1
|
Zhang Y, Zhu YJ, Li SY, Dong LY, Yu HP. Microwave-Heating-Assisted Synthesis of Ultrathin and Ultralong Hydroxyapatite Nanowires Using Biogenic Creatine Phosphate and Their Derived Flexible Bio-Paper with Drug Delivery Function. Molecules 2025; 30:996. [PMID: 40076221 PMCID: PMC11901913 DOI: 10.3390/molecules30050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
With an ultrahigh aspect ratio and a similar chemical composition to the biomineral in bone and tooth, ultralong hydroxyapatite nanowires (UHAPNWs) exhibit a meritorious combination of high flexibility, excellent mechanical performance, high biocompatibility, and bioactivity. Despite these exciting merits, the rapid and green synthesis of UHAPNWs remains challenging. In this work, we have developed an environment-friendly, rapid, and highly efficient synthesis of ultrathin UHAPNWs by the microwave-assisted calcium oleate precursor hydrothermal method using biogenic creatine phosphate as the bio-phosphorus source. Owing to the controllable hydrolysis of bio-phosphorus-containing creatine phosphate and the highly efficient heating of microwave irradiation, ultrathin UHAPNWs with a homogeneous morphology of several nanometers in diameter (single nanowire), several hundred micrometers in length, and ultrahigh aspect ratios (>10,000) can be rapidly synthesized within 60 min. This effectively shortens the synthesis time by about two orders of magnitude compared with the traditional hydrothermal method. Furthermore, ultrathin UHAPNWs are decorated in situ with bioactive creatine and self-assembled into nanowire bundles along their longitudinal direction at the nanoscale. In addition, ultrathin UHAPNWs exhibit a relatively high specific surface area of 84.30 m2 g-1 and high ibuprofen drug loading capacity. The flexible bio-paper constructed from interwoven ibuprofen-loaded ultrathin UHAPNWs can sustainably deliver ibuprofen in phosphate-buffered saline, which is promising for various biomedical applications such as tissue regeneration with anti-inflammatory and analgesic functions.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (Y.Z.); (S.-Y.L.); (L.-Y.D.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (Y.Z.); (S.-Y.L.); (L.-Y.D.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Yi Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (Y.Z.); (S.-Y.L.); (L.-Y.D.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Ying Dong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (Y.Z.); (S.-Y.L.); (L.-Y.D.)
| | - Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (Y.Z.); (S.-Y.L.); (L.-Y.D.)
| |
Collapse
|
2
|
Li H, Li D, Chen H, Yue X, Fan K, Dong L, Wang G. Application of Silicon Nanowire Field Effect Transistor (SiNW-FET) Biosensor with High Sensitivity. SENSORS (BASEL, SWITZERLAND) 2023; 23:6808. [PMID: 37571591 PMCID: PMC10422280 DOI: 10.3390/s23156808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
As a new type of one-dimensional semiconductor nanometer material, silicon nanowires (SiNWs) possess good application prospects in the field of biomedical sensing. SiNWs have excellent electronic properties for improving the detection sensitivity of biosensors. The combination of SiNWs and field effect transistors (FETs) formed one special biosensor with high sensitivity and target selectivity in real-time and label-free. Recently, SiNW-FETs have received more attention in fields of biomedical detection. Here, we give a critical review of the progress of SiNW-FETs, in particular, about the reversible surface modification methods. Moreover, we summarized the applications of SiNW-FETs in DNA, protein, and microbial detection. We also discuss the related working principle and technical approaches. Our review provides an extensive discussion for studying the challenges in the future development of SiNW-FETs.
Collapse
Affiliation(s)
- Huiping Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Huiyi Chen
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiaojie Yue
- The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
3
|
Singh S, Rani H, Sharma N, Behl T, Zahoor I, Makeen HA, Albratty M, Alhazm HA, Aleya L. Targeting multifunctional magnetic nanowires for drug delivery in cancer cell death: an emerging paradigm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57219-57235. [PMID: 37010687 DOI: 10.1007/s11356-023-26650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Apoptosis, often known as programmed cell death is a mechanism used by numerous species to maintain tissue homeostasis. The process leading to cell death is complicated because it requires the stimulation of caspases. According to several studies, nanowires have important medical benefits, can kill cells by adhering to cancer cells, destroying them, and killing the entire cell using a triple attack that integrates vibration, heat, and drug delivery to trigger apoptosis. The sewage effluents and industrial, fertilizer and organic wastes decomposition can produce elevated levels of chemicals in the environment which may interrupt the cell cycle and activate apoptosis. The purpose of this review is to give a thorough summary of the evidence that is currently available on apoptosis. Current review discussed topics like the morphological and biochemical alterations that occur during apoptosis, as well as the various mechanisms that cause cell death, including the intrinsic (or mitochondrial), extrinsic (or death receptor), and intrinsic endoplasmic reticulum pathway. The apoptosis reduction in cancer development is mediated by (i) an imbalance between pro- and anti-apoptotic proteins, such as members of the B-cell lymphoma-2 (BCL2) family of proteins, tumour protein 53 and inhibitor of apoptosis proteins, (ii) a reduction in caspase activity, and (iii) impaired death receptor signalling. This review does an excellent task of outlining the function of nanowires in both apoptosis induction and targeted drug delivery for cancer cells. A comprehensive summary of the relevance of nanowires synthesised for the purpose of inducing apoptosis in cancer cells has been compiled collectively.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hema Rani
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, 141104, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Tapan Behl
- School of Health Sciences &Technology, University of Petroleum and Energy Studies, Bidholi, Uttarakhand, 248007, Dehradun, India
| | - Ishrat Zahoor
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazm
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| |
Collapse
|
4
|
Cui F, Liu J, Zhang T, Pang S, Yu H, Xu N. Low-dimensional nanomaterials as an emerging platform for cancer diagnosis and therapy. Front Bioeng Biotechnol 2023; 11:1101673. [PMID: 36741768 PMCID: PMC9892763 DOI: 10.3389/fbioe.2023.1101673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
The burden of cancer is increasing, being widely recognized as one of the main reasons for deaths among humans. Despite the tremendous efforts that have been made worldwide to stem the progression and metastasis of cancer, morbidity and mortality in malignant tumors have been clearly rising and threatening human health. In recent years, nanomedicine has come to occupy an increasingly important position in precision oncotherapy, which improves the diagnosis, treatment, and long-term prognosis of cancer. In particular, LDNs with distinctive physicochemical capabilities have provided great potential for advanced biomedical applications, attributed to their large surface area, abundant surface binding sites, and good cellular permeation properties. In addition, LDNs can integrate CT/MR/US/PAI and PTT/PDT/CDT/NDDS into a multimodal theranostic nanoplatform, enabling targeted therapy and efficacy assessments for cancer. This review attempts to concisely summarize the classification and major properties of LDNs. Simultaneously, we particularly emphasize their applications in the imaging, diagnosis, and treatment of cancerous diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Nannan Xu
- *Correspondence: Jianhua Liu, ; Nannan Xu,
| |
Collapse
|
5
|
Ikramova SB, Utegulov ZN, Dikhanbayev KK, Gaipov AE, Nemkayeva RR, Yakunin VG, Savinov VP, Timoshenko VY. Surface-Enhanced Raman Scattering from Dye Molecules in Silicon Nanowire Structures Decorated by Gold Nanoparticles. Int J Mol Sci 2022; 23:2590. [PMID: 35269733 PMCID: PMC8910339 DOI: 10.3390/ijms23052590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022] Open
Abstract
Silicon nanowires (SiNWs) prepared by metal-assisted chemical etching of crystalline silicon wafers followed by deposition of plasmonic gold (Au) nanoparticles (NPs) were explored as templates for surface-enhanced Raman scattering (SERS) from probe molecules of Methylene blue and Rhodamine B. The filling factor by pores (porosity) of SiNW arrays was found to control the SERS efficiency, and the maximal enhancement was observed for the samples with porosity of 55%, which corresponded to dense arrays of SiNWs. The obtained results are discussed in terms of the electromagnetic enhancement of SERS related to the localized surface plasmon resonances in Au-NPs on SiNW's surfaces accompanied with light scattering in the SiNW arrays. The observed SERS effect combined with the high stability of Au-NPs, scalability, and relatively simple preparation method are promising for the application of SiNW:Au-NP hybrid nanostructures as templates in molecular sensorics.
