1
|
Carlin M, Morant-Giner M, Garrido M, Sosa S, Bianco A, Tubaro A, Prato M, Pelin M. Graphene-based materials are not skin sensitizers: adoption of the in chemico/ in vitro OECD test guidelines. NANOSCALE 2025; 17:10932-10945. [PMID: 40202078 DOI: 10.1039/d5nr00307e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The boost in the market size of graphene-based materials (GBMs) requires a careful evaluation of their impact on human health, acquiring robust and reliable data, also suitable for regulatory purposes. Considering cutaneous contact as one of the most relevant GBM exposure routes, this study is focused on skin sensitization, aimed at assessing the possibility to adopt the three in chemico/in vitro test guidelines (TGs) defined by the Organization for Economic Cooperation and Development (442C, D and E) to predict the first three phases of the skin sensitization adverse outcome pathway. Being originally validated for chemicals, modifications allowing their adoption for GBMs were evaluated. TG 442C was found to be not suitable for testing GBMs due to their reactivity, leading to possible misclassifications. In contrast, TG 442D and E can generally be applied for GBMs. However, protocol adjustments were required to assess cell viability reducing interferences for TG 442D, whereas caution should be exercised regarding dose-finding selection and GBM dispersion stability for TG 442E. When applying these modifications, GBMs were found to be unable to activate keratinocytes and promote dendritic cell differentiation, so they can be considered non-sensitizers. Overall, these results significantly contribute to understanding the safety profiles of GBMs and to improve testing methodologies to obtain reliable toxicological data.
Collapse
Affiliation(s)
- Michela Carlin
- Department of Life Sciences, University of Trieste, Via Fleming 22, 34127, Trieste, Italy.
| | - Marc Morant-Giner
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Marina Garrido
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
- IMDEA Nanociencia, C/Faraday, 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Silvio Sosa
- Department of Life Sciences, University of Trieste, Via Fleming 22, 34127, Trieste, Italy.
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, Via Fleming 22, 34127, Trieste, Italy.
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Paseo Miramón 194, 20014, Donostia/San Sebastián, Spain
- Basque Foundation for Science (IKERBASQUE), Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, Via Fleming 22, 34127, Trieste, Italy.
| |
Collapse
|
2
|
Sharma A, Bhatia D. Programmable bionanomaterials for revolutionizing cancer immunotherapy. Biomater Sci 2024; 12:5415-5432. [PMID: 39291418 DOI: 10.1039/d4bm00815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Cancer immunotherapy involves a cutting-edge method that utilizes the immune system to detect and eliminate cancer cells. It has shown substantial effectiveness in treating different types of cancer. As a result, its growing importance is due to its distinct benefits and potential for sustained recovery. However, the general deployment of this treatment is hindered by ongoing issues in maintaining minimal toxicity, high specificity, and prolonged effectiveness. Nanotechnology offers promising solutions to these challenges due to its notable attributes, including expansive precise surface areas, accurate ability to deliver drugs and controlled surface chemistry. This review explores the current advancements in the application of nanomaterials in cancer immunotherapy, focusing on three primary areas: monoclonal antibodies, therapeutic cancer vaccines, and adoptive cell treatment. In adoptive cell therapy, nanomaterials enhance the expansion and targeting capabilities of immune cells, such as T cells, thereby improving their ability to locate and destroy cancer cells. For therapeutic cancer vaccines, nanoparticles serve as delivery vehicles that protect antigens from degradation and enhance their uptake by antigen-presenting cells, boosting the immune response against cancer. Monoclonal antibodies benefit from nanotechnology through improved delivery mechanisms and reduced off-target effects, which increase their specificity and effectiveness. By highlighting the intersection of nanotechnology and immunotherapy, we aim to underscore the transformative potential of nanomaterials in enhancing the effectiveness and safety of cancer immunotherapies. Nanoparticles' ability to deliver drugs and biomolecules precisely to tumor sites reduces systemic toxicity and enhances therapeutic outcomes.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh-281406, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| |
Collapse
|
3
|
Rahman A, Roy KJ, Deb GK, Ha T, Rahman S, Aktar MK, Ali MI, Kafi MA, Choi JW. Nano-Enabled Antivirals for Overcoming Antibody Escaped Mutations Based SARS-CoV-2 Waves. Int J Mol Sci 2023; 24:13130. [PMID: 37685938 PMCID: PMC10488153 DOI: 10.3390/ijms241713130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
This review discusses receptor-binding domain (RBD) mutations related to the emergence of various SARS-CoV-2 variants, which have been highlighted as a major cause of repetitive clinical waves of COVID-19. Our perusal of the literature reveals that most variants were able to escape neutralizing antibodies developed after immunization or natural exposure, pointing to the need for a sustainable technological solution to overcome this crisis. This review, therefore, focuses on nanotechnology and the development of antiviral nanomaterials with physical antagonistic features of viral replication checkpoints as such a solution. Our detailed discussion of SARS-CoV-2 replication and pathogenesis highlights four distinct checkpoints, the S protein (ACE2 receptor coupling), the RBD motif (ACE2 receptor coupling), ACE2 coupling, and the S protein cleavage site, as targets for the development of nano-enabled solutions that, for example, prevent viral attachment and fusion with the host cell by either blocking viral RBD/spike proteins or cellular ACE2 receptors. As proof of this concept, we highlight applications of several nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanoparticles, carbon nanotubes, fullerene, carbon dots, quantum dots, polymeric nanoparticles, lipid-based, polymer-based, lipid-polymer hybrid-based, surface-modified nanoparticles that have already been employed to control viral infections. These nanoparticles were developed to inhibit receptor-mediated host-virus attachments and cell fusion, the uncoating of the virus, viral gene expression, protein synthesis, the assembly of progeny viral particles, and the release of the virion. Moreover, nanomaterials have been used as antiviral drug carriers and vaccines, and nano-enabled sensors have already been shown to enable fast, sensitive, and label-free real-time diagnosis of viral infections. Nano-biosensors could, therefore, also be useful in the remote testing and tracking of patients, while nanocarriers probed with target tissue could facilitate the targeted delivery of antiviral drugs to infected cells, tissues, organs, or systems while avoiding unwanted exposure of non-target tissues. Antiviral nanoparticles can also be applied to sanitizers, clothing, facemasks, and other personal protective equipment to minimize horizontal spread. We believe that the nanotechnology-enabled solutions described in this review will enable us to control repeated SAR-CoV-2 waves caused by antibody escape mutations.
Collapse
Affiliation(s)
- Aminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Kumar Jyotirmoy Roy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Gautam Kumar Deb
- Department of Biotechnology, Bangladesh Livestock Research Institute, Dhaka 1341, Bangladesh;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| | - Saifur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Mst. Khudishta Aktar
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Isahak Ali
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| |
Collapse
|
4
|
Fusco L, Gazzi A, Shuck CE, Orecchioni M, Ahmed EI, Giro L, Zavan B, Yilmazer A, Ley K, Bedognetti D, Gogotsi Y, Delogu LG. V 4 C 3 MXene Immune Profiling and Modulation of T Cell-Dendritic Cell Function and Interaction. SMALL METHODS 2023; 7:e2300197. [PMID: 37291737 DOI: 10.1002/smtd.202300197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Indexed: 06/10/2023]
Abstract
Although vanadium-based metallodrugs are recently explored for their effective anti-inflammatory activity, they frequently cause undesired side effects. Among 2D nanomaterials, transition metal carbides (MXenes) have received substantial attention for their promise as biomedical platforms. It is hypothesized that vanadium immune properties can be extended to MXene compounds. Therefore, vanadium carbide MXene (V4 C3 ) is synthetized, evaluating its biocompatibility and intrinsic immunomodulatory effects. By combining multiple experimental approaches in vitro and ex vivo on human primary immune cells, MXene effects on hemolysis, apoptosis, necrosis, activation, and cytokine production are investigated. Furthermore, V4 C3 ability is demonstrated to inhibit T cell-dendritic cell interactions, evaluating the modulation of CD40-CD40 ligand interaction, two key costimulatory molecules for immune activation. The material biocompatibility at the single-cell level on 17 human immune cell subpopulations by single-cell mass cytometry is confirmed. Finally, the molecular mechanism underlying V4 C3 immune modulation is explored, demonstrating a MXene-mediated downregulation of antigen presentation-associated genes in primary human immune cells. The findings set the basis for further V4 C3 investigation and application as a negative modulator of the immune response in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Laura Fusco
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35121, Italy
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
| | - Arianna Gazzi
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35121, Italy
| | - Christopher E Shuck
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | | | - Eiman I Ahmed
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
| | - Linda Giro
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35121, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, 48033, Italy
| | - Açelya Yilmazer
- Stem Cell Institute, Ankara University, Ankara, 06520, Turkey
- Department of Biomedical Engineering, Ankara University, Ankara, 06830, Turkey
| | - Klaus Ley
- La Jolla Institute for Immunology, San Diego, CA, 92037, USA
| | - Davide Bedognetti
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, 16132, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Yury Gogotsi
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Lucia Gemma Delogu
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35121, Italy
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Cebadero-Dominguez Ó, Casas-Rodríguez A, Puerto M, Cameán AM, Jos A. In vitro safety assessment of reduced graphene oxide in human monocytes and T cells. ENVIRONMENTAL RESEARCH 2023; 232:116356. [PMID: 37295592 DOI: 10.1016/j.envres.2023.116356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Considering the increase in the use of graphene derivatives in different fields, the environmental and human exposure to these materials is likely, and the potential consequences are not fully elucidated. This study is focused on the human immune system, as this plays a key role in the organism's homeostasis. In this sense, the cytotoxicity response of reduced graphene oxide (rGO) was investigated in monocytes (THP-1) and human T cells (Jurkat). A mean effective concentration (EC50-24 h) of 121.45 ± 11.39 μg/mL and 207.51 ± 21.67 μg/mL for cytotoxicity was obtained in THP-1 and Jurkat cells, respectively. rGO decreased THP-1 monocytes differentiation at the highest concentration after 48 h of exposure. Regarding the inflammatory response at genetic level, rGO upregulated IL-6 in THP-1 and all cytokines tested in Jurkat cells after 4 h of exposure. At 24 h, IL-6 upregulation was maintained, and a significant decrease of TNF-α gene expression was observed in THP-1 cells. Moreover, TNF-α, and INF-γ upregulation were maintained in Jurkat cells. With respect to the apoptosis/necrosis, gene expression was not altered in THP-1 cells, but a down regulation of BAX and BCL-2 was observed in Jurkat cells after 4 h of exposure. These genes showed values closer to negative control after 24 h. Finally, rGO did not trigger a significant release of any cytokine at any exposure time assayed. In conclusion, our data contributes to the risk assessment of this material and suggest that rGO has an impact on the immune system whose final consequences should be further investigated.
