1
|
Gao C, Xu J, Xie S, Zhang W, Gong D, Peng G, Du Z, Rong J, Li X, Liang C, Gu B, Xu W, Cai J. Biotemplated Diatom Microrobots for Dual-Drug Delivery in Targeted Neuroblastoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24807-24819. [PMID: 40238656 DOI: 10.1021/acsami.4c21531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Neuroblastoma, a highly malignant pediatric tumor, demands innovative targeted drug delivery strategies to overcome the limitations of conventional therapies. In this study, we developed magnetic diatom microrobots (DMs) using diatom frustules as biotemplates, leveraging their natural hierarchical porosity and biocompatibility. Functionalized with amino groups and folic acid, these microrobots demonstrated enhanced drug conjugation and tumor-targeting capabilities. Designed to carry either cisplatin (CDDP) or paclitaxel (PTX), the DMs facilitated complementary therapeutic effects through pH-responsive release, enabling synergistic neuroblastoma therapy. Magnetic actuation tests confirmed multimodal propulsion and precise motion control. In vitro experiments demonstrated enhanced therapeutic efficacy and reduced off-target effects compared to those of conventional approaches. These diatom-templated magnetic microrobots, with their facile fabrication and superior performance, represent a promising platform for targeted drug delivery and advanced cancer therapy.
Collapse
Affiliation(s)
- Chao Gao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Juntai Xu
- Department of Oncology Surgery, Women and Children's Hospital, Qingdao University, 6 Tongfu Road, Shibei District, Qingdao, Shandong 266034, China
| | - Shuangxi Xie
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - De Gong
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
| | - Guanya Peng
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
| | - Zaihui Du
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jiacheng Rong
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xianjun Li
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chao Liang
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Bo Gu
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jun Cai
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Zhang K, Liang W, Chen XB, Mang J. Smart materials strategy for vascular challenges targeting in-stent restenosis: a critical review. Regen Biomater 2025; 12:rbaf020. [PMID: 40290450 PMCID: PMC12034381 DOI: 10.1093/rb/rbaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
In-stent restenosis (ISR) presents a major challenge in vascular disease management, often leading to complications and repeated interventions. This review article explores the potential of existing smart materials strategies in addressing ISR, emphasizing advancements in materials science and biomedical engineering. We focus on innovative solutions such as bioactive coatings and responsive polymers that offer targeted responses to ISR-related internal and external triggers. These smart materials can dynamically adapt to the physiological conditions within blood vessels, responding in real time to various stimuli such as pH, oxidative stress and temperature. Moreover, we discuss preclinical progress and translational challenges associated with these materials as they move toward clinical applications. The review highlights the importance of controlled drug release and the need for materials that can degrade appropriately to minimize adverse effects. This work aims to identify critical research gaps and provide guidance to encourage interdisciplinary efforts to advance the development of smart stent technologies. Ultimately, the goal is to improve patient outcomes in vascular interventions by leveraging the capabilities of intelligent biomaterials to enhance ISR management and ensure better long-term efficacy and safety in-stent applications.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Geriatrics and General Practice, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wenzhao Liang
- Department of Geriatrics and General Practice, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
3
|
Stoilova S, Georgiev GL, Mihaylova R, Kostova B, Petrov PD. Agar/β-Cyclodextrin Composite Cryogels for Controlled Release of Aripiprazole. Molecules 2025; 30:1051. [PMID: 40076275 PMCID: PMC11901583 DOI: 10.3390/molecules30051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Aripiprazole (ARZ) is an atypical antipsychotic drug used to treat a variety of mood and psychotic disorders, such as schizophrenia, bipolar disorder, major depressive disorder, autism, and Tourette's syndrome. Although ARZ offers significant therapeutic benefits, its poor solubility in water requires the development of delivery systems aimed at improving the solubility and bioavailability of the drug. In this work, cryogels based on two natural products-agar and β-cyclodextrin (CD)-were developed and evaluated as a drug delivery system for ARZ. The cryogels were prepared by cryogenic treatment of aqueous solutions of agar and the β-CD/ARZ complex, followed by thawing. The main characteristics of the material, including gel fraction yield, swelling degree, pore volume, elastic properties, and morphology were studied in detail. The release of ARZ from composite cryogels was assessed in two media resembling the pH in stomach and intestine. The system exhibited a pH-dependent release of ARZ, with a slower rate in acidic media (pH 1.2) than in the neutral phosphate buffer (pH 6.8). Under in vitro conditions, the amount of released ARZ over 48 h reached 33%.
Collapse
Affiliation(s)
- Siyka Stoilova
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.S.); (G.L.G.)
| | - Georgy L. Georgiev
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.S.); (G.L.G.)
| | - Rositsa Mihaylova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria;
| | - Bistra Kostova
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.S.); (G.L.G.)
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (BioResources), 1000 Sofia, Bulgaria
| |
Collapse
|
4
|
Wang Y, Lin M, Fan T, Zhou M, Yin R, Wang X. Advances of Stimuli-Responsive Amphiphilic Copolymer Micelles in Tumor Therapy. Int J Nanomedicine 2025; 20:1-24. [PMID: 39776491 PMCID: PMC11700880 DOI: 10.2147/ijn.s495387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Amphiphilic copolymers are composed of both hydrophilic and hydrophobic chains, which can self-assemble into polymeric micelles in aqueous solution via the hydrophilic/hydrophobic interactions. Due to their unique properties, polymeric micelles have been widely used as drug carriers. Poorly soluble drugs can be covalently attached to polymer chains or non-covalently incorporated in the micelles, with improved pharmacokinetic profiles and enhanced efficacy. In recent years, stimuli-responsive amphiphilic copolymer micelles have attracted significant attention. These micelles can respond to specific stimuli, including physical triggers (light, temperature, etc). chemical stimuli (pH, redox, etc). and physiological factors (enzymes, ATP, etc). Under these stimuli, the structures or properties of the micelles can change, enabling targeted therapy and controlled drug release in tumors. These stimuli-responsive strategies offer new avenues and approaches to enhance the tumor efficacy and reduce drug side effects. We will review the applications of different types of stimuli-responsive amphiphilic copolymer micelles in tumor therapy, aiming to provide valuable guidance for future research directions and clinical translation.
Collapse
Affiliation(s)
- Yao Wang
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Meng Lin
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Tianfei Fan
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Minglu Zhou
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ruxi Yin
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xueyan Wang
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
5
|
Brettner FEB, Gier S, Haessler A, Schreiner J, Vogel-Kindgen S, Windbergs M. Anti-inflammatory effects of cyclodextrin nanoparticles enable macrophage repolarization and reduce inflammation. DISCOVER NANO 2024; 19:211. [PMID: 39707045 DOI: 10.1186/s11671-024-04175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Inflammation plays a critical role in the pathophysiology of many diseases, and dysregulation of the involved signaling cascades often culminates in uncontrollable disease progression and, ultimately, chronic manifestation. Addressing these disorders requires balancing inflammation control while preserving essential immune functions. Cyclodextrins (CDs), particularly β-CD, have gained attention as biocompatible biomaterials with intrinsic anti-inflammatory properties, and chemical modification of their backbone offers a promising strategy to enhance their physicochemical properties, adaptability, and therapeutic potential. This study evaluated and characterized the immunomodulatory effects of amphiphilic CD derivatives, which self-assemble into nanoparticles, compared to soluble parent β-CD. In a human macrophage model, CD nanoparticles demonstrated superior anti-inflammatory activity, with derivative-specific effects tied to their physicochemical properties, surpassing the soluble β-CD control. Alongside the downregulation of key pro-inflammatory markers, significant reductions in inflammasome activation and changes in lipid profiles were observed. The findings of this study underscore the potential of cyclodextrin-based nanoparticles as versatile biomaterials for treating the complex pathophysiology of various acute and chronic inflammation-associated disorders.
Collapse
Affiliation(s)
- Felix E B Brettner
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Stefanie Gier
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Annika Haessler
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Jonas Schreiner
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Li Q, Wang R, Han S, Shi N, Yang J, Ping C, Chai L, Wang R, Zheng B, Ren G, Zhang S. Design and Antimalarial Evaluation of Polydopamine-Modified Methyl Artelinate Nanoparticles. Mol Pharm 2024; 21:5551-5564. [PMID: 39378411 DOI: 10.1021/acs.molpharmaceut.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Targeted nanodrug delivery systems are highly anticipated for the treatment of malaria. It is known that Plasmodium can induce new permeability pathways (NPPs) on the membrane of infected red blood cells (iRBCs) for their nutrient uptake. The NPPs also enable the uptake of nanoparticles (NPs) smaller than 80 nm. Additionally, Plasmodium maintains a stable, slightly acidic, and reductive internal environment with higher glutathione (GSH) levels. Based on this knowledge, methyl artelinate (MA, a prodrug-like derivative of dihydroartemisinin) nanoparticles (MA-PCL-NPs) were developed using poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) by a thin-film dispersion method and were further coated with polydopamine (PDA) to obtain MA-PCL@PDA-NPs with a particle size of ∼30 nm. The biomaterial PDA can be degraded in slightly acidic and reductive environments, thereby serving as triggers for drug release. MA could generate reactive oxygen species and decrease GSH levels, consequently causing parasite damage. The in vitro release experiment results indicated that the cumulative release percentage of MA from MA-PCL@PDA-NPs was considerably higher in phosphate buffer with 10 mM GSH at pH 5.5 (88.10%) than in phosphate buffer without GSH at pH 7.4 (16.98%). The green fluorescence within iRBCs of coumarin 6, the probe of NPs (C6-PCL@PDA-NPs), could be reduced significantly after adding the NPP inhibitor furosemide (p < 0.001), which demonstrated that MA-PCL@PDA-NPs could be ingested into iRBCs through NPPs. In vivo antimalarial pharmacodynamics in Plasmodium berghei K173-bearing mice showed that the inhibition ratio of MA-PCL@PDA-NPs (93.96%) was significantly higher than that of commercial artesunate injection (AS-Inj, 63.33%). The above results showed that the developed MA-PCL@PDA-NPs possessed pH-GSH dual-responsive drug release characteristics and targeting efficacy for iRBCs, leading to higher antimalarial efficacy against Plasmodium.
