1
|
Yadav PK, Chauhan D, Yadav P, Tiwari AK, Sultana N, Gupta D, Mishra K, Gayen JR, Wahajuddin M, Chourasia MK. Nanotechnology Assisted Drug Delivery Strategies for Chemotherapy: Recent Advances and Future Prospects. ACS APPLIED BIO MATERIALS 2025; 8:3601-3622. [PMID: 40318022 DOI: 10.1021/acsabm.5c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
In pursuit of the treatment of cancer, nanotechnology engineering has emerged as the simplest and most effective means, with the potential to deliver antitumor chemotherapeutics at the targeted site. Employing nanotechnology for drug delivery provides diverse nanosize particles ranging from one to a thousand nanometers. Reduced size improves drug bioavailability by increasing drug diffusion and decreasing the efflux rate. These nanocarriers offer an enormous scope for modification following the chemical and biological properties of both the drug and its disease. Moreover, these nanoformulations assist in targeting pharmaceutically active drug molecules to the desired site and have gained importance in recent years. Their modern use has revolutionized the antitumor action of many therapeutic agents. Higher drug loading efficiency, thermal stability, easy fabrication, low production cost, and large-scale industrial production draw attention to the application of nanotechnology as a better platform for the delivery of drug molecules. Furthermore, the interaction of nanocarrier technology-assisted agents lowers a drug's toxicity and therapeutic dosage, reduces drug tolerance, and enhances active drug concentration in neoplasm tissue, thus decreasing the concentration in healthy tissue. Nanotechnology-based medications are being widely explored and have depicted effective cancer management in vivo and in vitro systems, leading to many clinical trials with promising results. This review summarizes the innovative impact and application of different nanocarriers developed in recent years in cancer therapy. Subsequently, it also describes the essential findings and methodologies and their effects on cancer treatment. Compared with conventional therapy, nanomedicines can significantly improve the therapeutic effectiveness of antitumor drugs. Thus, the adverse effects associated with healthy tissues are decreased, and adverse effects are scaled back through enhanced permeability and retention effects. Lastly, future insights assisting nanotechnology in active therapeutics delivery and their scope in cancer chemotherapeutics have also been discussed.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pooja Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nazneen Sultana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Deepak Gupta
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Saadh MJ, Mustafa MA, Kumar A, Alamir HTA, Kumar A, Khudair SA, Faisal A, Alubiady MHS, Jalal SS, Shafik SS, Ahmad I, Khry FAF, Abosaoda MK. Stealth Nanocarriers in Cancer Therapy: a Comprehensive Review of Design, Functionality, and Clinical Applications. AAPS PharmSciTech 2024; 25:140. [PMID: 38890191 DOI: 10.1208/s12249-024-02843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Nanotechnology has significantly transformed cancer treatment by introducing innovative methods for delivering drugs effectively. This literature review provided an in-depth analysis of the role of nanocarriers in cancer therapy, with a particular focus on the critical concept of the 'stealth effect.' The stealth effect refers to the ability of nanocarriers to evade the immune system and overcome physiological barriers. The review investigated the design and composition of various nanocarriers, such as liposomes, micelles, and inorganic nanoparticles, highlighting the importance of surface modifications and functionalization. The complex interaction between the immune system, opsonization, phagocytosis, and the protein corona was examined to understand the stealth effect. The review carefully evaluated strategies to enhance the stealth effect, including surface coating with polymers, biomimetic camouflage, and targeting ligands. The in vivo behavior of stealth nanocarriers and their impact on pharmacokinetics, biodistribution, and toxicity were also systematically examined. Additionally, the review presented clinical applications, case studies of approved nanocarrier-based cancer therapies, and emerging formulations in clinical trials. Future directions and obstacles in the field, such as advancements in nanocarrier engineering, personalized nanomedicine, regulatory considerations, and ethical implications, were discussed in detail. The review concluded by summarizing key findings and emphasizing the transformative potential of stealth nanocarriers in revolutionizing cancer therapy. This review enhanced the comprehension of nanocarrier-based cancer therapies and their potential impact by providing insights into advanced studies, clinical applications, and regulatory considerations.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, India
| | | | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, 247341, Uttar Pradesh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | | | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | | | - Sarah Salah Jalal
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Shafik Shaker Shafik
- Experimental Nuclear Radiation Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Faeza A F Khry
- Faculty of pharmacy, department of pharmaceutics, Al-Esraa University, Baghdad, Iraq
| | - Munther Kadhim Abosaoda
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Qadisiyyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Ghalehkhondabi V, Fazlali A, Soleymani M. Temperature and pH-responsive PNIPAM@PAA Nanospheres with a Core-Shell Structure for Controlled Release of Doxorubicin in Breast Cancer Treatment. J Pharm Sci 2023; 112:1957-1966. [PMID: 37076101 DOI: 10.1016/j.xphs.2023.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Stimuli-responsive polymers have been of great interest in the fabrication of advanced drug delivery systems. In this study, a facile approach was developed to synthesize a dually temperature/pH-responsive drug delivery system with a core-shell structure to control the release of doxorubicin (DOX) at the target site. For this purpose, poly(acrylic acid) (PAA) nanospheres were first synthesized using the precipitation polymerization technique and were used as pH-responsive polymeric cores. Then, poly(N-isopropylacrylamide) (PNIPAM) with thermo-responsivity properties was coated on the outer surface of PAA cores via seed emulsion polymerization technique to render monodisperse PNIPAM-coated PAA (PNIPAM@PAA) nanospheres. The optimized PNIPAM@PAA nanospheres with an average particle size of 116.8 nm (PDI= 0.243), had a high negative surface charge (zeta potential= -47.6 mV). Then, DOX was loaded on PNIPAM@PAA nanospheres and the entrapment efficiency (EE) and drug loading (DL) capacity were measured to be 92.7% and 18.5%, respectively. The drug-loaded nanospheres exhibited a low leakage at neutral pH and physiological temperature, but drug release significantly enhanced at acidic pH (pH= 5.5), indicating the tumor-environment responsive drug release behavior of the prepared nanospheres. Also, kinetics studies showed that, the sustained release of DOX from PNIPAM@PAA nanospheres was consistent with the Fickian diffusion mechanism. Moreover, the anticancer efficacy of DOX-loaded nanospheres was evaluated in vitro against MCF-7 breast cancer cells. The obtained results revealed that, the incorporation of DOX into PNIPAM@PAA nanospheres increases its cytotoxicity against cancer cells compared to the free DOX. Our results suggest that, PNIPAM@PAA nanospheres can be considered as a promising vector to release anticancer drugs with dual-stimuli responsivity to pH and temperature.
Collapse
Affiliation(s)
- Vahab Ghalehkhondabi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 38156-88349, Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 38156-88349, Iran
| | - Alireza Fazlali
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 38156-88349, Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 38156-88349, Iran
| | - Meysam Soleymani
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 38156-88349, Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 38156-88349, Iran.
| |
Collapse
|
4
|
Zong L, Wang Y, Song S, Zhang H, Mu S, Liu W, Feng Y, Wang S, Tu Z, Yuan Q, Li L, Pu X. Formulation and Evaluation on Synergetic Anti-Hepatoma Effect of a Chemically Stable and Release-Controlled Nanoself-Assembly with Natural Monomers. Int J Nanomedicine 2023; 18:3407-3428. [PMID: 37377983 PMCID: PMC10292624 DOI: 10.2147/ijn.s408416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Hepatoma is the leading cause of death among liver diseases worldwide. Modern pharmacological studies suggest that some natural monomeric compounds have a significant effect on inhibiting tumor growth. However, poor stability and solubility, and side effects are the main factors limiting the clinical application of natural monomeric compounds. Methods In this paper, drug-co-loaded nanoself-assemblies were selected as a delivery system to improve the chemical stability and solubility of Tanshinone II A and Glycyrrhetinic acid, and to produce a synergetic anti-hepatoma effect. Results The study suggested that the drug co-loaded nanoself-assemblies showed high drug loading capacity, good physical and chemical stability, and controlled release. In vitro cell experiments verified that the drug-co-loaded nanoself-assemblies could increase the cellular uptake and cell inhibitory activity. In vivo studies verified that the drug co-loaded nanoself-assemblies could prolong the MRT0-∞, increase accumulation in tumor and liver tissues, and show strong synergistic anti-tumor effect and good bio-safety in H22 tumor-bearing mice. Conclusion This work indicates that natural monomeric compounds co-loaded nanoself-assemblies would be a potential strategy for the treatment of hepatoma.