Collapse
Affiliation(s)
- Óscar Cebadero-Dominguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| |
Collapse
|
6
|
Khatun S, Putta CL, Hak A, Rengan AK. Immunomodulatory nanosystems: An emerging strategy to combat viral infections. BIOMATERIALS AND BIOSYSTEMS 2023; 9:100073. [PMID: 36967725 PMCID: PMC10036237 DOI: 10.1016/j.bbiosy.2023.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/29/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
The viral infection spreads with the assistance of a host. Traditional antiviral therapies cannot provide long-term immunity against emerging and drug-resistant viral infections. Immunotherapy has evolved as an efficient approach for disease prevention and treatment, which include cancer, infections, inflammatory, and immune disorders. Immunomodulatory nanosystems can dramatically enhance therapeutic outcomes by combating many therapeutic challenges, such as poor immune stimulation and off-target adverse effects. Recently, immunomodulatory nanosystems have emerged as a potent antiviral strategy to intercept viral infections effectively. This review introduces major viral infections with their primary symptoms, route of transmission & targeted organ, and different stages of the viral life cycle with respective traditional blockers. The IMNs have an exceptional capacity for precisely modulating the immune system for therapeutic applications. The nano sized immunomodulatory systems permit the immune cells to interact with infectious agents enhancing lymphatic drainage and endocytosis by the over-reactive immune cells in the infected areas. Immune cells that can be modulated upon viral infection via various immunomodulatory nanosystems have been discussed. Advancement in theranostics can yield an accurate diagnosis, adequate treatment, and real-time screening of viral infections. Nanosystem-based drug delivery can continue to thrive in diagnosing, treating, and preventing viral infections. The curative medicine for remerging and drug-resistant viruses remains challenging, though certain systems have expanded our perception and initiated a new research domain in antiviral treatments.
Collapse
|
7
|
Ban G, Hou Y, Shen Z, Jia J, Chai L, Ma C. Potential Biomedical Limitations of Graphene Nanomaterials. Int J Nanomedicine 2023; 18:1695-1708. [PMID: 37020689 PMCID: PMC10069520 DOI: 10.2147/ijn.s402954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Graphene-family nanomaterials (GFNs) possess mechanical stiffness, optical properties, and biocompatibility making them promising materials for biomedical applications. However, to realize the potential of graphene in biomedicine, it must overcome several challenges that arise when it enters the body's circulatory system. Current research focuses on the development of tumor-targeting devices using graphene, but GFNs accumulated in different tissues and cells through different pathways, which can cause toxic reactions leading to cell apoptosis and body dysfunction when the accumulated amount exceeds a certain limit. In addition, as a foreign substance, graphene can induce complex inflammatory reactions with immune cells and inflammatory factors, potentially enhancing or impairing the body's immune function. This review discusses the biomedical applications of graphene, the effects of graphene materials on human immune function, and the biotoxicity of graphene materials.
Collapse
Affiliation(s)
- Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
- Correspondence: Ge Ban, Email
| | - Yingze Hou
- Clinical Medical College, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Zhean Shen
- Department of Biomedical Research, Research and Innovation Center, Xinjiang Institute of Technology, Xinjiang, 843100, People’s Republic of China
| | - Jingjing Jia
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Lei Chai
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Chongyang Ma
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| |
Collapse
|
8
|
Dai H, Fan Q, Wang C. Recent applications of immunomodulatory biomaterials for disease immunotherapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210157. [PMID: 37324799 PMCID: PMC10191059 DOI: 10.1002/exp.20210157] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/25/2022] [Indexed: 06/16/2023]
Abstract
Immunotherapy is used to regulate systemic hyperactivation or hypoactivation to treat various diseases. Biomaterial-based immunotherapy systems can improve therapeutic effects through targeted drug delivery, immunoengineering, etc. However, the immunomodulatory effects of biomaterials themselves cannot be neglected. In this review, we outline biomaterials with immunomodulatory functions discovered in recent years and their applications in disease treatment. These biomaterials can treat inflammation, tumors, or autoimmune diseases by regulating immune cell function, exerting enzyme-like activity, neutralizing cytokines, etc. The prospects and challenges of biomaterial-based modulation of immunotherapy are also discussed.
Collapse
Affiliation(s)
- Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsuChina
| | - Qin Fan
- Key Laboratory for Organic Electronics & Information Displays (KLOEID)Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM) and School of Materials Science and EngineeringNanjing University of Posts & TelecommunicationsNanjingChina
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsuChina
| |
Collapse
|
9
|
Fusco L, Gazzi A, Shuck CE, Orecchioni M, Alberti D, D'Almeida SM, Rinchai D, Ahmed E, Elhanani O, Rauner M, Zavan B, Grivel JC, Keren L, Pasqual G, Bedognetti D, Ley K, Gogotsi Y, Delogu LG. Immune Profiling and Multiplexed Label-Free Detection of 2D MXenes by Mass Cytometry and High-Dimensional Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205154. [PMID: 36207284 PMCID: PMC10915970 DOI: 10.1002/adma.202205154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Indexed: 06/16/2023]
Abstract
There is a critical unmet need to detect and image 2D materials within single cells and tissues while surveying a high degree of information from single cells. Here, a versatile multiplexed label-free single-cell detection strategy is proposed based on single-cell mass cytometry by time-of-flight (CyTOF) and ion-beam imaging by time-of-flight (MIBI-TOF). This strategy, "Label-free sINgle-cell tracKing of 2D matErials by mass cytometry and MIBI-TOF Design" (LINKED), enables nanomaterial detection and simultaneous measurement of multiple cell and tissue features. As a proof of concept, a set of 2D materials, transition metal carbides, nitrides, and carbonitrides (MXenes), is selected to ensure mass detection within the cytometry range while avoiding overlap with more than 70 currently available tags, each able to survey multiple biological parameters. First, their detection and quantification in 15 primary human immune cell subpopulations are demonstrated. Together with the detection, mass cytometry is used to capture several biological aspects of MXenes, such as their biocompatibility and cytokine production after their uptake. Through enzymatic labeling, MXenes' mediation of cell-cell interactions is simultaneously evaluated. In vivo biodistribution experiments using a mixture of MXenes in mice confirm the versatility of the detection strategy and reveal MXene accumulation in the liver, blood, spleen, lungs, and relative immune cell subtypes. Finally, MIBI-TOF is applied to detect MXenes in different organs revealing their spatial distribution. The label-free detection of 2D materials by mass cytometry at the single-cell level, on multiple cell subpopulations and in multiple organs simultaneously, will enable exciting new opportunities in biomedicine.
Collapse
Affiliation(s)
- Laura Fusco
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35129, Italy
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Human Immunology Division, Translational Medicine Department, Sidra Medicine, Doha, 26999, Qatar
| | - Arianna Gazzi
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35129, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Christopher E Shuck
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | | | - Dafne Alberti
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, 35124, Italy
| | - Sènan Mickael D'Almeida
- Flow Cytometry Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Darawan Rinchai
- Human Immunology Division, Translational Medicine Department, Sidra Medicine, Doha, 26999, Qatar
| | - Eiman Ahmed
- Human Immunology Division, Translational Medicine Department, Sidra Medicine, Doha, 26999, Qatar
| | - Ofer Elhanani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Martina Rauner
- Department of Medicine III, Center for Healthy Aging, Technical University Dresden, 01307, Dresden, Germany
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, 48033, Italy
| | | | - Leeat Keren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, 35124, Italy
| | - Davide Bedognetti
- Human Immunology Division, Translational Medicine Department, Sidra Medicine, Doha, 26999, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, 16132, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Klaus Ley
- La Jolla Institute for Immunology, San Diego, CA, 92037, USA
- Immunology Center of Georgia (IMMCG), Augusta University, Augusta, GA, 30912, USA
| | - Yury Gogotsi
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Lucia Gemma Delogu
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35129, Italy
| |
Collapse
|
10
|
Feng H, Feng Y, Lin L, Wu D, Liu Q, Li H, Zhang X, Li S, Tang F, Liu Z, Zhang L. Mannose Receptor-Mediated Carbon Nanotubes as an Antigen Delivery System to Enhance Immune Response Both In Vitro and In Vivo. Int J Mol Sci 2022; 23:4239. [PMID: 35457058 PMCID: PMC9030879 DOI: 10.3390/ijms23084239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
Carbon nanotubes (CNTs) are carbon allotropes consisting of one, two, or more concentric rolled graphene layers. These can intrinsically regulate immunity by activating the innate immune system. Mannose receptors (MR), a subgroup of the C-type lectin superfamily, are abundantly expressed on macrophages and dendritic cells. These play a crucial role in identifying pathogens, presenting antigens, and maintaining internal environmental stability. Utilizing the specific recognition between mannose and antigen-presenting cells (APC) surface mannose receptors, the antigen-carrying capacity of mannose-modified CNTs can be improved. Accordingly, here, we synthesized the mannose-modified carbon nanotubes (M-MWCNT) and evaluated them as an antigen delivery system through a series of in vitro and in vivo experiments. In vitro, M-MWCNT carrying large amounts of OVA were rapidly phagocytized by macrophages and promoted macrophage proliferation to facilitate cytokines (IL-1β, IL-6) secretion. In vivo, in mice, M-MWCNT induced the maturation of dendritic cells and increased the levels of antigen-specific antibodies (IgG, IgG1, IgG2a, IgG2b), and cytokines (IFN-γ, IL-6). Taken together, M-MWCNT could induce both humoral and cellular immune responses and thereby can be utilized as an efficient antigen-targeted delivery system.
Collapse
Affiliation(s)
- Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.F.); (D.W.); (Q.L.); (H.L.); (X.Z.); (S.L.); (F.T.); (Z.L.); (L.Z.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Yangyang Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.F.); (D.W.); (Q.L.); (H.L.); (X.Z.); (S.L.); (F.T.); (Z.L.); (L.Z.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Lang Lin
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China;
| | - Daiyan Wu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.F.); (D.W.); (Q.L.); (H.L.); (X.Z.); (S.L.); (F.T.); (Z.L.); (L.Z.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Qianqian Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.F.); (D.W.); (Q.L.); (H.L.); (X.Z.); (S.L.); (F.T.); (Z.L.); (L.Z.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Hangyu Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.F.); (D.W.); (Q.L.); (H.L.); (X.Z.); (S.L.); (F.T.); (Z.L.); (L.Z.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Xinnan Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.F.); (D.W.); (Q.L.); (H.L.); (X.Z.); (S.L.); (F.T.); (Z.L.); (L.Z.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Sheng Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.F.); (D.W.); (Q.L.); (H.L.); (X.Z.); (S.L.); (F.T.); (Z.L.); (L.Z.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Feng Tang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.F.); (D.W.); (Q.L.); (H.L.); (X.Z.); (S.L.); (F.T.); (Z.L.); (L.Z.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Ziwei Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.F.); (D.W.); (Q.L.); (H.L.); (X.Z.); (S.L.); (F.T.); (Z.L.); (L.Z.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Linzi Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Y.F.); (D.W.); (Q.L.); (H.L.); (X.Z.); (S.L.); (F.T.); (Z.L.); (L.Z.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| |
Collapse
|
11
|
Sallam AA, Ahmed MM, El-Magd MA, Magdy A, Ghamry HI, Alshahrani MY, Abou El-Fotoh MF. Quercetin-Ameliorated, Multi-Walled Carbon Nanotubes-Induced Immunotoxic, Inflammatory, and Oxidative Effects in Mice. Molecules 2022; 27:2117. [PMID: 35408516 PMCID: PMC9000348 DOI: 10.3390/molecules27072117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/28/2022] Open
Abstract
The expanding uses of carbon nanotubes (CNTs) in industry and medicine have raised concerns about their toxicity on human and animal health. CNTs, including multi-walled nanotubes (MWCNTs), have been reported to induce immunotoxic, inflammatory, and oxidative effects. Quercetin is a natural flavonoid present in many vegetables and fruits and has immunomodulatory, anti-inflammatory, and antioxidant properties. Herein, we investigated the protective effects of quercetin on pristine MWCNTs-induced immunotoxicity in mice. In comparison with two doses of MWCNTs, high doses [0.5 mg/kg body weight (BW), once intraperitoneally (IP)] caused higher immunotoxic, inflammatory, and oxidative effects than low doses (0.25 mg/kg BW, once IP). Administration of quercetin (30 mg/kg BW, IP for 2 weeks) relieved these deleterious effects as evidenced by (1) reduced spleen weight, (2) increased number of total leukocytes, lymphocytes, and neutrophils, (3) elevated serum levels of IgM, IgG, and IgA, (4) decreased lipid peroxide malondialdehyde levels and increased levels of antioxidant markers reduced glutathione, superoxide dismutase, and catalase in the spleen, (5) decreased concentrations and mRNA levels of inflammatory markers tumor necrosis factor-alpha (TNFα), interleukin 1 beta (IL1ß), and IL6 in the spleen, (6) downregulated expression of immunomodulatory genes transforming growth factor-beta (TGFß), cyclooxygenase2 (COX2), and IL10, and (7) regenerative histological changes as indicated by decreased mononuclear cell infiltration, minimized degenerative changes and restored lymphocytes depletion in the spleen. These results infer that quercetin can ameliorate MWCNTs-induced immunotoxic, inflammatory, and oxidative effects.