Collapse
Affiliation(s)
- Qingxia Li
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Rongrong Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Shuqi Han
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Nan Shi
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jiaqi Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Canqi Ping
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Liqing Chai
- Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Ruili Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Bin Zheng
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
7
|
Yan M, Wu S, Wang Y, Liang M, Wang M, Hu W, Yu G, Mao Z, Huang F, Zhou J. Recent Progress of Supramolecular Chemotherapy Based on Host-Guest Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304249. [PMID: 37478832 DOI: 10.1002/adma.202304249] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Chemotherapy is widely recognized as an effective approach for treating cancer due to its ability to eliminate cancer cells using chemotherapeutic drugs. However, traditional chemotherapy suffers from various drawbacks, including limited solubility and stability of drugs, severe side effects, low bioavailability, drug resistance, and challenges in tracking treatment efficacy. These limitations greatly hinder its widespread clinical application. In contrast, supramolecular chemotherapy, which relies on host-guest interactions, presents a promising alternative by offering highly efficient and minimally toxic anticancer drug delivery. In this review, an overview of recent advancements in supramolecular chemotherapy based on host-guest interactions is provided. The significant role it plays in guiding cancer therapy is emphasized. Drawing on a wealth of cutting-edge research, herein, a timely and valuable resource for individuals interested in the field of supramolecular chemotherapy or cancer therapy, is presented. Furthermore, this review contributes to the progression of the field of supramolecular chemotherapy toward clinical application.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Sha Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
8
|
Mochizuki K, Mitova V, Makino K, Terada H, Takeuchi I, Troev K. pH-Sensitive Amphiphilic Diblock Polyphosphoesters with Lactate Units: Synthesis and Application as Drug Carriers. Int J Mol Sci 2024; 25:4518. [PMID: 38674103 PMCID: PMC11049995 DOI: 10.3390/ijms25084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
pH-sensitive amphiphilic diblock polyphosphoesters containing lactic acid units were synthesized by multistep one-pot polycondensation reactions. They comprise acid-labile P(O)-O-C and C(O)-O-C bonds, the cleavage of which depends on the pH of the medium. The structure of these copolymers was characterized by 1H, 13C {H}, 31P NMR, and size exclusion chromatography (SEC). The newly synthesized polymers self-assembled into the micellar structure in an aqueous solution. The effects of the molecular weight of the copolymer and the length of the hydrophobic chain on micelle formation and stabilityand micelle size were studied via dynamic light scattering (DLS). Drug loading and encapsulation efficiency tests using doxorubicin revealed that hydrophobic drugs can be delivered by copolymers. It was established that the molecular weight of the copolymer, length of the hydrophobic chain and content of lactate units affects the size of the micelles, drug loading, and efficiency of encapsulation. A copolymer with 10.7% lactate content has drug loading (3.2 ± 0.3) and efficiency of encapsulation (57.4 ± 3.2), compared to the same copolymer with 41.8% lactate content (1.63%) and (45.8%), respectively. It was demonstrated that the poly[alkylpoly(ethylene glycol) phosphate-b-alkylpoly(ethylene glycol)lactate phosphate] DOX system has a pH-sensitive response capability in the result in which DOX was selectively accumulated into the tumor, where pH is acidic. The results obtained indicate that amphiphilic diblock polyphosphoesters have potential as drug carriers.
Collapse
Affiliation(s)
- Kasumi Mochizuki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
| | - Violeta Mitova
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
| | - Hiroshi Terada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
| | - Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
- Faculty of Pharmaceutical Science, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Kolio Troev
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
9
|
Jawaharlal S, Subramanian S, Palanivel V, Devarajan G, Veerasamy V. Cyclodextrin-based nanosponges as promising carriers for active pharmaceutical ingredient. J Biochem Mol Toxicol 2024; 38:e23597. [PMID: 38037252 DOI: 10.1002/jbt.23597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Effective drug distribution at the intended or particular location is a critical issue that researchers are now dealing. Nanosponges have significantly increased in importance in medication delivery using nanotechnology in recent years. An important step toward solving these problems has been the development of nanosponges. Recently created and proposed for use in drug delivery, nanosponge is a unique type of hyper-crosslinked polymer-based colloidal structures made up of solid nanoparticles with colloidal carriers. Nanosponges are solid porous particles that may hold pharmaceuticals and other actives in their nanocavities. They can be made into dosage forms for oral, parenteral, topical, or inhalation use. The targeted distribution of drugs in a regulated manner is greatly aided by nanosponge. The utilization of nanosponges, their benefits, their production processes, the polymers they are made of, and their characterization have all been covered in this review article.
Collapse
Affiliation(s)
- Saranya Jawaharlal
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | | | - Venkatesan Palanivel
- Department of Pharmacy, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Geetha Devarajan
- Department of Physics, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Vinothkumar Veerasamy
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| |
Collapse
|
10
|
Singh S, Sharma K, Sharma H. Cyclodextrin Nanosponges: A Revolutionary Drug Delivery Strategy. Pharm Nanotechnol 2024; 12:300-313. [PMID: 37807414 DOI: 10.2174/0122117385273293230927081513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023]
Abstract
Nanosponges are porous solid cross-linked polymeric nanostructures. This study focuses on cyclodextrin-based nanosponges. Nanosponges based on cyclodextrin can form interactions with various lipophilic or hydrophilic compounds. The release of the entrapped molecules can be altered by altering the structure to obtain either a longer or faster release kinetics. The nanosponges might increase the aqueous solubility of weakly water-soluble compounds, develop long-lasting delivery systems, or construct novel drug carriers for nanomedicine. CD-NS (cyclodextrin-based nanosponges) are evolving as flexible and promising nanomaterials for medication administration, sensing, and environmental cleanup. CD-NS are three-dimensional porous structures of cyclodextrin molecules cross-linked by a suitable polymeric network, resulting in a large surface area. This overview covers CD-NS synthesis methods and applications.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh, 281406, India
| | - Khushi Sharma
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh, 281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University Mathura, Uttar Pradesh, 281406, India
| |
Collapse
|
11
|
Wu S, Yan M, Liang M, Yang W, Chen J, Zhou J. Supramolecular host-guest nanosystems for overcoming cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:805-827. [PMID: 38263983 PMCID: PMC10804391 DOI: 10.20517/cdr.2023.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 01/25/2024]
Abstract
Cancer drug resistance has become one of the main challenges for the failure of chemotherapy, greatly limiting the selection and use of anticancer drugs and dashing the hopes of cancer patients. The emergence of supramolecular host-guest nanosystems has brought the field of supramolecular chemistry into the nanoworld, providing a potential solution to this challenge. Compared with conventional chemotherapeutic platforms, supramolecular host-guest nanosystems can reverse cancer drug resistance by increasing drug uptake, reducing drug efflux, activating drugs, and inhibiting DNA repair. Herein, we summarize the research progress of supramolecular host-guest nanosystems for overcoming cancer drug resistance and discuss the future research direction in this field. It is hoped that this review will provide more positive references for overcoming cancer drug resistance and promoting the development of supramolecular host-guest nanosystems.