Collapse
Affiliation(s)
- Lanlan Zong
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yanling Wang
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shiyu Song
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Huiqi Zhang
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shengcai Mu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Wenshang Liu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yu Feng
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shumin Wang
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Ziwei Tu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Qi Yuan
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Luhui Li
- Medical school, Henan Technical Institute, Kaifeng, Henan, 475004, People’s Republic of China
| | - Xiaohui Pu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| |
Collapse
|
5
|
Rezaei A, Rafieian F, Akbari-Alavijeh S, Kharazmi MS, Jafari SM. Release of bioactive compounds from delivery systems by stimuli-responsive approaches; triggering factors, mechanisms, and applications. Adv Colloid Interface Sci 2022; 307:102728. [PMID: 35843031 DOI: 10.1016/j.cis.2022.102728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 11/01/2022]
Abstract
Recent advances in emerging nanocarriers and stimuli-responsive (SR) delivery systems have brought about a revolution in the food and pharmaceutical industries. SR carriers are able to release the encapsulated bioactive compounds (bioactives) upon an external trigger. The potential of releasing the loaded bioactives in site-specific is of great importance for the pharmaceutical industry and medicine that can deliver the cargo in an appropriate condition. For the food industry, release of encapsulated bioactives is considerably important in processing or storage of food products and can be used in their formulation or packaging. There are various stimuli to control the favorite release of bioactives. In this review, we will shed light on the effect of different stimuli such as temperature, humidity, pH, light, enzymatic hydrolysis, redox, and also multiple stimuli on the release of encapsulated cargo and their potential applications in the food and pharmaceutical industries. An overview of cargo release mechanisms is also discussed. Furthermore, various alternatives to manipulate the controlled release of bioactives from carriers and the perspective of more progress in these SR carriers are highlighted.
Collapse
Affiliation(s)
- Atefe Rezaei
- Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| | - Fatemeh Rafieian
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, P.O. Box 56199-11367, Ardabil, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
6
|
González-Ayón MA, Licea-Rodriguez J, Méndez ER, Licea-Claverie A. NVCL-Based Galacto-Functionalized and Thermosensitive Nanogels with GNRDs for Chemo/Photothermal-Therapy. Pharmaceutics 2022; 14:pharmaceutics14030560. [PMID: 35335936 PMCID: PMC8951641 DOI: 10.3390/pharmaceutics14030560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Dual-function nanogels (particle size from 98 to 224 nm) synthesized via surfactant-free emulsion polymerization (SFEP) were tested as smart carriers toward synergistic chemo- and photothermal therapy. Cisplatin (CDDP) or doxorubicin (DOX) and gold nanorods (GNRDs) were loaded into galacto-functionalized PNVCL-based nanogels, where the encapsulation efficiency for CDDP and DOX was around 64 and 52%, respectively. PNVCL-based nanogels were proven to be an efficient delivery vehicle under conditions that mimic the tumor site in vitro. The release of CDDP or DOX was slower at pH 7.4 and 37 °C than at tumor conditions of pH 6 and 40 °C. On the other hand, in the systems with GNRDs at pH 7.4 and 37 °C, the sample was irradiated with a 785 nm laser for 10 min every hour, obtaining that the release profiles were even higher than in the conditions that simulated a cancer tissue (without irradiation). Thus, the present study demonstrates the synergistic effect of chemo- and photothermal therapy as a promising dual function in the potential future use of PNVCL nanogels loaded with GNRDs and CDDP/DOX to achieve an enhanced chemo/phototherapy in vivo.
Collapse
Affiliation(s)
- Mirian A. González-Ayón
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Apartado Postal 1166, Tijuana 22454, Mexico
- Correspondence: (M.A.G.-A.); (A.L.-C.)
| | - Jacob Licea-Rodriguez
- División de Física Aplicada, Centro de Investigación Científica y Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, B. C., Mexico; (J.L.-R.); (E.R.M.)
- Cátedras CONACYT-Centro de Investigación Científica y Educación Superior de Ensenada, Ensenada 22860, B. C., Mexico
| | - Eugenio R. Méndez
- División de Física Aplicada, Centro de Investigación Científica y Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, B. C., Mexico; (J.L.-R.); (E.R.M.)
| | - Angel Licea-Claverie
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Apartado Postal 1166, Tijuana 22454, Mexico
- Correspondence: (M.A.G.-A.); (A.L.-C.)
| |
Collapse
|
7
|
Li W, Zhang X, Nan Y, Jia L, Sun J, Zhang L, Wang Y. Hyaluronidase and pH Dual-Responsive Nanoparticles for Targeted Breast Cancer Stem Cells. Front Oncol 2022; 11:760423. [PMID: 35004281 PMCID: PMC8739758 DOI: 10.3389/fonc.2021.760423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
pH-responsive and CD44 receptor-mediated targeted nanoparticles for eliminating cancer stem cells (CSCs) were developed based on complexes of PEG-poly(β-amino ester) (PEG-PBAE) micelles (PPM) coated with hyaluronic acid (HA) (HA-coated PPM complex, or HPPMc). Thioridazine (Thz) was loaded into HPPMc with a decent drug loading content. The release results of the drug in vitro showed that Thz was released from the HPPMc, which was stimulated by both the acidic pH and specific enzymes. Cytotoxicity studies on mammospheres (MS) revealed that the toxicity potential of Thz-loaded HPPMc (Thz–HPPMc) at pH 5.5 was better than drug solutions. Compared with that at pH 7.4, a higher cellular uptake of a coumarin-6 (C6)-labeled complex at pH 5.5 was observed, which demonstrated that complexes were efficiently taken up in MS. Meanwhile, free HA competitively inhibited the cellular uptake of HPPMc, which revealed that the uptake mechanism was CD44 receptor-mediated endocytosis. Within the acidic endolysosomal environment, the protonation of PBAE facilitated the escape of the complex from the lysosome and releases the drug. The results of in vivo distribution studies and tumor suppression experiments showed that HPMMc could stay in the tumor site of BALB/c nude mice for a longer period of time, and Thz–HPPMc could significantly improve the tumor-suppressing effect. All these results demonstrated the great potential of the multifunctional nanoparticle system for eliminating CSCs.
Collapse
Affiliation(s)
- Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Nan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Jia
- Department of Pharmacy, Heze Medical College, Heze, China
| | - Jialin Sun
- Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin, China
| | - Lina Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Ganie SA, Rather LJ, Li Q. A review on anticancer applications of pullulan and pullulan derivative nanoparticles. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
9
|
Doxorubicin-Loaded Mixed Micelles Using Degradable Graft and Diblock Copolymers to Enhance Anticancer Sensitivity. Cancers (Basel) 2021; 13:cancers13153816. [PMID: 34359717 PMCID: PMC8345050 DOI: 10.3390/cancers13153816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In this study, a long-circulating and pH responsive mixed micellar system was assembled with a degradable graft copolymer, poly(N-(2-hydroxypropyl) methacrylamide dilactate)-co-(N-(2-hydroxypropyl) methacrylamide-co-histidine)-graft-poly(d,l-lactide), and a diblock copolymer, methoxy poly(ethylene glycol)-b-poly(d,l-lactide) to load with the anticancer agent doxorubicin. The in vitro results indicate that the micellar system display high biosafety and intracellular drug-releasing behavior in cancer cells. Furthermore, the in vivo results show that the high stability of the mixed micelles leads to a high tumor accumulation and hence an excellent inhibition of tumor growth. This mixed micellar system, comprising degradable diblock and graft copolymers enables one to increase cancer cells’ sensitivity toward doxorubicin (Dox) and is feasible for further clinical use in cancer therapy. Abstract In this study, a graft copolymer, poly(N-(2-hydroxypropyl) methacrylamide dilactate)-co-(N-(2-hydroxypropyl) methacrylamide-co-histidine)-graft-poly(d,l-lactide), and a diblock copolymer, methoxy poly(ethylene glycol)-b-poly(d,l-lactide), were assembled into a mixed micellar system to encapsulate the anticancer drug doxorubicin (Dox). This mixed micellar system possesses the hydrophobic lactide segment of both copolymers, which reinforces its stability in physiological milieus; the histidine molecules appended on the graft copolymer provide the desired pH-responsive behavior to release Dox during internalization in cancer cells. The results demonstrate that the two copolymers were successfully prepared, and their ratios in the mixed micelles were optimized on the basis of the results of the stability tests. Under acidic conditions, the mixed micelles swell and are able to release their payloads. Therefore, the in vitro results indicate that the Dox in the mixed micelles is released effectively in response to the environmental pH of the mimetic internalization process, increasing cancer cells’ sensitivity toward Dox. The mixed micelles display low cytotoxicity due to the degradability of the polymers. The in vivo images show that the high stability of the mixed micelles ensures a high tumor accumulation. This selective tumor accumulation results in an excellent inhibition of in vivo tumor growth and a high rate of apoptosis in cancerous tissues, with low toxicity. This highly stable, mixed micellar system with a pH-dependent drug release, which enables the precise delivery of drugs to the tumor lesions, is feasible to employ clinically in cancer therapy.
