1
|
Zhou Z, Li T, Cai W, Zhu X, Zhang Z, Huang G. Microstring-engineered tension tissues: a novel platform for replicating tissue mechanics and advancing mechanobiology. LAB ON A CHIP 2025; 25:1452-1461. [PMID: 39530446 DOI: 10.1039/d4lc00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Replicating the mechanical tension of natural tissues is essential for maintaining organ function and stability, posing a central challenge in tissue engineering and regenerative medicine. Existing methods for constructing tension tissues often encounter limitations in flexibility, scalability, or cost-effectiveness. This study introduces a novel approach to fabricating soft microstring chips using a sacrificial template method, which is easy to operate, offers controlled preparation, and is cost-effective. Through experimental testing and finite element simulations, we validated and characterized the relationship between microstring deformation, tissue width, and the reaction force exerted by the microstrings, enabling precise measurement of tissue contraction force. We successfully constructed microstring-engineered tension tissues (METTs) and demonstrated that they exhibit a significant mechanical response to profibrotic factors. Additionally, we conceptually demonstrated the application of microstring chips in constructing METTs with asymmetric, biomimetic constraints. The results indicate effective construction and regulation of METTs, providing a robust platform for mechanobiology and biomedical research.
Collapse
Affiliation(s)
- Zixing Zhou
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P.R. China.
| | - Tingting Li
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P.R. China.
| | - Wei Cai
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P.R. China.
| | - Xiaobin Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430072, P.R. China
| | - Zuoqi Zhang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P.R. China.
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P.R. China.
| |
Collapse
|
2
|
van Dover G, Javor J, Ewoldt JK, Zhernenkov M, Wąsik P, Freychet G, Lee J, Brown D, Chen CS, Bishop DJ. Structural maturation of myofilaments in engineered 3D cardiac microtissues characterized using small angle x-ray scattering. Phys Biol 2024; 21:036001. [PMID: 38452380 DOI: 10.1088/1478-3975/ad310e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Understanding the structural and functional development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) is essential to engineering cardiac tissue that enables pharmaceutical testing, modeling diseases, and designing therapies. Here we use a method not commonly applied to biological materials, small angle x-ray scattering, to characterize the structural development of hiPSC-CMs within three-dimensional engineered tissues during their preliminary stages of maturation. An x-ray scattering experimental method enables the reliable characterization of the cardiomyocyte myofilament spacing with maturation time. The myofilament lattice spacing monotonically decreases as the tissue matures from its initial post-seeding state over the span of 10 days. Visualization of the spacing at a grid of positions in the tissue provides an approach to characterizing the maturation and organization of cardiomyocyte myofilaments and has the potential to help elucidate mechanisms of pathophysiology, and disease progression, thereby stimulating new biological hypotheses in stem cell engineering.
Collapse
Affiliation(s)
| | - Josh Javor
- Boston University, Boston, MA 02215, United States of America
| | | | - Mikhail Zhernenkov
- Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Patryk Wąsik
- Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Guillaume Freychet
- Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Josh Lee
- Boston University, Boston, MA 02215, United States of America
| | - Dana Brown
- Fort Valley State University, Fort Valley, GA 31030, United States of America
| | | | - David J Bishop
- Boston University, Boston, MA 02215, United States of America
| |
Collapse
|
3
|
Hsia I, Asmani M, Zhao R. Predicting the preclinical efficacy of anti-fibrosis agents using a force-sensing fibrosis on chip system. Biosens Bioelectron 2023; 228:115194. [PMID: 36933322 DOI: 10.1016/j.bios.2023.115194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/11/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The high attrition rate of drug candidates contributes to the long duration and high cost in modern drug development. A major barrier in drug development is the poor predicting power of the preclinical models. In the current study, a human pulmonary fibrosis on chip system was developed for the preclinical evaluation of anti-fibrosis drugs. Pulmonary fibrosis is a severe disease characterized by progressive tissue stiffening that leads to respiration failure. To recapitulate the unique biomechanical feature of the fibrotic tissues, we developed flexible micropillars that can serve as in-situ force sensors to detect the changes in the mechanical properties of engineered lung microtissues. Using this system, we modeled the fibrogenesis of the alveolar tissues including the tissue stiffening and the expression of α-smooth muscle actin (α-SMA) and pro-collagen. Two anti-fibrosis drug candidates that are currently under clinical trials (KD025 and BMS-986020) were tested for their potential anti-fibrosis efficacy and the results were compared to those of FDA-approved anti-fibrosis drugs pirfenidone and nintedanib. Both pre-approval drugs were effective in inhibiting transforming growth factor beta 1 (TGF-β1) induced increases in tissue contractile force, stiffness and expressions of fibrotic biomarkers, which are similar to the effects of FDA-approved anti-fibrosis drugs. These results demonstrated the potential utility of the force-sensing fibrosis on chip system in the pre-clinical development of anti-fibrosis drugs.
Collapse
Affiliation(s)
- Isaac Hsia
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, N.Y, 14260, USA
| | - Mohammadnabi Asmani
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, N.Y, 14260, USA
| | - Ruogang Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, N.Y, 14260, USA.
| |
Collapse
|
4
|
Light-driven biological actuators to probe the rheology of 3D microtissues. Nat Commun 2023; 14:717. [PMID: 36759504 PMCID: PMC9911700 DOI: 10.1038/s41467-023-36371-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
The mechanical properties of biological tissues are key to their physical integrity and function. Although external loading or biochemical treatments allow the estimation of these properties globally, it remains difficult to assess how such external stimuli compare with cell-generated contractions. Here we engineer microtissues composed of optogenetically-modified fibroblasts encapsulated within collagen. Using light to control the activity of RhoA, a major regulator of cellular contractility, we induce local contractions within microtissues, while monitoring microtissue stress and strain. We investigate the regulation of these local contractions and their spatio-temporal distribution. We demonstrate the potential of our technique for quantifying tissue elasticity and strain propagation, before examining the possibility of using light to create and map local anisotropies in mechanically heterogeneous microtissues. Altogether, our results open an avenue to guide the formation of tissues while non-destructively charting their rheology in real time, using their own constituting cells as internal actuators.
Collapse
|
5
|
Santos GL, DeGrave AN, Rehman A, Al Disi S, Xhaxho K, Schröder H, Bao G, Meyer T, Tiburcy M, Dworatzek E, Zimmermann WH, Lutz S. Using different geometries to modulate the cardiac fibroblast phenotype and the biomechanical properties of engineered connective tissues. BIOMATERIALS ADVANCES 2022; 139:213041. [PMID: 35909053 DOI: 10.1016/j.bioadv.2022.213041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Tissue engineering with human cardiac fibroblasts (CF) allows identifying novel mechanisms and anti-fibrotic drugs in the context of cardiac fibrosis. However, substantial knowledge on the influences of the used materials and tissue geometries on tissue properties and cell phenotypes is necessary to be able to choose an appropriate model for a specific research question. As there is a clear lack of information on how CF react to the mold architecture in engineered connective tissues (ECT), we first compared the effect of two mold geometries and materials with different hardnesses on the biomechanical properties of ECT. We could show that ECT, which formed around two distant poles (non-uniform model) were less stiff and more strain-resistant than ECT, which formed around a central rod (uniform model), independent of the materials used for poles and rods. Next, we investigated the cell state and could demonstrate that in the uniform versus non-uniform model, the embedded cells have a higher cell cycle activity and display a more pronounced myofibroblast phenotype. Differential gene expression analysis revealed that uniform ECT displayed a fibrosis-associated gene signature similar to the diseased heart. Furthermore, we were able to identify important relationships between cell and tissue characteristics, as well as between biomechanical tissue parameters by implementing cells from normal heart and end-stage heart failure explants from patients with ischemic or dilated cardiomyopathy. Finally, we show that the application of pro- and anti-fibrotic factors in the non-uniform and uniform model, respectively, is not sufficient to mimic the effect of the other geometry. Taken together, we demonstrate that modifying the mold geometry in tissue engineering with CF offers the possibility to compare different cellular phenotypes and biomechanical tissue properties.