Collapse
Affiliation(s)
- Sha Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Wenzhi Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
12
|
Lu Q. Bioresponsive and multifunctional cyclodextrin-based non-viral nanocomplexes in cancer therapy: Building foundations for gene and drug delivery, immunotherapy and bioimaging. ENVIRONMENTAL RESEARCH 2023; 234:116507. [PMID: 37364628 DOI: 10.1016/j.envres.2023.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The interest towards application of nanomaterials in field of cancer therapy is that the drawbacks of conventional therapies including chemoresistance, radio-resistance and lack of specific targeting of tumor cells can be solved by nanotechnology. Cyclodextrins (CDs) are amphiphilic cyclic oligosaccharides that can be present in three forms of α-, β- and γ-CDs, and they can be synthesized from natural sources. The application of CDs in cancer shows an increasing trend due to benefits of these nanocomplexes in improving solubility and bioavailability of current bioactives and therapeutics for cancer. CDs are widely utilized in delivery of drugs and genes in cancer therapy, and by targeted delivery of these therapeutics into target site, they improve anti-proliferative and anti-cancer potential. The blood circulation time and tumor site accumulation of therapeutics can be improved using CD-based nanostructures. More importantly, the stimuli-responsive types of CDs including pH-, redox- and light-sensitive types can accelerate release of bioactive compound at tumor site. Interestingly, the CDs are able to mediate photothermal and photodynamic impact in impairing tumorigenesis in cancer, enhancing cell death and improving response to chemotherapy. In improving the targeting ability of CDs, their surface functionalization with ligands has been conducted. Moreover, CDs can be modified with green products such as chitosan and fucoidan, and they can be embedded in green-based nanostructures to suppress tumorigenesis. The internalization of CDs into tumor cells can occur through endocytosis and this can be clethrin-, caveolae- or receptor-mediated endocytosis. Furthermore, CDs are promising candidates in bioimaging, cancer cell and organelle imaging as well as isolating tumor cells. The main benefits of using CDs in cancer therapy including sustained and low release of drugs and genes, targeted delivery, bioresponsive release of cargo, ease of surface functionalization and complexation with other nanostructures. The application of CDs in overcoming drug resistance requires more investigation.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
13
|
Huang R, Fan D, Cheng H, Huo J, Wang S, He H, Zhang G. Multi-Site Attack, Neutrophil Membrane-Camouflaged Nanomedicine with High Drug Loading for Enhanced Cancer Therapy and Metastasis Inhibition. Int J Nanomedicine 2023; 18:3359-3375. [PMID: 37361388 PMCID: PMC10290460 DOI: 10.2147/ijn.s415139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Background Advanced breast cancer is a highly metastatic tumor with high mortality. Simultaneous elimination of primary tumor and inhibition of neutrophil-circulation tumor cells (CTCs) cluster formation are urgent issues for cancer therapy. Unfortunately, the drug delivery efficiency to tumors and anti-metastasis efficacy of nanomedicine are far from satisfactory. Methods To address these problems, we designed a multi-site attack, neutrophil membrane-camouflaged nanoplatform encapsulating hypoxia-responsive dimeric prodrug hQ-MMAE2 (hQNM-PLGA) for enhanced cancer and anti-metastasis therapy. Results Encouraged by the natural tendency of neutrophils to inflammatory tumor sites, hQNM-PLGA nanoparticles (NPs) could target delivery of drug to tumor, and the acute hypoxic environment of advanced 4T1 breast tumor promoted hQ-MMAE2 degradation to release MMAE, thus eliminating the primary tumor cells to achieve remarkable anticancer efficacy. Alternatively, NM-PLGA NPs inherited the similar adhesion proteins of neutrophils so that NPs could compete with neutrophils to interrupt the formation of neutrophil-CTC clusters, leading to a reduction in extravasation of CTCs and inhibition of tumor metastasis. The in vivo results further revealed that hQNM-PLGA NPs possessed a perfect safety and ability to inhibit tumor growth and spontaneous lung metastasis. Conclusion This study demonstrates the multi-site attack strategy provides a prospective avenue with the potential to improve anticancer and anti-metastasis therapeutic efficacy.
Collapse
Affiliation(s)
- Ran Huang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Daopeng Fan
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Hanghang Cheng
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Jian Huo
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Shuqi Wang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Hua He
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Gaiping Zhang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
- Longhu Laboratory, Zhengzhou, 450046, People’s Republic of China
| |
Collapse
|
14
|
Xing C, Zheng X, Deng T, Zeng L, Liu X, Chi X. The Role of Cyclodextrin in the Construction of Nanoplatforms: From Structure, Function and Application Perspectives. Pharmaceutics 2023; 15:pharmaceutics15051536. [PMID: 37242778 DOI: 10.3390/pharmaceutics15051536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclodextrins (CyDs) in nano drug delivery systems have received much attention in pursuit of good compatibility, negligible toxicity, and improved pharmacokinetics of drugs. Their unique internal cavity has widened the application of CyDs in drug delivery based on its advantages. Besides this, the polyhydroxy structure has further extended the functions of CyDs by inter- and intramolecular interactions and chemical modification. Furthermore, the versatile functions of the complex contribute to alteration of the physicochemical characteristics of the drugs, significant therapeutic promise, a stimulus-responsive switch, a self-assembly capability, and fiber formation. This review attempts to list recent interesting strategies regarding CyDs and discusses their roles in nanoplatforms, and may act as a guideline for developing novel nanoplatforms. Future perspectives on the construction of CyD-based nanoplatforms are also discussed at the end of this review, which may provide possible direction for the construction of more rational and cost-effective delivery vehicles.
Collapse
Affiliation(s)
- Chengyuan Xing
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoming Zheng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tian Deng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ling Zeng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xin Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xinjin Chi
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
15
|
Komiyama M. Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:218-232. [PMID: 36793325 PMCID: PMC9924364 DOI: 10.3762/bjnano.14.21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Cyclodextrins have been widely employed for drug delivery systems (DDSs) in which drugs are selectively delivered to a target site in the body. Recent interest has been focused on the construction of cyclodextrin-based nanoarchitectures that show sophisticated DDS functions. These nanoarchitectures are precisely fabricated based on three important features of cyclodextrins, namely (1) the preorganized three-dimensional molecular structure of nanometer size, (2) the easy chemical modification to introduce functional groups, and (3) the formation of dynamic inclusion complexes with various guests in water. With the use of photoirradiation, drugs are released from cyclodextrin-based nanoarchitectures at designated timing. Alternatively, therapeutic nucleic acids are stably protected in the nanoarchitectures and delivered to the target site. The efficient delivery of the CRISPR-Cas9 system for gene editing was also successful. Even more complicated nanoarchitectures can be designed for sophisticated DDSs. Cyclodextrin-based nanoarchitectures are highly promising for future applications in medicine, pharmaceutics, and other relevant fields.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
16
|
Vyas K, Rathod M, Patel MM. Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 49:102662. [PMID: 36746272 DOI: 10.1016/j.nano.2023.102662] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Oral cancer is a type of cancer that develops in the mouth and is one of the deadliest malignancies in the world. Currently surgical, radiation therapy, and chemotherapy are most common treatments. Better treatment and early detection strategies are required. Chemotherapeutic drugs fail frequently due to toxicity and poor tumor targeting. There are high chances of failure of chemotherapeutic drugs due to toxicity. Active, passive, and immunity-targeting techniques are devised for tumor-specific activity. Nanotechnology-based drug delivery systems are the best available solution and important for precise targeting. Nanoparticles, liposomes, exosomes, and cyclodextrins are nano-based carriers for drug delivery. Nanotechnology is being used to develop new techniques such as intratumoral injections, microbubble mediated ultrasonic therapy, phototherapies, and site-specific delivery. This systematic review delves into the details of such targeted and nano-based drug delivery systems in order to improve patient health and survival rates in oral cancer.
Collapse
Affiliation(s)
- Kunj Vyas
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Maharshsinh Rathod
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
17
|
Shukla A, Maiti P. Nanomedicine and versatile therapies for cancer treatment. MedComm (Beijing) 2022; 3:e163. [PMID: 35992969 PMCID: PMC9386439 DOI: 10.1002/mco2.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022] Open
Abstract
The higher prevalence of cancer is related to high rates of mortality and morbidity worldwide. By virtue of the properties of matter at the nanoscale, nanomedicine is proven to be a powerful tool to develop innovative drug carriers with greater efficacies and fewer side effects than conventional therapies. In this review, different nanocarriers for controlled drug release and their routes of administration have been discussed in detail, especially for cancer treatment. Special emphasis has been given on the design of drug delivery vehicles for sustained release and specific application methods for targeted delivery to the affected areas. Different polymeric vehicles designed for the delivery of chemotherapeutics have been discussed, including graft copolymers, liposomes, hydrogels, dendrimers, micelles, and nanoparticles. Furthermore, the effect of dimensional properties on chemotherapy is vividly described. Another integral section of the review focuses on the modes of administration of nanomedicines and emerging therapies, such as photothermal, photodynamic, immunotherapy, chemodynamic, and gas therapy, for cancer treatment. The properties, therapeutic value, advantages, and limitations of these nanomedicines are highlighted, with a focus on their increased performance versus conventional molecular anticancer therapies.
Collapse
Affiliation(s)
- Aparna Shukla
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pralay Maiti
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
18
|
Velhal K, Barage S, Roy A, Lakkakula J, Yamgar R, Alqahtani MS, Yadav KK, Ahn Y, Jeon BH. A Promising Review on Cyclodextrin Conjugated Paclitaxel Nanoparticles for Cancer Treatment. Polymers (Basel) 2022; 14:polym14153162. [PMID: 35956677 PMCID: PMC9370985 DOI: 10.3390/polym14153162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 01/22/2023] Open
Abstract
This review presented the unique characteristics of different types of cyclodextrin polymers by non-covalent host–guest interactions to synthesize an inclusion complex. Various cancers are treated with different types of modified cyclodextrins, along with the anticancer drug paclitaxel. PTX acts as a mitotic inhibitor, but due to its low dissolution and permeability in aqueous solutions, it causes considerable challenges for drug delivery system (DDS) designs. To enhance the solubility, it is reformulated with derivatives of cyclodextrins using freeze-drying and co-solvent lyophilization methods. The present supramolecular assemblies involve cyclodextrin as a key mediator, which is encapsulated with paclitaxel and their controlled release at the targeted area is highlighted using different DDS. In addition, the application of cyclodextrins in cancer treatment, which reduces the off-target effects, is briefly demonstrated using various types of cancer cell lines. A new nano-formulation of PTX is used to improve the antitumor activity compared to normal PTX DDS in lungs and breast cancer is well defined in the present review.