Collapse
|
10
|
Zhong Y, Dong Y, Chen T, Yang L, Yao M, Zhi Y, Yang H, Zhang J, Bi W. 808 nm NIR Laser-Excited Upconversion Nanoplatform for Combinatory Photodynamic and Chemotherapy with Deep Penetration and Acid Bursting Release Performance. ACS APPLIED BIO MATERIALS 2021; 4:2639-2653. [DOI: 10.1021/acsabm.0c01607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yingtao Zhong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Yun Dong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Tie Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Lingzhi Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Min Yao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Yunshi Zhi
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Haoyi Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Wenchuan Bi
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
11
|
Bener S, Puglisi A, Yagci Y. pH‐Responsive Micelle‐Forming Amphiphilic Triblock Copolymers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Semira Bener
- Faculty of Science and LettersDepartment of ChemistryIstanbul Technical University Maslak Istanbul 34469 Turkey
| | - Antonino Puglisi
- Faculty of Science and LettersDepartment of ChemistryIstanbul Technical University Maslak Istanbul 34469 Turkey
| | - Yusuf Yagci
- Faculty of Science and LettersDepartment of ChemistryIstanbul Technical University Maslak Istanbul 34469 Turkey
- Centre of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
12
|
Zong L, Wang Y, Qiao P, Yu K, Hou X, Wang P, Zhang Z, Pang X, Pu X, Yuan Q. Reduction-sensitive poly(ethylene glycol)-polypeptide conjugate micelles for highly efficient intracellular delivery and enhanced antitumor efficacy of hydroxycamptothecin. NANOTECHNOLOGY 2020; 31:165102. [PMID: 31899896 DOI: 10.1088/1361-6528/ab6749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The non-specific biodistribution of traditional chemotherapeutic drugs against tumors is the key factor that causes systemic toxicity and hinders their clinical application. In this study, a reduction-sensitive polymer conjugate micelle was manufactured to achieve tumor-specific targeting, reduce toxic side-effects and improve anti-tumor activity of a natural anti-cancer drug, hydroxycamptothecin (HCPT). Therefore, HCPT was conjugated with methoxy-poly(ethylene glycol)-poly(β-benzyl-L-aspartate) (mPEG-PBLA) by a disulfide bond or succinate bond for the first time to obtain the mPEG-PBLA-SS-HCPT (PPSH) and mPEG-PBLA-CC-HCPT (PPCH) that would form micelles after high-speed agitation and dialysis. The PPSH micelles showed an average particle size of 126.3 nm, a low polydispersity index of 0.209, and a negative surface charge of -21.1 mV zeta potential. Transmission electron microscopy showed the PPSH micelles to have spherical morphology. PPSH had a low critical micelle concentration of 1.29 μg ml-1 with high dilution stability, storage stability and reproducibility. Moreover, the particle size of the PPSH micelles had no significant change after incubation with rat plasma for 72 h, probably resulting in high long circulation in the blood. The PPSH micelles showed significant reduction sensitivity to glutathione. Their sizes increased by 403.2 nm after 24 h post-incubation, and 87.6% drug release was achieved 48 h post-incubation with 40 mM glutathione solutions. The PPSH micelles showed stronger inhibition of HepG2 cells in vitro and growth of H-22 tumor in vivo than the PPCH and HCPT solutions after intravenous injection. The accumulation of PPSH micelles in the tumor tissue contributed to the high anti-tumor effect with little side-effect on the normal tissues. The reduction-sensitive PPSH micelles were a promising carrier of HCPT and other poorly soluble anti-cancer drugs.
Collapse
|
13
|
Niu S, Williams GR, Wu J, Wu J, Zhang X, Chen X, Li S, Jiao J, Zhu LM. A chitosan-based cascade-responsive drug delivery system for triple-negative breast cancer therapy. J Nanobiotechnology 2019; 17:95. [PMID: 31506085 PMCID: PMC6737697 DOI: 10.1186/s12951-019-0529-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/31/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND It is extremely difficult to develop targeted treatments for triple-negative breast (TNB) cancer, because these cells do not express any of the key biomarkers usually exploited for this goal. RESULTS In this work, we develop a solution in the form of a cascade responsive nanoplatform based on thermo-sensitive poly(N-vinylcaprolactam) (PNVCL)-chitosan (CS) nanoparticles (NPs). These are further modified with the cell penetrating peptide (CPP) and loaded with the chemotherapeutic drug doxorubicin (DOX). The base copolymer was optimized to undergo a phase change at the elevated temperatures of the tumor microenvironment. The acid-responsive properties of CS provide a second trigger for drug release, and the inclusion of CPP should ensure the formulations accumulate in cancerous tissue. The resultant CPP-CS-co-PNVCL NPs could self-assemble in aqueous media into spherical NPs of size < 200 nm and with low polydispersity. They are able to accommodate a high DOX loading (14.8% w/w). The NPs are found to be selectively taken up by cancerous cells both in vitro and in vivo, and result in less off-target cytotoxicity than treatment with DOX alone. In vivo experiments employing a TNB xenograft mouse model demonstrated a significant reduction in tumor volume and prolonging of life span, with no obvious systemic toxicity. CONCLUSIONS The system developed in this work has the potential to provide new therapies for hard-to-treat cancers.
Collapse
Affiliation(s)
- Shiwei Niu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jianrong Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Junzi Wu
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Xuejing Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xia Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Jianlin Jiao
- Technology Transfer Center, Kunming Medical University, Kunming, 650031, China.
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
14
|
Ma J, Han J, Sun J, Fan L, Bai S, Jiao Y. pH-sensitive controlled release in vitro and pharmacokinetics of ibuprofen from hybrid nanocomposite using amine-modified bimodal mesopores silica as core and poly(methylacrylic acid) as shell. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1655747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- JiaYu Ma
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Jing Han
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
| | - JiHong Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - ShiYang Bai
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
| | - YuWen Jiao
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
15
|
Abouelmagd SA, Ellah NHA, Hamid BNAE. Temperature and pH dual-stimuli responsive polymeric carriers for drug delivery. STIMULI RESPONSIVE POLYMERIC NANOCARRIERS FOR DRUG DELIVERY APPLICATIONS 2019:87-109. [DOI: 10.1016/b978-0-08-101995-5.00003-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
16
|
Wei X, Liao J, Davoudi Z, Zheng H, Chen J, Li D, Xiong X, Yin Y, Yu X, Xiong J, Wang Q. Folate Receptor-Targeted and GSH-Responsive Carboxymethyl Chitosan Nanoparticles Containing Covalently Entrapped 6-Mercaptopurine for Enhanced Intracellular Drug Delivery in Leukemia. Mar Drugs 2018; 16:E439. [PMID: 30413077 PMCID: PMC6266736 DOI: 10.3390/md16110439] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
For enhanced intracellular accumulation of 6-mercaptopurine (6-MP) in leukemia, a folate receptor-targeted and glutathione (GSH)-responsive polymeric prodrug nanoparticle was made. The nanoparticles were prepared by conjugating 6-MP to carboxymethyl chitosan via a GSH-sensitive carbonyl vinyl sulfide linkage, ultrasonic self-assembly and surface decoration with folate. The TEM graphs shows that the as-synthesized nanoparticles are spherical with a particle size of 170~220 nm. In vitro drug release of nanoparticles demonstrated acceptable stability in PBS containing 20 μM GSH at pH 7.4. However, the cumulative drug release rate of the samples containing 20 mM and 10 mM GSH medium reached 78.9% and 64.8%, respectively, in pH 5.0 at 20 h. This indicated that this nano-sized system is highly sensitive to GSH. The inhibition ratio of folate-modified nanoparticles compared to unmodified nanoparticles was higher in cancer cells (human promyelocytic leukemia cells, HL-60) while their cytotoxicity was lower in normal cells (mouse fibroblast cell lines, L929). Furthermore, in vitro cancer cell incubation studies confirmed that folate-modified nanoparticles therapeutics were significantly more effective than unmodified nanoparticles therapeutics. Our results suggest that folate receptor-targeting and GSH-stimulation can significantly elevate tumour intracellular drug release. Therefore, folate-modified nanoparticles containing chemoradiotherapy is a potential treatment for leukemia therapy.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Jianhong Liao
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Zahra Davoudi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Hua Zheng
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Jingru Chen
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Dan Li
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Xiong Xiong
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Yihua Yin
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Xiuxiang Yu
- Hubei Provincial Key Laboratory of Antiviral Drugs, Wuhan East Lake High-Tech Development Zone, Wuhan 430070, China.