Collapse
Affiliation(s)
- Gabriela L Santos
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Alisa N DeGrave
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Abdul Rehman
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Sara Al Disi
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany
| | - Kristin Xhaxho
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany
| | - Helen Schröder
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany
| | - Guobin Bao
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Tim Meyer
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Elke Dworatzek
- Charité - Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, and Berliner Institute of Health, Germany; DZHK (German Center for Cardiovascular Research) partner site, Berlin, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Germany; Center for Neurodegenerative Diseases (DZNE), Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Germany
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany.
| |
Collapse
|
6
|
Zhang Q, Wang P, Fang X, Lin F, Fang J, Xiong C. Collagen gel contraction assays: From modelling wound healing to quantifying cellular interactions with three-dimensional extracellular matrices. Eur J Cell Biol 2022; 101:151253. [PMID: 35785635 DOI: 10.1016/j.ejcb.2022.151253] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cells respond to and actively remodel the extracellular matrix (ECM). The dynamic and bidirectional interaction between cells and ECM, especially their mechanical interactions, has been found to play an essential role in triggering a series of complex biochemical and biomechanical signal pathways and in regulating cellular functions and behaviours. The collagen gel contraction assay (CGCA) is a widely used method to investigate cell-ECM interactions in 3D environments and provides a mechanically associated readout reflecting 3D cellular contractility. In this review, we summarize various versions of CGCA, with an emphasis on recent high-throughput and low-consumption CGCA techniques. More importantly, we focus on the technique of force monitoring during the contraction of collagen gel, which provides a quantitative characterization of the overall forces generated by all the resident cells in the collagen hydrogel. Accordingly, we present recent biological applications of the CGCA, which have expanded from the initial wound healing model to other studies concerning cell-ECM interactions, including fibrosis, cancer, tissue repair and the preparation of biomimetic microtissues.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Pudi Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xu Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Jing Fang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
7
|
Engineering tumor stromal mechanics for improved T cell therapy. Biochim Biophys Acta Gen Subj 2022; 1866:130095. [DOI: 10.1016/j.bbagen.2022.130095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/23/2021] [Accepted: 01/14/2022] [Indexed: 12/17/2022]
|
8
|
Boghdady CM, Kalashnikov N, Mok S, McCaffrey L, Moraes C. Revisiting tissue tensegrity: Biomaterial-based approaches to measure forces across length scales. APL Bioeng 2021; 5:041501. [PMID: 34632250 PMCID: PMC8487350 DOI: 10.1063/5.0046093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-generated forces play a foundational role in tissue dynamics and homeostasis and are critically important in several biological processes, including cell migration, wound healing, morphogenesis, and cancer metastasis. Quantifying such forces in vivo is technically challenging and requires novel strategies that capture mechanical information across molecular, cellular, and tissue length scales, while allowing these studies to be performed in physiologically realistic biological models. Advanced biomaterials can be designed to non-destructively measure these stresses in vitro, and here, we review mechanical characterizations and force-sensing biomaterial-based technologies to provide insight into the mechanical nature of tissue processes. We specifically and uniquely focus on the use of these techniques to identify characteristics of cell and tissue "tensegrity:" the hierarchical and modular interplay between tension and compression that provide biological tissues with remarkable mechanical properties and behaviors. Based on these observed patterns, we highlight and discuss the emerging role of tensegrity at multiple length scales in tissue dynamics from homeostasis, to morphogenesis, to pathological dysfunction.
Collapse
Affiliation(s)
| | - Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Stephanie Mok
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | | | | |
Collapse
|
9
|
Fan T, Wang S, Jiang Z, Ji S, Cao W, Liu W, Ji Y, Li Y, Shyh-Chang N, Gu Q. Controllable assembly of skeletal muscle-like bundles through 3D bioprinting. Biofabrication 2021; 14. [PMID: 34788746 DOI: 10.1088/1758-5090/ac3aca] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022]
Abstract
3D printing is an effective technology for recreating skeletal muscle tissuein vitro. To achieve clinical skeletal muscle injury repair, relatively large volumes of highly aligned skeletal muscle cells are required; obtaining these is still a challenge. It is currently unclear how individual skeletal muscle cells and their neighbouring components co-ordinate to establish anisotropic architectures in highly homogeneous orientations. Here, we demonstrated a 3D printing strategy followed by sequential culture processes to engineer skeletal muscle tissue. The effects of confined printing on the skeletal muscle during maturation, which impacted the myotube alignment, myogenic gene expression, and mechanical forces, were observed. Our findings demonstrate the dynamic changes of skeletal muscle tissue duringin vitro3D construction and reveal the role of physical factors in the orientation and maturity of muscle fibres.
Collapse
Affiliation(s)
- Tingting Fan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuo Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Zongmin Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Shen Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wenli Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Yun Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
10
|
Kim J, Mailand E, Ang I, Sakar MS, Bouklas N. A model for 3D deformation and reconstruction of contractile microtissues. SOFT MATTER 2021; 17:10198-10209. [PMID: 33118554 DOI: 10.1039/d0sm01182g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tissue morphogenesis and regeneration are essentially mechanical processes that involve coordination of cellular forces, production and structural remodeling of extracellular matrix (ECM), and cell migration. Discovering the principles of cell-ECM interactions and tissue-scale deformation in mechanically-loaded tissues is instrumental to the development of novel regenerative therapies. The combination of high-throughput three-dimensional (3D) culture systems and experimentally-validated computational models accelerate the study of these principles. In our previous work [E. Mailand, et al., Biophys. J., 2019, 117, 975-986], we showed that prominent surface stresses emerge in constrained fibroblast-populated collagen gels, driving the morphogenesis of fibrous microtissues. Here, we introduce an active material model that allows the embodiment of surface and bulk contractile stresses while maintaining the passive elasticity of the ECM in a 3D setting. Unlike existing models, the stresses are driven by mechanosensing and not by an externally applied signal. The mechanosensing component is incorporated in the model through a direct coupling of the local deformation state with the associated contractile force generation. Further, we propose a finite element implementation to account for large deformations, nonlinear active material response, and surface effects. Simulation results quantitatively capture complex shape changes during tissue formation and as a response to surgical disruption of tissue boundaries, allowing precise calibration of the parameters of the 3D model. The results of this study imply that the organization of the extracellular matrix in the bulk of the tissue may not be a major factor behind the morphogenesis of fibrous tissues at sub-millimeter length scales.
Collapse
Affiliation(s)
- Jaemin Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
| | - Erik Mailand
- Institutes of Mechanical Engineering and Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ida Ang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
| | - Mahmut Selman Sakar
- Institutes of Mechanical Engineering and Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
11
|
Walker M, Godin M, Pelling AE. Mechanical stretch sustains myofibroblast phenotype and function in microtissues through latent TGF-β1 activation. Integr Biol (Camb) 2021; 12:199-210. [PMID: 32877929 DOI: 10.1093/intbio/zyaa015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
Abstract
Developing methods to study tissue mechanics and myofibroblast activation may lead to new targets for therapeutic treatments that are urgently needed for fibrotic disease. Microtissue arrays are a promising approach to conduct relatively high-throughput research into fibrosis as they recapitulate key biomechanical aspects of the disease through a relevant 3D extracellular environment. In early work, our group developed a device called the MVAS-force to stretch microtissues while enabling simultaneous assessment of their dynamic mechanical behavior. Here, we investigated TGF-β1-induced fibroblast to myofibroblast differentiation in microtissue cultures using our MVAS-force device through assessing α-SMA expression, contractility and stiffness. In doing so, we linked cell-level phenotypic changes to functional changes that characterize the clinical manifestation of fibrotic disease. As expected, TGF-β1 treatment promoted a myofibroblastic phenotype and microtissues became stiffer and possessed increased contractility. These changes were partially reversible upon TGF-β1 withdrawal under a static condition, while, in contrast, long-term cyclic stretching maintained myofibroblast activation. This pro-fibrotic effect of mechanical stretching was absent when TGF-β1 receptors were inhibited. Furthermore, stretching promoted myofibroblast differentiation when microtissues were given latent TGF-β1. Altogether, these results suggest that external mechanical stretch may activate latent TGF-β1 and, accordingly, might be a powerful stimulus for continued myofibroblast activation to progress fibrosis. Further exploration of this pathway with our approach may yield new insights into myofibroblast activation and more effective therapeutic treatments for fibrosis.