Collapse
Affiliation(s)
- Kamini Velhal
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai 410206, India; (K.V.); (S.B.)
| | - Sagar Barage
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai 410206, India; (K.V.); (S.B.)
- Centre for Computational Biology and Translational Research, Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai 410206, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India;
| | - Jaya Lakkakula
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai 410206, India; (K.V.); (S.B.)
- Centre for Computational Biology and Translational Research, Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai 410206, India
- Correspondence: (J.L.); (B.-H.J.)
| | - Ramesh Yamgar
- Department of Chemistry, Chikitsak Samuha’s Patkar-Varde College of Arts, Science and Commerce, Goregaon (West), Mumbai 400104, India;
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India;
| | - Yongtae Ahn
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
- Correspondence: (J.L.); (B.-H.J.)
| |
Collapse
|
19
|
Tarannum N, Kumar D, Kumar N. β‐Cyclodextrin‐Based Nanocomposite Derivatives: State of the Art in Synthesis, Characterization and Application in Molecular Recognition. ChemistrySelect 2022. [DOI: 10.1002/slct.202200140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry Chaudhary Charan Singh University Meerut 250004 India
| | - Deepak Kumar
- Department of Chemistry Chaudhary Charan Singh University Meerut 250004 India
| | - Nitin Kumar
- Department of Chemistry Chaudhary Charan Singh University Meerut 250004 India
| |
Collapse
|
20
|
Zhang CW, Zhang JG, Yang X, Du WL, Yu ZL, Lv ZY, Mou XZ. Carbohydrates based stimulus responsive nanocarriers for cancer-targeted chemotherapy: A review of current practices. Expert Opin Drug Deliv 2022; 19:623-640. [PMID: 35611662 DOI: 10.1080/17425247.2022.2081320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Many nanocarriers have been developed to react physicochemically to exterior stimuli like ultrasonic, light, heat, and magnetic fields, along with various internal stimuli including pH, hypoxia, enzyme, and redox potential. Nanocarriers are capable to respond various stimuli within the cancer cells to enable on-demand drug delivery, activation of bioactive compounds, controlled drug release, and targeting ligands, as well as size, charge, and conformation conversion, enabling sensing and signaling, overcoming multidrug resistance, accurate diagnosis, and precision therapy. AREAS COVERED Carbohydrates are ubiquitous biomolecules with a high proclivity for supramolecular network formation. Numerous carbohydrate-based nanomaterials have been used in biological solicitations and stimuli-based responses. Particular emphasis has been placed on the utilization of carbohydrate-based NPs and nanogels in various fields including imaging, drug administration, and tissue engineering. Because the assembly process is irreversible, carbohydrate-based systems are excellent ingredients for the development of stimulus-responsive nanocarriers for cancer-targeted chemotherapy. This review aims to summarise current research on carbohydrate-based nanomaterials, with an emphasis on stimuli-sensitive nanocarriers for cancer-targeted chemotherapy. EXPERT OPINION Carbohydrates-based stimulus-responsive nanomaterials have been proved highly efficient for targeted delivery of anticancer drugs, thus leading to effective chemotherapy with minimum off-target effects.
Collapse
Affiliation(s)
- Cheng-Wu Zhang
- General Surgery, Cancer Center, Department of hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Jun-Gang Zhang
- General Surgery, Cancer Center, Department of hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Xue Yang
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Wen-Lin Du
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Zi-Lin Yu
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Zhen-Ye Lv
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China.,Department of General Surgery, Zhoushan Dinghai Central Hospital, Zhoushan, Zhejiang, China
| | - Xiao-Zhou Mou
- General Surgery, Cancer Center, Department of hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China.,Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Scalable Manufacture of Curcumin-Loaded Chitosan Nanocomplex for pH-Responsive Delivery by Coordination-Driven Flash Nanocomplexation. Polymers (Basel) 2022; 14:polym14112133. [PMID: 35683806 PMCID: PMC9182672 DOI: 10.3390/polym14112133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Metal coordination-driven nanocomplexes are known to be responsive to physiologically relevant stimuli such as pH, redox, temperature or light, making them well-suited for antitumor drug delivery. The ever-growing demand for such nanocomplexes necessitates the design of a scalable approach for their production. In this study, we demonstrate a novel coordination self-assembly strategy, termed flash nanocomplexation (FNC), which is rapid and efficient for the fabrication of drug-loaded nanoparticles (NPs) in a continuous manner. Based on this strategy, biocompatible chitosan (CS) and Cu2+ can be regarded anchors to moor the antitumor drug (curcumin, Cur) through coordination, resulting in curcumin-loaded chitosan nanocomplex (Cur-loaded CS nanocomplex) with a narrow size distribution (PDI < 0.124) and high drug loading (up to 41.75%). Owing to the excellent stability of Cur-loaded CS nanocomplex at neutral conditions (>50 days), premature Cur leakage was limited to lower than 1.5%, and pH-responsive drug release behavior was realized in acidic tumor microenvironments. An upscaled manufacture of Cur-loaded CS nanocomplex is demonstrated with continuous FNC, which shows an unprecedented method toward practical applications of nanomedicine for tumor therapy. Furthermore, intracellular uptake study and cytotoxicity experiments toward H1299 cells demonstrates the satisfied anticancer efficacy of the Cur-loaded CS nanocomplex. These results confirm that coordination-driven FNC is an effective method that enables the rapid and scalable fabrication of antitumor drugs.
Collapse
|
22
|
Xu M, Zha H, Han R, Cheng Y, Chen J, Yue L, Wang R, Zheng Y. Cyclodextrin-Derived ROS-Generating Nanomedicine with pH-Modulated Degradability to Enhance Tumor Ferroptosis Therapy and Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200330. [PMID: 35451223 DOI: 10.1002/smll.202200330] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, destruction of redox homeostasis to induce cancer cell death is an emerging anti-cancer strategy. Here, the authors utilized pH-sensitive acetalated β-cyclodextrin (Ac-β-CD) to efficiently deliver dihydroartemisinin (DHA) for tumor ferroptosis therapy and chemodynamic therapy in a synergistic manner. The Ac-β-CD-DHA based nanoparticles are coated by an iron-containing polyphenol network. In response to the tumor microenvironment, Fe2+ /Fe3+ can consume glutathione (GSH) and trigger the Fenton reaction in the presence of hydrogen peroxide (H2 O2 ), leading to the generation of lethal reactive oxygen species (ROS). Meanwhile, the OO bridge bonds of DHA are also disintegrated to enable ferroptosis of cancer cells. Their results demonstrate that these nanoparticles acted as a ROS generator to break the redox balance of cancer cells, showing an effective anticancer efficacy, which is different from traditional approaches.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Haidong Zha
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Run Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yaxin Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Jiamao Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Ludan Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- MoE Frontiers Science Center of Precision Oncology, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- MoE Frontiers Science Center of Precision Oncology, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|
23
|
Feng Q, Li D, Li Q, Li S, Huang H, Li H, Dong H, Cao X. Dynamic Nanocomposite Microgel Assembly with Microporosity, Injectability, Tissue-Adhesion, and Sustained Drug Release Promotes Articular Cartilage Repair and Regeneration. Adv Healthc Mater 2022; 11:e2102395. [PMID: 34874119 DOI: 10.1002/adhm.202102395] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/22/2022]
Abstract
Owing to the lack of blood vessels, nerves, and lymph, articular cartilage defect is difficult to self-repair. Although several cartilage tissue engineering products have been authorized for clinical use, there are still some problems such as large surgical wounds, weak adhesion with the host tissue, and the limited source of autologous chondrocytes. In this paper, a novel dynamic nanocomposite microgel assembly with excellent microporosity, injectability, tissue-adhesion, and sustained kartogenin (KGN) release is reported. Specifically, KGN-loaded cyclodextrin nanoparticles are synthesized through nanoemulsification and incorporated into bone marrow mesenchymal stem cell (BMSCs)-laden microgels via droplet-based microfluidics and photo-crosslinking, which are then bottom-up assembled via dynamic crosslinking between dopamine-modified hyaluronic acid and phenylboronic acid groups on microgel surface. Results reveal that the microgel assembly can avoid the cell endocytosis of nanoparticles, ensure the high BMSC viability during the regular cell culture, cryopreservation and injection process, promote the chondrogenic differentiation of BMSCs. In addition, animal expriment proves the newborn cartilages present the typical characteristics of articular cartilage. In brief, this microgel assembly not only offers convenience for clinical use (injectability, tissue adhesion) but also provides good microenvironments for chondrogenesis (controlled drug release, interconnected micropores), indicative of its promising application for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Qi Feng
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| | - Dingguo Li
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| | - Qingtao Li
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| | - Shuxian Li
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| | - Hanhao Huang
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| | - Haofei Li
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| | - Hua Dong
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| | - Xiaodong Cao
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| |
Collapse
|
24
|
Paclitaxel Drug Delivery Systems: Focus on Nanocrystals' Surface Modifications. Polymers (Basel) 2022; 14:polym14040658. [PMID: 35215570 PMCID: PMC8875890 DOI: 10.3390/polym14040658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutic agent that belongs to the taxane family and which was approved to treat various kinds of cancers including breast cancer, ovarian cancer, advanced non-small-cell lung cancer, and acquired immunodeficiency syndrome (AIDS)-related Kaposi’s sarcoma. Several delivery systems for PTX have been developed to enhance its solubility and pharmacological properties involving liposomes, nanoparticles, microparticles, micelles, cosolvent methods, and the complexation with cyclodextrins and other materials that are summarized in this article. Specifically, this review discusses deeply the developed paclitaxel nanocrystal formulations. As PTX is a hydrophobic drug with inferior water solubility properties, which are improved a lot by nanocrystal formulation. Based on that, many studies employed nano-crystallization techniques not only to improve the oral delivery of PTX, but IV, intraperitoneal (IP), and local and intertumoral delivery systems were also developed. Additionally, superior and interesting properties of PTX NCs were achieved by performing additional modifications to the NCs, such as stabilization with surfactants and coating with polymers. This review summarizes these delivery systems by shedding light on their route of administration, the methods used in the preparation and modifications, the in vitro or in vivo models used, and the advantages obtained based on the developed formulations.