Collapse
Affiliation(s)
- Amira A. Sallam
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.A.S.); (M.M.A.); (M.F.A.E.-F.)
| | - Mona M. Ahmed
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.A.S.); (M.M.A.); (M.F.A.E.-F.)
| | - Mohammed A. El-Magd
- Anatomy Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ahmed Magdy
- Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Heba I. Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 9088, Abha 61413, Saudi Arabia
| | - Magdy F. Abou El-Fotoh
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.A.S.); (M.M.A.); (M.F.A.E.-F.)
| |
Collapse
|
12
|
de Carvalho Lima EN, Diaz RS, Justo JF, Castilho Piqueira JR. Advances and Perspectives in the Use of Carbon Nanotubes in Vaccine Development. Int J Nanomedicine 2021; 16:5411-5435. [PMID: 34408416 PMCID: PMC8367085 DOI: 10.2147/ijn.s314308] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Advances in nanobiotechnology have allowed the utilization of nanotechnology through nanovaccines. Nanovaccines are powerful tools for enhancing the immunogenicity of a specific antigen and exhibit advantages over other adjuvant approaches, with features such as expanded stability, prolonged release, decreased immunotoxicity, and immunogenic selectivity. We introduce recent advances in carbon nanotubes (CNTs) to induce either a carrier effect as a nanoplatform or an immunostimulatory effect. Several studies of CNT-based nanovaccines revealed that due to the ability of CNTs to carry immunogenic molecules, they can act as nonclassical vaccines, a quality not possessed by vaccines with traditional formulations. Therefore, adapting and modifying the physicochemical properties of CNTs for use in vaccines may additionally enhance their efficacy in inducing a T cell-based immune response. Accordingly, the purpose of this study is to renew and awaken interest in and knowledge of the safe use of CNTs as adjuvants and carriers in vaccines.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Fusco L, Orecchioni M, Reina G, Bordoni V, Fuoco C, Gurcan C, Guo S, Zoccheddu M, Collino F, Zavan B, Treossi E, Yilmazer A, Palermo V, Bianco A, Delogu LG. Lateral dimension and amino-functionalization on the balance to assess the single-cell toxicity of graphene on fifteen immune cell types. NANOIMPACT 2021; 23:100330. [PMID: 35559831 DOI: 10.1016/j.impact.2021.100330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 06/15/2023]
Abstract
Given the wide variety of potential applications of graphene oxide (GO), its consequent release into the environment poses serious concerns on its safety. The future production and exploitation of graphene in the years to come should be guided by its specific chemical-physical characteristics. The unparalleled potential of single-cell mass cytometry (CyTOF) to dissect by high-dimensionality the specific immunological effects of nanomaterials, represents a turning point in nanotoxicology. It helps us to identify the safe graphene in terms of physical-chemical properties and therefore to direct its future safe production. Here we present a high-dimensional study to evaluate two historically indicated as key parameters for the safe exploitation: functionalization and dimension. The role of lateral dimension and the amino-functionalization of GO on their immune impact were here evaluated as synergistic players. To this end, we dissected the effects of GO, characterized by a large or small lateral size (GO 1.32 μm and GO 0.13 μm, respectively), and its amino-functionalized counterpart (GONH2 1.32 μm and GONH2 0.13 μm, respectively) on fifteen cell types of human primary peripheral blood mononuclear cells (PBMCs). We describe how the smallest later size not only evokes pronounced toxicity on the pool of PBMCs compared to larger GOs but also towards the distinct immune cell subpopulations, in particular on non-classical monocytes, plasmacytoid dendritic cells (pDCs), natural killer cells (NKs) and B cells. The amino-functionalization was able to improve the biocompatibility of classical and non-classical monocytes, pDCs, NKs, and B cells. Detailed single-cell analysis further revealed a complex interaction of all GOs with the immune cells, and in particular monocyte subpopulations, with different potency depending on their physicochemical properties. Overall, by high-dimensional profiling, our study demonstrates that the lateral dimension is an important factor modulating immune cells and specifically monocyte activation, but a proper surface functionalization is the dominant characteristic in its immune effects. In particular, the amino-functionalization can critically modify graphene impact dampening the immune cell activation. Our study can serve as a guide for the future broad production and use of graphene in our everyday life.
Collapse
Affiliation(s)
- Laura Fusco
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Marco Orecchioni
- La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, Strasbourg, France
| | - Valentina Bordoni
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Claudia Fuoco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cansu Gurcan
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey; Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, Strasbourg, France
| | - Martina Zoccheddu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Federica Collino
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Department of Medical Sciences, University of Ferrara, Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | | | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey; Stem Cell Institute, Ankara University, Ankara, Turkey
| | | | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, Strasbourg, France.
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.
| |
Collapse
|
14
|
Li H, He D, Xiao X, Yu G, Hu G, Zhang W, Wen X, Lin Y, Li X, Lin H, Diao Y, Tang Y. Nitrogen-Doped Multiwalled Carbon Nanotubes Enhance Bone Remodeling through Immunomodulatory Functions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25290-25305. [PMID: 33908252 DOI: 10.1021/acsami.1c05437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It has been reported that multiwalled carbon nanotubes (MWCNTs) can reportedly positively affect growth and differentiation of bone-related cells and therefore offer great potential in biomedical applications. To overcome negative immune responses that limit their application, specific doping and functionalization can improve their biocompatibility. Here, we demonstrated that nitrogen-doped carboxylate-functionalized MWCNTs (N-MWCNTs) enhance bone remodeling both in vitro and in vivo with excellent biocompatibility, via stimulation of both bone resorption and formation. We revealed that 0.2 μg/mL N-MWCNTs not only increase the transcription of osteoblastogenic and osteoclastogenic genes but also up-regulate the activities of both TRAP and AKP in the differentiation of bone marrow stromal cells (BMSCs). Additionally, intramuscular administration of N-MWCNTs at a dosage of 1.0 mg/kg body weight enhances bone mineral density and bone mass content in mice, as well as induces potentiated degree of TRAP- and ARS-positive staining in the femur. The positive regulation of N-MWCNTs on bone remodeling is initiated by macrophage phagocytosis, which induces altered production of inflammatory cytokines by immune response pathways, and consequently up-regulates IL1α, IL10, and IL16. These cytokines collectively regulate the central osteoclastogenic transcription factor NFATc1 and osteoblastogenic BMP signaling, the suppression of which confirmed that these factors respectively participate in N-MWCNT-mediated regulation of osteoclastic and osteoblastic bone marrow stem cell activities. These results suggest that N-MWCNTs can be readily generalized for use as biomaterials in bone tissue engineering for metabolic bone disorders.
Collapse
Affiliation(s)
- Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Dalin He
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xue Xiao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Guanliu Yu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Geng Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Wenqian Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xin Wen
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yun Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xianyao Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Youxiang Diao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Yi Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
15
|
Shams R, Rizvi QEH, Dar AH, Majid I, Khan SA, Singh A. Polysaccharides: Promising Constituent for the Preparation of Nanomaterials. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
Ahamad N, Kar A, Mehta S, Dewani M, Ravichandran V, Bhardwaj P, Sharma S, Banerjee R. Immunomodulatory nanosystems for treating inflammatory diseases. Biomaterials 2021; 274:120875. [PMID: 34010755 DOI: 10.1016/j.biomaterials.2021.120875] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023]
Abstract
Inflammatory disease (ID) is an umbrella term encompassing all illnesses involving chronic inflammation as the central manifestation of pathogenesis. These include, inflammatory bowel diseases, hepatitis, pulmonary disorders, atherosclerosis, myocardial infarction, pancreatitis, arthritis, periodontitis, psoriasis. The IDs create a severe burden on healthcare and significantly impact the global socio-economic balance. Unfortunately, the standard therapies that rely on a combination of anti-inflammatory and immunosuppressive agents are palliative and provide only short-term relief. In contrast, the emerging concept of immunomodulatory nanosystems (IMNs) has the potential to address the underlying causes and prevent reoccurrence, thereby, creating new opportunities for treating IDs. The IMNs offer exquisite ability to precisely modulate the immune system for a therapeutic advantage. The nano-sized dimension of IMNs allows them to efficiently infiltrate lymphatic drainage, interact with immune cells, and subsequently to undergo rapid endocytosis by hyperactive immune cells (HICs) at inflamed sites. Thus, IMNs serve to restore dysfunctional or HICs and alleviate the inflammation. We identified that different IMNs exert their immunomodulatory action via either of the seven mechanisms to modulate; cytokine production, cytokine neutralization, cellular infiltration, macrophage polarization, HICs growth inhibition, stimulating T-reg mediated tolerance and modulating oxidative-stress. In this article, we discussed representative examples of IMNs by highlighting their rationalization, design principle, and mechanism of action in context of treating various IDs. Lastly, we highlighted technical challenges in the application of IMNs and explored the future direction of research, which could potentially help to overcome those challenges.
Collapse
Affiliation(s)
- Nadim Ahamad
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Abhinanda Kar
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sourabh Mehta
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India; IITB-Monash Research Academy IIT Bombay, Powai, Mumbai, 400076, India
| | - Mahima Dewani
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Vasanthan Ravichandran
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Prateek Bhardwaj
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shivam Sharma
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
17
|
Debnath SK, Srivastava R. Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.644564] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
With growing interest, a large number of researches have been conducted on carbon-based nanomaterials (CBNs). However, their uses are limited due to comprehensive potential environmental and human health effects. It is often confusing for researchers to make an informed choice regarding the versatile carbon-based nanocarrier system and its potential applications. This review has highlighted emerging applications and cutting-edge progress of CBNs in drug delivery. Some critical factors like enzymatic degradation, surface modification, biological interactions, and bio-corona have been discussed here. These factors will help to fabricate CBNs for effective drug delivery. This review also addresses recent advancements in carbon-based target specific and release controlled drug delivery to improve disease treatment. The scientific community has turned their research efforts into the development of novel production methods of CBNs to make their production more attractive to the industrial sector. Due to the nanosize and diversified physical properties, these CBNs have demonstrated distinct biological interaction. Thus long-term preclinical toxicity study is recommended before finally translating to clinical application.