Collapse
Affiliation(s)
- Matthew Walker
- Department of Biology, Gendron Hall, 30 Marie Curie, University of Ottawa, Ottawa, ON, K1N5N5, Canada
| | - Michel Godin
- Department of Physics, 150 Louis Pasteur pvt., STEM Complex, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Department of Mechanical Engineering, Colonel By Hall, 161 Louis Pasteur, University of Ottawa, Ottawa, ON K1N6N5, Canada.,Ottawa-Carleton Institute for Biomedical Engineering, Colonel By Hall, 161 Louis Pasteur, University of Ottawa, Ottawa, ON K1N6N5, Canada
| | - Andrew E Pelling
- Department of Biology, Gendron Hall, 30 Marie Curie, University of Ottawa, Ottawa, ON, K1N5N5, Canada.,Department of Physics, 150 Louis Pasteur pvt., STEM Complex, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Institute for Science Society and Policy, Simard Hall, 60 University, University of Ottawa, Ottawa, ON, K1N5N5, Canada.,SymbioticA, School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
12
|
Xu Y, Koya R, Ask K, Zhao R. Engineered microenvironment for the study of myofibroblast mechanobiology. Wound Repair Regen 2021; 29:588-596. [PMID: 34118169 PMCID: PMC8254796 DOI: 10.1111/wrr.12955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Myofibroblasts are mechanosensitive cells and a variety of their behaviours including differentiation, migration, force production and biosynthesis are regulated by the surrounding microenvironment. Engineered cell culture models have been developed to examine the effect of microenvironmental factors such as the substrate stiffness, the topography and strain of the extracellular matrix (ECM) and the shear stress on myofibroblast biology. These engineered models provide well-mimicked, pathophysiologically relevant experimental conditions that are superior to those enabled by the conventional two-dimensional (2D) culture models. In this perspective, we will review the recent advances in the development of engineered cell culture models for myofibroblasts and outline the findings on the myofibroblast mechanobiology under various microenvironmental conditions. These studies have demonstrated the power and utility of the engineered models for the study of microenvironment-regulated cellular behaviours. The findings derived using these models contribute to a greater understanding of how myofibroblast behaviour is regulated in tissue repair and pathological scar formation.
Collapse
Affiliation(s)
- Ying Xu
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Richard Koya
- Department of Obstetrics and Gynecology, University of Chicago Comprehensive Cancer Center, Biological Sciences Division, University of Chicago School of Medicine, Chicago, IL 60637, USA
| | - Kjetil Ask
- Department of Medicine, Div. Respirology, McMaster University, Hamilton, ON, Canada L8N 4A6
- The Research Institute of St. Joe’s Hamilton, Firestone Institute for Respiratory Health, Hamilton, ON, Canada L8N 4A6
| | - Ruogang Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
13
|
Gracioso Martins AM, Wilkins MD, Ligler FS, Daniele MA, Freytes DO. Microphysiological System for High-Throughput Computer Vision Measurement of Microtissue Contraction. ACS Sens 2021; 6:985-994. [PMID: 33656335 DOI: 10.1021/acssensors.0c02172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to measure microtissue contraction in vitro can provide important information when modeling cardiac, cardiovascular, respiratory, digestive, dermal, and skeletal tissues. However, measuring tissue contraction in vitro often requires the use of high number of cells per tissue construct along with time-consuming microscopy and image analysis. Here, we present an inexpensive, versatile, high-throughput platform to measure microtissue contraction in a 96-well plate configuration using one-step batch imaging. More specifically, optical fiber microprobes are embedded in microtissues, and contraction is measured as a function of the deflection of optical signals emitted from the end of the fibers. Signals can be measured from all the filled wells on the plate simultaneously using a digital camera. An algorithm uses pixel-based image analysis and computer vision techniques for the accurate multiwell quantification of positional changes in the optical microprobes caused by the contraction of the microtissues. Microtissue constructs containing 20,000-100,000 human ventricular cardiac fibroblasts (NHCF-V) in 6 mg/mL collagen type I showed contractile displacements ranging from 20-200 μm. This highly sensitive and versatile platform can be used for the high-throughput screening of microtissues in disease modeling, drug screening for therapeutics, physiology research, and safety pharmacology.
Collapse
Affiliation(s)
- Ana Maria Gracioso Martins
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Michael D. Wilkins
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Frances S. Ligler
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Donald O. Freytes
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
| |
Collapse
|
14
|
Mondrinos MJ, Alisafaei F, Yi AY, Ahmadzadeh H, Lee I, Blundell C, Seo J, Osborn M, Jeon TJ, Kim SM, Shenoy VB, Huh D. Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. SCIENCE ADVANCES 2021; 7:7/11/eabe9446. [PMID: 33712463 PMCID: PMC7954445 DOI: 10.1126/sciadv.abe9446] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/27/2021] [Indexed: 05/11/2023]
Abstract
Here, we present an approach to model and adapt the mechanical regulation of morphogenesis that uses contractile cells as sculptors of engineered tissue anisotropy in vitro. Our method uses heterobifunctional cross-linkers to create mechanical boundary constraints that guide surface-directed sculpting of cell-laden extracellular matrix hydrogel constructs. Using this approach, we engineered linearly aligned tissues with structural and mechanical anisotropy. A multiscale in silico model of the sculpting process was developed to reveal that cell contractility increases as a function of principal stress polarization in anisotropic tissues. We also show that the anisotropic biophysical microenvironment of linearly aligned tissues potentiates soluble factor-mediated tenogenic and myogenic differentiation of mesenchymal stem cells. The application of our method is demonstrated by (i) skeletal muscle arrays to screen therapeutic modulators of acute oxidative injury and (ii) a 3D microphysiological model of lung cancer cachexia to study inflammatory and oxidative muscle injury induced by tumor-derived signals.
Collapse
Affiliation(s)
- Mark J Mondrinos
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Farid Alisafaei
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Y Yi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hossein Ahmadzadeh
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Insu Lee
- Department of Mechanical Engineering, Inha University, Incheon, Korea
| | - Cassidy Blundell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeongyun Seo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Osborn
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tae-Joon Jeon
- Department of Biological Engineering, Inha University, Incheon, Korea
| | - Sun Min Kim
- Department of Mechanical Engineering, Inha University, Incheon, Korea
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Zhang W, Huang G, Xu F. Engineering Biomaterials and Approaches for Mechanical Stretching of Cells in Three Dimensions. Front Bioeng Biotechnol 2020; 8:589590. [PMID: 33154967 PMCID: PMC7591716 DOI: 10.3389/fbioe.2020.589590] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical stretch is widely experienced by cells of different tissues in the human body and plays critical roles in regulating their behaviors. Numerous studies have been devoted to investigating the responses of cells to mechanical stretch, providing us with fruitful findings. However, these findings have been mostly observed from two-dimensional studies and increasing evidence suggests that cells in three dimensions may behave more closely to their in vivo behaviors. While significant efforts and progresses have been made in the engineering of biomaterials and approaches for mechanical stretching of cells in three dimensions, much work remains to be done. Here, we briefly review the state-of-the-art researches in this area, with focus on discussing biomaterial considerations and stretching approaches. We envision that with the development of advanced biomaterials, actuators and microengineering technologies, more versatile and predictive three-dimensional cell stretching models would be available soon for extensive applications in such fields as mechanobiology, tissue engineering, and drug screening.