Collapse
Affiliation(s)
- Saltanat B. Ikramova
- Faculty of Physics and Technology, Al-Farabi Kazakh National University, 71, Almaty 050040, Kazakhstan; (S.B.I.); (K.K.D.)
| | - Zhandos N. Utegulov
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Kadyrjan K. Dikhanbayev
- Faculty of Physics and Technology, Al-Farabi Kazakh National University, 71, Almaty 050040, Kazakhstan; (S.B.I.); (K.K.D.)
| | - Abduzhappar E. Gaipov
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan;
| | - Renata R. Nemkayeva
- National Nanotechnology Laboratory Open Type, Faculty of Physics and Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Valery G. Yakunin
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.G.Y.); (V.P.S.)
| | - Vladimir P. Savinov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.G.Y.); (V.P.S.)
| | - Victor Yu Timoshenko
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.G.Y.); (V.P.S.)
- Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021; 146:6684-6725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
7
|
Fluorescent Silicon-based Nanomaterials Imaging Technology in Diseases. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Fernández-González C, Guzmán-Mínguez JC, Guedeja-Marrón A, García-Martín E, Foerster M, Niño MÁ, Aballe L, Quesada A, Pérez L, Ruiz-Gómez S. Scaling Up the Production of Electrodeposited Nanowires: A Roadmap towards Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1657. [PMID: 34202505 PMCID: PMC8307701 DOI: 10.3390/nano11071657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022]
Abstract
The use of metallic nanowires is mostly reduced to scientific areas where a small quantity of nanostructures are needed. In order to broaden the applicability of these nanomaterials, it is necessary to establish novel synthesis protocols that provide a larger amount of nanowires than the conventional laboratory fabrication processes at a more competitive cost. In this work, we propose several modifications to the conventional electrochemical synthesis of nanowires in order to increase the production with considerably reduced production time and cost. To that end, we use a soft anodization procedure of recycled aluminum at room temperature to produce the alumina templates, followed by galvanostatic growth of CoFe nanowires. We studied their morphology, composition and magnetic configuration, and found that their properties are very similar to those obtained by conventional methods.
Collapse
Affiliation(s)
- Claudia Fernández-González
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (C.F.-G.); (A.G.-M.)
| | | | - Alejandra Guedeja-Marrón
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (C.F.-G.); (A.G.-M.)
| | | | - Michael Foerster
- Alba Synchrotron Light Facility, 08290 Barcelona, Spain; (M.F.); (M.Á.N.); (L.A.)
| | - Miguel Ángel Niño
- Alba Synchrotron Light Facility, 08290 Barcelona, Spain; (M.F.); (M.Á.N.); (L.A.)
| | - Lucía Aballe
- Alba Synchrotron Light Facility, 08290 Barcelona, Spain; (M.F.); (M.Á.N.); (L.A.)
| | - Adrián Quesada
- Instituto de Cerámica y Vidrio (CSIC), 28049 Madrid, Spain; (J.C.G.-M.); (A.Q.)
| | - Lucas Pérez
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (C.F.-G.); (A.G.-M.)
- Surface Science and Magnetism of Low Dimensional Systems, Universidad Complutense de Madrid, Unidad Asociada al IQFR-CSIC, 28040 Madrid, Spain
| | - Sandra Ruiz-Gómez
- Alba Synchrotron Light Facility, 08290 Barcelona, Spain; (M.F.); (M.Á.N.); (L.A.)
| |
Collapse
|
9
|
Chu B, Wang A, Cheng L, Chen R, Shi H, Song B, Dong F, Wang H, He Y. Ex vivo and in vivo fluorescence detection and imaging of adenosine triphosphate. J Nanobiotechnology 2021; 19:187. [PMID: 34158076 PMCID: PMC8220756 DOI: 10.1186/s12951-021-00930-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/07/2021] [Indexed: 12/04/2022] Open
Abstract
Background Ex vivo and in vivo detection and imaging of adenosine triphosphate (ATP) is critically important for the diagnosis and treatment of diseases, which still remains challenges up to present. Results We herein demonstrate that ATP could be fluorescently detected and imaged ex vivo and in vivo. In particular, we fabricate a kind of fluorescent ATP probes, which are made of titanium carbide (TC) nanosheets modified with the ROX-tagged ATP-aptamer (TC/Apt). In the constructed TC/Apt, TC shows superior quenching efficiency against ROX (e.g., ~ 97%). While in the presence of ATP, ROX-tagged aptamer is released from TC surface, leading to the recovery of fluorescence of ROX under the 545-nm excitation. Consequently, a wide dynamic range from 1 μM to 1.5 mM ATP and a high sensitivity with a limit of detection (LOD) down to 0.2 μM ATP can be readily achieved by the prepared TC/Apt. We further demonstrate that the as-prepared TC/Apt probe is feasible for accurate discrimination of ATP in different samples including living cells, body fluids (e.g., mouse serum, mouse urine and human serum) and mouse tumor models. Conclusions Fluorescence detection and imaging of ATP could be readily achieved in living cells, body fluids (e.g., urine and serum), as well as mouse tumor model through a new kind of fluorescent ATP nanoprobes, offering new powerful tools for the treatment of diseases related to abnormal fluctuation of ATP concentration.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00930-4.