Collapse
|
25
|
Xu Z, Yang D, Long T, Yuan L, Qiu S, Li D, Mu C, Ge L. pH-Sensitive nanoparticles based on amphiphilic imidazole/cholesterol modified hydroxyethyl starch for tumor chemotherapy. Carbohydr Polym 2022; 277:118827. [PMID: 34893244 DOI: 10.1016/j.carbpol.2021.118827] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
pH-Responsive nanoparticles (NPs) have emerged as an effective antitumor drug delivery system, promoting the drugs accumulation in the tumor and selectively releasing drugs in tumoral acidic microenvironment. Herein, we developed a new amphiphilic modified hydroxyethyl starch (HES) based pH-sensitive nanocarrier of antitumor drug delivery. HES was first modified by hydrophilic imidazole and hydrophobic cholesterol to obtain an amphiphilic polymer (IHC). Then IHC can self-assemble to encapsulate doxorubicin (DOX) and form doxorubicin-loaded nanoparticles (DOX/IHC NPs), which displayed good stability for one week storage and acidic sensitive long-term sustained release of DOX. As a result, cancer cell endocytosed DOX/IHC NPs could continuously release doxorubicin into cytoplasm and nucleus to effectively kill cancer cells. Additionally, DOX/IHC NPs could be effectively enriched in the tumor tissue, showing enhanced tumor growth inhibition effect compared to free doxorubicin. Overall, our amphiphilic modified HES-based NPs possess a great potential as drug delivery system for cancer chemotherapy.
Collapse
Affiliation(s)
- Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Die Yang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Tao Long
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Lun Yuan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Shi Qiu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610065, PR China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
26
|
Mao W, Wang S, Mao D, Liu Y, Li L, Ma D. Supramolecular complexation with kinetic stabilization: cucurbit[6]uril encapsulated doxorubicin-based prodrugs for pH-responsive controlled release. NEW J CHEM 2022. [DOI: 10.1039/d1nj06237a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Kinetically-stabilized host–guest complexation for the construction of a pH-responsive drug delivery system.
Collapse
Affiliation(s)
- Weipeng Mao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Jiaojiang, Zhejiang 318000, China
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Shuyi Wang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Dake Mao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yamin Liu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Libai Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Da Ma
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Jiaojiang, Zhejiang 318000, China
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|
27
|
Ailioaie LM, Ailioaie C, Litscher G. Latest Innovations and Nanotechnologies with Curcumin as a Nature-Inspired Photosensitizer Applied in the Photodynamic Therapy of Cancer. Pharmaceutics 2021; 13:1562. [PMID: 34683855 PMCID: PMC8539945 DOI: 10.3390/pharmaceutics13101562] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
In the context of the high incidence of cancer worldwide, state-of-the-art photodynamic therapy (PDT) has entered as a usual protocol of attempting to eradicate cancer as a minimally invasive procedure, along with pharmacological resources and radiation therapy. The photosensitizer (PS) excited at certain wavelengths of the applied light source, in the presence of oxygen releases several free radicals and various oxidation products with high cytotoxic potential, which will lead to cell death in irradiated cancerous tissues. Current research focuses on the potential of natural products as a superior generation of photosensitizers, which through the latest nanotechnologies target tumors better, are less toxic to neighboring tissues, but at the same time, have improved light absorption for the more aggressive and widespread forms of cancer. Curcumin incorporated into nanotechnologies has a higher intracellular absorption, a higher targeting rate, increased toxicity to tumor cells, accelerates the activity of caspases and DNA cleavage, decreases the mitochondrial activity of cancer cells, decreases their viability and proliferation, decreases angiogenesis, and finally induces apoptosis. It reduces the size of the primary tumor, reverses multidrug resistance in chemotherapy and decreases resistance to radiation therapy in neoplasms. Current research has shown that the use of PDT and nanoformulations of curcumin has a modulating effect on ROS generation, so light or laser irradiation will lead to excessive ROS growth, while nanocurcumin will reduce the activation of ROS-producing enzymes or will determine the quick removal of ROS, seemingly opposite but synergistic phenomena by inducing neoplasm apoptosis, but at the same time, accelerating the repair of nearby tissue. The latest curcumin nanoformulations have a huge potential to optimize PDT, to overcome major side effects, resistance to chemotherapy, relapses and metastases. All the studies reviewed and presented revealed great potential for the applicability of nanoformulations of curcumin and PDT in cancer therapy.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Gerhard Litscher
- President of ISLA (International Society for Medical Laser Applications), Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
28
|
Chitosan coordination driven self-assembly for effective delivery of curcumin. Int J Biol Macromol 2020; 165:2267-2274. [PMID: 33098899 DOI: 10.1016/j.ijbiomac.2020.10.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Self-assembly of metal-ligand coordination is of immense scientific interest in supramolecular construction of functional materials duo to their desirable functional properties. Herein, we investigated a designable coordination driven self-assembly to simultaneously enhance the water solubility and biological stability of curcumin (Cur). On the basis of amino group in chitosan (CS), it was chosen as the high-affinity anchors for coordination nanocomplexes, in which Cur were incorporated into the amino group by coordination bonding, forming a CS-metal-Cur architecture. The sizes of these nanocomplexes can be tuned by the feed concentrations of CS as well as the kind of metal ions. Time dependent absorption spectral measurements demonstrated the significant increase in hydrolytic stability of Cur after forming nanoparticles (NPs) especially for the CS-Cu-Cur NPs. Particularly, the formed CS-metal-Cur NPs can be efficiently triggered by pH, which was stable under physiological conditions while releasing encapsulated drugs under low pH conditions in a sustained manner. Based on cellular uptake study and cytotoxicity experiments, CS-metal-Cur NPs were shown to possess highly efficient internalization and an apparent cytotoxic effect. The high drug-loading capacities and responses to pH value, substantially enhanced antitumor activity of Cur provided this nanocomplex with promising properties for biomimetic and biomedical applications.
Collapse
|
29
|
Zhuo S, Zhang F, Yu J, Zhang X, Yang G, Liu X. pH-Sensitive Biomaterials for Drug Delivery. Molecules 2020; 25:E5649. [PMID: 33266162 PMCID: PMC7730929 DOI: 10.3390/molecules25235649] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
The development of precise and personalized medicine requires novel formulation strategies to deliver the therapeutic payloads to the pathological tissues, producing enhanced therapeutic outcome and reduced side effects. As many diseased tissues are feathered with acidic characteristics microenvironment, pH-sensitive biomaterials for drug delivery present great promise for the purpose, which could protect the therapeutic payloads from metabolism and degradation during in vivo circulation and exhibit responsive release of the therapeutics triggered by the acidic pathological tissues, especially for cancer treatment. In the past decades, many methodologies, such as acidic cleavage linkage, have been applied for fabrication of pH-responsive materials for both in vitro and in vivo applications. In this review, we will summarize some pH-sensitive drug delivery system for medical application, mainly focusing on the pH-sensitive linkage bonds and pH-sensitive biomaterials.
Collapse
Affiliation(s)
- Shijie Zhuo
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.Z.); (F.Z.); (J.Y.)
| | - Feng Zhang
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.Z.); (F.Z.); (J.Y.)
| | - Junyu Yu
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.Z.); (F.Z.); (J.Y.)
| | - Xican Zhang
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.Z.); (F.Z.); (J.Y.)
| | - Guangbao Yang
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China;
| | - Xiaowen Liu
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China; (S.Z.); (F.Z.); (J.Y.)
| |
Collapse
|
30
|
Chen S, Song Z, Feng R. Recent Development of Copolymeric Nano-Drug Delivery System for Paclitaxel. Anticancer Agents Med Chem 2020; 20:2169-2189. [PMID: 32682385 DOI: 10.2174/1871520620666200719001038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
Background:
Paclitaxel (PTX) has been clinically used for several years due to its good therapeutic
effect against cancers. Its poor water-solubility, non-selectivity, high cytotoxicity to normal tissue and worse
pharmacokinetic property limit its clinical application.