Collapse
Affiliation(s)
- Weiwei Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Guoyou Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Chongqing, China
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
16
|
Reynolds NH, McEvoy E, Panadero Pérez JA, Coleman RJ, McGarry JP. Influence of multi-axial dynamic constraint on cell alignment and contractility in engineered tissues. J Mech Behav Biomed Mater 2020; 112:104024. [PMID: 33007624 DOI: 10.1016/j.jmbbm.2020.104024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
In this study an experimental rig is developed to investigate the influence of tissue constraint and cyclic loading on cell alignment and active cell force generation in uniaxial and biaxial engineered tissues constructs. Addition of contractile cells to collagen hydrogels dramatically increases the measured forces in uniaxial and biaxial constructs under dynamic loading. This increase in measured force is due to active cell contractility, as is evident from the decreased force after treatment with cytochalasin D. Prior to dynamic loading, cells are highly aligned in uniaxially constrained tissues but are uniformly distributed in biaxially constrained tissues, demonstrating the importance of tissue constraints on cell alignment. Dynamic uniaxial stretching resulted in a slight increase in cell alignment in the centre of the tissue, whereas dynamic biaxial stretching had no significant effect on cell alignment. Our active modelling framework accurately predicts our experimental trends and suggests that a slightly higher (3%) total SF formation occurs at the centre of a biaxial tissue compared to the uniaxial tissue. However, high alignment of SFs and lateral compaction in the case of the uniaxially constrained tissue results in a significantly higher (75%) actively generated cell contractile stress, compared to the biaxially constrained tissue. These findings have significant implications for engineering of contractile tissue constructs.
Collapse
Affiliation(s)
- Noel H Reynolds
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Eoin McEvoy
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | | | - Ryan J Coleman
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - J Patrick McGarry
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland.
| |
Collapse
|
17
|
Davidson MD, Burdick JA, Wells RG. Engineered Biomaterial Platforms to Study Fibrosis. Adv Healthc Mater 2020; 9:e1901682. [PMID: 32181987 PMCID: PMC7274888 DOI: 10.1002/adhm.201901682] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Many pathologic conditions lead to the development of tissue scarring and fibrosis, which are characterized by the accumulation of abnormal extracellular matrix (ECM) and changes in tissue mechanical properties. Cells within fibrotic tissues are exposed to dynamic microenvironments that may promote or prolong fibrosis, which makes it difficult to treat. Biomaterials have proved indispensable to better understand how cells sense their extracellular environment and are now being employed to study fibrosis in many tissues. As mechanical testing of tissues becomes more routine and biomaterial tools become more advanced, the impact of biophysical factors in fibrosis are beginning to be understood. Herein, fibrosis from a materials perspective is reviewed, including the role and mechanical properties of ECM components, the spatiotemporal mechanical changes that occur during fibrosis, current biomaterial systems to study fibrosis, and emerging biomaterial systems and tools that can further the understanding of fibrosis initiation and progression. This review concludes by highlighting considerations in promoting wide-spread use of biomaterials for fibrosis investigations and by suggesting future in vivo studies that it is hoped will inspire the development of even more advanced biomaterial systems.
Collapse
Affiliation(s)
- Matthew D Davidson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rebecca G Wells
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. J Mol Cell Cardiol 2019; 138:1-11. [PMID: 31655038 DOI: 10.1016/j.yjmcc.2019.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
Abstract
Recent advances in the understanding and use of pluripotent stem cells have produced major changes in approaches to the diagnosis and treatment of human disease. An obstacle to the use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for regenerative medicine, disease modeling and drug discovery is their immature state relative to adult myocardium. We show the effects of a combination of biochemical factors, thyroid hormone, dexamethasone, and insulin-like growth factor-1 (TDI) on the maturation of hiPSC-CMs in 3D cardiac microtissues (CMTs) that recapitulate aspects of the native myocardium. Based on a comparison of the gene expression profiles and the structural, ultrastructural, and electrophysiological properties of hiPSC-CMs in monolayers and CMTs, and measurements of the mechanical and pharmacological properties of CMTs, we find that TDI treatment in a 3D tissue context yields a higher fidelity adult cardiac phenotype, including sarcoplasmic reticulum function and contractile properties consistent with promotion of the maturation of hiPSC derived cardiomyocytes.
Collapse
|
19
|
Asmani M, Kotei C, Hsia I, Marecki L, Wang T, Zhou C, Zhao R. Cyclic Stretching of Fibrotic Microtissue Array for Evaluation of Anti-Fibrosis Drugs. Cell Mol Bioeng 2019; 12:529-540. [PMID: 31719931 DOI: 10.1007/s12195-019-00590-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/17/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction Progression of pulmonary fibrosis, characterized by the deterioration of lung tissue's mechanical properties, is affected by respiratory motion-induced dynamic loading. Since the development of anti-fibrosis drugs faces major hurdles in animal tests and human clinical trials, preclinical models that can recapitulate fibrosis progression under physiologically-relevant cyclic loading hold great promise. However, the integration of these two functions has not been achieved in existing models. Methods Recently we developed static human lung microtissue arrays that recapitulate the progressive changes in tissue mechanics during lung fibrogenesis. In the current study, we integrate the lung microtissue array with a membrane stretching system to enable dynamic loading to the microtissues. The effects of a pro-fibrotic agent and anti-fibrosis drugs were tested under cyclic stretching. Results Cyclic stretching that mimics respiratory motion was shown to affect the cytoskeletal organization and cellular orientation in the microtissue and cause the increase in microtissue contractility and stiffness. Fibrosis induction using TGF-β1 further promoted fibrosis-related mechanical activity of the lung microtissues. Using this system, we examined the therapeutic effects of two FDA approved anti-fibrotic drugs. Our results showed that Nintedanib was able to fully inhibit TGF-β1 induced force increase but only partially inhibited stretching induced force increase. In contrast, Pirfenidone was able to fully inhibit both TGF-β1 induced force increase and stretching-induced force increase. Conclusions Together, these results highlight the pathophysiologically-relevant modeling capability of the current fibrotic microtissue system and demonstrated the potential of this system to be used for anti-fibrosis drug screening.
Collapse
Affiliation(s)
- Mohammadnabi Asmani
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Christopher Kotei
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Isaac Hsia
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Leo Marecki
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Tianjiao Wang
- Department of Industrial and Systems Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Chi Zhou
- Department of Industrial and Systems Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Ruogang Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| |
Collapse
|
20
|
Microclot array elastometry for integrated measurement of thrombus formation and clot biomechanics under fluid shear. Nat Commun 2019; 10:2051. [PMID: 31053712 PMCID: PMC6499828 DOI: 10.1038/s41467-019-10067-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/15/2019] [Indexed: 11/08/2022] Open
Abstract
Blood clotting at the vascular injury site is a complex process that involves platelet adhesion and clot stiffening/contraction in the milieu of fluid flow. An integrated understanding of the hemodynamics and tissue mechanics regulating this process is currently lacking due to the absence of an experimental system that can simultaneously model clot formation and measure clot mechanics under shear flow. Here we develop a microfluidic-integrated microclot-array-elastometry system (clotMAT) that recapitulates dynamic changes in clot mechanics under physiological shear. Treatments with procoagulants and platelet antagonists and studies with diseased patient plasma demonstrate the ability of the system to assay clot biomechanics associated with common antiplatelet treatments and bleeding disorders. The changes of clot mechanics under biochemical treatments and shear flow demonstrate independent yet equally strong effects of these two stimulants on clot stiffening. This microtissue force sensing system may have future research and diagnostic potential for various bleeding disorders.
Collapse
|
21
|
Chen Z, Zhao R. Engineered Tissue Development in Biofabricated 3D Geometrical Confinement–A Review. ACS Biomater Sci Eng 2019; 5:3688-3702. [DOI: 10.1021/acsbiomaterials.8b01195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhaowei Chen
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Ruogang Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
22
|
Qiu Y, Ning D, Zhang P, Curly S, Qiao Y, Ma L, Su M. Three-dimensional microtissues as an in vitro model for personalized radiation therapy. Analyst 2018; 142:3605-3612. [PMID: 28812074 DOI: 10.1039/c7an00794a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This paper describes the use of 3D microtissues as an intermediate model between the 2D cell culture and the animal model to assess radiation-induced cellular and DNA damage in the context of personalized radiation therapy. An agarose microwell array was used to generate 3D microtissues with controlled size and shape. The microtissues were exposed to X-ray radiation of various doses, and the radiation damage to cells was examined using a variety of techniques with different end points. Damage to cell membranes and reduction in metabolic activity were examined with the MTT assay and dye inclusion assay. DNA damage was tested with the micronucleus assay, γ-H2AX immunostaining, and HaloChip assay. 3D microtissues exposed to X-rays are smaller compared to unexposed ones in extended cultures, indicating that X-ray radiation can retard the growth of cells in 3D microtissues, where cells at the outer shells of microtissues can prevent further damage to those inside.