Collapse
Affiliation(s)
- Binbin Chu
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Ajun Wang
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Liang Cheng
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Runzhi Chen
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Huayi Shi
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Bin Song
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Fenglin Dong
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Houyu Wang
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.
| |
Collapse
|
10
|
Tamarov K, Kiviluoto R, Swanson JD, Unger BA, Ernst AT, Aindow M, Riikonen J, Lehto VP, Kolasinski KW. Low-Load Metal-Assisted Catalytic Etching Produces Scalable Porosity in Si Powders. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48969-48981. [PMID: 33052667 DOI: 10.1021/acsami.0c13980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The recently discovered low-load metal-assisted catalytic etching (LL-MACE) creates nanostructured Si with controllable and variable characteristics that distinguish this technique from the conventional high-load variant. LL-MACE employs 150 times less metal catalyst and produces porous Si instead of Si nanowires. In this work, we demonstrate that some of the features of LL-MACE cannot be explained by the present understanding of MACE. With mechanistic insight derived from extensive experimentation, it is demonstrated that (1) the method allows the use of not only Ag, Pd, Pt, and Au as metal catalysts but also Cu and (2) judicious combinations of process parameters such as the type of metal, Si doping levels, and etching temperatures facilitate control over yield (0.065-88%), pore size (3-100 nm), specific surface area (20-310 m2·g-1), and specific pore volume (0.05-1.05 cm3·g-1). The porous structure of the product depends on the space-charge layer, which is controlled by the Si doping and the chemical identity of the deposited metal. The porous structure was also dependent on the dynamic structure of the deposited metal. A distinctive comet-like structure of metal nanoparticles was observed after etching with Cu, Ag, Pd, and, in some cases, Pt; this structure consisted of 10-50 nm main particles surrounded by smaller (<5 nm) nanoparticles. With good scalability and precise control of structural properties, LL-MACE facilitates Si applications in photovoltaics, energy storage, biomedicine, and water purification.
Collapse
Affiliation(s)
- Konstantin Tamarov
- Department of Applied Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Riku Kiviluoto
- Department of Applied Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Joseph D Swanson
- Department of Chemistry, West Chester University, West Chester, Pennsylvania 19383-2115, United States
| | - Bret A Unger
- Department of Chemistry, West Chester University, West Chester, Pennsylvania 19383-2115, United States
| | - Alexis T Ernst
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Mark Aindow
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Joakim Riikonen
- Department of Applied Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Kurt W Kolasinski
- Department of Chemistry, West Chester University, West Chester, Pennsylvania 19383-2115, United States
| |
Collapse
|
11
|
Zhao J, Liu Y, Sun J, Zhu H, Chen Y, Dong T, Sang R, Gao X, Yang W, Deng Y. Magnetic targeting cobalt nanowire-based multifunctional therapeutic system for anticancer treatment and angiogenesis. Colloids Surf B Biointerfaces 2020; 194:111217. [PMID: 32622255 DOI: 10.1016/j.colsurfb.2020.111217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 12/09/2022]
Abstract
In order to improve the anticancer therapeutic efficacy and postoperative recovery efficacy, the novel anticancer therapeutic system should have the ability to promote angiogenesis after anticancer therapy besides the excellent anticancer therapeutic efficacy. We present herein a magnetic targeting multifunctional anticancer therapeutic system based on cobalt nanowires (CoNWs) for anticancer therapy and angiogenesis. Magnetic characterization shows that the CoNWs can be concentrated in desired locations under the external magnetic field, which is favorable for anticancer target therapy. Besides, drug loading/release characterization reveals that the CoNWs interact with doxorubicin (DOX) by electrostatic interaction, and accordingly form a composite which can release DOX with temperature increase under near-infrared light (NIR) treatment. And anticancer test reveals that the nanowires loaded with the DOX (CoNWs-DOX) can produce an effective chemo-photothermal synergistic therapeutic effect against murine breast cancer cell lines (4T1) and human osteosarcoma cell lines (MG63) under NIR treatment. Furthermore, angiogenesis assessment reveals that the released cobalt ion from the nanowires can significantly enhance the angiogenesis efficacy after cancer treatment. These results suggest that the constructed anticancer therapeutic system provides a promising multifunctional platform for cancer treatment and postoperative recovery.
Collapse
Affiliation(s)
- Jiankui Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yunxiu Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiamin Sun
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Huang Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yong Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Taosheng Dong
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Sang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiangyu Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Weizhong Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
12
|
Yin HQ, Shao G, Gan F, Ye G. One-step, Rapid and Green Synthesis of Multifunctional Gold Nanoparticles for Tumor-Targeted Imaging and Therapy. NANOSCALE RESEARCH LETTERS 2020; 15:29. [PMID: 32006199 PMCID: PMC6994604 DOI: 10.1186/s11671-019-3232-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Gold nanoparticles (GNPs) have always been used as doxorubicin (DOX) transport vectors for tumor diagnosis and therapy; however, the synthesis process of these vectors is to prepare GNPs via chemical reduction method firstly, followed by conjugation with DOX or specific peptides, so these meth•ods faced some common problems including multiple steps, high cost, time consuming, complicated preparation, and post-processing. Here, we present a one-step strategy to prepare the DOX-conjugated GNPs on the basis of DOX's chemical constitution for the first time. Moreover, we prepare a multifunctional GNPs (DRN-GNPs) with a one-step method by the aid of the reductive functional groups possessed by DOX, RGD peptides, and nuclear localization peptides (NLS), which only needs 30 min. The results of scattering images and cell TEM studies indicated that the DRN-GNPs could target the Hela cells' nucleus. The tumor inhibition rates of DRN-GNPs via tumor and tail vein injection of nude mice were 66.7% and 57.7%, respectively, which were significantly enhanced compared to control groups. One step synthesis of multifunctional GNPs not only saves time, materials, but also it is in line with the development direction of green chemistry, and it would lay the foundation for large-scale applications within the near future. Our results suggested that the fabrication strategy is efficient, and our prepared DRN-GNPs possess good colloidal stability in the physiological system; they are a potentially contrast agent and an efficient DOX transport vector for cervical cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Hua Qin Yin
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Guang Shao
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Feng Gan
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Gang Ye
- Department of Gastroenterology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630 People’s Republic of China
| |
Collapse
|
13
|
Fernandes A, Dias-Ferreira J, Teixeira M, Shimojo A, Severino P, Silva A, Shegokar R, Souto EB. Bioactive hybrid nanowires. DRUG DELIVERY TRENDS 2020:1-13. [DOI: 10.1016/b978-0-12-817870-6.00001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Nana ABA, Marimuthu T, Kondiah PPD, Choonara YE, Du Toit LC, Pillay V. Multifunctional Magnetic Nanowires: Design, Fabrication, and Future Prospects as Cancer Therapeutics. Cancers (Basel) 2019; 11:E1956. [PMID: 31817598 PMCID: PMC6966456 DOI: 10.3390/cancers11121956] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/27/2022] Open
Abstract
Traditional cancer therapeutics are limited by factors such as multi-drug resistance and a plethora of adverse effect. These limitations need to be overcome for the progression of cancer treatment. In order to overcome these limitations, multifunctional nanosystems have recently been introduced into the market. The employment of multifunctional nanosystems provide for the enhancement of treatment efficacy and therapeutic effect as well as a decrease in drug toxicity. However, in addition to these effects, magnetic nanowires bring specific advantages over traditional nanoparticles in multifunctional systems in terms of the formulation and application into a therapeutic system. The most significant of which is its larger surface area, larger net magnetic moment compared to nanoparticles, and interaction under a magnetic field. This results in magnetic nanowires producing a greater drug delivery and therapeutic platform with specific regard to magnetic drug targeting, magnetic hyperthermia, and magnetic actuation. This, in turn, increases the potential of magnetic nanowires for decreasing adverse effects and improving patient therapeutic outcomes. This review focuses on the design, fabrication, and future potential of multifunctional magnetic nanowire systems with the emphasis on improving patient chemotherapeutic outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (A.B.A.N.); (T.M.); (P.P.D.K.); (Y.E.C.); (L.C.D.T.)