Objective:
To review the recent progress on the PTX delivery systems.
Methods:
In recent years, the copolymeric nano-drug delivery systems for PTX are broadly studied. It mainly
includes micelles, nanoparticles, liposomes, complexes, prodrugs and hydrogels, etc. They were developed or
further modified with target molecules to investigate the release behavior, targeting to tissues, pharmacokinetic
property, anticancer activities and bio-safety of PTX. In the review, we will describe and discuss the recent
progress on the nano-drug delivery system for PTX since 2011.
Results:
The water-solubility, selective delivery to cancers, tissue toxicity, controlled release and pharmacokinetic
property of PTX are improved by its encapsulation into the nano-drug delivery systems. In addition, its
activities against cancer are also comparable or high when compared with the commercial formulation.
Conclusion:
Encapsulating PTX into nano-drug carriers should be helpful to reduce its toxicity to human, keeping
or enhancing its activity and improving its pharmacokinetic property.
Collapse
Affiliation(s)
- Shiyu Chen
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Runliang Feng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| |
Collapse
|
31
|
Siamof CM, Goel S, Cai W. Moving Beyond the Pillars of Cancer Treatment: Perspectives From Nanotechnology. Front Chem 2020; 8:598100. [PMID: 33240859 PMCID: PMC7683771 DOI: 10.3389/fchem.2020.598100] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has made a significant impact on basic and clinical cancer research over the past two decades. Owing to multidisciplinary advances, cancer nanotechnology aims to address the problems in current cancer treatment paradigms, with the ultimate goal to improve treatment efficacy, increase patient survival, and decrease toxic side-effects. The potential for use of nanomedicine in cancer targeting and therapy has grown, and is now used to advance the four traditional pillars of cancer treatment: surgery, chemotherapy, radiation therapy and the newest pillar, immunotherapy. In this review we provide an overview of notable advances of nanomedicine in improving drug delivery, radiation therapy and immunotherapy. Potential barriers in the translation of nanomedicine from bench to bedside as well as strategies to overcome these barriers are also discussed. Promising preclinical findings highlight the translational and clinical potential of integrating nanotechnology approaches into cancer care.
Collapse
Affiliation(s)
- Cerise M. Siamof
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Shreya Goel
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
32
|
Dou Y, Li C, Li L, Guo J, Zhang J. Bioresponsive drug delivery systems for the treatment of inflammatory diseases. J Control Release 2020; 327:641-666. [PMID: 32911014 PMCID: PMC7476894 DOI: 10.1016/j.jconrel.2020.09.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is intimately related to the pathogenesis of numerous acute and chronic diseases like cardiovascular disease, inflammatory bowel disease, rheumatoid arthritis, and neurodegenerative diseases. Therefore anti-inflammatory therapy is a very promising strategy for the prevention and treatment of these inflammatory diseases. To overcome the shortcomings of existing anti-inflammatory agents and their traditional formulations, such as nonspecific tissue distribution and uncontrolled drug release, bioresponsive drug delivery systems have received much attention in recent years. In this review, we first provide a brief introduction of the pathogenesis of inflammation, with an emphasis on representative inflammatory cells and mediators in inflammatory microenvironments that serve as pathological fundamentals for rational design of bioresponsive carriers. Then we discuss different materials and delivery systems responsive to inflammation-associated biochemical signals, such as pH, reactive oxygen species, and specific enzymes. Also, applications of various bioresponsive drug delivery systems in the treatment of typical acute and chronic inflammatory diseases are described. Finally, crucial challenges in the future development and clinical translation of bioresponsive anti-inflammatory drug delivery systems are highlighted.
Collapse
Affiliation(s)
- Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiawei Guo
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
33
|
Ding Q, Cui J, Shen H, He C, Wang X, Shen SGF, Lin K. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1669. [PMID: 33090719 DOI: 10.1002/wnan.1669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Using bioactive nanomaterials in clinical treatment has been widely aroused. Nanomaterials provide substantial improvements in the prevention and treatment of oral and maxillofacial diseases. This review aims to discuss new progresses in nanomaterials applied to oral and maxillofacial tissue regeneration and disease treatment, focusing on the use of nanomaterials in improving the quality of oral and maxillofacial healthcare, and discuss the perspectives of research in this arena. Details are provided on the tissue regeneration, wound healing, angiogenesis, remineralization, antitumor, and antibacterial regulation properties of nanomaterials including polymers, micelles, dendrimers, liposomes, nanocapsules, nanoparticles and nanostructured scaffolds, etc. Clinical applications of nanomaterials as nanocomposites, dental implants, mouthwashes, biomimetic dental materials, and factors that may interact with nanomaterials behaviors and bioactivities in oral cavity are addressed as well. In the last section, the clinical safety concerns of their usage as dental materials are updated, and the key knowledge gaps for future research with some recommendation are discussed. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qinfeng Ding
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hangqi Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Steve G F Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
34
|
Taheri-Ledari R, Zhang W, Radmanesh M, Mirmohammadi SS, Maleki A, Cathcart N, Kitaev V. Multi-Stimuli Nanocomposite Therapeutic: Docetaxel Targeted Delivery and Synergies in Treatment of Human Breast Cancer Tumor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002733. [PMID: 32945130 DOI: 10.1002/smll.202002733] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/12/2020] [Indexed: 02/05/2023]
Abstract
A versatile breast cancer-targeting nanocomposite therapeutic combining docetaxel (DXL), polyvinyl alcohol (PVA) network for controlled release, and silica-protected magnetic iron oxide nanoparticles (Fe3 O4 NPs) for targeted delivery and gold nanoparticles (AuNPs) for plasmonic photothermal therapy (PPTT) is presented in this work. First, the designed nanocomposite is magnetically directed for cancer-targeted therapy confirmed by computerized tomography (CT) scans. Second, 10% DXL by mass is loaded into PVA, a pH and temperature responsive gel, for controlled release. Third, PPTT is confirmed with Au/Fe3 O4 /PVA-10%DXL using a prototype circulation system and then for tumor treatment in vivo; Au/Fe3 O4 /PVA-10%DXL is conveniently directed and the entrapped DXL is selectively released (≈96%) via the interaction of green and near-infrared (NIR) light with the localized surface plasmon resonance of AuNPs. A 75% cell death is reported from in vitro studies with DXL doses as low as 20 µg mL-1 of Au/Fe3 O4 /PVA-10%DXL, and a 70% tumor growth inhibition is demonstrated by in vivo experiments with the biosafety studies confirming minimal side effects to other organs. Overall, the developed Au/Fe3 O4 /PVA-10%DXL has a strong potential to simultaneously enhance CT imaging contrast together with the targeted delivery of DXL.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan Province, 610041, P. R. China
| | - Maral Radmanesh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Seyedeh Shadi Mirmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Nicole Cathcart
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, N2L 3C5, Canada
| | - Vladimir Kitaev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, N2L 3C5, Canada
| |
Collapse
|
35
|
Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020; 12:pharmaceutics12060510. [PMID: 32503171 PMCID: PMC7356945 DOI: 10.3390/pharmaceutics12060510] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Within recent decades, the development of nanotechnology has made a significant contribution to the progress of various fields of study, including the domains of medical and pharmaceutical sciences. A substantially transformed arena within the context of the latter is the development and production of various injectable parenteral formulations. Indeed, recent decades have witnessed a rapid growth of the marketed and pipeline nanotechnology-based injectable products, which is a testimony to the remarkability of the aforementioned contribution. Adjunct to the ability of nanomaterials to deliver the incorporated payloads to many different targets of interest, nanotechnology has substantially assisted to the development of many further facets of the art. Such contributions include the enhancement of the drug solubility, development of long-acting locally and systemically injectable formulations, tuning the onset of the drug’s release through the endowment of sensitivity to various internal or external stimuli, as well as adjuvancy and immune activation, which is a desirable component for injectable vaccines and immunotherapeutic formulations. The current work seeks to provide a comprehensive review of all the abovementioned contributions, along with the most recent advances made within each domain. Furthermore, recent developments within the domains of passive and active targeting will be briefly debated.
Collapse
Affiliation(s)
- Maryam A. Shetab Boushehri
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- Correspondence: ; Tel.: +49-228-736428; Fax: +49-228-735268
| | - Dirk Dietrich
- Department of Neurosurgery, University Clinic of Bonn, 53105 Bonn, Germany;
| | - Alf Lamprecht
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- PEPITE EA4267, Institute of Pharmacy, University Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
36
|
Chen Y, Lu Y, Lee RJ, Xiang G. Nano Encapsulated Curcumin: And Its Potential for Biomedical Applications. Int J Nanomedicine 2020; 15:3099-3120. [PMID: 32431504 PMCID: PMC7200256 DOI: 10.2147/ijn.s210320] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Curcumin, a yellow-colored polyphenol extracted from the rhizome of turmeric root, is commonly used as a spice and nutritional supplement. It exhibits many pharmacological activities such as anti-inflammatory, anti-bacterial, anti-cancer, anti-Alzheimer, and anti-fungal. However, the therapeutic application of curcumin is limited by its extremely low solubility in aqueous buffer, instability in body fluids, and rapid metabolism. Nano delivery system has shown excellent potential to improve the solubility, biocompatibility and therapeutic effect of curcumin. In this review, we focus on the recent development of nano encapsulated curcumin and its potential for biomedical applications.