Collapse
Affiliation(s)
- Yuting Qiu
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bose P, Eyckmans J, Nguyen TD, Chen CS, Reich DH. Effects of Geometry on the Mechanics and Alignment of Three-Dimensional Engineered Microtissues. ACS Biomater Sci Eng 2018; 5:3843-3855. [DOI: 10.1021/acsbiomaterials.8b01183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Prasenjit Bose
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeroen Eyckmans
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Thao D. Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Christopher S. Chen
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Daniel H. Reich
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
24
|
Asmani M, Velumani S, Li Y, Wawrzyniak N, Hsia I, Chen Z, Hinz B, Zhao R. Fibrotic microtissue array to predict anti-fibrosis drug efficacy. Nat Commun 2018; 9:2066. [PMID: 29802256 PMCID: PMC5970268 DOI: 10.1038/s41467-018-04336-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a severe health problem characterized by progressive stiffening of tissues which causes organ malfunction and failure. A major bottleneck in developing new anti-fibrosis therapies is the lack of in vitro models that recapitulate dynamic changes in tissue mechanics during fibrogenesis. Here we create membranous human lung microtissues to model key biomechanical events occurred during lung fibrogenesis including progressive stiffening and contraction of alveolar tissue, decline in alveolar tissue compliance and traction force-induced bronchial dilation. With these capabilities, we provide proof of principle for using this fibrotic tissue array for multi-parameter, phenotypic analysis of the therapeutic efficacy of two anti-fibrosis drugs recently approved by the FDA. Preventative treatments with Pirfenidone and Nintedanib reduce tissue contractility and prevent tissue stiffening and decline in tissue compliance. In a therapeutic treatment regimen, both drugs restore tissue compliance. These results highlight the pathophysiologically relevant modeling capability of our novel fibrotic microtissue system.
Collapse
Affiliation(s)
- Mohammadnabi Asmani
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Sanjana Velumani
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Yan Li
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Nicole Wawrzyniak
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Isaac Hsia
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Zhaowei Chen
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, M5S 3E2, Canada.,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
25
|
Song C, Wang A, Lin F, Asmani M, Zhao R, Jin Z, Xiao J, Xu W. Tempo-Spatial Compressed Sensing of Organ-on-a-Chip for Pervasive Health. IEEE J Biomed Health Inform 2018; 22:325-334. [PMID: 29505400 DOI: 10.1109/jbhi.2017.2775559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As a micro-engineered biomimetic system to replicate key functions of living organs, organ-on-a-chip (OC) technology provides a high-throughput model for investigating complex cell interactions with both high temporal and spatial resolutions in biological studies. Typically, microscopy and high-speed video cameras are used for data acquisition, which are expensive and bulky. Recently, compressed sensing (CS) has increasingly attracted attentions due to its extremely low-complexity structure and low sampling rate. However, there is no CS solution tailored for tempo-spatial information acquisition. In this paper, we propose tempo-spatial CS (TS-CS), a unified CS architecture for OC stream, which achieves significant cost reduction and truly combines sensing with compression along the temporal and spatial domains. We point out that TS-CS can consistently achieve better performance by exploiting tempo-spatial compressibility in OC data. To this end, we comprehensively evaluate the system performance by employing four different bases for CS. With comparison to the traditional way, we show that TS-CS always obtains better recovery result with a throughput bound and can achieve around throughput improvement under a reconstruction demand by applying discrete cosine transform matrix as the basis.
Collapse
|
26
|
Bose P, Huang CY, Eyckmans J, Chen CS, Reich DH. Fabrication and Mechanical Properties Measurements of 3D Microtissues for the Study of Cell-Matrix Interactions. Methods Mol Biol 2018; 1722:303-328. [PMID: 29264812 DOI: 10.1007/978-1-4939-7553-2_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cell interactions with the extracellular matrix (ECM) are critical to cell and tissue functions involving adhesion, communication, and differentiation. Three-dimensional (3D) in vitro culture systems are an important approach to mimic in vivo cell-matrix interactions for mechanobiology studies and tissue engineering applications. This chapter describes the use of engineered microtissues as 3D constructs in combination with a magnetic tissue gauge (μTUG) system to analyze tissue mechanical properties. The μTUG system is composed of poly(dimethylsiloxane) (PDMS) microwells with vertical pillars in the wells. Self-assembled microtissues containing cells and ECM gel can form between the pillars, and generate mechanical forces that deform the pillars, which provides a readout of those forces. Herein, detailed procedures for microfabrication of the PDMS μTUG system, seeding and growth of cells with ECM gels in the microwells, and measurements of the mechanical properties of the resulting microtissues via magnetic actuation of magnetic sphere-tagged μTUGs are described.
Collapse
Affiliation(s)
- Prasenjit Bose
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Chen Yu Huang
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel H Reich
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
27
|
Parsa H, Wang BZ, Vunjak-Novakovic G. A microfluidic platform for the high-throughput study of pathological cardiac hypertrophy. LAB ON A CHIP 2017; 17:3264-3271. [PMID: 28832065 DOI: 10.1039/c7lc00415j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Current in vitro models fall short in deciphering the mechanisms of cardiac hypertrophy induced by volume overload. We developed a pneumatic microfluidic platform for high-throughput studies of cardiac hypertrophy that enables repetitive (hundreds of thousands of times) and robust (over several weeks) manipulation of cardiac μtissues. The platform is reusable for stable and reproducible mechanical stimulation of cardiac μtissues (each containing only 5000 cells). Heterotypic and homotypic μtissues produced in the device were pneumatically loaded in a range of regimes, with real-time on-chip analysis of tissue phenotypes. Concentrated loading of the three-dimensional cardiac tissue faithfully recapitulated the pathology of volume overload seen in native heart tissue. Sustained volume overload of μtissues was sufficient to induce pathological cardiac remodeling associated with upregulation of the fetal gene program, in a dose-dependent manner.
Collapse
Affiliation(s)
- Hesam Parsa
- Department of Biomedical Engineering, Columbia University, 622 west 168th St., New York, NY 10032, USA.
| | | | | |
Collapse
|
28
|
Alvarado J, Sheinman M, Sharma A, MacKintosh FC, Koenderink GH. Force percolation of contractile active gels. SOFT MATTER 2017; 13:5624-5644. [PMID: 28812094 DOI: 10.1039/c7sm00834a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Living systems provide a paradigmatic example of active soft matter. Cells and tissues comprise viscoelastic materials that exert forces and can actively change shape. This strikingly autonomous behavior is powered by the cytoskeleton, an active gel of semiflexible filaments, crosslinks, and molecular motors inside cells. Although individual motors are only a few nm in size and exert minute forces of a few pN, cells spatially integrate the activity of an ensemble of motors to produce larger contractile forces (∼nN and greater) on cellular, tissue, and organismal length scales. Here we review experimental and theoretical studies on contractile active gels composed of actin filaments and myosin motors. Unlike other active soft matter systems, which tend to form ordered patterns, actin-myosin systems exhibit a generic tendency to contract. Experimental studies of reconstituted actin-myosin model systems have long suggested that a mechanical interplay between motor activity and the network's connectivity governs this contractile behavior. Recent theoretical models indicate that this interplay can be understood in terms of percolation models, extended to include effects of motor activity on the network connectivity. Based on concepts from percolation theory, we propose a state diagram that unites a large body of experimental observations. This framework provides valuable insights into the mechanisms that drive cellular shape changes and also provides design principles for synthetic active materials.