Collapse
|
18
|
Navarro-Marchal SA, Griñán-Lisón C, Entrena JM, Ruiz-Alcalá G, Tristán-Manzano M, Martin F, Pérez-Victoria I, Peula-García JM, Marchal JA. Anti-CD44-Conjugated Olive Oil Liquid Nanocapsules for Targeting Pancreatic Cancer Stem Cells. Biomacromolecules 2021; 22:1374-1388. [PMID: 33724003 DOI: 10.1021/acs.biomac.0c01546] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The latest trends in cancer research and nanomedicine focus on using nanocarriers to target cancer stem cells (CSCs). Specifically, lipid liquid nanocapsules are usually developed as nanocarriers for lipophilic drug delivery. Here, we developed olive oil liquid NCs (O2LNCs) functionalized by covalent coupling of an anti-CD44-fluorescein isothiocyanate antibody (αCD44). First, O2LNCs are formed by a core of olive oil surrounded by a shell containing phospholipids, a nonionic surfactant, and deoxycholic acid molecules. Then, O2LNCs were coated with an αCD44 antibody (αCD44-O2LNC). The optimization of an αCD44 coating procedure, a complete physicochemical characterization, as well as clear evidence of their efficacy in vitro and in vivo were demonstrated. Our results indicate the high targeted uptake of these αCD44-O2LNCs, and the increased antitumor efficacy (up to four times) of paclitaxel-loaded-αCD44-O2LNC compared to free paclitaxel in pancreatic CSCs (PCSCs). Also, αCD44-O2LNCs were able to selectively target PCSCs in an orthotopic xenotransplant in vivo model.
Collapse
Affiliation(s)
- Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain.,Department of Applied Physics, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain
| | - José-Manuel Entrena
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, Armilla, 18100 Granada, Spain.,Animal Behavior Research Unit, Scientific Instrumentation Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, Armilla, 18100 Granada, Spain
| | - Gloria Ruiz-Alcalá
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain
| | - María Tristán-Manzano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, 18016 Granada, Spain
| | - José Manuel Peula-García
- Biocolloids and Fluids Physics Group, Faculty of Sciences, University of Granada, 18014 Granada, Spain.,Department of Applied Physics II, University of Málaga, 29071 Málaga, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
19
|
Hadidi N, Sharifnia Z, Eteghadi A, Shokrgozar MA, Mosaffa N. PEGylated single-walled carbon nanotubes as co-adjuvants enhance expression of maturation markers in monocyte-derived dendritic cells. Nanomedicine (Lond) 2021; 16:171-188. [PMID: 33560153 DOI: 10.2217/nnm-2020-0339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: This study investigated the application of phospholipid-PEGylated single-walled carbon nanotubes (PL-PEG-SWCNTs) as a safe co-adjuvant for the commercial recombinant hepatitis B virus vaccine to enhance induction of monocyte-derived dendritic cells (MDDCs) differentiation and activation in vitro as an immune response initiator cell to prompt a long-term immune response after a single dose injection. Methods: Immature MDDCs were exposed to PL-PEG-SWCNTs alone and in combination with hepatitis B vaccine. Results & conclusion: Study results confirm the enhanced expression of maturation markers in human immature MDDCs after PL-PEG-SWCNT exposure. The results suggest that PL-PEG-SWCNT is an efficient co-adjuvant for the commercial recombinant hepatitis B virus vaccine to enhance dendritic cell response stimulation in vitro.
Collapse
Affiliation(s)
- Naghmeh Hadidi
- Department of Clinical Research & EM Microscope, Pasteur Institute of Iran (PII), Tehran 1316943551, Iran
| | - Zarin Sharifnia
- Department of Clinical Research & EM Microscope, Pasteur Institute of Iran (PII), Tehran 1316943551, Iran
| | - Atefeh Eteghadi
- Department of Clinical Research & EM Microscope, Pasteur Institute of Iran (PII), Tehran 1316943551, Iran
| | | | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| |
Collapse
|
20
|
Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M, Scott JA, Vitale F, Unal MA, Mattevi C, Bedognetti D, Merkoçi A, Tasciotti E, Yilmazer A, Gogotsi Y, Stellacci F, Delogu LG. Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS NANO 2020; 14:6383-6406. [PMID: 32519842 PMCID: PMC7299399 DOI: 10.1021/acsnano.0c03697] [Citation(s) in RCA: 354] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The COVID-19 outbreak has fueled a global demand for effective diagnosis and treatment as well as mitigation of the spread of infection, all through large-scale approaches such as specific alternative antiviral methods and classical disinfection protocols. Based on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to cope with this emergency. Here, through a multidisciplinary Perspective encompassing diverse fields such as virology, biology, medicine, engineering, chemistry, materials science, and computational science, we outline how nanotechnology-based strategies can support the fight against COVID-19, as well as infectious diseases in general, including future pandemics. Considering what we know so far about the life cycle of the virus, we envision key steps where nanotechnology could counter the disease. First, nanoparticles (NPs) can offer alternative methods to classical disinfection protocols used in healthcare settings, thanks to their intrinsic antipathogenic properties and/or their ability to inactivate viruses, bacteria, fungi, or yeasts either photothermally or via photocatalysis-induced reactive oxygen species (ROS) generation. Nanotechnology tools to inactivate SARS-CoV-2 in patients could also be explored. In this case, nanomaterials could be used to deliver drugs to the pulmonary system to inhibit interaction between angiotensin-converting enzyme 2 (ACE2) receptors and viral S protein. Moreover, the concept of "nanoimmunity by design" can help us to design materials for immune modulation, either stimulating or suppressing the immune response, which would find applications in the context of vaccine development for SARS-CoV-2 or in counteracting the cytokine storm, respectively. In addition to disease prevention and therapeutic potential, nanotechnology has important roles in diagnostics, with potential to support the development of simple, fast, and cost-effective nanotechnology-based assays to monitor the presence of SARS-CoV-2 and related biomarkers. In summary, nanotechnology is critical in counteracting COVID-19 and will be vital when preparing for future pandemics.
Collapse
Affiliation(s)
- Carsten Weiss
- Institute of Biological and Chemical
Systems, Biological Information Processing, Karlsruhe
Institute of Technology, Campus North,
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,
Germany
| | - Marie Carriere
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, SyMMES-CIBEST, F-38000
Grenoble, France
| | - Laura Fusco
- Department of Chemical and
Pharmaceutical Sciences, University of
Trieste, 34127 Trieste,
Italy
- Cancer Research Department,
Sidra Medicine, Doha,
Qatar
| | - Ilaria Capua
- One Health Center of Excellence,
University of Florida, Gainesville,
Florida 32611, United States
| | - Jose Angel Regla-Nava
- Division of Inflammation Biology,
La Jolla Institute for Allergy and
Immunology, La Jolla, California 92037,
United States
| | - Matteo Pasquali
- Department of Chemical &
Biomolecular Engineering, Rice University,
Houston, Texas 77251, United States
- Department of Chemistry,
Rice University, Houston, Texas
77251, United States
- Department of Materials Science and
Nanoengineering, Rice University, Houston,
Texas 77251, United States
| | - James A. Scott
- Dalla Lana School of Public Health,
University of Toronto, 223 College
Street, M5T 1R4 Toronto, Ontario, Canada
| | - Flavia Vitale
- Department of Neurology,
Bioengineering, Physical Medicine & Rehabilitation, Center for
Neuroengineering and Therapeutics, University of
Pennsylvania, Philadelphia, Pennsylvania 19104,
United States
- Center for Neurotrauma,
Neurodegeneration, and Restoration, Corporal Michael J.
Crescenz Veterans Affairs Medical Center,
Philadelphia, Pennsylvania 19104, United
States
| | | | - Cecilia Mattevi
- Department of Materials,
Imperial College London, London SW7
2AZ, United Kingdom
| | | | - Arben Merkoçi
- Nanobioelectronics & Biosensors
Group, Catalan Institute of Nanoscience and
Nanotechnology (ICN2), CSIC and BIST, Campus UAB,
08193 Bellaterra, Spain
- ICREA -
Institució Catalana de Recerca i Estudis
Avançats, ES-08010 Barcelona,
Spain
| | - Ennio Tasciotti
- Orthopedics and Sports Medicine,
Houston Methodist Hospital, Houston,
Texas 77030, United States
- Department of Plastic Surgery,
MD Anderson, Houston, Texas 77230,
United States
| | - Açelya Yilmazer
- Stem Cell Institute,
Ankara University, Ankara, 06100
Turkey
- Department of Biomedical Engineering,
Faculty of Engineering, Ankara University,
Ankara, 06100 Turkey
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute,
and Materials Science and Engineering Department, Drexel
University, Philadelphia, Pennsylvania 19104,
United States
| | - Francesco Stellacci
- Institute of Materials,
Ecole Polytechnique Federale de Lausanne
(EPFL), 1015 Lausanne,
Switzerland
- Interfaculty Bioengineering Institute,
Ecole Polytechnique Fédérale de
Lausanne (EPFL), 1015 Lausanne,
Switzerland
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences,
University of Padua, 35122 Padova,
Italy
| |
Collapse
|
21
|
Soltani R, Guo S, Bianco A, Ménard‐Moyon C. Carbon Nanomaterials Applied for the Treatment of Inflammatory Diseases: Preclinical Evidence. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rym Soltani
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Cécilia Ménard‐Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| |
Collapse
|
22
|
Dong PX, Song X, Wu J, Cui S, Wang G, Zhang L, Sun H. The Fate of SWCNTs in Mouse Peritoneal Macrophages: Exocytosis, Biodegradation, and Sustainable Retention. Front Bioeng Biotechnol 2020; 8:211. [PMID: 32266238 PMCID: PMC7100583 DOI: 10.3389/fbioe.2020.00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
The understanding of toxicological and pharmacological profiles of nanomaterials is an important step for the development and clinical application of nanomedicines. Carbon nanotubes (CNTs) have been extensively explored as a nanomedicine agent in pharmaceutical/biomedical applications, such as drug delivery, bioimaging, and tissue engineering. The biological durability of CNTs could affect the function of CNTs-based nanomedicines as well as their toxicity in cells and tissues. Therefore, it is crucial to assess the fate of nanomedicine in phagocytes. Herein, we investigated the candidate fate of acid-oxidized single-walled carbon nanotubes (SWNCTs) in non-activated primary mouse peritoneal macrophages (PMQ). The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the intracellular SWCNTs continued growing from 4 to 36 h in PMQ. After replacing the exposure medium, we found the exosome induced by SWCNTs on the surface of macrophages according to scanning electron microscope (SEM) observation. The near-infrared (NIR) absorption increase of the supernatant samples after post-exposure indicates that SWCNTs exocytosis occurred in PMQ. The decreasing intracellular SWCNTs amount suggested the incomplete biodegradation in PMQ, which was confirmed by Raman spectroscopy and transmission electron microscopy (TEM). The combined data reveal that SWCNTs could be retained for more than 60 h in macrophages. Then sustainable retention of SWCNTs in primary macrophages was coexist with exocytosis and biodegradation. The findings of this work will shed light on the bioimaging, diagnosis and other biomedical applications of CNTs-based nanomedicines.
