression of inflammatory cytokines was consistently lower in osteoblasts cultured on UV-treated titanium. ROS scavenger, glutathione, remained more without being depleted in osteoblasts on UV-treated titanium. Bio-burden test further showed that culturing osteoblasts on UV-treated titanium can significantly reduce the ROS production even with the presence of hydrogen peroxide, an oxidative stress inducer. These data suggest that the intracellular production of ROS and relevant inflammatory reaction, which unavoidably occurs in osteoblasts in contact with titanium, can be significantly reduced by UV pretreatment of titanium, implying a novel antioxidant capability of the particular titanium.
Collapse
Affiliation(s)
- Takeshi Ueno
- Removable Partial Prosthodontics, Department of Masticatory Function Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA.
| | - Takayuki Ikeda
- The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Naoki Tsukimura
- The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Manabu Ishijima
- The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Hajime Minamikawa
- The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Yoshihiko Sugita
- The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Masahiro Yamada
- The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Noriyuki Wakabayashi
- Removable Partial Prosthodontics, Department of Masticatory Function Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiro Ogawa
- The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
45
|
Toita R, Tsuru K, Ishikawa K. A superhydrophilic titanium implant functionalized by ozone gas modulates bone marrow cell and macrophage responses. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:127. [PMID: 27344451 DOI: 10.1007/s10856-016-5741-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Bone-forming cells and Mϕ play key roles in bone tissue repair. In this study, we prepared a superhydrophilic titanium implant functionalized by ozone gas to modulate osteoconductivity and inhibit inflammatory response towards titanium implants. After 24 h of ozone gas treatment, the water contact angle of the titanium surface became zero. XPS analysis revealed that hydroxyl groups were greatly increased, but carbon contaminants were largely decreased 24 h after ozone gas functionalization. Also, ozone gas functionalization did not alter titanium surface topography. Superhydrophilic titanium (O3-Ti) largely increased the aspect ratio, size and perimeter of cells when compared with untreated titanium (unTi). In addition, O3-Ti facilitated rat bone marrow derived MSCs differentiation and mineralization evidenced by greater ALP activity and bone-like nodule formation. Interestingly, O3-Ti did not affect RAW264.7 Mϕ proliferation. However, naive RAW264.7 Mϕ cultured on unTi produced a two-fold larger amount of TNFα than that on O3-Ti. Furthermore, O3-Ti greatly mitigated proinflammatory cytokine production, including TNFα and IL-6 from LSP-stimulated RAW264.7 Mϕ. These results demonstrated that a superhydrophilic titanium prepared by simple ozone gas functionalization successfully increased MSCs proliferation and differentiation, and mitigated proinflammatory cytokine production from both naive and LPS-stimulated Mϕ. This superhydrophilic surface would be useful as an endosseous implantable biomaterials and as a biomaterial for implantation into other tissues.
Collapse
Affiliation(s)
- Riki Toita
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
46
|
Kim HS, Lee JI, Yang SS, Kim BS, Kim BC, Lee J. The effect of alendronate soaking and ultraviolet treatment on bone-implant interface. Clin Oral Implants Res 2016; 28:1164-1172. [PMID: 27458172 DOI: 10.1111/clr.12933] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Rapid and stable fixation of dental implants is crucial for successful treatment. Herein, we examined whether the simultaneous treatment of titanium implants with ultraviolet (UV) and alendronate (ALN) synergistically improved the bone-to-implant contact. MATERIALS AND METHODS We assessed the in vitro effects of UV radiation-treated (UV+/ALN-), ALN-soaked (UV-/ALN+), and UV radiation/ALN-treated (UV+/ALN+) titanium implants on cell proliferation, cytotoxicity, cell adhesion, and osteoblast differentiation using MG-63 osteoblast-like cells by the assays of MTS, live/dead, scanning electron microscopy (SEM), alkaline phosphatase (ALP) activity, and alizarin red S (AR-S) staining, respectively. Furthermore, in vivo bone formation at the bone-implant interface efficiency determined using a rabbit tibia implantation. Implants were divided into 3 experimental groups (UV+/ALN-, UV-/ALN+, UV+/ALN+) and the non-treated control (UV-/ALN-) group and transplanted into the proximal tibia of rabbits. At 1, 2, 4, and 8 weeks post-operation, bone formation at the bone-implant interface was evaluated by micro-computed tomography and histological analysis. RESULTS MG-63 cells cultured on UV+/ALN+ implants showed significantly higher cell proliferation, ALP activity, and calcium mineralization than those cultured on other implants (P < 0.05). Furthermore, SEM observation showed the highest increase in cell attachment and growth on the UV+/ALN+ implants. In vivo, experimental groups at all time points showed greater peri-implant bone formation than the control group. At 8 weeks post-implantation, in the UV+/ALN+ group, significantly higher bone formation was observed than the UV+/ALN- or UV-/ALN+ group, respectively (P < 0.05). CONCLUSIONS Treatment of titanium surfaces with UV and ALN may synergistically enhance osteoblastic differentiation and mineralization in vitro and enhance bone formation at the bone-implant interface in vivo. These data suggest that UV and ALN treatment may improve the osseointegration of titanium implants.