| | - Jinghui Xiong
- Hubei Provincial Key Laboratory of Antiviral Drugs, Wuhan East Lake High-Tech Development Zone, Wuhan 430070, China.
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
17
|
Kalhapure RS, Renukuntla J. Thermo- and pH dual responsive polymeric micelles and nanoparticles. Chem Biol Interact 2018; 295:20-37. [DOI: 10.1016/j.cbi.2018.07.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/28/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022]
|
18
|
Oroojalian F, Babaei M, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. Encapsulation of Thermo-responsive Gel in pH-sensitive Polymersomes as Dual-Responsive Smart carriers for Controlled Release of Doxorubicin. J Control Release 2018; 288:45-61. [PMID: 30171978 DOI: 10.1016/j.jconrel.2018.08.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
|
19
|
Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 2018; 13:2921-2942. [PMID: 29849457 PMCID: PMC5965378 DOI: 10.2147/ijn.s158696] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polymeric micelles (PMs) have been widely investigated as nanocarriers for drug delivery and cancer treatments due to their excellent physicochemical properties, drug loading and release capacities, facile preparation methods, biocompatibility, and tumor targetability. They can be easily engineered with various functional moieties to further improve their performance in terms of bioavailability, circulation time, tumor specificity, and anticancer activity. The stimuli-sensitive PMs capable of responding to various extra- and intracellular biological stimuli (eg, acidic pH, altered redox potential, and upregulated enzyme), as well as external artificial stimuli (eg, magnetic field, light, temperature, and ultrasound), are considered as “smart” nanocarriers for delivery of anticancer drugs and/or imaging agents for various therapeutic and diagnostic applications. In this article, the recent advances in the development of stimuli-responsive PMs for drug delivery, imaging, and cancer therapy are reviewed. The article covers the generalities of stimuli-responsive PMs with a focus on their major delivery strategies and newly emerging technologies/nanomaterials, discusses their drawbacks and limitations, and provides their future perspectives.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Military Medical University, Xi'an, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Military Stomatology, Air Force Military Medical University, Xi'an, People's Republic of China
| | - TieHong Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Military Medical University, Xi'an, People's Republic of China
| | - Hong Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
20
|
Hussein YHA, Youssry M. Polymeric Micelles of Biodegradable Diblock Copolymers: Enhanced Encapsulation of Hydrophobic Drugs. MATERIALS 2018; 11:ma11050688. [PMID: 29702593 PMCID: PMC5978065 DOI: 10.3390/ma11050688] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/26/2022]
Abstract
Polymeric micelles are potentially efficient in encapsulating and performing the controlled release of various hydrophobic drug molecules. Understanding the fundamental physicochemical properties behind drug⁻polymer systems in terms of interaction strength and compatibility, drug partition coefficient (preferential solubilization), micelle size, morphology, etc., encourages the formulation of polymeric nanocarriers with enhanced drug encapsulating capacity, prolonged circulation time, and stability in the human body. In this review, we systematically address some open issues which are considered to be obstacles inhibiting the commercial availability of polymer-based therapeutics, such as the enhancement of encapsulation capacity by finding better drug⁻polymer compatibility, the drug-release kinetics and mechanisms under chemical and mechanical conditions simulating to physiological conditions, and the role of preparation methods and solvents on the overall performance of micelles.
Collapse
Affiliation(s)
- Yasser H A Hussein
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mohamed Youssry
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
21
|
Morey M, Pandit A. Responsive triggering systems for delivery in chronic wound healing. Adv Drug Deliv Rev 2018; 129:169-193. [PMID: 29501700 DOI: 10.1016/j.addr.2018.02.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/27/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Abstract
Non-communicable diseases including cancer, cardiovascular disease, diabetes, and neuropathy are chronic in nature. Treatment of these diseases with traditional delivery systems is limited due to lack of site-specificity, non-spatiotemporal release and insufficient doses. Numerous responsive delivery systems which respond to both physiological and external stimuli have been reported in the literature. However, effective strategies incorporating a multifactorial approach are required to control these complex wounds. This can be achieved by fabricating spatiotemporal release systems, multimodal systems or dual/multi-stimuli responsive delivery systems loaded with one or more bioactive components. Critically, these next generation stimuli responsive delivery systems that are at present not feasible are required to treat chronic wounds. This review provides a critical assessment of recent developments in the field of responsive delivery systems, highlighting their limitations and providing a perspective on how these challenges can be overcome.
Collapse
Affiliation(s)
- Mangesh Morey
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
22
|
Liu Y, Fu S, Lin L, Cao Y, Xie X, Yu H, Chen M, Li H. Redox-sensitive Pluronic F127-tocopherol micelles: synthesis, characterization, and cytotoxicity evaluation. Int J Nanomedicine 2017; 12:2635-2644. [PMID: 28435248 PMCID: PMC5388239 DOI: 10.2147/ijn.s122746] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pluronic F127 (F127), an amphiphilic triblock copolymer, has been shown to have significant potential for drug delivery, as it is able to incorporate hydrophobic drugs and self-assemble into nanosize micelles. However, it suffers from dissociation upon dilution owing to the relatively high critical micelle concentration and lack of stimuli-responsive behavior. Here, we synthesized the α-tocopherol (TOC) modified F127 polymer (F127-SS-TOC) via a redox-sensitive disulfide bond between F127 and TOC, which formed stable micelles at relatively low critical micelle concentration and was sensitive to the intracellular redox environment. The particle size and zeta potential of the F127-SS-TOC micelles were 51.87±6.39 nm and -8.43±2.27 mV, respectively, and little changes in both particle size and zeta potential were observed within 7 days at room temperature. With 10 mM dithiothreitol stimulation, the F127-SS-TOC micelles rapidly dissociated followed by a significant change in size, which demonstrated a high reduction sensitivity of the micelles. In addition, the micelles showed a high hemocompatibility even at a high micelle concentration (1,000 μg/mL). Low cytotoxicity of the F127-SS-TOC micelles at concentrations ranging from 12.5 μg/mL to 200 μg/mL was also found on both Bel 7402 and L02 cells. Overall, our results demonstrated F127-SS-TOC micelles as a stable and safe aqueous formulation with a considerable potential for drug delivery.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Sai Fu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing
| | - Yuhong Cao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Xi Xie
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing
| |
Collapse
|
23
|
Liu X, Appelhans D, Wei Q, Voit B. Photo-Cross-Linked Dual-Responsive Hollow Capsules Mimicking Cell Membrane for Controllable Cargo Post-Encapsulation and Release. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600308. [PMID: 28331784 PMCID: PMC5357983 DOI: 10.1002/advs.201600308] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Multifunctional and responsive hollow capsules are ideal candidates to establish highly sophisticated compartments mimicking cell membranes for controllable bio-inspired functions. For this purpose pH and temperature dual-responsive and photo-cross-linked hollow capsules, based on silica-templated layer-by-layer approach by using poly(N-isopropyl acrylamide)-block-polymethacrylate) and polyallylamine, have been prepared to use them for the subsequent and easily available post-encapsulation process of protein-like macromolecules at room temperature and pH 7.4 and their controllable release triggered by stimuli. The uptake and release properties of the hollow capsules for cargos are highly affected by changes in the external stimuli temperature (25, 37, or 45 °C) and internal stimuli pH of the phosphate-containing buffer solution (5.5 or 7.4), by the degree of photo-cross-linking, and the size of cargo. The photo-cross-linked and dual stimuli-responsive hollow capsules with different membrane permeability can be considered as attractive material for mimicking cell functions triggered by controllable uptake and release of different up to 11 nm sized biomolecules.