| |
Collapse
|
15
|
Chu B, Wu S, Ji X, Chen R, Song B, Tang J, Wang H, Su Y, He Y. Controllable silicon nanostructures featuring stable fluorescence and intrinsic in vitro and in vivo anti-cancer activity. J Mater Chem B 2019; 7:6247-6256. [PMID: 31566627 DOI: 10.1039/c9tb01191a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this manuscript, we demonstrate that the in situ growth of fluorescent silicon (Si) nanomaterials is stimulated when organosilicane molecules interact with different green teas, producing multifunctional Si nanomaterials with controllable zero- (e.g., nanoparticles), two- (e.g., nanosheets), and three- (e.g., nanospheres) dimensional nanostructures. Such green tea-originated Si nanomaterials (GTSN) exhibit strong fluorescence (quantum yield: ∼19-30%) coupled with ultrahigh photostability, as well as intrinsic anti-cancer activity with high specificity (e.g., the GTSN can accurately kill various cancer cells, rather than normal cells). Taking advantage of these unique merits, we further performed systematic in vitro and in vivo experiments to interrogate the mechanism of the green tea- and GTSN-related cancer prevention. Typically, we found that the GTSN entered the cell nuclei and induced cell apoptosis/death of cancer cells. The prepared GTSN were observed in vivo to accumulate in the tumour tissues after 14-d post-injection, leading to an efficient inhibition of tumour growth. Our results open new avenues for designing novel multifunctional and side-effect-free Si nanomaterials with controllable structures.
Collapse
Affiliation(s)
- Binbin Chu
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wen S, Su Y, Dai C, Jia J, Fan GC, Jiang LP, Song RB, Zhu JJ. Plasmon Coupling-Enhanced Raman Sensing Platform Integrated with Exonuclease-Assisted Target Recycling Amplification for Ultrasensitive and Selective Detection of microRNA-21. Anal Chem 2019; 91:12298-12306. [PMID: 31486639 DOI: 10.1021/acs.analchem.9b02476] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A "signal-off" surface-enhanced Raman scattering (SERS) platform has been constructed for ultrasensitive detection of miRNA-21 by integrating exonuclease-assisted target recycling amplification with a plasmon coupling enhancement effect. On this platform, Raman-labeled Au nanostar (AuNS) probes can be covalently linked with the thiolated aptamer (Apt) on the Au-decorated silicon nanowire arrays (SiNWAs/Au) substrate, creating a coupled electromagnetic field between the substrate and the probes to enhance Raman signal. In the presence of miRNA-21, T7 exonuclease specifically hydrolyzed Apt on Apt/miRNA duplex to release miRNA-21. The regenerated element could then initiate another cycle of Apt/miRNA duplex formation and Apt cleavage. Correspondingly, the capture ability of substrate toward probes and the plasmon coupling effect between them were both diminished, giving a prominent attenuation of Raman intensity that can work as the detection signal. Due to the cascading integration between the target cycle process and the plasmon coupling effect, the present platform displayed a very low detection limit (0.34 fM, 3σ) for miRNA-21 detection. Furthermore, it was proven to be effective for analyzing miRNA-21 in biological samples and distinguishing the expression levels of miRNA-21 in MCF-7 cells and NIH3T3 cells, which became a promising tool to monitor miRNA-21 in cancer auxiliary diagnosis and drug screening.
Collapse
Affiliation(s)
- Shengping Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , P. R. China.,School of Chinese Medicinal Resources , Guangdong Pharmaceutical University , Yunfu , Guangdong 527300 , P. R. China
| | - Yu Su
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , P. R. China
| | - Chuanxiang Dai
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , P. R. China.,College of Engineering and Applied Science , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Junran Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , P. R. China
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao , Shandong 266042 , P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , P. R. China
| | - Rong-Bin Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , P. R. China
| |
Collapse
|
17
|
Pinilla AM, Blach D, Mendez SC, Ortega FM. AOT direct and reverse micelles as a reaction media for anisotropic silver nanoparticles functionalized with folic acid as a photothermal agent on HeLa cells. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0894-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
18
|
Gongalsky M, Gvindzhiliia G, Tamarov K, Shalygina O, Pavlikov A, Solovyev V, Kudryavtsev A, Sivakov V, Osminkina LA. Radiofrequency Hyperthermia of Cancer Cells Enhanced by Silicic Acid Ions Released During the Biodegradation of Porous Silicon Nanowires. ACS OMEGA 2019; 4:10662-10669. [PMID: 31460163 PMCID: PMC6648043 DOI: 10.1021/acsomega.9b01030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/04/2019] [Indexed: 05/09/2023]
Abstract
The radiofrequency (RF) mild hyperthermia effect sensitized by biodegradable nanoparticles is a promising approach for therapy and diagnostics of numerous human diseases including cancer. Herein, we report the significant enhancement of local destruction of cancer cells induced by RF hyperthermia in the presence of degraded low-toxic porous silicon (PSi) nanowires (NWs). Proper selection of RF irradiation time (10 min), intensity, concentration of PSi NWs, and incubation time (24 h) decreased cell viability to 10%, which can be potentially used for cancer treatment. The incubation for 24 h is critical for degradation of PSi NWs and the formation of silicic acid ions H+ and H3SiO4 - in abundance. The ions drastically change the solution conductivity in the vicinity of PSi NWs, which enhances the absorption of RF radiation and increases the hyperthermia effect. The high biodegradability and efficient photoluminescence of PSi NWs were governed by their mesoporous structure. The average size of pores was 10 nm, and the sizes of silicon nanocrystals (quantum dots) were 3-5 nm. Degradation of PSi NWs was observed as a significant decrease of optical absorbance, photoluminescence, and Raman signals of PSi NW suspensions after 24 h of incubation. Localization of PSi NWs at cell membranes revealed by confocal microscopy suggested that thermal poration of membranes could cause cell death. Thus, efficient photoluminescence in combination with RF-induced cell membrane breakdown indicates promising opportunities for theranostic applications of PSi NWs.