Collapse
Affiliation(s)
- Hyung Soo Kim
- Department of Oral and Maxillofacial Surgery, Daejeon Dental Hospital, Wonkwang University, Daejeon, Korea
| | - Jae In Lee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sun Sik Yang
- Wonkwnag Bone Regeneration Research Institute, Wonkwang University, Iksan, Korea
| | | | - Bong Chul Kim
- Department of Oral and Maxillofacial Surgery, Daejeon Dental Hospital, Wonkwang University, Daejeon, Korea
| | - Jun Lee
- Department of Oral and Maxillofacial Surgery, Daejeon Dental Hospital, Wonkwang University, Daejeon, Korea
| |
Collapse
|
47
|
Structural and quantitative analysis of a mature anaerobic biofilm on different implant abutment surfaces. J Prosthet Dent 2016; 115:428-36. [DOI: 10.1016/j.prosdent.2015.09.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/07/2023]
|
48
|
Photofunctionalization enhances bone-implant contact, dynamics of interfacial osteogenesis, marginal bone seal, and removal torque value of implants: a dog jawbone study. IMPLANT DENT 2015; 22:666-75. [PMID: 24185466 DOI: 10.1097/id.0000000000000003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Ultraviolet (UV) light treatment of titanium, ie, photofunctionalization, has been extensively reported to enhance the osteoconductivity of titanium in animal and in vitro studies. This is the first study to examine whether photofunctionalization is effective on commercial dental implants in vivo. MATERIALS AND METHODS Dental implants with a microroughened surface were placed into dog jawbones. Photofunctionalization was performed by treating implants with UV light for 15 minutes using a photo device immediately before placement. Four weeks after placement, bone-implant integration was evaluated using a removable torque test and static and dynamic histology. RESULTS Implant surfaces were converted from hydrophobic to super-hydrophilic after photofunctionalization. Removable torque for photofunctionalized implants was significantly higher by 50% than that for untreated implants. Bone-implant contact (BIC) was significantly higher for photofunctionalized implants in all zones examined: marginal, cortical, and bone marrow zones. An intensive mineralized layer was exclusively present in marginal bone at photofunctionalized interface. Dynamic histology identified early-onset, long-lasting robust bone deposition at photofunctionalized interface. CONCLUSIONS Photofunctionalization enhanced the morphology, quality, and behavior of periimplant osteogenesis, including the increased BIC, expedited robust interfacial bone deposition, and improved marginal bone seal and support.
Collapse
|
49
|
Implant stability change and osseointegration speed of immediately loaded photofunctionalized implants. IMPLANT DENT 2015; 22:481-90. [PMID: 24021973 DOI: 10.1097/id.0b013e31829deb62] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study evaluated the degree and rate of implant stability development for photofunctionalized dental implants in humans. MATERIALS AND METHODS Thirty-three implants (7 patients) placed in the maxilla and immediate loaded were evaluated. Photofunctionalization was performed by treating implants with ultraviolet for 15 minutes immediately before placement. Implant stability was assessed by measuring the implant stability quotient (ISQ) weekly starting from implant placement up to 3 months. Osseointegration speed index (OSI), defined as ISQ increase per month, was also evaluated. RESULTS The average ISQ for photofunctionalized implants at week 6 was 78.0, which was considerably higher than the average ISQ of 66.1, reported in literature for various as-received implants after a longer healing time of 2 to 6 months. No stability dip was observed for photofunctionalized implants regardless of the initial ISQ values. The OSI for photofunctionalized implants was 6.3 and 3.1 when their initial ISQ was 65 to 70 and 71 to 75, respectively, whereas the OSI values for as-received implants calculated from literature ranged from -3.0 to 1.17 with an average of -0.10. CONCLUSIONS Photofunctionalization accelerated and enhanced osseointegration of dental implants, providing novel and practical avenues for further advancement in implant therapy.
Collapse
|
50
|
Liang J, Song R, Huang Q, Yang Y, Lin L, Zhang Y, Jiang P, Duan H, Dong X, Lin C. Electrochemical construction of a bio-inspired micro/nano-textured structure with cell-sized microhole arrays on biomedical titanium to enhance bioactivity. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.06.100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|