Collapse
Affiliation(s)
- Xiaoling Liu
- Leibniz‐Institute für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Organic Chemistry of PolymersTechnische Universität DresdenD‐01062DresdenGermany
| | - Dietmar Appelhans
- Leibniz‐Institute für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Qiang Wei
- Leibniz‐Institute für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Organic Chemistry of PolymersTechnische Universität DresdenD‐01062DresdenGermany
| | - Brigitte Voit
- Leibniz‐Institute für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Organic Chemistry of PolymersTechnische Universität DresdenD‐01062DresdenGermany
| |
Collapse
|
24
|
Shevchenko KG, Cherkasov VR, Tregubov AA, Nikitin PI, Nikitin MP. Surface plasmon resonance as a tool for investigation of non-covalent nanoparticle interactions in heterogeneous self-assembly & disassembly systems. Biosens Bioelectron 2017; 88:3-8. [DOI: 10.1016/j.bios.2016.09.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 10/21/2022]
|
25
|
Evans AC, Thadani NN, Suh J. Biocomputing nanoplatforms as therapeutics and diagnostics. J Control Release 2016; 240:387-393. [PMID: 26826305 PMCID: PMC4965337 DOI: 10.1016/j.jconrel.2016.01.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 11/18/2022]
Abstract
Biocomputing nanoplatforms are designed to detect and integrate single or multiple inputs under defined algorithms, such as Boolean logic gates, and generate functionally useful outputs, such as delivery of therapeutics or release of optically detectable signals. Using sensing modules composed of small molecules, polymers, nucleic acids, or proteins/peptides, nanoplatforms have been programmed to detect and process extrinsic stimuli, such as magnetic fields or light, or intrinsic stimuli, such as nucleic acids, enzymes, or pH. Stimulus detection can be transduced by the nanomaterial via three different mechanisms: system assembly, system disassembly, or system transformation. The increasingly sophisticated suite of biocomputing nanoplatforms may be invaluable for a multitude of applications, including medical diagnostics, biomedical imaging, environmental monitoring, and delivery of therapeutics to target cell populations.
Collapse
Affiliation(s)
- A C Evans
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - N N Thadani
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - J Suh
- Department of Bioengineering, Rice University, Houston, TX, United States; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, United States.
| |
Collapse
|
26
|
Han X, Wei W, Zhong L, Luo C, Wu C, Jiang Q, Sun J. Determination of Doxorubicin in Stealth Hyalurionic Acid-Based Nanoparticles in Rat Plasma by the Liquid-Liquid Nanoparticles-Breaking Extraction Method: Application to a Pharmacokinetic Study. J Chromatogr Sci 2016; 54:1460-5. [PMID: 27240566 DOI: 10.1093/chromsci/bmw074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 01/28/2023]
Abstract
An efficient extraction of doxorubicin (Dox) from homemade stealth hyalurionic acid (HA)-based nanoparticles (NPs) in rat plasma could not be performed by previously published methods. Therefore, we attempted to establish the novel NPs-breaking and UPLC-MS-MS method for evaluating the pharmacokinetic profiles of the homemade stealth HA NPs in rats. The pretreatment method of plasma samples used the liquid-liquid extraction method with isopropyl alcohol as NPs-breaking and protein-precipitating solvents, and the NPs-breaking efficiency of isopropyl alcohol was as high as 97.2%. The analyte and gliclazide (internal standard) were extracted from plasma samples with isopropyl alcohol and were separated on UPLC BEH C18 with a mobile phase consisting of methanol and water (containing 0.1% formic acid). The method demonstrated good linearity at the concentrations ranging from 5 to 5,000 ng/mL. The intra- and interday relative standard deviations were >10%. Finally, the method was successfully applied to a pharmacokinetic study of homemade stealth HA-based NPs in rats following intravenous administration.
Collapse
Affiliation(s)
- Xiaopeng Han
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Wei Wei
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Lu Zhong
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Chunnuan Wu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qikun Jiang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
27
|
Huang M, Zhao K, Wang L, Lin S, Li J, Chen J, Zhao C, Ge Z. Dual Stimuli-Responsive Polymer Prodrugs Quantitatively Loaded by Nanoparticles for Enhanced Cellular Internalization and Triggered Drug Release. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11226-11236. [PMID: 27100328 DOI: 10.1021/acsami.5b12227] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Direct encapsulation of hydrophobic drugs into amphiphilic block copolymer micelles is frequently subjected to low drug loading efficiency (DLE) and loading content (DLC), as well as lower micellar stability and uncontrollable drug release. In this report, we prepare the copolymer prodrugs (PPEMA-co-PCPTM) via reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(piperidin-1-yl)ethyl methacrylate (PEMA) and reduction-responsive CPT monomer (CPTM), which were quantitatively encapsulated into poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) micelles. The polymer prodrug-loaded nanoparticles showed high stability for a long time in aqueous solution or blood serum and even maintain similar size after a lyophilization-dissolution cycle. The tumoral pH (∼6.8)-responsive properties of PPEMA segments endow the micellar cores with triggered transition from neutral to positively charged and swellable properties. The PEG-b-PCL nanoparticles loading polymer prodrugs (PPEMA-b-PCPTM) eliminated burst drug release. Simultaneously, CPT drug release can be triggered by reductive agents and solution pH. At pH 6.8, efficient cellular internalization was achieved due to positively charged cores of the nanoparticles. As compared with nanoparticles loading PCPTM, higher cytotoxicity was observed by the nanoparticles loading PPEMA-b-PCPTM at pH 6.8. Further multicellular tumor spheroid (MCTs) penetration and growth suppression studies demonstrated that high-efficiency penetration capability and significant size shrinkage of MCTs were achieved after treatment by PPEMA-b-PCPTM-loaded nanoparticles at pH 6.8. Therefore, the responsive polymer prodrug encapsulation strategy represents an effective method to overcome the disadvantages of common hydrophobic drug encapsulation approaches by amphiphilic block copolymer micelles and simultaneously endows the nanoparticles with responsive drug release behaviors as well as enhanced cellular internalization and tumor penetration capability.
Collapse
Affiliation(s)
- Mingming Huang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, China
- College of Resources and Environment, Jilin Agricultural University , Changchun 130118, China
| | - Kaijie Zhao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, China
| | - Lei Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, China
| | - Shanqing Lin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, China
- School of Materials Science and Engineering, Zhengzhou University , Zhengzhou 450002, China
| | - Junjie Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, China
| | - Jingbo Chen
- School of Materials Science and Engineering, Zhengzhou University , Zhengzhou 450002, China
| | - Chengai Zhao
- College of Resources and Environment, Jilin Agricultural University , Changchun 130118, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, China
| |
Collapse
|
28
|
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45:1457-501. [PMID: 26776487 PMCID: PMC4775468 DOI: 10.1039/c5cs00798d] [Citation(s) in RCA: 953] [Impact Index Per Article: 105.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Reza Rahighi
- Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran, Iran and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran
| | - S Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - H Mirshekari
- Department of Biotechnology, University of Kerala, Trivandrum, India
| | - M Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Z Shafaei Pishabad
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - A Aslani
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - M Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - D Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - A Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - A R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - L Haghani
- School of Medicine, International Campus of Tehran University of Medical Science, Tehran, Iran
| | - S Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Qi X, Wei W, Li J, Zuo G, Hu X, Zhang J, Dong W. Development of novel hydrogels based on Salecan and poly(N-isopropylacrylamide-co-methacrylic acid) for controlled doxorubicin release. RSC Adv 2016; 6:69869-69881. [DOI: 10.1039/c6ra10716h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
We designed a novel semi-interpenetrating polymer network hydrogel for the controlled delivery of doxorubicin.