Collapse
Affiliation(s)
- Maxim Gongalsky
- Department
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- E-mail: (M.G.)
| | - Georgii Gvindzhiliia
- Department
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Konstantin Tamarov
- Department
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- University
of Eastern Finland - Kuopio Campus, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Olga Shalygina
- Department
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Alexander Pavlikov
- Department
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Valery Solovyev
- Institute
of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, 142290 Moscow Region, Russia
| | - Andrey Kudryavtsev
- Institute
of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, 142290 Moscow Region, Russia
| | | | - Liubov A. Osminkina
- Department
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Institute
for Biological Instrumentation of Russian Academy of Sciences, Pushchino 142290, Russia
- E-mail: (L.A.O.)
| |
Collapse
|
19
|
Hu G, Song B, Jiang A, Chu B, Shen X, Tang J, Su Y, He Y. Multifunctional Silicon-Carbon Nanohybrids Simultaneously Featuring Bright Fluorescence, High Antibacterial and Wound Healing Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803200. [PMID: 30680914 DOI: 10.1002/smll.201803200] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/26/2018] [Indexed: 06/09/2023]
Abstract
In this work, a class of multifunctional silicon-carbon nanohybrids (designated as SiCNs), which simultaneously possess aqueous dispersibility, bright fluorescence (photoluminescence quantum yield [PLQY]: ≈28%), as well as high antibacterial and wound healing activity, is presented. Taking advantage of these unique merits, cell distribution and pharmacological behavior of the SiCNs is first investigated through tracking their strong and stable fluorescence. The high bacteria inhibition ability (≈82.9% killing rate toward S. aureus) and hemostatic effects (shorten the bleeding time from ≈60 to ≈15 s) of the resultant SiCNs are then demonstrated. Moreover, the wound closure promotion activity (10% lead in wound contraction) is systematically demonstrated in vivo, which is especially suitable for wound healing applications. The results suggest the SiCNs as a new kind of high-performance multifunctional nanoagents suitable for various biological and biomedical utilizations.
Collapse
Affiliation(s)
- Guyue Hu
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Bin Song
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Airui Jiang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Binbin Chu
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Xiaobin Shen
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Jiali Tang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Yuanyuan Su
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| |
Collapse
|
20
|
Liu S, Wang L, Li S, Meng X, Sun B, Zhang X, Zhang L, Liu Y, Lin M, Zhang H, Yang B. Multidrug resistant tumors-aimed theranostics on the basis of strong electrostatic attraction between resistant cells and nanomaterials. Biomater Sci 2019; 7:4990-5001. [DOI: 10.1039/c9bm01017c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gene expression of resistant cells usually raises the negative potential of cell membranes. Utilizing the strong electrostatic attraction of resistant cells with nanomaterials, multidrug resistance tumors-aimed theranostics is demonstrated.
Collapse
|
21
|
Tang XL, Wu J, Lin BL, Cui S, Liu HM, Yu RT, Shen XD, Wang TW, Xia W. Near-infrared light-activated red-emitting upconverting nanoplatform for T 1-weighted magnetic resonance imaging and photodynamic therapy. Acta Biomater 2018; 74:360-373. [PMID: 29763715 DOI: 10.1016/j.actbio.2018.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/05/2018] [Accepted: 05/11/2018] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) has increasingly become an efficient and attractive cancer treatment modality based on reactive oxygen species (ROS) that can induce tumor death after irradiation with ultraviolet or visible light. Herein, to overcome the limited tissue penetration in traditional PDT, a novel near-infrared (NIR) light-activated NaScF4: 40% Yb, 2% Er@CaF2 upconversion nanoparticle (rUCNP) is successfully designed and synthesized. Chlorin e6, a photosensitizer and a chelating agent for Mn2+, is loaded into human serum albumin (HSA) that further conjugates onto rUCNPs. To increase the ability to target glioma tumor, an acyclic Arg-Gly-Asp peptide (cRGDyK) is linked to rUCNPs@HSA(Ce6-Mn). This nanoplatform enables efficient adsorption and conversion of NIR light (980 nm) into bright red emission (660 nm), which can trigger the photosensitizer Ce6-Mn complex for PDT and T1-weighted magnetic resonance imaging (T1-weighted MRI) for glioma diagnosis. Our in vitro and in vivo experiments demonstrate that NIR light-activated and glioma tumor-targeted PDT can generate large amounts of intracellular ROS that induce U87 cell apoptosis and suppress glioma tumor growth owing to the deep tissue penetration of irradiated light and excellent tumor-targeting ability. Thus, this nanoplatform holds potential for applications in T1-weighted MRI diagnosis and PDT of glioma for antitumor therapy. STATEMENT OF SIGNIFICANCE A near-infrared (NIR) light-activated nanoplatform for photodynamic therapy (PDT) was designed and synthesized. The Red-to-Green (R/G) ratio of NaScF4: 40% Yb, 2% Er almost reached 9, a value that was much higher than that of a traditional Yb/Er-codoped upconversion nanoparticle (rUCNP). By depositing a CaF2 shell, the red-emission intensities of the rUCNPs were seven times strong as that of NaScF4: 40% Yb, 2% Er. The enhanced red-emitting rUCNPs could be applied in many fields such as bioimaging, controlled release, and real-time diagnosis. The nanoplatform had a strong active glioma-targeting ability, and all results achieved on subcutaneous glioma demonstrated that our NIR light-activated red-emitting upconverting nanoplatform was efficient for PDT. By loading Ce6-Mn complex into rUCNPs@HSA-RGD, the nanoplatform could be used as a T1-weighted magnetic resonance imaging agent for tumor diagnosis.
Collapse
|
22
|
Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 2018; 103:598-613. [DOI: 10.1016/j.biopha.2018.04.055] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
|
23
|
Kim KH, Lee K, Hong H, Yang D, Ryu W, Nam O, Kim YC. Functionalized inclined-GaN based nanoneedles. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Chu B, Peng F, Wang H, Su Y, He Y. Synergistic effects between silicon nanowires and doxorubicin at non-toxic doses lead to high-efficacy destruction of cancer cells. J Mater Chem B 2018; 6:7378-7382. [DOI: 10.1039/c8tb02070a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A synergistic chemotherapeutic strategy by combining silicon nanowires and doxorubicin at non-toxic doses, suitable for high-efficacy destruction of cancer cells.