Collapse
Affiliation(s)
- José Alvarado
- Systems Biophysics Department, AMOLF, 1098 XG Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
29
|
Usprech J, Romero DA, Amon CH, Simmons CA. Combinatorial screening of 3D biomaterial properties that promote myofibrogenesis for mesenchymal stromal cell-based heart valve tissue engineering. Acta Biomater 2017; 58:34-43. [PMID: 28532900 DOI: 10.1016/j.actbio.2017.05.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 01/13/2023]
Abstract
The physical and chemical properties of a biomaterial integrate with soluble cues in the cell microenvironment to direct cell fate and function. Predictable biomaterial-based control of integrated cell responses has been investigated with two-dimensional (2D) screening platforms, but integrated responses in 3D have largely not been explored systematically. To address this need, we developed a screening platform using polyethylene glycol norbornene (PEG-NB) as a model biomaterial with which the polymer wt% (to control elastic modulus) and adhesion peptide types (RGD, DGEA, YIGSR) and densities could be controlled independently and combinatorially in arrays of 3D hydrogels. We applied this platform and regression modeling to identify combinations of biomaterial and soluble biochemical (TGF-β1) factors that best promoted myofibrogenesis of human mesenchymal stromal cells (hMSCs) in order to inform our understanding of regenerative processes for heart valve tissue engineering. In contrast to 2D culture, our screens revealed that soft hydrogels (low PEG-NB wt%) best promoted spread myofibroblastic cells that expressed high levels of α-smooth muscle actin (α-SMA) and collagen type I. High concentrations of RGD enhanced α-SMA expression in the presence of TGF-β1 and cell spreading regardless of whether TGF-β1 was in the culture medium. Strikingly, combinations of peptides that maximized collagen expression depended on the presence or absence of TGF-β1, indicating that biomaterial properties can modulate MSC response to soluble signals. This combination of a 3D biomaterial array screening platform with statistical modeling is broadly applicable to systematically identify combinations of biomaterial and microenvironmental conditions that optimally guide cell responses. STATEMENT OF SIGNIFICANCE We present a novel screening platform and methodology to model and identify how combinations of biomaterial and microenvironmental conditions guide cell phenotypes in 3D. Our approach to systematically identify complex relationships between microenvironmental cues and cell responses enables greater predictive power over cell fate in conditions with interacting material design factors. We demonstrate that this approach not only predicts that mesenchymal stromal cell (MSC) myofibrogenesis is promoted by soft, porous 3D biomaterials, but also generated new insights which demonstrate how biomaterial properties can differentially modulate MSC response to soluble signals. An additional benefit of the process includes utilizing both parametric and non parametric analyses which can demonstrate dominant significant trends as well as subtle interactions between biochemical and biomaterial cues.
Collapse
|
30
|
Könnig D, Herrera A, Duda GN, Petersen A. Mechanosensation across borders: fibroblasts inside a macroporous scaffold sense and respond to the mechanical environment beyond the scaffold walls. J Tissue Eng Regen Med 2017; 12:265-275. [PMID: 28084698 DOI: 10.1002/term.2410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 12/09/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
In tissue defects, cells face distinct mechanical boundary conditions, but how this influences early stages of tissue regeneration remains largely unknown. Biomaterials are used to fill defects but also to provide specific mechanical or geometrical signals. However, they might at the same time shield mechanical information from surrounding tissues that is relevant for tissue functionalisation. This study investigated how fibroblasts in a soft macroporous biomaterial scaffold respond to distinct mechanical environments while they form microtissues. Different boundary stiffnesses counteracting scaffold contraction were provided via a newly developed in vitro setup. Online monitoring over 14 days revealed 3.0 times lower microtissue contraction but 1.6 times higher contraction force for high vs. low stiffness. This difference was significant already after 48 h, a very early stage of microtissue growth. The microtissue's mechanical and geometrical adaptation indicated a collective cellular behaviour and mechanical communication across scaffold pore walls. Surprisingly, the stiffness of the environment influenced cell behaviour even inside macroporous scaffolds where direct cell-cell contacts are hindered. Mechanical communication between cells via traction forces is essential for tissue adaptation to the environment and should not be blocked by rigid biomaterials. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- D Könnig
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - A Herrera
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - G N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany.,Center for Musculoskeletal Surgery - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - A Petersen
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Musculoskeletal Surgery - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
31
|
Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling. Sci Rep 2016; 6:33919. [PMID: 27671239 PMCID: PMC5037370 DOI: 10.1038/srep33919] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/06/2016] [Indexed: 12/30/2022] Open
Abstract
The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics.
Collapse
|
32
|
Papadopoulos L, Puckett JG, Daniels KE, Bassett DS. Evolution of network architecture in a granular material under compression. Phys Rev E 2016; 94:032908. [PMID: 27739788 DOI: 10.1103/physreve.94.032908] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Indexed: 01/26/2023]
Abstract
As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks as a framework for directly quantifying the progression of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and interparticle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the changes in this structure throughout the compression process. We separately consider the network of normal and tangential forces, and find that they display a different progression throughout compression. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be achieved by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than a purely local measure of interparticle forces alone. The results discussed throughout this study suggest that these network science techniques may provide a direct way to compare and classify data from systems under different external conditions or with different physical makeup.
Collapse
Affiliation(s)
- Lia Papadopoulos
- Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - James G Puckett
- Department of Physics, Gettysburg College, Gettysburg, Pennsylvania 17325, USA
| | - Karen E Daniels
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Danielle S Bassett
- Departments of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
33
|
Giusti C, Papadopoulos L, Owens ET, Daniels KE, Bassett DS. Topological and geometric measurements of force-chain structure. Phys Rev E 2016; 94:032909. [PMID: 27739731 DOI: 10.1103/physreve.94.032909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 06/06/2023]
Abstract
Developing quantitative methods for characterizing structural properties of force chains in densely packed granular media is an important step toward understanding or predicting large-scale physical properties of a packing. A promising framework in which to develop such methods is network science, which can be used to translate particle locations and force contacts into a graph in which particles are represented by nodes and forces between particles are represented by weighted edges. Recent work applying network-based community-detection techniques to extract force chains opens the door to developing statistics of force-chain structure, with the goal of identifying geometric and topological differences across packings, and providing a foundation on which to build predictions of bulk material properties from mesoscale network features. Here we discuss a trio of related but fundamentally distinct measurements of the mesoscale structure of force chains in two-dimensional (2D) packings, including a statistic derived using tools from algebraic topology, which together provide a tool set for the analysis of force chain architecture. We demonstrate the utility of this tool set by detecting variations in force-chain architecture with pressure. Collectively, these techniques can be generalized to 3D packings, and to the assessment of continuous deformations of packings under stress or strain.
Collapse
Affiliation(s)
- Chad Giusti
- Warren Center for Network and Data Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lia Papadopoulos
- Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eli T Owens
- Department of Physics, Presbyterian College, Clinton, South Carolina, USA
| | - Karen E Daniels
- Department of Physics, North Carolina State University, Raleigh, North Carolina, USA
| | - Danielle S Bassett
- Departments of Bioengineering and Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Visone R, Gilardi M, Marsano A, Rasponi M, Bersini S, Moretti M. Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering. Molecules 2016; 21:E1128. [PMID: 27571058 PMCID: PMC6274098 DOI: 10.3390/molecules21091128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022] Open
Abstract
In the last few years microfluidics and microfabrication technique principles have been extensively exploited for biomedical applications. In this framework, organs-on-a-chip represent promising tools to reproduce key features of functional tissue units within microscale culture chambers. These systems offer the possibility to investigate the effects of biochemical, mechanical, and electrical stimulations, which are usually applied to enhance the functionality of the engineered tissues. Since the functionality of muscle tissues relies on the 3D organization and on the perfect coupling between electrochemical stimulation and mechanical contraction, great efforts have been devoted to generate biomimetic skeletal and cardiac systems to allow high-throughput pathophysiological studies and drug screening. This review critically analyzes microfluidic platforms that were designed for skeletal and cardiac muscle tissue engineering. Our aim is to highlight which specific features of the engineered systems promoted a typical reorganization of the engineered construct and to discuss how promising design solutions exploited for skeletal muscle models could be applied to improve cardiac tissue models and vice versa.