Collapse
Affiliation(s)
- Xiaoliang Qi
- Center For Molecular Metabolism
- Nanjing University of Science & Technology
- Nanjing
- China
| | - Wei Wei
- Center For Molecular Metabolism
- Nanjing University of Science & Technology
- Nanjing
- China
| | - Junjian Li
- Center For Molecular Metabolism
- Nanjing University of Science & Technology
- Nanjing
- China
| | - Gancheng Zuo
- Center For Molecular Metabolism
- Nanjing University of Science & Technology
- Nanjing
- China
| | - Xinyu Hu
- Center For Molecular Metabolism
- Nanjing University of Science & Technology
- Nanjing
- China
| | - Jianfa Zhang
- Center For Molecular Metabolism
- Nanjing University of Science & Technology
- Nanjing
- China
| | - Wei Dong
- Center For Molecular Metabolism
- Nanjing University of Science & Technology
- Nanjing
- China
| |
Collapse
|
30
|
Lee KY, Chiang YT, Hsu NY, Yang CY, Lo CL, Ku CA. Vitamin E containing polymer micelles for reducing normal cell cytotoxicity and enhancing chemotherapy efficacy. Acta Biomater 2015; 24:286-96. [PMID: 26087112 DOI: 10.1016/j.actbio.2015.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/13/2015] [Accepted: 06/10/2015] [Indexed: 02/03/2023]
Abstract
An α-tocopheryl succinate (α-TOS) containing diblock copolymer micellar system was used to deliver doxorubicin (Dox), an anticancer drug, for HCT116 colon cancer therapy. The α-TOS containing diblock copolymers were synthesized by conjugation of α-TOS molecules and a mPEG-b-PHEMA hydrophilic diblock copolymer by ester bonds. The Dox-loaded polymeric micelles were then obtained by solvent exchange process. In acidic surroundings such as endosomes or secondary lysosomes, the structures of the Dox-loaded polymeric micelles deformed and released the drug loads. Additionally, Dox-loaded polymeric micelles enhanced the cytotoxicity of Dox and α-TOS to cancer cells in vitro. Dox-loaded polymeric micelles also showed an exceptional tumor inhibiting effect in vivo. This study indicates that the α-TOS containing polymeric micelle system can be used as a drug carrier for cancer therapy.
Collapse
Affiliation(s)
- Kuan-Yi Lee
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan
| | - Yi-Ting Chiang
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan
| | - Ning-Yu Hsu
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan
| | - Chieh-Yu Yang
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan; Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang Ming University, Taipei 112, Taiwan; Biomedical Engineering Research Center, National Yang Ming University, Taipei 112, Taiwan.
| | - Chen-An Ku
- Taiwan Textile Research Institute, New Taipei City 23674, Taiwan
| |
Collapse
|
31
|
González-Ayón MA, Sañudo-Barajas JA, Picos-Corrales LA, Licea-Claverie A. PNVCL-PEGMA nanohydrogels with tailored transition temperature for controlled delivery of 5-fluorouracil. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27766] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mirian A. González-Ayón
- Centro de Investigación en Alimentación y Desarrollo A. C; Unidad Culiacán, A.P. 32-A 80110 Culiacán Sinaloa México
| | - J. Adriana Sañudo-Barajas
- Centro de Investigación en Alimentación y Desarrollo A. C; Unidad Culiacán, A.P. 32-A 80110 Culiacán Sinaloa México
| | - Lorenzo A. Picos-Corrales
- Universidad Autónoma de Sinaloa, Facultad de Ciencias Químico Biológicas, Ciudad Universitaria; 80013 Culiacán Sinaloa México
| | - Angel Licea-Claverie
- Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química; A.P. 1166 22000 Tijuana B.C. México
| |
Collapse
|
32
|
Schmidt C, Storsberg J. Nanomaterials-Tools, Technology and Methodology of Nanotechnology Based Biomedical Systems for Diagnostics and Therapy. Biomedicines 2015; 3:203-223. [PMID: 28536408 PMCID: PMC5344240 DOI: 10.3390/biomedicines3030203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/03/2015] [Accepted: 07/09/2015] [Indexed: 12/27/2022] Open
Abstract
Nanomedicine helps to fight diseases at the cellular and molecular level by utilizing unique properties of quasi-atomic particles at a size scale ranging from 1 to 100 nm. Nanoparticles are used in therapeutic and diagnostic approaches, referred to as theranostics. The aim of this review is to illustrate the application of general principles of nanotechnology to select examples of life sciences, molecular medicine and bio-assays. Critical aspects relating to those examples are discussed.
Collapse
Affiliation(s)
- Christian Schmidt
- Fraunhofer-Institute Applied Polymer Research (IAP), Geiselbergstrasse 69, Potsdam D-14476, Germany.
| | - Joachim Storsberg
- Fraunhofer-Institute Applied Polymer Research (IAP), Geiselbergstrasse 69, Potsdam D-14476, Germany.
| |
Collapse
|
33
|
Wu W, Wu Z, Yu T, Jiang C, Kim WS. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:023501. [PMID: 27877761 PMCID: PMC5036481 DOI: 10.1088/1468-6996/16/2/023501] [Citation(s) in RCA: 667] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 05/17/2023]
Abstract
This review focuses on the recent development and various strategies in the preparation, microstructure, and magnetic properties of bare and surface functionalized iron oxide nanoparticles (IONPs); their corresponding biological application was also discussed. In order to implement the practical in vivo or in vitro applications, the IONPs must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of IONPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The new functionalized strategies, problems and major challenges, along with the current directions for the synthesis, surface functionalization and bioapplication of IONPs, are considered. Finally, some future trends and the prospects in these research areas are also discussed.
Collapse
Affiliation(s)
| | - Zhaohui Wu
- Department of Chemical Engineering, Kyung Hee University, Korea
| | - Taekyung Yu
- Department of Chemical Engineering, Kyung Hee University, Korea
| | - Changzhong Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Woo-Sik Kim
- Department of Chemical Engineering, Kyung Hee University, Korea
| |
Collapse
|
34
|
Zhao Y, Zhou Y, Wang D, Gao Y, Li J, Ma S, Zhao L, Zhang C, Liu Y, Li X. pH-responsive polymeric micelles based on poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) for tumor-targeting and controlled delivery of doxorubicin and P-glycoprotein inhibitor. Acta Biomater 2015; 17:182-92. [PMID: 25612838 DOI: 10.1016/j.actbio.2015.01.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/21/2014] [Accepted: 01/08/2015] [Indexed: 11/30/2022]
Abstract
The combination of a chemotherapeutic drug with a P-glycoprotein (P-gp) inhibitor has emerged as a promising strategy for treating multidrug resistance (MDR) cancer. To ensure that two drugs can be co-delivered to the tumor region and quickly released in tumor cells, tumor-targeted and pH-sensitive polymeric micelles were designed and prepared by combining cationic ring-opening polymerization of 2-ethyl-2-oxazoline (EOz) with anionic ring-opening polymerization of D,L-lactide (LA), and then encapsulating doxorubicin (DOX) and D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS1000) into the micelles self-assembled by poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) (PEOz-PLA) and DSPE-PEG-folate. PEOz-PLA exhibited a low critical micelle concentration and negligible cytotoxicity. The micelles enabled the rapid release of DOX when pH decreased from 7.4 to 5.0. The targeting ability of the micelles was demonstrated by in vitro flow cytometry in KBv cells and in vivo real time near-infrared fluorescence imaging in KBv tumor-bearing nude mice. The efficiency of MDR reversion for the micelles was testified by enhancement of intracellular DOX accumulation and cytotoxicity. The efficient drug delivery by the micelles was attributed to synergistic effects of folate-mediated targeting, pH-triggered drug release and TPGS1000-aroused P-gp inhibition. Therefore, the designed multifunctional polymeric micelles may have significant promise for therapeutic application of MDR cancer.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanxia Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dishi Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yajie Gao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jinwen Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shujin Ma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lei Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chao Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xinru Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
35
|
Li H, Sun Y, Liang J, Fan Y, Zhang X. pH-Sensitive pullulan–DOX conjugate nanoparticles for co-loading PDTC to suppress growth and chemoresistance of hepatocellular carcinoma. J Mater Chem B 2015; 3:8070-8078. [DOI: 10.1039/c5tb01210d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Co-delivery of DOX and PDTC using pH-sensitive pullulan–DOX conjugate nanoparticles helped to suppress growth and chemoresistance of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Huanan Li
- College of Biomedical Engineering
- Chongqing Medical University
- Chongqing
- China
| | - Yong Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Jie Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| |
Collapse
|
36
|
Bai L, Song F, Wang XH, Cao JYQ, Han X, Wang XL, Wang YZ. Ligand–metal-drug coordination based micelles for efficient intracellular doxorubicin delivery. RSC Adv 2015. [DOI: 10.1039/c5ra05747g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A ligand–metal-drug coordination architecture is exploited to construct polymeric micelles with the high efficient loading and pH-triggered release of anticancer drug.