Collapse
Affiliation(s)
- Binbin Chu
- Laboratory of Nanoscale Biochemical Analysis
- Institute of Functional Nano & Soft Materials (FUNSOM)
- and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou
| | - Fei Peng
- Laboratory of Nanoscale Biochemical Analysis
- Institute of Functional Nano & Soft Materials (FUNSOM)
- and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou
| | - Houyu Wang
- Laboratory of Nanoscale Biochemical Analysis
- Institute of Functional Nano & Soft Materials (FUNSOM)
- and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou
| | - Yuanyuan Su
- Laboratory of Nanoscale Biochemical Analysis
- Institute of Functional Nano & Soft Materials (FUNSOM)
- and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis
- Institute of Functional Nano & Soft Materials (FUNSOM)
- and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou
| |
Collapse
|
25
|
Guo D, Ji X, Wang H, Bin Sun BS, Chu B, Shi Y, Su Y, He Y. Silicon nanowire-based multifunctional platform for chemo-photothermal synergistic cancer therapy. J Mater Chem B 2018; 6:3876-3883. [DOI: 10.1039/c7tb02907a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The new type of silicon nanowire-based pH/NIR/magnetism triple-responsive system shows high-efficacy synergistic photothermal-chemotherapy on cancer cells.
Collapse
Affiliation(s)
- Daoxia Guo
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou
| | - Xiaoyuan Ji
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou
| | - Houyu Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou
| | - Bin Sun Bin Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou
| | - Binbin Chu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou
| | - Yu Shi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou
| | - Yuanyuan Su
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou
| | - Yao He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)
- Soochow University
- Suzhou
| |
Collapse
|
26
|
Vinzons LU, Shu L, Yip S, Wong CY, Chan LLH, Ho JC. Unraveling the Morphological Evolution and Etching Kinetics of Porous Silicon Nanowires During Metal-Assisted Chemical Etching. NANOSCALE RESEARCH LETTERS 2017; 12:385. [PMID: 28582967 PMCID: PMC5457386 DOI: 10.1186/s11671-017-2156-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Many potential applications of porous silicon nanowires (SiNWs) fabricated with metal-assisted chemical etching are highly dependent on the precise control of morphology for device optimization. However, the effects of key etching parameters, such as the amount of deposited metal catalyst, HF-oxidant molar ratio (χ), and solvent concentration, on the morphology and etching kinetics of the SiNWs still have not been fully explored. Here, the changes in the nanostructure and etch rate of degenerately doped p-type silicon in a HF-H2O2-H2O etching system with electrolessly deposited silver catalyst are systematically investigated. The surface morphology is found to evolve from a microporous and cratered structure to a uniform array of SiNWs at sufficiently high χ values. The etch rates at the nanostructure base and tip are correlated with the primary etching induced by Ag and the secondary etching induced by metal ions and diffused holes, respectively. The H2O concentration also affects the χ window where SiNWs form and the etch rates, mainly by modulating the reactant dilution and diffusion rate. By controlling the secondary etching and reactant diffusion via χ and H2O concentration, respectively, the fabrication of highly doped SiNWs with independent control of porosity from length is successfully demonstrated, which can be potentially utilized to improve the performance of SiNW-based devices.
Collapse
Affiliation(s)
- Lester U Vinzons
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Lei Shu
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, People's Republic of China
| | - SenPo Yip
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, People's Republic of China
| | - Chun-Yuen Wong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, People's Republic of China
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Leanne L H Chan
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong.
- Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong.
| | - Johnny C Ho
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, People's Republic of China.
- Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong.
- State Key Laboratory of Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
27
|
Chu B, Song B, Ji X, Su Y, Wang H, He Y. Fluorescent Silicon Nanorods-Based Ratiometric Sensors for Long-Term and Real-Time Measurements of Intracellular pH in Live Cells. Anal Chem 2017; 89:12152-12159. [PMID: 29050473 DOI: 10.1021/acs.analchem.7b02791] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Long-term and real-time investigation of the dynamic process of pHi changes is critically significant for understanding the related pathogenesis of diseases and the design of intracellular drug delivery systems. Herein, we present a one-step synthetic strategy to construct ratiometric pH sensors, which are made of europium (Eu)-doped one-dimensional silicon nanorods (Eu@SiNRs). The as-prepared Eu@SiNRs have distinct emission maxima peaks at 470 and 620 nm under 405 nm excitation. Of particular note, the fluorescence emission intensity at 470 nm decreases along with the increase of pH, while the one at 620 nm is nearly unaffected by pH changes, making Eu@SiNRs a feasible probe for pH sensing ratiometrically. Moreover, Eu@SiNRs are found to be responsive to a broad pH range (ca. 3-9), biocompatible (e.g., ∼100% of cell viability during 24 h treatment) and photostable (e.g., ∼10% loss of intensity after 40 min continuous UV irradiation). Taking advantages of these merits, we employ Eu@SiNRs for the visualization of the cytoplasmic alkalization process mediated by nigericin in living cells, for around 30 min without interruption, revealing important information for understanding the dynamic process of pHi fluctuations.
Collapse
Affiliation(s)
- Binbin Chu
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Bin Song
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Xiaoyuan Ji
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Yuanyuan Su
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Houyu Wang
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| |
Collapse
|
28
|
Suppressing mosaicism by Au nanowire injector-driven direct delivery of plasmids into mouse embryos. Biomaterials 2017; 138:169-178. [DOI: 10.1016/j.biomaterials.2017.05.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022]
|
29
|
Maher S, Santos A, Kumeria T, Kaur G, Lambert M, Forward P, Evdokiou A, Losic D. Multifunctional microspherical magnetic and pH responsive carriers for combination anticancer therapy engineered by droplet-based microfluidics. J Mater Chem B 2017; 5:4097-4109. [DOI: 10.1039/c7tb00588a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Drug loaded luminescent porous silicon diatoms and magnetic bacterial nanowires were encapsulated within pH sensitive polymer forming biodegradable microcapsules using droplet-based microfluidics for targeting colorectal cancer.