Collapse
Affiliation(s)
- Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milano 20133, Italy.
| | - Mara Gilardi
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy.
- Department of Biotechnology and Biosciences, PhD School in Life Sciences, University of Milano-Bicocca, Milano 20126, Italy.
| | - Anna Marsano
- Departments of Surgery and Biomedicine, University Basel, University Hospital Basel, Basel 4065, Switzerland.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milano 20133, Italy.
| | - Simone Bersini
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy.
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy.
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland.
- Swiss Institute for Regenerative Medicine, Lugano 6900, Switzerland.
- Cardiocentro Ticino, Lugano 6900, Switzerland.
| |
Collapse
|
35
|
Chen Z, Wang Q, Asmani M, Li Y, Liu C, Li C, Lippmann JM, Wu Y, Zhao R. Lung Microtissue Array to Screen the Fibrogenic Potential of Carbon Nanotubes. Sci Rep 2016; 6:31304. [PMID: 27510174 PMCID: PMC4980669 DOI: 10.1038/srep31304] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
Abstract
Due to their excellent physical and chemical characteristics, multi-wall carbon nanotubes (MWCNT) have the potential to be used in structural composites, conductive materials, sensors, drug delivery and medical imaging. However, because of their small-size and light-weight, the applications of MWCNT also raise health concerns. In vivo animal studies have shown that MWCNT cause biomechanical and genetic alterations in the lung tissue which lead to lung fibrosis. To screen the fibrogenic risk factor of specific types of MWCNT, we developed a human lung microtissue array device that allows real-time and in-situ readout of the biomechanical properties of the engineered lung microtissue upon MWCNT insult. We showed that the higher the MWCNT concentration, the more severe cytotoxicity was observed. More importantly, short type MWCNT at low concentration of 50 ng/ml stimulated microtissue formation and contraction force generation, and caused substantial increase in the fibrogenic marker miR-21 expression, indicating the high fibrogenic potential of this specific carbon nanotube type and concentration. The presented microtissue array system provides a powerful tool for high-throughput examination of the therapeutic and toxicological effects of target compounds in realistic tissue environment.
Collapse
Affiliation(s)
- Zhaowei Chen
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Qixin Wang
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Mohammadnabi Asmani
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Yan Li
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Chang Liu
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Changning Li
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA.,State University of New York at Buffalo, Department of Chemical and Biological Engineering, Buffalo, New York, 14260, USA
| | - Julian M Lippmann
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Yun Wu
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Ruogang Zhao
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| |
Collapse
|
36
|
Mistriotis P, Bajpai VK, Wang X, Rong N, Shahini A, Asmani M, Liang MS, Wang J, Lei P, Liu S, Zhao R, Andreadis ST. NANOG Reverses the Myogenic Differentiation Potential of Senescent Stem Cells by Restoring ACTIN Filamentous Organization and SRF-Dependent Gene Expression. Stem Cells 2016; 35:207-221. [PMID: 27350449 DOI: 10.1002/stem.2452] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/28/2016] [Indexed: 12/12/2022]
Abstract
Cellular senescence as a result of organismal aging or progeroid diseases leads to stem cell pool exhaustion hindering tissue regeneration and contributing to the progression of age related disorders. Here we discovered that ectopic expression of the pluripotent factor NANOG in senescent or progeroid myogenic progenitors reversed cellular aging and restored completely the ability to generate contractile force. To elicit its effects, NANOG enabled reactivation of the ROCK and Transforming Growth Factor (TGF)-β pathways-both of which were impaired in senescent cells-leading to ACTIN polymerization, MRTF-A translocation into the nucleus and serum response factor (SRF)-dependent myogenic gene expression. Collectively our data reveal that cellular senescence can be reversed and provide a novel strategy to regain the lost function of aged stem cells without reprogramming to the pluripotent state. Stem Cells 2017;35:207-221.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Vivek K Bajpai
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Xiaoyan Wang
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Na Rong
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Aref Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Mohammadnabi Asmani
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Mao-Shih Liang
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA.,Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, New York, USA
| |
Collapse
|
37
|
YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nat Neurosci 2016; 19:879-87. [PMID: 27273766 PMCID: PMC4925303 DOI: 10.1038/nn.4316] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/04/2016] [Indexed: 12/13/2022]
Abstract
Myelination is essential for nervous system function. Schwann cells interact with neurons and the basal lamina to myelinate axons, using known receptors, signals and transcription factors. In contrast, the transcriptional control of axonal sorting and the role of mechanotransduction in myelination are largely unknown. Yap and Taz are effectors of the Hippo pathway that integrate chemical and mechanical signals in cells. We describe a previously unknown role for the Hippo pathway in myelination. Using conditional mutagenesis in mice we show that Taz is required in Schwann cells for radial sorting and myelination, and that Yap is redundant with Taz. Yap/Taz are activated in Schwann cells by mechanical stimuli, and regulate Schwann cell proliferation and transcription of basal lamina receptor genes, both necessary for proper radial sorting of axons and subsequent myelination. These data link transcriptional effectors of the Hippo pathway and of mechanotransduction to myelin formation in Schwann cells.
Collapse
|
38
|
Gowran A, Rasponi M, Visone R, Nigro P, Perrucci GL, Righetti S, Zanobini M, Pompilio G. Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:4287158. [PMID: 27110250 PMCID: PMC4823509 DOI: 10.1155/2016/4287158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/09/2016] [Indexed: 01/01/2023] Open
Abstract
A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Patrizia Nigro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Gianluca L. Perrucci
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Stefano Righetti
- Cardiology Unit, San Gerardo Hospital, Via Giambattista Pergolesi 33, 20052 Monza, Italy
| | - Marco Zanobini
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| |
Collapse
|
39
|
Kural MH, Billiar KL. Myofibroblast persistence with real-time changes in boundary stiffness. Acta Biomater 2016; 32:223-230. [PMID: 26712600 DOI: 10.1016/j.actbio.2015.12.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022]
Abstract
Myofibroblasts are critical for connective tissue remodeling and wound healing since they can close wound beds and shape tissues rapidly by generating high traction forces and secreting abundant extracellular matrix proteins and matrix metalloproteinases. However, their presence in excessive numbers is associated with fibrotic and calcific diseases and tissue thickening in engineered tissues. While activation of the myofibroblast phenotype has been studied extensively, whether myofibroblasts are "cleared" by phenotypic reversal or by apoptosis remains controversial. The goal of this work is to test the hypothesis that mechanical inhibition of myofibroblast force generation leads to de-differentiation or apoptosis depending upon the magnitude of the decrease in tension. To test this hypothesis, we cultured valvular interstitial cells (VICs) in fibrin micro-tissues suspended between flexible posts and dynamically altered the ability of the cells to generate tension by altering boundary stiffness via magnetic forces applied to posts. The flexible posts capped with magnetic beads enable the measurement and modulation of tension generated by the cells within the tissue. As expected, the cell-generated forces were elevated with dynamically increased boundary (post) stiffness, yet surprisingly, the forces continued to increase following dynamic reduction of boundary stiffness back to baseline levels. Increased apoptosis and reduced α-SMA staining were observed with complete freeing of the tissues from the posts but not upon removal of the magnet, resulting in a twofold decrease in post stiffness. Together, these data indicate that an increase in myofibroblast force generation, even if modest and temporary (1 day), can have lasting effects on myofibroblast persistence in tissues, and that a significant reduction in the ability of the cells to generate tension is required to trigger dedifferentiation and/or apoptosis. The ability to dedifferentiate myofibroblasts to a quiescent phenotype and to control the percentage of apoptosis would be of great benefit for therapeutic and tissue engineering applications. STATEMENT OF SIGNIFICANCE Myofibroblasts play an important role in tissue remodeling and wound healing. However, excessive activation of this phenotype is associated with fibrotic diseases and scar formation. Being able to dedifferentiate these cells or controlling their clearance with apoptosis (programmed cell death) would be beneficial. It is known that releasing rigid tissue boundaries trigger apoptosis, while reducing the substrate stiffness can cause myofibroblast dedifferentiation. However, the mechanical tension was not quantified in any of the studies. Here we used micro-cantilever posts at tissue boundaries to measure tension and to regulate boundary stiffness in real time by pulling posts with magnets. We show that temporary stiffening of boundary causes irreversible myofibroblast activation and the magnitude of tension drop controls apoptosis.