Collapse
Affiliation(s)
- Ping-Xuan Dong
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, China.,College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - Xinfeng Song
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, China.,College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - Jiwei Wu
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, China.,College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - Shuqin Cui
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, China.,College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - Guizhi Wang
- College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - Lianying Zhang
- College of Life Science, Dezhou University, Dezhou, China
| | - Hanwen Sun
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, China.,College of Medicine and Nursing, Dezhou University, Dezhou, China
| |
Collapse
|
23
|
Heller DA, Jena PV, Pasquali M, Kostarelos K, Delogu LG, Meidl RE, Rotkin SV, Scheinberg DA, Schwartz RE, Terrones M, Wang Y, Bianco A, Boghossian AA, Cambré S, Cognet L, Corrie SR, Demokritou P, Giordani S, Hertel T, Ignatova T, Islam MF, Iverson NM, Jagota A, Janas D, Kono J, Kruss S, Landry MP, Li Y, Martel R, Maruyama S, Naumov AV, Prato M, Quinn SJ, Roxbury D, Strano MS, Tour JM, Weisman RB, Wenseleers W, Yudasaka M. Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. NATURE NANOTECHNOLOGY 2020; 15:164-166. [PMID: 32157238 PMCID: PMC10461884 DOI: 10.1038/s41565-020-0656-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| | - Prakrit V Jena
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matteo Pasquali
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
| | - Kostas Kostarelos
- Nanomedicine Lab, The University of Manchester, Manchester, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, Spain
| | - Lucia G Delogu
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Rachel E Meidl
- Baker Institute for Public Policy, Rice University, Houston, TX, USA
| | - Slava V Rotkin
- Department of Engineering Science & Mechanics, The Pennsylvania State University, University Park, PA, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, PA, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Alberto Bianco
- CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, Strasbourg, France
| | - Ardemis A Boghossian
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sofie Cambré
- Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Laurent Cognet
- Laboratoire Photonique Numérique et Nanosciences, University of Bordeaux, Talence, France
| | - Simon R Corrie
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| | - Tobias Hertel
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians University Würzburg, Würzburg, Germany
| | - Tetyana Ignatova
- Nanoscience Department, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Mohammad F Islam
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Nicole M Iverson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anand Jagota
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Junichiro Kono
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Sebastian Kruss
- Department of Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Yan Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Richard Martel
- Département de chimie, Université de Montréal, Montréal, Quebec, Canada
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA
| | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Trieste, Italy
- Carbon Bionanotechnology Lab, CIC biomaGUNE, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin, Ireland
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
| | | | - Wim Wenseleers
- Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Masako Yudasaka
- Nanomaterials Research Institute, Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
24
|
Nahle S, Cassidy H, Leroux MM, Mercier R, Ghanbaja J, Doumandji Z, Matallanas D, Rihn BH, Joubert O, Ferrari L. Genes expression profiling of alveolar macrophages exposed to non-functionalized, anionic and cationic multi-walled carbon nanotubes shows three different mechanisms of toxicity. J Nanobiotechnology 2020; 18:36. [PMID: 32093716 PMCID: PMC7041258 DOI: 10.1186/s12951-020-0587-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/29/2020] [Indexed: 01/02/2023] Open
Abstract
Functionalized multi-walled carbon nanotubes (MWCNT) have become the focus of increased research interest, particularly in their application as tools in different areas, such as the biomedical field. Despite the benefits associated with functionalization of MWCNT, particularly in overcoming issues relating to solubility, several studies have demonstrated that these functionalized nanoparticles display different toxicity profiles. For this study, we aim to compare NR8383 cells responses to three well-characterized MWCNT with varying functional groups. This study employed cytotoxicity assays, transcriptomics and proteomics to assess their toxicity using NR8383 rat alveolar macrophages as an in vitro model. The study findings indicated that all MWCNT altered ribosomal protein translation, cytoskeleton arrangement and induced pro-inflammatory response. Only functionalized MWCNT alter mTOR signaling pathway in conjunction with increased Lamtor gene expression. Furthermore, the type of functionalization was also important, with cationic MWCNT activating the transcription factor EB and inducing autophagy while the anionic MWCNT altering eukaryotic translation initiation factor 4 (EIF4) and phosphoprotein 70 ribosomal protein S6 kinase (p70S6K) signaling pathway as well as upregulation Tlr2 gene expression. This study proposes that MWCNT toxicity mechanisms are functionalization dependent and provides evidence that inflammatory response is a key event of carbon nanotubes toxicity.
Collapse
Affiliation(s)
- Sara Nahle
- Nanomaterials and Health, Team 403, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, 54000, Nancy, France
| | - Hilary Cassidy
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mélanie M Leroux
- Nanomaterials and Health, Team 403, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, 54000, Nancy, France
| | - Reuben Mercier
- Nanomaterials and Health, Team 403, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, 54000, Nancy, France
| | - Jaafar Ghanbaja
- Nanomaterials and Health, Team 403, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, 54000, Nancy, France
| | - Zahra Doumandji
- Nanomaterials and Health, Team 403, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, 54000, Nancy, France
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Bertrand H Rihn
- Nanomaterials and Health, Team 403, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, 54000, Nancy, France
| | - Olivier Joubert
- Nanomaterials and Health, Team 403, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, 54000, Nancy, France
| | - Luc Ferrari
- Nanomaterials and Health, Team 403, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, 54000, Nancy, France.
| |
Collapse
|
25
|
Sabido O, Figarol A, Klein JP, Bin V, Forest V, Pourchez J, Fubini B, Cottier M, Tomatis M, Boudard D. Quantitative Flow Cytometric Evaluation of Oxidative Stress and Mitochondrial Impairment in RAW 264.7 Macrophages after Exposure to Pristine, Acid Functionalized, or Annealed Carbon Nanotubes. NANOMATERIALS 2020; 10:nano10020319. [PMID: 32069806 PMCID: PMC7075214 DOI: 10.3390/nano10020319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 11/16/2022]
Abstract
Conventional nanotoxicological assays are subjected to various interferences with nanoparticles and especially carbon nanotubes. A multiparametric flow cytometry (FCM) methodology was developed here as an alternative to quantify oxidative stress, mitochondrial impairment, and later cytotoxic and genotoxic events. The experiments were conducted on RAW264.7 macrophages, exposed for 90 min or 24 h-exposure with three types of multiwalled carbon nanotubes (MWCNTs): pristine (Nanocyl™ CNT), acid functionalized (CNTf), or annealed treatment (CNTa). An original combination of reactive oxygen species (ROS) probes allowed the simultaneous quantifications of broad-spectrum ROS, superoxide anion (O2•-), and hydroxyl radical (•OH). All MWCNTs types induced a slight increase of broad ROS levels regardless of earlier antioxidant catalase activity. CNTf strongly stimulated the O2•- production. The •OH production was downregulated for all MWCNTs due to their scavenging capacity. The latter was quantified in a cell-free system by electron paramagnetic resonance spectroscopy (EPR). Further FCM-based assessment revealed early biological damages with a mitochondrial membrane potential collapse, followed by late cytotoxicity with chromatin decondensation. The combined evaluation by FCM analysis and cell-free techniques led to a better understanding of the impacts of MWCNTs surface treatments on the oxidative stress and related biological response.
Collapse
Affiliation(s)
- Odile Sabido
- Inserm U1059 SAINBIOSE, équipe DVH/PIB, Université Jean Monnet, Faculté de Médecine, F-42270 Saint-Etienne, France
- Université Lyon, F-42270 Saint-Etienne, France
- Centre Commun de Cytométrie en Flux, F-42270 Saint-Etienne, France
- Correspondence: (O.S.); (D.B.); Tel.: +33-477421441 (O.S.); +33-477421443 (ext.1471) (D.B.)
| | - Agathe Figarol
- Ecole Nationale Supérieure des Mines, SPIN, CNRS: UMR 5307, LGF, F-42023 Saint-Etienne, France
| | - Jean-Philippe Klein
- Inserm U1059 SAINBIOSE, équipe DVH/PIB, Université Jean Monnet, Faculté de Médecine, F-42270 Saint-Etienne, France
- Université Lyon, F-42270 Saint-Etienne, France
| | - Valérie Bin
- Inserm U1059 SAINBIOSE, équipe DVH/PIB, Université Jean Monnet, Faculté de Médecine, F-42270 Saint-Etienne, France
- Université Lyon, F-42270 Saint-Etienne, France
| | - Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Bice Fubini
- Dipartimento di Chimica and ‘G. Scansetti’ Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, Università di Torino, 10125, Torino, Italy
| | - Michèle Cottier
- Inserm U1059 SAINBIOSE, équipe DVH/PIB, Université Jean Monnet, Faculté de Médecine, F-42270 Saint-Etienne, France
- Université Lyon, F-42270 Saint-Etienne, France
| | - Maura Tomatis
- Dipartimento di Chimica and ‘G. Scansetti’ Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, Università di Torino, 10125, Torino, Italy
| | - Delphine Boudard
- Inserm U1059 SAINBIOSE, équipe DVH/PIB, Université Jean Monnet, Faculté de Médecine, F-42270 Saint-Etienne, France
- Université Lyon, F-42270 Saint-Etienne, France
- Correspondence: (O.S.); (D.B.); Tel.: +33-477421441 (O.S.); +33-477421443 (ext.1471) (D.B.)
| |
Collapse
|
26
|
Malachowski T, Hassel A. Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
27
|
Hess KL, Medintz IL, Jewell CM. Designing inorganic nanomaterials for vaccines and immunotherapies. NANO TODAY 2019; 27:73-98. [PMID: 32292488 PMCID: PMC7156029 DOI: 10.1016/j.nantod.2019.04.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vaccines and immunotherapies have changed the face of health care. Biomaterials offer the ability to improve upon these medical technologies through increased control of the types and concentrations of immune signals delivered. Further, these carriers enable targeting, stability, and delivery of poorly soluble cargos. Inorganic nanomaterials possess unique optical, electric, and magnetic properties, as well as defined chemistry, high surface-to-volume- ratio, and high avidity display that make this class of materials particularly advantageous for vaccine design, cancer immunotherapy, and autoimmune treatments. In this review we focus on this understudied area by highlighting recent work with inorganic materials - including gold nanoparticles, carbon nanotubes, and quantum dots. We discuss the intrinsic features of these materials that impact the interactions with immune cells and tissue, as well as recent reports using inorganic materials across a range of emerging immunological applications.
Collapse
Affiliation(s)
- Krystina L. Hess
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene St, Baltimore, MD, 21201 USA
- U.S. Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene St, Baltimore, MD, 21201, USA
| |
Collapse
|
28
|
Hassan HAFM, Diebold SS, Smyth LA, Walters AA, Lombardi G, Al-Jamal KT. Application of carbon nanotubes in cancer vaccines: Achievements, challenges and chances. J Control Release 2019; 297:79-90. [PMID: 30659906 DOI: 10.1016/j.jconrel.2019.01.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Tumour-specific, immuno-based therapeutic interventions can be considered as safe and effective approaches for cancer therapy. Exploitation of nano-vaccinology to intensify the cancer vaccine potency may overcome the need for administration of high vaccine doses or additional adjuvants and therefore could be a more efficient approach. Carbon nanotube (CNT) can be described as carbon sheet(s) rolled up into a cylinder that is nanometers wide and nanometers to micrometers long. Stemming from the observed capacities of CNTs to enter various types of cells via diversified mechanisms utilising energy-dependent and/or passive routes of cell uptake, the use of CNTs for the delivery of therapeutic agents has drawn increasing interests over the last decade. Here we review the previous studies that demonstrated the possible benefits of these cylindrical nano-vectors as cancer vaccine delivery systems as well as the obstacles their clinical application is facing.