Collapse
Affiliation(s)
- Shaheer Maher
- School of Chemical Engineering
- The University of Adelaide
- Adelaide
- Australia
- Faculty of Pharmacy
| | - Abel Santos
- School of Chemical Engineering
- The University of Adelaide
- Adelaide
- Australia
- Institute for Photonics and Advanced Sensing (IPAS)
| | - Tushar Kumeria
- School of Chemical Engineering
- The University of Adelaide
- Adelaide
- Australia
| | - Gagandeep Kaur
- Discipline of Surgery
- Basil Hetzel Institute
- The University of Adelaide
- Adelaide
- Australia
| | - Martin Lambert
- School of Civil
- Environmental and Mining Engineering
- The University of Adelaide
- Adelaide
- Australia
| | | | - Andreas Evdokiou
- Discipline of Surgery
- Basil Hetzel Institute
- The University of Adelaide
- Adelaide
- Australia
| | - Dusan Losic
- School of Chemical Engineering
- The University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
30
|
Maher S, Kumeria T, Wang Y, Kaur G, Fathalla D, Fetih G, Santos A, Habib F, Evdokiou A, Losic D. From The Mine to Cancer Therapy: Natural and Biodegradable Theranostic Silicon Nanocarriers from Diatoms for Sustained Delivery of Chemotherapeutics. Adv Healthc Mater 2016; 5:2667-2678. [PMID: 27594524 DOI: 10.1002/adhm.201600688] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/31/2016] [Indexed: 01/24/2023]
Abstract
Drug delivery using synthetic nanoparticles including porous silicon has been extensively used to overcome the limitations of chemotherapy. However, their synthesis has many challenges such as lack of scalability, high cost, and the use of toxic materials with concerning environmental impact. Nanoscale materials obtained from natural resources are an attractive option to address some of these disadvantages. In this paper, a new mesoporous biodegradable silicon nanoparticle (SiNP) drug carrier obtained from natural diatom silica mineral available from the mining industry is presented. Diatom silica structures are mechanically fragmented and converted into SiNPs by simple and scalable magnesiothermic reduction process. Results show that SiNPs have many desirable properties including high surface area, high drug loading capacity, strong luminescence, biodegradability, and no cytotoxicity. The in-vitro release results from SiNPs loaded with anticancer drugs (doxorubicin) demonstrate a pH-dependent and sustained drug release with enhanced cytotoxicity against cancer cells. The cells study using doxorubicin loaded SiNPs shows a significantly enhanced cytotoxicity against cancer cells compared with free drug, suggesting their considerable potential as theranostic nanocarriers for chemotherapy. Their low-cost manufacturing using abundant natural materials and outstanding chemotherapeutic performance has made them as a promising alternative to synthetic nanoparticles for drug delivery applications.
Collapse
Affiliation(s)
- Shaheer Maher
- School of Chemical Engineering The University of Adelaide Engineering North Building 5005 Adelaide Australia
- Faculty of Pharmacy Assiut University 71526 Assiut Egypt
| | - Tushar Kumeria
- School of Chemical Engineering The University of Adelaide Engineering North Building 5005 Adelaide Australia
| | - Ye Wang
- School of Chemical Engineering The University of Adelaide Engineering North Building 5005 Adelaide Australia
- Discipline of Surgery Basil Hetzel Institute The University of Adelaide 5005 Adelaide SA Australia
| | - Gagandeep Kaur
- School of Chemical Engineering The University of Adelaide Engineering North Building 5005 Adelaide Australia
- Discipline of Surgery Basil Hetzel Institute The University of Adelaide 5005 Adelaide SA Australia
| | - Dina Fathalla
- Faculty of Pharmacy Assiut University 71526 Assiut Egypt
| | - Gihan Fetih
- Faculty of Pharmacy Assiut University 71526 Assiut Egypt
| | - Abel Santos
- School of Chemical Engineering The University of Adelaide Engineering North Building 5005 Adelaide Australia
| | - Fawzia Habib
- Faculty of Pharmacy Assiut University 71526 Assiut Egypt
| | - Andreas Evdokiou
- Discipline of Surgery Basil Hetzel Institute The University of Adelaide 5005 Adelaide SA Australia
| | - Dusan Losic
- School of Chemical Engineering The University of Adelaide Engineering North Building 5005 Adelaide Australia
| |
Collapse
|
31
|
Thakur PS, Khan AM, Talegaonkar S, Ahmad FJ, Iqbal Z. Hurdles in selection process of nanodelivery systems for multidrug-resistant cancer. J Cancer Res Clin Oncol 2016; 142:2073-106. [PMID: 27116692 DOI: 10.1007/s00432-016-2167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Most of the nanomedicines for treatment of multidrug-resistant cancer do not reach Phase III trials and many are terminated or withdrawn or are in an indeterminate state since long without any study results being presented. Extensive perusal of nanomedicine development research revealed that one of the critical aspects influencing clinical outcomes and which requires diligent scrutiny is selection process of nanodelivery system. METHODS Research papers and articles published on development of nanodelivery systems for treatment of multidrug-resistant cancer were analyzed. Observations and conclusions noted by these researchers which might shed some light on poor clinical performance of nanocarriers were collated and summarized under observation section. Further research articles were studied to find possible solutions which may be applied to these particular problems for resolving them. The inferences of these findings were composed in Result section. RESULT Plausible solutions for the observed obstacles were noted as examples of novel formulations that can yield the following: better in vivo imaging, precise targeting and dosing of a specific site and specific cell type in a particular cancer, modulation of tumor surroundings, intonation of systemic effects and high reproducibility. CONCLUSION The angle of approach to the development of best nanosystem for a specific type of tumor needs to be spun around. Some of these changes can be brought about by individual scientists, some need to be established by collated efforts of scientists globally and some await advent of better technologies. Regardless of the stratagem, it can be said decisively that the schematics of development phase need rethinking.
Collapse
Affiliation(s)
- P S Thakur
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - A M Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - S Talegaonkar
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - F J Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Z Iqbal
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
32
|
Wang Z, Lee S, Koo K, Kim K. Nanowire-Based Sensors for Biological and Medical Applications. IEEE Trans Nanobioscience 2016; 15:186-99. [PMID: 26978831 DOI: 10.1109/tnb.2016.2528258] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nanomaterials such as nanowires, carbon nanotubes, and nanoparticles have already led to breakthroughs in the field of biological and medical sensors. The quantum size effects of the nanomaterials and their similarity in size to natural and synthetic nanomaterials are anticipated to improve sensor sensitivity dramatically. Nanowires are considered as key nanomaterials because of their electrical controllability for accurate measurement, and chemical-friendly surface for various sensing applications. This review covers the working principles and fabrication of silicon nanowire sensors. Furthermore, we review their applications for the detection of viruses, biomarkers, and DNA, as well as for drug discovery. Advances in the performance and functionality of nanowire sensors are also surveyed to highlight recent progress in this area. These advances include the improvements in reusability, sensitivity in high ionic strength solvent, long-term stability, and self-powering. Overall, with the advantages of ultra-sensitivity and the ease of fabrication, it is expected that nanowires will contribute significantly to the development of biological and medical sensors in the immediate future.