Collapse
|
40
|
Iwasaki A, Sakai K, Moriya K, Sasaki T, Keene DR, Akhtar R, Miyazono T, Yasumura S, Watanabe M, Morishita S, Sakai T. Molecular Mechanism Responsible for Fibronectin-controlled Alterations in Matrix Stiffness in Advanced Chronic Liver Fibrogenesis. J Biol Chem 2016; 291:72-88. [PMID: 26553870 PMCID: PMC4697189 DOI: 10.1074/jbc.m115.691519] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/23/2015] [Indexed: 12/23/2022] Open
Abstract
Fibrosis is characterized by extracellular matrix (ECM) remodeling and stiffening. However, the functional contribution of tissue stiffening to noncancer pathogenesis remains largely unknown. Fibronectin (Fn) is an ECM glycoprotein substantially expressed during tissue repair. Here we show in advanced chronic liver fibrogenesis using a mouse model lacking Fn that, unexpectedly, Fn-null livers lead to more extensive liver cirrhosis, which is accompanied by increased liver matrix stiffness and deteriorated hepatic functions. Furthermore, Fn-null livers exhibit more myofibroblast phenotypes and accumulate highly disorganized/diffuse collagenous ECM networks composed of thinner and significantly increased number of collagen fibrils during advanced chronic liver damage. Mechanistically, mutant livers show elevated local TGF-β activity and lysyl oxidase expressions. A significant amount of active lysyl oxidase is released in Fn-null hepatic stellate cells in response to TGF-β1 through canonical and noncanonical Smad such as PI3 kinase-mediated pathways. TGF-β1-induced collagen fibril stiffness in Fn-null hepatic stellate cells is significantly higher compared with wild-type cells. Inhibition of lysyl oxidase significantly reduces collagen fibril stiffness, and treatment of Fn recovers collagen fibril stiffness to wild-type levels. Thus, our findings indicate an indispensable role for Fn in chronic liver fibrosis/cirrhosis in negatively regulating TGF-β bioavailability, which in turn modulates ECM remodeling and stiffening and consequently preserves adult organ functions. Furthermore, this regulatory mechanism by Fn could be translated for a potential therapeutic target in a broader variety of chronic fibrotic diseases.
Collapse
Affiliation(s)
- Ayumi Iwasaki
- From the MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, United Kingdom, the Graduate School of Biomedical Engineering and
| | - Keiko Sakai
- From the MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, United Kingdom, the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Kei Moriya
- the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Takako Sasaki
- the Department of Biochemistry, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | - Douglas R Keene
- the Micro-Imaging Center, Shriners Hospital for Children, Portland, Oregon 97231
| | - Riaz Akhtar
- Centre for Materials and Structures, School of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Takayoshi Miyazono
- Department of Gastroenterology and Hepatology, and Transfusion Medicine and Cell Therapy, Toyama University, Toyama 930-0194, Japan, and
| | - Satoshi Yasumura
- Department of Gastroenterology and Hepatology, and Transfusion Medicine and Cell Therapy, Toyama University, Toyama 930-0194, Japan, and
| | | | - Shin Morishita
- Environmental and Information Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Takao Sakai
- From the MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, United Kingdom, the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195,
| |
Collapse
|
41
|
Liu K, Kang Y, Ma G, Möhwald H, Yan X. Molecular and mesoscale mechanism for hierarchical self-assembly of dipeptide and porphyrin light-harvesting system. Phys Chem Chem Phys 2016; 18:16738-47. [DOI: 10.1039/c6cp01358a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multiscale theoretical models are built to unravel the hierarchically ordered organization of dipeptide–porphyrin co-assemblies with different light-harvesting efficiencies.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Yu Kang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces
- Potsdam/Golm 14476
- Germany
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
42
|
|
43
|
Xu F, Zhao R, Liu AS, Metz T, Shi Y, Bose P, Reich DH. A microfabricated magnetic actuation device for mechanical conditioning of arrays of 3D microtissues. LAB ON A CHIP 2015; 15:2496-503. [PMID: 25959132 PMCID: PMC4439293 DOI: 10.1039/c4lc01395f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This paper describes an approach to actuate magnetically arrays of microtissue constructs for long-term mechanical conditioning and subsequent biomechanical measurements. Each construct consists of cell/matrix material self-assembled around a pair of flexible poly(dimethylsiloxane) (PDMS) pillars. The deflection of the pillars reports the tissues' contractility. Magnetic stretching of individual microtissues via magnetic microspheres mounted on the cantilevers has been used to elucidate the tissues' elastic modulus and response to varying mechanical boundary conditions. This paper describes the fabrication of arrays of micromagnetic structures that can transduce an externally applied uniform magnetic field to actuate simultaneously multiple microtissues. These structures are fabricated on silicon-nitride coated Si wafers and contain electrodeposited Ni bars. Through-etched holes provide optical and culture media access when the devices are mounted on the PDMS microtissue scaffold devices. Both static and AC forces (up to 20 μN on each microtissue) at physiological frequencies are readily generated in external fields of 40 mT. Operation of the magnetic arrays was demonstrated via measurements of elastic modulus and dynamic stiffening in response to AC actuation of fibroblast populated collagen microtissues.
Collapse
Affiliation(s)
- Fan Xu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210008, Jiangsu, China
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Ruogang Zhao
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Alan S. Liu
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Tristin Metz
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Yu Shi
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Prasenjit Bose
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Daniel H. Reich
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
44
|
Moraes C, Labuz JM, Shao Y, Fu J, Takayama S. Supersoft lithography: candy-based fabrication of soft silicone microstructures. LAB ON A CHIP 2015; 15:3760-5. [PMID: 26245893 PMCID: PMC4550510 DOI: 10.1039/c5lc00722d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based 'hard candy' recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues.
Collapse
Affiliation(s)
- Christopher Moraes
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 2B2, Canada
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, NCRC, MI 48109-2800, USA
| | - Joseph M. Labuz
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, NCRC, MI 48109-2800, USA
| | - Yue Shao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, NCRC, MI 48109-2800, USA
- Macromolecular science and Engineering Center, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| |
Collapse
|
45
|
Uzel SGM, Pavesi A, Kamm RD. Microfabrication and microfluidics for muscle tissue models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:279-93. [PMID: 25175338 DOI: 10.1016/j.pbiomolbio.2014.08.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/19/2014] [Indexed: 12/14/2022]
Abstract
The relatively recent development of microfluidic systems with wide-ranging capabilities for generating realistic 2D or 3D systems with single or multiple cell types has given rise to an extensive collection of platform technologies useful in muscle tissue engineering. These new systems are aimed at (i) gaining fundamental understanding of muscle function, (ii) creating functional muscle constructs in vitro, and (iii) utilizing these constructs a variety of applications. Use of microfluidics to control the various stimuli that promote differentiation of multipotent cells into cardiac or skeletal muscle is first discussed. Next, systems that incorporate muscle cells to produce either 2D sheets or 3D tissues of contractile muscle are described with an emphasis on the more recent 3D platforms. These systems are useful for fundamental studies of muscle biology and can also be incorporated into drug screening assays. Applications are discussed for muscle actuators in the context of microrobotics and in miniaturized biological pumps. Finally, an important area of recent study involves coculture with cell types that either activate muscle or facilitate its function. Limitations of current designs and the potential for improving functionality for a wider range of applications is also discussed, with a look toward using current understanding and capabilities to design systems of greater realism, complexity and functionality.
Collapse
Affiliation(s)
- Sebastien G M Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andrea Pavesi
- Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|