Collapse
Affiliation(s)
- Hatem A F M Hassan
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom
| | - Sandra S Diebold
- Biotherapeutics Division, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Lesley A Smyth
- School of Health, Sport and Biosciences, University of East London, Stratford Campus, Water Lane, London E15 4LZ, United Kingdom
| | - Adam A Walters
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom
| | - Giovanna Lombardi
- School of Immunology and Microbial Sciences, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom.
| |
Collapse
|
29
|
Akhtar MJ, Ahamed M, Alhadlaq HA. Challenges facing nanotoxicology and nanomedicine due to cellular diversity. Clin Chim Acta 2018; 487:186-196. [PMID: 30291894 DOI: 10.1016/j.cca.2018.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
This review examines the interaction of nanomaterials (NMs) with cells from the perspective of major cellular differentiations. The structure and composition of cells reflect their role and function in a particular organ or environment. The normal differentiated-state and diseased cells may respond to NMs very differently. This review progresses with due care on nanotoxicology while emphasizing the potential of NMs in treating stress-associated disorders, including cancer and degeneration. The striking potential of NMs in inducing ROS, scavenging ROS, depleting cellular antioxidants, replenishing antioxidants, mimicking antioxidant enzyme activity, and modulating the immune system all show their considerable potential in treating cancer and other aging-associated disorders. It is now clear that NMs become more active and versatile when they come into contact with biological machinery, surprisingly in some cases, in a manner dependent on cell type. The mechanisms leading to the contrasting bioresponse of NMs ranging from toxicity to anticancer and from cell survival to carcinogenicity followed by their immuno-modulating potential show NMs to be a highly promising agent in biomedical therapy. This first-of-its-kind article seeks the challenges to be addressed that could provide a solid rationale in translating the promises of nanomedicine. A thorough understanding of normal and cancer biology could help to minimize the gap between basic and translational research in nanotechnology-based therapy.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia..
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.; Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Karimi F, Alizadeh S, Alizadeh H. Immunogenicity of multi-walled carbon nanotubes functionalized with recombinant protective antigen domain 4 toward development of a nanovaccine against anthrax. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Al Soubaihi RM, Furesi G, Saoud KM, Al-Muhtaseb SA, Khatat AE, Delogu LG, Dutta J. Silica and carbon decorated silica nanosheet impact on primary human immune cells. Colloids Surf B Biointerfaces 2018; 172:779-789. [PMID: 30266012 DOI: 10.1016/j.colsurfb.2018.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 08/25/2018] [Accepted: 09/10/2018] [Indexed: 02/01/2023]
Abstract
Silica nanosheets (SiO2 NS) are considered to be a promising material in clinical practice for diagnosis and therapy applications. However, an appropriate surface functionalization is essential to guarantee high biocompatibility and molecule loading ability. Although SiO2 NS are chemically stable, its effects on immune systems are still being explored. In this work, we successfully synthesized a novel 2D multilayer SiO2 NS and SiO2 NS coated with carbon (C/SiO2 NS), and evaluated their impact on human Peripheral Blood Mononuclear Cells (PBMCs) and some immune cell subpopulations. We demonstrated that the immune response is strongly dependent on the surface functionalities of the SiO2 NS. Ex vivo experiments showed an increase in biocompatibility of C/SiO2 NS compared to SiO2 NS, resulting in a lowering of hemoglobin release together with a reduction in cellular toxicity and cellular activation. However, none of them are directly involved in the activation of the acute inflammation process with a consequent release of pro-inflammatory cytokines. The obtained results provide an important direction towards the biomedical applications of silica nanosheets, rendering them an attractive material for the development of future immunological therapies.
Collapse
Affiliation(s)
- Rola Mohammad Al Soubaihi
- Functional Materials, Department of Applied Physics, The Royal Institute of Technology, School of Engineering Sciences, Isafjordsgatan 22, SE-164 40 Kista Stockholm, Sweden
| | | | - Khaled Mohammad Saoud
- Liberal Arts and Sciences Program, Virginia Commonwealth University in Qatar, P.O. Box 8095, Doha, Qatar.
| | | | - Ahmed El Khatat
- Department of Chemical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Lucia Gemma Delogu
- University of Sassari, Sassari, 07100, Italy; Fondazione Citta' Della Speranza, Istituto di Ricerca Pediatrica, Padova, 35129, Italy.
| | - Joydeep Dutta
- Functional Materials, Department of Applied Physics, The Royal Institute of Technology, School of Engineering Sciences, Isafjordsgatan 22, SE-164 40 Kista Stockholm, Sweden
| |
Collapse
|
32
|
Deb A, Vimala R. Camptothecin loaded graphene oxide nanoparticle functionalized with polyethylene glycol and folic acid for anticancer drug delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.10.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells. Nat Commun 2017; 8:1109. [PMID: 29061960 PMCID: PMC5653675 DOI: 10.1038/s41467-017-01015-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
Understanding the biomolecular interactions between graphene and human immune cells is a prerequisite for its utilization as a diagnostic or therapeutic tool. To characterize the complex interactions between graphene and immune cells, we propose an integrative analytical pipeline encompassing the evaluation of molecular and cellular parameters. Herein, we use single-cell mass cytometry to dissect the effects of graphene oxide (GO) and GO functionalized with amino groups (GONH2) on 15 immune cell populations, interrogating 30 markers at the single-cell level. Next, the integration of single-cell mass cytometry with genome-wide transcriptome analysis shows that the amine groups reduce the perturbations caused by GO on cell metabolism and increase biocompatibility. Moreover, GONH2 polarizes T-cell and monocyte activation toward a T helper-1/M1 immune response. This study describes an innovative approach for the analysis of the effects of nanomaterials on distinct immune cells, laying the foundation for the incorporation of single-cell mass cytometry on the experimental pipeline. Understanding the interaction of nanomaterials and immune cells at the biomolecular level is of great significance in therapeutic applications. Here, the authors investigated the interaction of graphene oxide nanomaterials and several immune cell subpopulations using single-cell mass cytometry and genome-wide transcriptome analysis.
Collapse
|
34
|
Song W, Musetti SN, Huang L. Nanomaterials for cancer immunotherapy. Biomaterials 2017; 148:16-30. [PMID: 28961532 DOI: 10.1016/j.biomaterials.2017.09.017] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy is quickly growing to be the fourth most important cancer therapy, after surgery, radiation therapy, and chemotherapy. Immunotherapy is the most promising cancer management strategy because it orchestrates the body's own immune system to target and eradicate cancer cells, which may result in durable antitumor responses and reduce metastasis and recurrence more than traditional treatments. Nanomaterials hold great promise in further improving the efficiency of cancer immunotherapy - in many cases, they are even necessary for effective delivery. In this review, we briefly summarize the basic principles of cancer immunotherapy and explain why and where to apply nanomaterials in cancer immunotherapy, with special emphasis on cancer vaccines and tumor microenvironment modulation.
Collapse
Affiliation(s)
- Wantong Song
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Sara N Musetti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
35
|
Versiani AF, Astigarraga RG, Rocha ESO, Barboza APM, Kroon EG, Rachid MA, Souza DG, Ladeira LO, Barbosa-Stancioli EF, Jorio A, Da Fonseca FG. Multi-walled carbon nanotubes functionalized with recombinant Dengue virus 3 envelope proteins induce significant and specific immune responses in mice. J Nanobiotechnology 2017; 15:26. [PMID: 28376812 PMCID: PMC5379608 DOI: 10.1186/s12951-017-0259-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/20/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Dengue is the most prevalent arthropod-borne viral disease in the world. In this article we present results on the development, characterization and immunogenic evaluation of an alternative vaccine candidate against Dengue. METHODS The MWNT-DENV3E nanoconjugate was developed by covalent functionalization of carboxylated multi-walled carbon nanotubes (MWNT) with recombinant dengue envelope (DENV3E) proteins. The recombinant antigens were bound to the MWNT using a diimide-activated amidation process and the immunogen was characterized by TEM, AFM and Raman Spectroscopy. Furthermore, the immunogenicity of this vaccine candidate was evaluated in a murine model. RESULTS Immunization with MWNT-DENV3E induced comparable IgG responses in relation to the immunization with non-conjugated proteins; however, the inoculation of the nanoconjugate into mice generated higher titers of neutralizing antibodies. Cell-mediated responses were also evaluated, and higher dengue-specific splenocyte proliferation was observed in cell cultures derived from mice immunized with MWNT-DENV3E when compared to animals immunized with the non-conjugated DENV3E. CONCLUSIONS Despite the recent licensure of the CYD-TDV dengue vaccine in some countries, results from the vaccine's phase III trial have cast doubts about its overall efficacy and global applicability. While questions about the effectiveness of the CYD-TDV vaccine still lingers, it is wise to keep at hand an array of vaccine candidates, including alternative non-classical approaches like the one presented here.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Antibody Formation
- Antigens, Viral/immunology
- Cell Proliferation
- Cytokines/immunology
- Dengue/immunology
- Dengue/prevention & control
- Dengue Vaccines/immunology
- Dengue Vaccines/therapeutic use
- Dengue Virus/immunology
- Female
- Immunity, Cellular
- Immunoglobulin G/blood
- Mice
- Mice, Inbred BALB C
- Microscopy, Atomic Force
- Microscopy, Electron, Transmission
- Nanoconjugates/chemistry
- Nanomedicine
- Nanotubes, Carbon/chemistry
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Spectrum Analysis, Raman
- Spleen/cytology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Alice F. Versiani
- Laboratory of Basic and Applied Virology, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Ruiz G. Astigarraga
- Laboratory of Basic and Applied Virology, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Eliseu S. O. Rocha
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Ana Paula M. Barboza
- Laboratório de Nanoscopia, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Erna G. Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Milene A. Rachid
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Daniele G. Souza
- Laboratory of Microorganism-Host Interaction, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Luiz O. Ladeira
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Edel F. Barbosa-Stancioli
- Laboratory of Basic and Applied Virology, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Ado Jorio
- Laboratório de Nanoscopia, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Flávio G. Da Fonseca
- Laboratory of Basic and Applied Virology, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| |
Collapse
|
36
|
Zhang T, Tang M, Zhang S, Hu Y, Li H, Zhang T, Xue Y, Pu Y. Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study. Int J Nanomedicine 2017; 12:1539-1554. [PMID: 28280324 PMCID: PMC5339008 DOI: 10.2147/ijn.s123345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The numerous increasing use of carbon nanotubes (CNTs) derived from nanotechnology has raised concerns about their biosafety and potential toxicity. CNTs cause immunologic dysfunction and limit the application of CNTs in biomedicine. The immunological responses induced by pristine multi-walled carbon nanotubes (p-MWCNTs) and PEGylated multi-walled carbon nanotubes (MWCNTs-PEG) on BALB/c mice via an intravenous administration were investigated. The results reflect that the p-MWCNTs induced significant increases in spleen, thymus, and lung weight. Mice treated with p-MWCNTs showed altered lymphocyte populations (CD3+, CD4+, CD8+, and CD19+) in peripheral blood and increased serum IgM and IgG levels, and splenic macrophage ultrastructure indicated mitochondria swelling. p-MWCNTs inhibited humoral and cellular immunity function and were associated with decreased immune responses against sheep erythrocytes and serum hemolysis level. Natural killer (NK) activity was not modified by two types of MWCNTs. In comparison with two types of MWCNTs, for a same dose, p-MWCNTs caused higher levels of inflammation and immunosuppression than MWCNTs-PEG. The results of immunological function suggested that after intravenous administration with p-MWCNTs caused more damage to systemic immunity than MWCNTs-PEG. Here, we demonstrated that a surface functional modification on MWCNTs reduces their immune perturbations in vivo. The chemistry-modified MWCNTs change their preferred immune response in vivo and reduce the immunotoxicity of p-MWCNTs.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Shanshan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Yuanyuan Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Han Li
- Department of Material Science and Engineering, National Key Laboratory of Solid State Microstructures, Nanjing University, Nanjing, China
| | - Tao Zhang
- Department of Material Science and Engineering, National Key Laboratory of Solid State Microstructures, Nanjing University, Nanjing, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| |
Collapse
|
37
|
Perez Ruiz de Garibay A, Spinato C, Klippstein R, Bourgognon M, Martincic M, Pach E, Ballesteros B, Ménard-Moyon C, Al-Jamal KT, Tobias G, Bianco A. Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy. Sci Rep 2017; 7:42605. [PMID: 28198410 PMCID: PMC5309841 DOI: 10.1038/srep42605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/11/2017] [Indexed: 11/22/2022] Open
Abstract
This study investigates the immune responses induced by metal-filled single-walled carbon nanotubes (SWCNT) under in vitro, ex vivo and in vivo settings. Either empty amino-functionalized CNTs [SWCNT-NH2 (1)] or samarium chloride-filled amino-functionalized CNTs with [SmCl3@SWCNT-mAb (3)] or without [SmCl3@SWCNT-NH2 (2)] Cetuximab functionalization were tested. Conjugates were added to RAW 264.7 or PBMC cells in a range of 1 μg/ml to 100 μg/ml for 24 h. Cell viability and IL-6/TNFα production were determined by flow cytometry and ELISA. Additionally, the effect of SWCNTs on the number of T lymphocytes, B lymphocytes and monocytes within the PBMC subpopulations was evaluated by immunostaining and flow cytometry. The effect on monocyte number in living mice was assessed after tail vein injection (150 μg of each conjugate per mouse) at 1, 7 and 13 days post-injection. Overall, our study showed that all the conjugates had no significant effect on cell viability of RAW 264.7 but conjugates 1 and 3 led to a slight increase in IL-6/TNFα. All the conjugates resulted in significant reduction in monocyte/macrophage cell numbers within PBMCs in a dose-dependent manner. Interestingly, monocyte depletion was not observed in vivo, suggesting their suitability for future testing in the field of targeted radiotherapy in mice.