Collapse
Affiliation(s)
- Lan Bai
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE)
- College of Chemistry
- State Key Laboratory of Polymer Materials Engineering
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan)
- Sichuan University
| | - Fei Song
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE)
- College of Chemistry
- State Key Laboratory of Polymer Materials Engineering
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan)
- Sichuan University
| | - Xiao-hui Wang
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE)
- College of Chemistry
- State Key Laboratory of Polymer Materials Engineering
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan)
- Sichuan University
| | - Jiang-yong-quan Cao
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE)
- College of Chemistry
- State Key Laboratory of Polymer Materials Engineering
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan)
- Sichuan University
| | - Xue Han
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE)
- College of Chemistry
- State Key Laboratory of Polymer Materials Engineering
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan)
- Sichuan University
| | - Xiu-li Wang
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE)
- College of Chemistry
- State Key Laboratory of Polymer Materials Engineering
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan)
- Sichuan University
| | - Yu-zhong Wang
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE)
- College of Chemistry
- State Key Laboratory of Polymer Materials Engineering
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan)
- Sichuan University
| |
Collapse
|
37
|
Guo X, Xue L, Lv W, Liu Q, Li R, Li Z, Wang J. Facile synthesis of magnetic carboxymethylcellulose nanocarriers for pH-responsive delivery of doxorubicin. NEW J CHEM 2015. [DOI: 10.1039/c5nj01190f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-functional magnetic carboxymethylcellulose nanocarriers were successfully synthesized via a facile solvothermal method.
Collapse
Affiliation(s)
- Xuejie Guo
- Center for Biomedical Materials and Engineering
- Harbin Engineering University
- Harbin 150001
- China
- Key Laboratory of Superlight Material and Surface Technology
| | - Li Xue
- Department of Cardiology
- Center of Vascular Diseases
- Fourth Affiliated Hospital of Harbin Medical University
- Harbin 150001
- China
| | - Weizhong Lv
- Center for Biomedical Materials and Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Qi Liu
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- Harbin 150001
- China
| | - Rumin Li
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- Harbin 150001
- China
| | - Zhanshuang Li
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- Harbin 150001
- China
| | - Jun Wang
- Center for Biomedical Materials and Engineering
- Harbin Engineering University
- Harbin 150001
- China
- Key Laboratory of Superlight Material and Surface Technology
| |
Collapse
|
38
|
|
39
|
Abouelmagd SA, Hyun H, Yeo Y. Extracellularly activatable nanocarriers for drug delivery to tumors. Expert Opin Drug Deliv 2014; 11:1601-1618. [PMID: 24950343 DOI: 10.1517/17425247.2014.930434] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Nanoparticles (NPs) for drug delivery to tumors need to satisfy two seemingly conflicting requirements: they should maintain physical and chemical stability during circulation and be able to interact with target cells and release the drug at desired locations with no substantial delay. The unique microenvironment of tumors and externally applied stimuli provide a useful means to maintain a balance between the two requirements. AREAS COVERED We discuss nanoparticulate drug carriers that maintain stable structures in normal conditions but respond to stimuli for the spatiotemporal control of drug delivery. We first define the desired effects of extracellular activation of NPs and frequently used stimuli and then review the examples of extracellularly activated NPs. EXPERT OPINION Several challenges remain in developing extracellularly activatable NPs. First, some of the stimuli-responsive NPs undergo incremental changes in response to stimuli, losing circulation stability. Second, the applicability of stimuli in clinical settings is limited due to the occasional occurrence of the activating conditions in normal tissues. Third, the construction of stimuli-responsive NPs involves increasing complexity in NP structure and production methods. Future efforts are needed to identify new targeting conditions and increase the contrast between activated and nonactivated NPs while keeping the production methods simple and scalable.
Collapse
Affiliation(s)
- Sara A Abouelmagd
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Hyesun Hyun
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.,Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
40
|
Ai X, Sun J, Zhong L, Wu C, Niu H, Xu T, Lian H, Han X, Ren G, Ding W, Wang J, Pu X, He Z. Star-Shape Redox-Responsive PEG-Sheddable Copolymer of Disulfide-Linked Polyethylene Glycol-Lysine-di-Tocopherol Succinate for Tumor-Triggering Intracellular Doxorubicin Rapid Release: Head-to-Head Comparison. Macromol Biosci 2014; 14:1415-28. [DOI: 10.1002/mabi.201400149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/02/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyu Ai
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Jin Sun
- Department of Biopharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
- Key Laboratory of Drug Delivery Technology and Pharmacokinetics; Tianjin Institute of Pharmaceutical Research; Tianjin P. R. China
| | - Lu Zhong
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Chunnuan Wu
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Handong Niu
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Tao Xu
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - He Lian
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Xiaopeng Han
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Guolian Ren
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Wenya Ding
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Jia Wang
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Xiaohui Pu
- Pharmaceutical College of Henan University; Kaifeng 475004 P. R. China
| | - Zhonggui He
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| |
Collapse
|
41
|
Folding graft copolymer with pendant drug segments for co-delivery of anticancer drugs. Biomaterials 2014; 35:7194-203. [PMID: 24875756 DOI: 10.1016/j.biomaterials.2014.05.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/01/2014] [Indexed: 12/21/2022]
Abstract
A graft copolymer with pendant drug segments can fold into nanostructures in a protein folding-like manner. The graft copolymer is constructed by directly polymerizing γ-camptothecin-glutamate N-carboxyanhydride (Glu(CPT)-NCA) on multiple sites of poly(ethylene glycol) (PEG)-based main chain via the ring open polymerization (ROP). The "purely" conjugated anticancer agent camptothecin (CPT) is hydrophobic and serves as the principal driving force during the folding process. When exposed to water, the obtained copolymer, together with doxorubicin (Dox), another anticancer agent, can fold into monodispersed nanocarriers (with a diameter of around 50 nm) for dual-drug delivery. Equipped with a PEG shell, the nanocarriers displayed good stability and can be internalized by a variety of cancer cell lines via the lipid raft and clathrin-mediated endocytotic pathway without premature leakage, which showed a high synergetic activity of CPT and Dox toward various cancer cells. In vivo study validated that the nanocarriers exhibited strong accumulation in tumor sites and showed a prominent anticancer activity against the lung cancer xenograft mice model compared with free drugs.
Collapse
|
42
|
Taghizadeh B, Taranejoo S, Monemian SA, Salehi Moghaddam Z, Daliri K, Derakhshankhah H, Derakhshani Z. Classification of stimuli-responsive polymers as anticancer drug delivery systems. Drug Deliv 2014; 22:145-55. [PMID: 24547737 DOI: 10.3109/10717544.2014.887157] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although several anticancer drugs have been introduced as chemotherapeutic agents, the effective treatment of cancer remains a challenge. Major limitations in the application of anticancer drugs include their nonspecificity, wide biodistribution, short half-life, low concentration in tumor tissue and systemic toxicity. Drug delivery to the tumor site has become feasible in recent years, and recent advances in the development of new drug delivery systems for controlled drug release in tumor tissues with reduced side effects show great promise. In this field, the use of biodegradable polymers as drug carriers has attracted the most attention. However, drug release is still difficult to control even when a polymeric drug carrier is used. The design of pharmaceutical polymers that respond to external stimuli (known as stimuli-responsive polymers) such as temperature, pH, electric or magnetic field, enzymes, ultrasound waves, etc. appears to be a successful approach. In these systems, drug release is triggered by different stimuli. The purpose of this review is to summarize different types of polymeric drug carriers and stimuli, in addition to the combination use of stimuli in order to achieve a better controlled drug release, and it discusses their potential strengths and applications. A survey of the recent literature on various stimuli-responsive drug delivery systems is also provided and perspectives on possible future developments in controlled drug release at tumor site have been discussed.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | | | | | | | | | | | | |
Collapse
|
43
|
Radhakrishnan K, Tripathy J, Gnanadhas DP, Chakravortty D, Raichur AM. Dual enzyme responsive and targeted nanocapsules for intracellular delivery of anticancer agents. RSC Adv 2014; 4:45961-45968. [DOI: 10.1039/c4ra07815b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Fabrication of dual enzyme responsive and ligand functionalised nanocapsules are reported that can accumulate and disintegrate inside cancer cells.