Collapse
Affiliation(s)
- Yan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yao Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
37
|
Lan S, Liu Y, Shi K, Ma D. Acetal-Functionalized Pillar[5]arene: A pH-Responsive and Versatile Nanomaterial for the Delivery of Chemotherapeutic Agents. ACS APPLIED BIO MATERIALS 2020; 3:2325-2333. [DOI: 10.1021/acsabm.0c00086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shang Lan
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yamin Liu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Kejia Shi
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Da Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
38
|
Yadav S, Sharma AK, Kumar P. Nanoscale Self-Assembly for Therapeutic Delivery. Front Bioeng Biotechnol 2020; 8:127. [PMID: 32158749 PMCID: PMC7051917 DOI: 10.3389/fbioe.2020.00127] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/10/2020] [Indexed: 12/23/2022] Open
Abstract
Self-assembly is the process of association of individual units of a material into highly arranged/ordered structures/patterns. It imparts unique properties to both inorganic and organic structures, so generated, via non-covalent interactions. Currently, self-assembled nanomaterials are finding a wide variety of applications in the area of nanotechnology, imaging techniques, biosensors, biomedical sciences, etc., due to its simplicity, spontaneity, scalability, versatility, and inexpensiveness. Self-assembly of amphiphiles into nanostructures (micelles, vesicles, and hydrogels) happens due to various physical interactions. Recent advancements in the area of drug delivery have opened up newer avenues to develop novel drug delivery systems (DDSs) and self-assembled nanostructures have shown their tremendous potential to be used as facile and efficient materials for this purpose. The main objective of the projected review is to provide readers a concise and straightforward knowledge of basic concepts of supramolecular self-assembly process and how these highly functionalized and efficient nanomaterials can be useful in biomedical applications. Approaches for the self-assembly have been discussed for the fabrication of nanostructures. Advantages and limitations of these systems along with the parameters that are to be taken into consideration while designing a therapeutic delivery vehicle have also been outlined. In this review, various macro- and small-molecule-based systems have been elaborated. Besides, a section on DNA nanostructures as intelligent materials for future applications is also included.
Collapse
Affiliation(s)
| | | | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
39
|
Gadade DD, Pekamwar SS. Cyclodextrin Based Nanoparticles for Drug Delivery and Theranostics. Adv Pharm Bull 2020; 10:166-183. [PMID: 32373486 PMCID: PMC7191229 DOI: 10.34172/apb.2020.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Colloidal nanoparticulate technology has been described in the literature as a versatile drug delivery system. But it possesses some inherent lacunae in their formulation. Cyclodextrins (CDs) have been extensively reported for the solubility enhancement of poorly water-soluble drugs. The CDs can cause intervention in aspects related to nanoparticles (NPs) that include improving drug loading in nano-system, improving stability, site-specific/targeted drug delivery, improving solubility profile and absorption of the drug in nanosystem with consequent improvement in bioavailability, with the possibility of controlled release, safety and efficacy. They find application in for simultaneous diagnosis and therapeutics for better treatment procedures. The current communication is focused on the application of CDs to overcome troubles in nanoparticulate formulation and enhancement of their performance. It also envisages the theranostic aspects of CDs.
Collapse
Affiliation(s)
- Dipak Dilip Gadade
- Department of Pharmaceutics, Shri Bhagwan College of Pharmacy, CIDCO, N-6, Dr. Y.S. Khedkar Marg, Aurangabad-431001, India.,School of Pharmacy, SRTM University,Vishnupuri, Nanded- 431606, India
| | | |
Collapse
|
40
|
Rodriguez S, Torres FG, Gonzales KN, Troncoso OP, Fernández-García M, López D. Tailoring size and release kinetics of κ/ι-hybrid carrageenan microgels via a surfactant-assisted technique. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1716225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sol Rodriguez
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Fernando G. Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Karen N. Gonzales
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Omar P. Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Peru
| | | | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain
| |
Collapse
|
41
|
Ghafelehbashi R, Tavakkoli Yaraki M, Heidarpoor Saremi L, Lajevardi A, Haratian M, Astinchap B, Rashidi AM, Moradian R. A pH-responsive citric-acid/α-cyclodextrin-functionalized Fe 3O 4 nanoparticles as a nanocarrier for quercetin: An experimental and DFT study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110597. [PMID: 32228991 DOI: 10.1016/j.msec.2019.110597] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022]
Abstract
Developing new nanocarriers and understanding the interactions between the drug and host molecules in the nanocarrier at the molecular level is of importance for future of nanomedicine. In this work, we synthesized and characterized a series of iron oxide nanoparticles (IONPs) functionalized with different organic molecules (citric acid, α-cyclodextrin, and citric acid/α-cyclodextrin composite). It was found that incorporation of citric acid into the α-cyclodextrin had negligible effect on the adsorption efficiency (<5%) of citric acid/α-cyclodextrin functionalized IONPs, while the isotherm adsorption data were well described by the Langmuir isotherm model (qmax = 2.92 mg/g at T = 25 °C and pH = 7). In addition, the developed nanocarrier showed pH-responsive behavior for releasing the quercetin molecules as drug model, where the Korsmeyer-Peppas model could describe the release profile with Fickian diffusion (n < 0.45 for at all pH and temperatures). Then, Density functional theory was applied to calculate the absolute binding energies (ΔEb) of the complexation of quercetin with different host molecules in the developed nanocarriers. The calculated energies are as follow: 1) quercetin and citric acid: ΔEb = -16.58 kcal/mol, 2) quercetin and α-cyclodextrin: ΔEb = -46.98 kcal/mol, and 3) quercetin and citric acid/α-cyclodextrin composite: ΔEb = -40.15 kcal/mol. It was found that quercetin tends to interact with all hosts via formation of hydrogen bonds and van der Waals interactions. Finally, the cytotoxicity of the as-developed nanocarriers was evaluated using MTT assay and both normal NIH-3T3 and cancereous HeLa cells. The cell viability results showed that the quercetin could be delivered effectively to the HeLa cells due to the acidic environment inside the cells with minimum effect on the viability of NIH-3T3 cells. These results might open a new window to design of stimuli-responsive nanocarriers for drug delivery applications.
Collapse
Affiliation(s)
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; Institute of Materials Research and Engineering (IMRE), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore.
| | - Leily Heidarpoor Saremi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Aseman Lajevardi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Haratian
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| | - Bandar Astinchap
- Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, Sanandaj, Iran.
| | - Ali Mohammad Rashidi
- Department of Materials and Textile Engineering, College of Engineering, Razi University, Kermanshah, Iran
| | - Rostam Moradian
- Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran; Nanoscience and Nanotechnology Research Center, Razi University, Kermanshah, Iran
| |
Collapse
|
42
|
Surface modification of fluorescent Tb 3+-doped layered double hydroxides with hyperbranched polymers through host-guest interaction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109976. [PMID: 31499989 DOI: 10.1016/j.msec.2019.109976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/10/2019] [Accepted: 07/14/2019] [Indexed: 11/20/2022]
Abstract
The preparation of fluorescent inorganic-organic polymer composites for biomedical applications has become one of the most interest research focuses recently. In this work, we reported a novel method for the preparation of Tb3+-doped luminescent layered double hydroxides (LDHs) based composites by taken advantage of a one-pot supramolecular chemistry. The adamantane can be immobilized on the surface of Tb3+-doped LDHs to obtain LDH-Ad, which could be further utilized for modified by the β-cyclodextrin (β-CD) containing hyperbranched polyglycerols (β-CD-HPG) through the host-guest interaction. Based on the characterization results, we demonstrated that the hyperbranched polyglycerol could be facilely introduced on these fluorescent Tb3+-doped LDHs through the method described in this work. The obtained Tb3+-doped LDHs based polymer composites (LDHs-β-CD-HPG) display improved water dispersibility and still maintain their fluorescence. The results based on various biological assays suggest that LDHs-β-CD-HPG polymer composites are of low cytotoxicity and their cell uptake behavior can be effectively traced using confocal laser imaging. All of the above results demonstrated that the fluorescent Tb3+-doped LDHs based polymer composites could be effectively surface modified with hydrophilic hyperbranched polymers through a one-pot facile host-guest interaction and the resultant fluorescent composites are of excellent physicochemical properties and display great potential for biomedical applications. This novel surface modification method should also be important for fabrication of other multifunctional composites and therefore great advanced the development of biomedical applications of fluorescent LDHs based polymer composites and related materials.