Collapse
Affiliation(s)
- Aritz Perez Ruiz de Garibay
- University of Strasbourg, CNRS, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Cinzia Spinato
- University of Strasbourg, CNRS, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Rebecca Klippstein
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK
| | - Maxime Bourgognon
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK
| | - Markus Martincic
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Elzbieta Pach
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Belén Ballesteros
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Cécilia Ménard-Moyon
- University of Strasbourg, CNRS, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Khuloud T. Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK
| | - Gerard Tobias
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Alberto Bianco
- University of Strasbourg, CNRS, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| |
Collapse
|
38
|
Russier J, León V, Orecchioni M, Hirata E, Virdis P, Fozza C, Sgarrella F, Cuniberti G, Prato M, Vázquez E, Bianco A, Delogu LG. Few-Layer Graphene Kills Selectively Tumor Cells from Myelomonocytic Leukemia Patients. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julie Russier
- University of Strasbourg, CNRS; Immunopathology and therapeutic chemistry, UPR 3572; 67000 Strasbourg France
| | - Verónica León
- Departamento de Química Orgánica; Facultad de Ciencias y Tecnologías Químicas-IRICA; Universidad de Castilla-La Mancha; 13071 Ciudad Real Spain
| | - Marco Orecchioni
- Department of Chemistry and Pharmacy; University of Sassari; 07100 Sassari Italy
| | - Eri Hirata
- University of Strasbourg, CNRS; Immunopathology and therapeutic chemistry, UPR 3572; 67000 Strasbourg France
- Department of Oral Functional Science; Graduate School of Dental Medicine; Hokkaido University; 060-8586 Sapporo Japan
| | - Patrizia Virdis
- Department of Clinical and Experimental Medicine; University of Sassari; 07100 Sassari Italy
| | - Claudio Fozza
- Department of Clinical and Experimental Medicine; University of Sassari; 07100 Sassari Italy
| | - Francesco Sgarrella
- Department of Chemistry and Pharmacy; University of Sassari; 07100 Sassari Italy
| | - Gianaurelio Cuniberti
- Max Bergmann Center of Biomaterials and Institute for Materials Science; Dresden University of Technology; 01069 Dresden Germany
| | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche; Università di Trieste; 34127 Trieste Italy
- CIC BiomaGUNE, Parque Tecnológico de San Sebastián; Paseo Miramón, 182 20009 San Sebastián (Guipúzcoa) Spain
- Basque Foundation for Science, Ikerbasque; 48013 Bilbao Spain
| | - Ester Vázquez
- Departamento de Química Orgánica; Facultad de Ciencias y Tecnologías Químicas-IRICA; Universidad de Castilla-La Mancha; 13071 Ciudad Real Spain
| | - Alberto Bianco
- University of Strasbourg, CNRS; Immunopathology and therapeutic chemistry, UPR 3572; 67000 Strasbourg France
| | - Lucia G. Delogu
- Department of Chemistry and Pharmacy; University of Sassari; 07100 Sassari Italy
- Max Bergmann Center of Biomaterials and Institute for Materials Science; Dresden University of Technology; 01069 Dresden Germany
| |
Collapse
|
39
|
Russier J, León V, Orecchioni M, Hirata E, Virdis P, Fozza C, Sgarrella F, Cuniberti G, Prato M, Vázquez E, Bianco A, Delogu LG. Few-Layer Graphene Kills Selectively Tumor Cells from Myelomonocytic Leukemia Patients. Angew Chem Int Ed Engl 2017; 56:3014-3019. [PMID: 28156035 DOI: 10.1002/anie.201700078] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Indexed: 11/05/2022]
Abstract
In the cure of cancer, a major cause of today's mortality, chemotherapy is the most common treatment, though serious frequent challenges are encountered by current anticancer drugs. We discovered that few-layer graphene (FLG) dispersions have a specific killer action on monocytes, showing neither toxic nor activation effects on other immune cells. We confirmed the therapeutic application of graphene on an aggressive type of cancer that is myelomonocytic leukemia, where the monocytes are in their malignant form. We demonstrated that graphene has the unique ability to target and boost specifically the necrosis of monocytic cancer cells. Moreover, the comparison between FLG and a common chemotherapeutic drug, etoposide, confirmed the higher specificity and toxicity of FLG. Since current chemotherapy treatments of leukemia still cause serious problems, these findings open the way to new and safer therapeutic approaches.
Collapse
Affiliation(s)
- Julie Russier
- University of Strasbourg, CNRS, Immunopathology and therapeutic chemistry, UPR 3572, 67000, Strasbourg, France
| | - Verónica León
- Departamento de Química Orgánica, Facultad de CienciasyTecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Marco Orecchioni
- Department of Chemistry and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Eri Hirata
- University of Strasbourg, CNRS, Immunopathology and therapeutic chemistry, UPR 3572, 67000, Strasbourg, France.,Department of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, 060-8586, Sapporo, Japan
| | - Patrizia Virdis
- Department of Clinical and Experimental Medicine, University of Sassari, 07100, Sassari, Italy
| | - Claudio Fozza
- Department of Clinical and Experimental Medicine, University of Sassari, 07100, Sassari, Italy
| | - Francesco Sgarrella
- Department of Chemistry and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Gianaurelio Cuniberti
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology, 01069, Dresden, Germany
| | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, 34127, Trieste, Italy.,CIC BiomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón, 182, 20009, San Sebastián (Guipúzcoa), Spain.,Basque Foundation for Science, Ikerbasque, 48013, Bilbao, Spain
| | - Ester Vázquez
- Departamento de Química Orgánica, Facultad de CienciasyTecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Alberto Bianco
- University of Strasbourg, CNRS, Immunopathology and therapeutic chemistry, UPR 3572, 67000, Strasbourg, France
| | - Lucia G Delogu
- Department of Chemistry and Pharmacy, University of Sassari, 07100, Sassari, Italy.,Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
40
|
Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim KH. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev 2017; 46:158-196. [DOI: 10.1039/c6cs00517a] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Remarkable advances achieved in modern material technology, especially in device fabrication, have facilitated diverse materials to expand the list of their application fields.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - Ruma Rani
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - K. Tankeshwar
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
- Department of Physics
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering
- Hanyang University
- Seoul 04763
- Republic of Korea
| |
Collapse
|
41
|
Tao W, Zhu X, Yu X, Zeng X, Xiao Q, Zhang X, Ji X, Wang X, Shi J, Zhang H, Mei L. Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201603276. [PMID: 27797119 PMCID: PMC5205548 DOI: 10.1002/adma.201603276] [Citation(s) in RCA: 520] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/18/2016] [Indexed: 05/18/2023]
Abstract
2D black phosphorus (BP) nanomaterials are presented as a delivery platform. The endocytosis pathways and biological activities of PEGylated BP nanosheets in cancer cells are revealed for the first time. Finally, a triple-response combined therapy strategy is achieved by PEGylated BP nanosheets, showing a promising and enhanced antitumor effect.
Collapse
Affiliation(s)
- Wei Tao
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Shenzhen Key Laboratory of Two-Dimensional Materials and Devices (SKTMD), SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Xianbing Zhu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinghua Yu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Xiaowei Zeng
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Quanlan Xiao
- Shenzhen Key Laboratory of Two-Dimensional Materials and Devices (SKTMD), SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Xudong Zhang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoyuan Ji
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Xusheng Wang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinjun Shi
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Han Zhang
- Shenzhen Key Laboratory of Two-Dimensional Materials and Devices (SKTMD), SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Lin Mei
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
42
|
Sun D, Gong L, Xie J, He X, Chen S, A L, Li Q, Gu Z, Xu H. Evaluating the toxicity of silicon dioxide nanoparticles on neural stem cells using RNA-Seq. RSC Adv 2017. [DOI: 10.1039/c7ra09512k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural stem cells are characterized by self-renewal and multipotency, and a capacity to regenerate in response to brain injury or neurodegenerative disease.
Collapse
Affiliation(s)
- Dayu Sun
- Southwest Hospital/Southwest Eye Hospital
- Third Military Medical University
- Chongqing 400038
- China
- Department of Physiology
| | - Linji Gong
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Jing Xie
- Southwest Hospital/Southwest Eye Hospital
- Third Military Medical University
- Chongqing 400038
- China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing
| | - Xiao He
- Southwest Hospital/Southwest Eye Hospital
- Third Military Medical University
- Chongqing 400038
- China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing
| | - Siyu Chen
- Southwest Hospital/Southwest Eye Hospital
- Third Military Medical University
- Chongqing 400038
- China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing
| | - Luodan A
- Southwest Hospital/Southwest Eye Hospital
- Third Military Medical University
- Chongqing 400038
- China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital
- Third Military Medical University
- Chongqing 400038
- China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital
- Third Military Medical University
- Chongqing 400038
- China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing
| |
Collapse
|
43
|
Differential crosstalk between global DNA methylation and metabolomics associated with cell type specific stress response by pristine and functionalized MWCNT. Biomaterials 2016; 115:167-180. [PMID: 27914347 DOI: 10.1016/j.biomaterials.2016.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/13/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022]
Abstract
The present study endeavored to evaluate the comprehensive mechanisms of MWCNT-induced toxicity with particular emphasis on understanding cell specificity in relation to surface functionalization of MWCNT. Following treatment with differentially functionalized (hydroxylation/carboxylation) MWCNT on human bronchial epithelial (BEAS-2B) and human hepatoma (HepG2) cell lines, intracellular uptake, various toxicological end points, global metabolomics profiling and DNA methylation were evaluated. Herein, the comparative in vitro studies ascertained that surface functionalization diminished the toxic potentiality of MWCNT in respect of their pristine counterpart. The surface enhanced Raman scattering with dark-field microscopy attested the intracellular uptake of functionalized-MWCNT, but not the pristine one. The MWCNT's exposure caused alterations in stress responses (oxidative stress, inflammation, profibrosis, DNA damage-repair), differential mode of gene expressions, global metabolomics and DNA methylation status (DNMT3B dependent hypo-methylation in BEAS-2B cells and hyper-methylation in HepG2 cells) in a cell type specific and surface functionalization dependent manner. The alterations in particular metabolites (choline, betaine, succinate etc.) and distinct DNA methylation crosstalk patterns are the possible underlying mechanisms of differential mode of gene expressions and cell type specificity of MWCNT. This study provides preliminary evidence of epigenetic modifications and global metabolomics profiling which might be translated for risk assessment of MWCNT.