Collapse
Affiliation(s)
| | - Jasaswini Tripathy
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore, India
- School of Applied Sciences (Chemistry)
- KIIT University
| | - Divya P. Gnanadhas
- Department of Microbiology and Cell Biology
- Indian Institute of Science
- Bangalore, India
| | | | - Ashok M. Raichur
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore, India
| |
Collapse
|
44
|
Li H, Cui Y, Liu J, Bian S, Liang J, Fan Y, Zhang X. Reduction breakable cholesteryl pullulan nanoparticles for targeted hepatocellular carcinoma chemotherapy. J Mater Chem B 2014; 2:3500-3510. [DOI: 10.1039/c4tb00321g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction breakable nanoparticles derived from pullulan enhanced the tumor accumulation and intracellular release of DOX in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Huanan Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064, China
| | - Yani Cui
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064, China
| | - Jun Liu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064, China
| | - Shaoquan Bian
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064, China
| |
Collapse
|
45
|
Chen H, Li B, Qiu J, Li J, Jin J, Dai S, Ma Y, Gu Y. Thermal responsive micelles for dual tumor-targeting imaging and therapy. NANOSCALE 2013; 5:12409-12424. [PMID: 24165905 DOI: 10.1039/c3nr04529c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Two kinds of thermally responsive polymers P(FAA-NIPA-co-AAm-co-ODA) and P(FPA-NIPA-co-AAm-co-ODA) containing folate, isopropyl acrylamide and octadecyl acrylate were fabricated through free radical random copolymerization for targeted drug delivery. Then the micelles formed in aqueous solution by self-assembly and were characterized in terms of particle size, lower critical solution temperature (LCST) and a variety of optical spectra. MTT assays demonstrated the low cytotoxicity of the control micelle and drug-loaded micelle on A549 cells and Bel 7402 cells. Then fluorescein and cypate were used as model drugs to optimize the constituents of micelles for drug entrapment efficiency and investigate the release kinetics of micelles in vitro. The FA and thermal co-mediated tumor-targeting efficiency of the two kinds of micelles were verified and compared in detail at cell level and animal level, respectively. These results indicated that the dual-targeting micelles are promising drug delivery systems for tumor-targeting therapy.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Biomedical Engineering, State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Deposition of doxorubicin in rats following administration of three newly synthesized doxorubicin conjugates. BIOMED RESEARCH INTERNATIONAL 2013; 2013:926584. [PMID: 24381947 PMCID: PMC3870082 DOI: 10.1155/2013/926584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/03/2013] [Indexed: 11/18/2022]
Abstract
We previously reported the synthesis of three DOX conjugates that represented different targeting vehicles and showed them to have antitumor activity both in vitro and in vivo. However, the relationships between the pharmacokinetics of these DOX conjugates and their chemical structures were not characterized. In the current study, free DOX derived from each of the conjugates was found at low levels in the rat circulatory system, with conjugated DOX being the major form. The two polyethylene glycol (PEG) conjugates slowly released DOX, and t₁/₂β for total DOX from DOX-LNA, PEG-ami-DOX, and PEG-hyd-DOX was 5.79, 10.22, and 15.18 h, respectively. All three conjugates also deposited less DOX into normal organs than did an equivalent dose of free DOX, and the C(max) value of free DOX released by DOX-LNA, PEG-ami-DOX, and PEG-hyd-DOX was 32.5, 9.5, and 4.7 μg/g, respectively. Among the conjugates, the compound with an acid-labile bond between PEG and DOX exhibited the lowest free DOX deposition in healthy tissues, which should decrease the systemic toxicity of free DOX while allowing for tumor targeting by PEG.
Collapse
|
47
|
Abstract
Cancer is one of the major causes of mortality worldwide and advanced techniques for therapy are urgently needed. The development of novel nanomaterials and nanocarriers has allowed a major drive to improve drug delivery in cancer. The major aim of most nanocarrier applications has been to protect the drug from rapid degradation after systemic delivery and allowing it to reach tumor site at therapeutic concentrations, meanwhile avoiding drug delivery to normal sites as much as possible to reduce adverse effects. These nanocarriers are formulated to deliver drugs either by passive targeting, taking advantage of leaky tumor vasculature or by active targeting using ligands that increase tumoral uptake potentially resulting in enhanced antitumor efficacy, thus achieving a net improvement in therapeutic index. The rational design of nanoparticles plays a critical role since structural and physical characteristics, such as size, charge, shape, and surface characteristics determine the biodistribution, pharmacokinetics, internalization and safety of the drugs. In this review, we focus on several novel and improved strategies in nanocarrier design for cancer therapy.
Collapse
|
48
|
Shen JM, Yin T, Tian XZ, Gao FY, Xu S. Surface charge-switchable polymeric magnetic nanoparticles for the controlled release of anticancer drug. ACS APPLIED MATERIALS & INTERFACES 2013; 5:7014-24. [PMID: 23815399 DOI: 10.1021/am401277s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We develop paclitaxel (PTX) and magnetic nanoparticles (MNPs) coencapsulated, surface charge-switchable, thermosensitive poly(d,l-lactic-co-glycolic acid)-l-lysine-d-galactose (PTX-MNP-PLGA-Lys-Gal) NPs for the controlled release of the anticancer drug. The novel dual signal-responsive nanovehicle is formulated to shield off target at pH 7.4 but bind avidly to tumor cells in acidity, alleviating toxicity and side effects of the drug to normal tissues. The mechanism involves pH-sensitive NPs surface charge switching by the deblocking process of galactose molecules followed by protonation of ε-NH2 in lysine residue at acidic pH. Magnetic hyperthermia under near infrared (NIR) irradiation induced the contraction of PTX-MNP-PLGA-Lys-Gal NPs and, in turn, triggered burst release of PTX. Transmission electron microscopy (TEM), fluorescence microscope analyses, Fourier transform infrared (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), dynamic light scattering (DLS), and ξ-potential analyses were performed to characterize physicochemical properties of the as-prepared NPs. The size range of the globule PTX-MNP-PLGA-Lys-Gal NPs after being prescreened was from 130 to 150 nm under simulated physiological medium. The high encapsulation efficiencies of MNPs and PTX were obtained, reaching 85 and 78 wt % for PTX-MNP-PLGA-Lys-Gal NPs, respectively. The tumor inhibitory rate of 78.8% reflected that the resulting NPs could be promising to treat cancer by specific binding and targeting release drug to tumor.
Collapse
Affiliation(s)
- Jian-Min Shen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | | | | | | | | |
Collapse
|
49
|
Chen YC, Lo CL, Hsiue GH. Multifunctional nanomicellar systems for delivering anticancer drugs. J Biomed Mater Res A 2013; 102:2024-38. [PMID: 23828850 DOI: 10.1002/jbm.a.34850] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/10/2013] [Indexed: 12/26/2022]
Abstract
Most anticancer drugs cause severe side effect due to the lack of selectivity for cancer cells. In recent years, new strategies of micellar systems, which design for specifically target anticancer drugs to tumors, are developed at the forefront of polymeric science. To improve efficiency of delivery and cancer specificity, considerable emphasis has been placed on the development of micellar systems with passive and active targeting. In this review article, we summarized various strategies of designing multifunctional micellar systems in the purpose of improving delivery efficiency. Micellar systems compose of a multifunctional copolymer or a mixture of two or more copolymers with different properties is a plausible approach to tuning the resulting properties and satisfied various requirements for anticancer drug delivery. It appears that multifunctional micellar systems hold great potential in cancer therapy.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC; Department of Chemical Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, 320, Taiwan, ROC
| | | | | |
Collapse
|
50
|
Cyclodextrin-derived pH-responsive nanoparticles for delivery of paclitaxel. Biomaterials 2013; 34:5344-58. [DOI: 10.1016/j.biomaterials.2013.03.068] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 03/23/2013] [Indexed: 12/21/2022]
|