Collapse
|
43
|
Wang F, Fan Z, Zhu Q, Tian H, Yao J, Jiang B, Zhu F, Su G, Hou Z, Ye S, Li Y. Tumor Microenvironment-Activated and Viral-Mimicking Nanodrugs Driven by Molecular Precise Recognition for dNTP Inhibition-Induced Synergistic Cancer Therapy. ACS Biomater Sci Eng 2019; 5:4442-4454. [PMID: 33438410 DOI: 10.1021/acsbiomaterials.9b00840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The medical application of nanotechnology is promising for cancer chemotherapy. However, most of the small-molecule drug assemblies still have such disadvantages as serious drug leakage and nonideal synergistic mechanisms, resulting in undesired therapeutic effect. Both nucleoside analogue-based clofarabine (CA) and methotrexate (MTX) were used as the first-line anticancer medication. However, a single-agent chemotherapy still faced many challenges including low bioavailability and toxic side effects to normal tissues due to nonspecific biodistribution of drugs. Herein, we designed and fabricated novel viral-mimicking and carry-free nanodrugs (CA-MTX NPs) via molecular recognition-driven precise self-assembly between CA and MTX. After introduction of mild acid-responsive PEG-lipid on the surface of CA-MTX NPs, the synthetic nanodrugs with a diameter of ∼150 nm exhibited tumor microenvironment-activated characteristics and self-targeting property. The results suggested that our nanodrugs could achieve superior tumor accumulation and synergistically promote the tumor suppression by collaboratively inhibiting dNTP pools. We foresaw that the well-designed smart nanodrugs delivery system would open a new avenue in synergistic cancer therapeutics.
Collapse
Affiliation(s)
- Fanfan Wang
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Qixin Zhu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361005, China
| | - Haina Tian
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Junyu Yao
- Yantai Research Institute, China Agricultural University, Yantai 264670, China
| | - Beili Jiang
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Fukai Zhu
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Guanghao Su
- Children's Hospital of Soochow University, Suzhou 215025, China
| | - Zhenqing Hou
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Shefang Ye
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,Department of Translational Medicine,, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, P. R. China
| |
Collapse
|
44
|
Braegelman AS, Webber MJ. Integrating Stimuli-Responsive Properties in Host-Guest Supramolecular Drug Delivery Systems. Theranostics 2019; 9:3017-3040. [PMID: 31244940 PMCID: PMC6567965 DOI: 10.7150/thno.31913] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
Host-guest motifs are likely the most recognizable manifestation of supramolecular chemistry. These complexes are characterized by the organization of small molecules on the basis of preferential association of a guest within the portal of a host. In the context of their therapeutic use, the primary application of these complexes has been as excipients which enhance the solubility or improve the stability of drug formulations, primarily in a vial. However, there may be opportunities to go significantly beyond such a role and leverage key features of the affinity, specificity, and dynamics of the interaction itself toward "smarter" therapeutic designs. One approach in this regard would seek stimuli-responsive host-guest recognition, wherein a complex forms in a manner that is sensitive to, or can be governed by, externally applied triggers, disease-specific proteins and analytes, or the presence of a competing guest. This review will highlight the general and phenomenological design considerations governing host-guest recognition and the specific types of chemistry which have been used and are available for different applications. Finally, a discussion of the molecular engineering and design approaches which enable sensitivity to a variety of different stimuli are highlighted. Ultimately, these molecular-scale approaches offer an assortment of new chemistry and material design tools toward improving precision in drug delivery.
Collapse
Affiliation(s)
| | - Matthew J. Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
45
|
Shen Q, Shen Y, Jin F, Du YZ, Ying XY. Paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposomes for overcoming multidrug resistance in cancer chemotherapy. J Liposome Res 2019; 30:12-20. [PMID: 30741058 DOI: 10.1080/08982104.2019.1579838] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multidrug resistance (MDR) is the largest obstacle to the success of chemotherapy. The development of innovative strategies and safe sensitizers is required to overcome MDR. Paclitaxel (PTX) is a widely used chemotherapeutic drug, the application of which has been learn to understand MDR. However, the application and use are severely restricted because of this MDR. Cyclodextrins (CDs) of many carriers, additionally have shown anti-cancer capability in MDR cancer cells. In this study, novel paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposomes (PTXCDL) have been developed in an attempt to overcome MDR in a PTX-resistant human lung adenocarcinoma (A549/T) cell line. The in vitro application of PTXCDL exhibited pH-sensitive PTX release, potent cytotoxicity, and enhanced intracellular accumulation. In comparison to in vivo, PTXCDL also show a stronger inhibition of tumor growth. In comparison, these findings suggest that the PTXCDL provide a novel strategy for effective therapy of resistant cancers by overcoming the drug resistance.
Collapse
Affiliation(s)
- Qiying Shen
- College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yurun Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feiyang Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yong-Zhong Du
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Ying Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Cheng HB, Zhang YM, Liu Y, Yoon J. Turn-On Supramolecular Host-Guest Nanosystems as Theranostics for Cancer. Chem 2019. [DOI: 10.1016/j.chempr.2018.12.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Design of cyclodextrin-based systems for intervention execution. DELIVERY OF THERAPEUTICS FOR BIOGERONTOLOGICAL INTERVENTIONS 2019. [PMCID: PMC7150343 DOI: 10.1016/b978-0-12-816485-3.00005-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Technologies for nucleic acid delivery have displayed high practical potential in mediating genetic manipulation to modulate metabolic pathways to combat aging. In the previous chapter, we have delineated a series of techniques for designing and developing polymeric vectors as nonviral carriers. Based on what we have discussed, this chapter will introduce how the delivery performance and versatility of polymeric vectors can be further enhanced by using cyclodextrins (CDs). Over the years, CDs have shown promising application potential in different areas, ranging from controlled drug release to chiral separation of basic drugs. These applications are largely mediated by the ability of CDs to undergo host–guest inclusion complexation. Upon incorporation of CDs into the design of a polymeric vector, not only can the flexibility of the design be increased, but the development of a multifunctional carrier for genetic manipulation can also be facilitated.
Collapse
|
48
|
Zhou J, Yu G, Huang F. Supramolecular chemotherapy based on host-guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem Soc Rev 2018; 46:7021-7053. [PMID: 28980674 DOI: 10.1039/c6cs00898d] [Citation(s) in RCA: 478] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy is currently one of the most effective ways to treat cancer. However, traditional chemotherapy faces several obstacles to clinical trials, such as poor solubility/stability, non-targeting capability and uncontrollable release of the drugs, greatly limiting their anticancer efficacy and causing severe side effects towards normal tissues. Supramolecular chemotherapy integrating non-covalent interactions and traditional chemotherapy is a highly promising candidate in this regard and can be appropriately used for targeted drug delivery. By taking advantage of supramolecular chemistry, some limitations impeding traditional chemotherapy for clinical applications can be solved effectively. Therefore, we present here a review summarizing the progress of supramolecular chemotherapy in cancer treatment based on host-guest recognition and provide guidance on the design of new targeting supramolecular chemotherapy combining diagnostic and therapeutic functions. Based on a large number of state-of-the-art studies, our review will advance supramolecular chemotherapy on the basis of host-guest recognition and promote translational clinical applications.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | |
Collapse
|
49
|
pH-controlled sunitinib anticancer release from magnetic chitosan nanoparticles crosslinked with κ-carrageenan. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:705-714. [DOI: 10.1016/j.msec.2018.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/27/2018] [Accepted: 06/10/2018] [Indexed: 11/17/2022]
|
50
|
Liang H, Zhou B, Li J, Liu X, Deng Z, Li B. Engineering Multifunctional Coatings on Nanoparticles Based on Oxidative Coupling Assembly of Polyphenols for Stimuli-Responsive Drug Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6897-6905. [PMID: 29877704 DOI: 10.1021/acs.jafc.8b01208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, zein nanoparticles (NPs) with novel multifunctional coatings based on oxidative coupling assembly of polyphenols were synthesized for the first time. This coating was formed by oxidative self-polymerization of the organic ligands (polyphenols) in an alkaline condition, which could be biodegraded by acidic pH, as a result, impacting the pH-responsive property of the system. More importantly, the high level of intracellular glutathione (GSH) could induce the biodegradation of the polyphenol coatings, resulting in a fast release of trapped anticancer drugs in the cells. Based on confocal laser scanning microscopy (CLSM) and cytotoxicity experiments, drug-loaded and polyphenol-coated zein NPs were shown to possess highly efficient internalization and an apparent cytotoxic effect on HeLa cells. Notably, the CLSM observation illustrated that coated zein NPs showed delayed drug release compared with free drug or DOX-loaded zein NPs without coatings, resulting from the pH-responsive release of loaded drug in the extra/intracellular environment. Additionally, the short-time cytotoxicity and morphology observation also confirmed the delayed drug release behavior of coated NPs. These highly biocompatible and biodegradable polyphenol-coated zein NPs may be promising vectors in the field of controlled-release biomedical applications and cancer therapy.
Collapse
Affiliation(s)
- Hongshan Liang
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University, Ministry of Education , Wuhan 430070 , China
| | - Bin Zhou
- School of Food and Biological Engineering , Hubei University of Technology , Wuhan 430068 , China
| | - Jing Li
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University, Ministry of Education , Wuhan 430070 , China
| | - Xingnian Liu
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University, Ministry of Education , Wuhan 430070 , China
| | - Ziyu Deng
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University, Ministry of Education , Wuhan 430070 , China
| | - Bin Li
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University, Ministry of Education , Wuhan 430070 , China
- Functional Food Engineering & Technology Research Center of Hubei Province , Wuhan 430068 , China
| |
Collapse
|