Collapse
|
44
|
Serpell CJ, Rutte RN, Geraki K, Pach E, Martincic M, Kierkowicz M, De Munari S, Wals K, Raj R, Ballesteros B, Tobias G, Anthony DC, Davis BG. Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging. Nat Commun 2016; 7:13118. [PMID: 27782209 PMCID: PMC5095174 DOI: 10.1038/ncomms13118] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022] Open
Abstract
The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular 'blueprint'; this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as 'contrast agents' if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging.
Collapse
Affiliation(s)
- Christopher J. Serpell
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent CT2 7NH, UK
| | - Reida N. Rutte
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Elzbieta Pach
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Markus Martincic
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain
| | - Magdalena Kierkowicz
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain
| | - Sonia De Munari
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Kim Wals
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Ritu Raj
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Belén Ballesteros
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Gerard Tobias
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Benjamin G. Davis
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
45
|
Oliveira TL, Bacelo KL, Schuch RA, Seixas FK, Collares T, Rodrigues OE, Vargas J, Nascimento ROD, Dellagostin OA, Hartwig DD. Immune response in hamsters immunised with a recombinant fragment of LigA from Leptospira interrogans, associated with carrier molecules. Mem Inst Oswaldo Cruz 2016; 111:712-716. [PMID: 27759768 PMCID: PMC5125051 DOI: 10.1590/0074-02760160214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022] Open
Abstract
Immunisation with the C-terminal region of leptospiral immunoglobulin-like A protein
(LigANI) has shown promising results against leptospirosis. We evaluated the humoral
immune response and protection induced by LigANI associated with carboxyl
multi-walled carbon nanotubes (COOH-MWCNTs), CpG oligodeoxynucleotides (CpG ODNs), or
Alhydrogel. Animals immunised with CpG ODNs were unable to develop a humoral immune
response, whereas immunisation with LigANI and COOH-MWCNTs produced a high level of
IgG antibodies, similar to that with LigANI and Alhydrogel, but it was not
protective. The use of carbon nanotubes as an adjuvant in subunit vaccines against
leptospirosis is a novel approach for improving specific IgG production.
Collapse
Affiliation(s)
- Thaís L Oliveira
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Pelotas, RS, Brasil
| | - Kátia L Bacelo
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Pelotas, RS, Brasil
| | - Rodrigo A Schuch
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Pelotas, RS, Brasil
| | - Fabiana K Seixas
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Pelotas, RS, Brasil
| | - Tiago Collares
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Pelotas, RS, Brasil
| | - Oscar Ed Rodrigues
- Universidade Federal de Santa Maria, Departamento de Química, Santa Maria, RS, Brasil
| | - Josimar Vargas
- Universidade Federal de Santa Maria, Departamento de Química, Santa Maria, RS, Brasil
| | | | - Odir A Dellagostin
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Pelotas, RS, Brasil
| | - Daiane D Hartwig
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Pelotas, RS, Brasil.,Universidade Federal de Pelotas, Instituto de Biologia, Departamento de Microbiologia e Parasitologia, Pelotas, RS, Brasil
| |
Collapse
|
46
|
Orecchioni M, Ménard-Moyon C, Delogu LG, Bianco A. Graphene and the immune system: Challenges and potentiality. Adv Drug Deliv Rev 2016; 105:163-175. [PMID: 27235665 DOI: 10.1016/j.addr.2016.05.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/07/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022]
Abstract
In the growing area of nanomedicine, graphene-based materials (GBMs) are some of the most recent explored nanomaterials. For the majority of GBM applications in nanomedicine, the immune system plays a fundamental role. It is necessary to well understand the complexity of the interactions between GBMs, the immune cells, and the immune components and how they could be of advantage for novel effective diagnostic and therapeutic approaches. In this review, we aimed at painting the current picture of GBMs in the background of the immune system. The picture we have drawn looks like a cubist image, a sort of Picasso-like portrait looking at the topic from all perspectives: the challenges (due to the potential toxicity) and the potentiality like the conjugation of GBMs to biomolecules to develop advanced nanomedicine tools. In this context, we have described and discussed i) the impact of graphene on immune cells, ii) graphene as immunobiosensor, and iii) antibodies conjugated to graphene for tumor targeting. Thanks to the huge advances on graphene research, it seems realistic to hypothesize in the near future that some graphene immunoconjugates, endowed of defined immune properties, can go through preclinical test and be successfully used in nanomedicine.
Collapse
Affiliation(s)
- Marco Orecchioni
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Cécilia Ménard-Moyon
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et de Chimie Thérapeutique, 67000 Strasbourg, France
| | - Lucia Gemma Delogu
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy.
| | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et de Chimie Thérapeutique, 67000 Strasbourg, France.
| |
Collapse
|
47
|
Xing J, Liu Z, Huang Y, Qin T, Bo R, Zheng S, Luo L, Huang Y, Niu Y, Wang D. Lentinan-Modified Carbon Nanotubes as an Antigen Delivery System Modulate Immune Response in Vitro and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19276-19283. [PMID: 27411887 DOI: 10.1021/acsami.6b04591] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Adjuvants enhance immunogenicity and sustain long-term immune responses. As vital components of vaccines, efficient adjuvants are highly desirable. Recent evidence regarding the potential of carbon nanotubes (CNTs) to act as a support material has suggested that certain properties, such as their unique hollow structure, high specific surface area, and chemical stability, make CNTs desirable for a variety of antigen-delivery applications. Lentinan, a β-1,3-glucohexaose with β-1,6-branches that is extracted from the mushroom Lentinus edodes, is an effective immunostimulatory drug that has been clinically used in Japan and China, and recent studies have proved that specific beta-glucans can bind to various immune receptors. In this research, we covalently attached lentinan to multiwalled carbon nanotubes (MWCNTs) and tested their ability to enhance immune responses as a vaccine delivery system. In vitro study results showed that the nanotube constructs could rapidly enter dendritic cells and carry large amounts of antigen. Moreover, maturation markers were significantly upregulated versus the control. Thus, lentinan-modified multiwalled carbon nanotubes (L-MWCNTs) were regarded as an effective intracellular antigen depot and a catalyzer that could induce phenotypic and functional maturation of dendritic cells. Furthermore, compared with L-MWCNTs (35 μg/mL), a corresponding concentration of carboxylic carbon nanotubes (C-MWCNTs, 31.8 μg/mL) and an equivalent concentration of lentinan (3.2 μg/mL) did not remarkably influence the immune reaction in vitro or in vivo. Hence, we can hypothesize that the capability of L-MWCNTs was a consequence of the increased intracellular quantity of lentinan grafted onto the nanotubes. Overall, our studies demonstrated that L-MWCNTs significantly increased antigen accumulation in the cells and potentiated cellular and humoral immunity. In conclusion, L-MWCNTs constitute a potential vaccine delivery system to enhance immunogenicity for therapeutic purposes.
Collapse
Affiliation(s)
- Jie Xing
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
| | - Yifan Huang
- College of Animal Science and Veterinary Medicine, Fujian Agriculture and Forestry University , Fuzhou 350002, PR China
| | - Tao Qin
- College of Animal Science and Veterinary Medicine, Fujian Agriculture and Forestry University , Fuzhou 350002, PR China
| | - Ruonan Bo
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
| | - Sisi Zheng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
| | - Li Luo
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
| | - Yee Huang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
| | - Yale Niu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
- College of Animal Science and Veterinary Medicine, Fujian Agriculture and Forestry University , Fuzhou 350002, PR China
| |
Collapse
|
48
|
Biological effects of double-walled carbon nanotubes on the innate immune system: An in vitro study on THP-1 human monocytes. Toxicology 2016; 365:1-8. [PMID: 27475286 DOI: 10.1016/j.tox.2016.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/21/2022]
Abstract
DWCNTs have numerous industrial and biomedical applications and several studies reported that they could act as immunomodulator systems. The immune system is the first line of defence of the human body when exposed to particulate matter. In order to investigate DWCNTs' role on innate immunity, we used THP-1 monocytic cells for the purpose of this study. We showed that DWCNTs were not cytotoxic until 6h, 24h, 48h and 72h of incubation with THP-1 monocytic cells (concentrations tested from 10 to 50μg/mL). From 6h to 72h of incubation of THP-1 cells with DWCNTs, we measured a significant increase of the baseline cell index using xCELLigence(®) technology showing cell adhesion. After 24h of exposure, DWCNTs agglomerates were localized in THP-1 monocyte cytoplasm and cell adhesion was observed simultaneously with a significant increase in the expression of CD11b and CD14 cell surface proteins. Pro-inflammatory cytokine secretion (IL-1β, IL-6, IL-8, TNF-α and IL-10) was also measured in supernatants after 6h or 24h of exposure to DWCNTs. This pro-inflammatory response was increased in THP-1 monocytic cells pre-treated with LPS. Altogether, our data indicate that DWCNTs induce an increased pro-inflammatory response of THP-1 monocytes and seem to modulate cell surface protein expression confirming that DWCNTs could act as stimulators of innate immunity.
Collapse
|
49
|
Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A. Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. J Med Chem 2016; 59:8149-67. [DOI: 10.1021/acs.jmedchem.5b01770] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Reem Alshehri
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Asad Muhammad Ilyas
- Center of Excellence in Genomic Medical Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Engineering and Department of Mechanical Engineering,
Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
- Biomaterials
Innovation Research Center, Division of Biomedical Engineering, Department
of Medicine, Brigham and Women’s Hospital, Harvard Medical
School, Boston Massachusetts 02115, United States
| | - Adnan Arnaout
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Farid Ahmed
- Center of Excellence in Genomic Medical Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
50
|
Vales G, Rubio L, Marcos R. Genotoxic and cell-transformation effects of multi-walled carbon nanotubes (MWCNT) following in vitro sub-chronic exposures. JOURNAL OF HAZARDOUS MATERIALS 2016; 306:193-202. [PMID: 26736170 DOI: 10.1016/j.jhazmat.2015.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
BEAS-2B cells were sub-chronically exposed (up to 4 weeks) to low doses of multi-walled carbon nanotubes (MWCNT, NM403). Genotoxic effects were evaluated using the comet and the micronucleus (MN) assays at three different time-points. The expression of different interleukins (IL) such as IL-1B, IL-6 and IL-8, as well as HO-1 as stress marker, was assessed after 3 weeks treatments. As a hallmark biomarker of cell-transforming ability we used the soft-agar assay, which detects anchorage-independent cell growth. Our results show high levels of intracellular reactive oxygen species (ROS) associated to MWCNT exposure. Nevertheless, an important proportion of these ROS levels seems to be associated to solubilized metals contaminants present in NM403, more than to the internalized MWCNT. No primary DNA damage was obtained in the Comet assay although significant levels of chromosome damage were detected using the micronucleus assay. A significant decrease in the expression of the studied cytokines was observed and significant increases in the number of induced colonies were obtained when the ability of induce anchorage-independent growth was determined. These results show that chromosome damage and reducing inflammatory signalling correlated with an increase in attachment-independent growth associated with sub-chronic MWCNT exposure.
Collapse
Affiliation(s)
- Gerard Vales
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Rubio
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|