Collapse
|
33
|
Premnath P, Tan B, Venkatakrishnan K. Ultrafast laser functionalized rare phased gold-silicon/silicon oxide nanostructured hybrid biomaterials. Colloids Surf B Biointerfaces 2015; 136:828-37. [PMID: 26539809 DOI: 10.1016/j.colsurfb.2015.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 11/18/2022]
Abstract
We introduce a hybrid nanostructured biomaterial that is a combination of rare phases of immiscible gold and silicon oxide, functionalized via ultrafast laser synthesis. For the first time, we show cancer controlling properties of rare phases of gold silicides, which include Au7Si, Au5Si, Au0.7Si2.3 and Au8Si2. Conventionally, pure forms of gold and silicon/silicon oxide are extensively employed in targeted therapy and drug delivery systems due to their unique properties. While silicon and silicon oxide nanoparticles have shown biocompatibility, gold nanoparticles show conflicting results based on their size and material properties. Several studies have shown that gold and silicon combinations produce cell controlling properties, however, these studies were not able to produce a homogenous combination of gold and silicon, owing to its immiscibility. A homogenous combination of gold and silicon may potentially enable properties that have not previously been reported. We describe rare phased gold-silicon oxide nanostructured hybrid biomaterials and its unique cancer controlling properties, owing to material properties, concentration, size and density. The gold-silicon oxide nanostructured hybrid is composed of individual gold-silicon oxide nanoparticles in various concentrations of gold and silicon, some nanoparticles possess a gold-core and silicon-shell like structure. The individual nanoparticles are bonded together forming a three dimensional nanostructured hybrid. The interaction of the nanostructured hybrids with cervical cancer cells showed a 96% reduction in 24h. This engineered nanostructured hybrid biomaterial presents significant potential due to the combination of immiscible gold and silicon oxide in varying phases and can potentially satiate the current vacuum in cancer therapy.
Collapse
Affiliation(s)
- P Premnath
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto M5B 2K3, Canada
| | - B Tan
- Department of Aerospace Engineering, Ryerson University, Toronto M5B 2K3, Canada
| | - K Venkatakrishnan
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto M5B 2K3, Canada.
| |
Collapse
|
34
|
Wang Y, Zhao R, Wang S, Liu Z, Tang R. In vivo dual-targeted chemotherapy of drug resistant cancer by rationally designed nanocarrier. Biomaterials 2015; 75:71-81. [PMID: 26491996 DOI: 10.1016/j.biomaterials.2015.09.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 01/06/2023]
Abstract
Multidrug resistance is one of major obstacles to the effective cancer chemotherapy. To address this issue, we developed the effective circumvention of multidrug resistance in cancer cells by a yolk-shell Fe3O4@MgSiO3 nanoplatform with the polymerpoly(ethylene glycol) and folic acid modifications can achieve active targeted delivery of anti-cancer drug by using combined magnetic and ligand targeting. The direct intracellular drug delivery of doxorubicin by nanocarrier was much more effectively than free DOX for multidrug resistant Hep-G2/MDR cancer cells. Besides the excellent biocompatibility, high drug loading efficiency, dual-targeting delivery, and controlled releasing behavior, in vivo experiments demonstrate that this nanocarrier can specifically deliver and concentrate doxorubicin hydrochloride in tumor sites to overcome drug resistance. It follows an alternative strategy for effective chemotherapy against drug resistant cancers by using rationally designed nanomaterial.
Collapse
Affiliation(s)
- Yang Wang
- Centre for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, PR China
| | - Ruibo Zhao
- Centre for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, PR China
| | - Shibing Wang
- Clinical Research Centre, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, PR China
| | - Zhaoming Liu
- Centre for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, PR China
| | - Ruikang Tang
- Centre for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, PR China; Qiushi Academy for Advanced Studies, Zhejiang University, Hanghzou, Zhejiang 310027, China.
| |
Collapse
|
35
|
Chen Q, Ke H, Dai Z, Liu Z. Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials 2015; 73:214-30. [PMID: 26410788 DOI: 10.1016/j.biomaterials.2015.09.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 01/26/2023]
Abstract
Physical stimulus-responsive therapies often employing multifunctional theranostic agents responsive to external physical stimuli such as light, magnetic field, ultra-sound, radiofrequency, X-ray, etc., have been widely explored as novel cancer therapy strategies, showing encouraging results in many pre-clinical animal experiments. Unlike conventional cancer chemotherapy which often accompanies with severe toxic side effects, physical stimulus-responsive agents usually are non-toxic by themselves and would destruct cancer cells only under specific external stimuli, and thus could offer greatly reduced toxicity and enhanced treatment specificity. In addition, physical stimulus-responsive therapies can also be combined with other traditional therapeutics to achieve synergistic anti-tumor effects via a variety of mechanisms. In this review, we will summarize the latest progress in the development of physical stimulus-responsive therapies, and discuss the important roles of nanoscale theranostic agents involved in those non-conventional therapeutic strategies.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Hengte Ke
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 Jiangsu, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
36
|
Kafshgari MH, Voelcker NH, Harding FJ. Applications of zero-valent silicon nanostructures in biomedicine. Nanomedicine (Lond) 2015; 10:2553-71. [DOI: 10.2217/nnm.15.91] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Zero-valent, or elemental, silicon nanostructures exhibit a number of properties that render them attractive for applications in nanomedicine. These materials hold significant promise for improving existing diagnostic and therapeutic techniques. This review summarizes some of the essential aspects of the fabrication techniques used to generate these fascinating nanostructures, comparing their material properties and suitability for biomedical applications. We examine the literature in regards to toxicity, biocompatibility and biodistribution of silicon nanoparticles, nanowires and nanotubes, with an emphasis on surface modification and its influence on cell adhesion and endocytosis. In the final part of this review, our attention is focused on current applications of the fabricated silicon nanostructures in nanomedicine, specifically examining drug and gene delivery, bioimaging and biosensing.
Collapse
Affiliation(s)
- Morteza Hasanzadeh Kafshgari
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Mawson Institute, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Mawson Institute, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Frances J Harding
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Mawson Institute, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| |
Collapse
|
37
|
Peng M, Li H, Luo Z, Kong J, Wan Y, Zheng L, Zhang Q, Niu H, Vermorken A, Van de Ven W, Chen C, Zhang X, Li F, Guo L, Cui Y. Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo. NANOSCALE 2015; 7:11155-11162. [PMID: 26062012 DOI: 10.1039/c5nr01382h] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dextran-coated superparamagnetic iron oxide nanoparticles (DSPIONs) have gained considerable interest, because of their biocompatibility and biosafety in clinics. Doxorubicin (Dox), a widely used chemotherapeutic drug, always has limited applications in clinical therapy due to its serious side effects of dose-limiting irreversible cardiotoxicity and myelo suppression. Herein, DSPIONs were synthesized and developed as magnetic carriers for doxorubicin. The Dox-DSPION conjugates were evaluated in the in vitro test of Dox release, which showed pH-dependence with the highest release percentage of 50.3% at pH 5.0 and the lowest release percentage of 11.8% in a physiological environment. The cytotoxicity of DSPIONs and Dox-DSPIONs evaluated by the MTT assay indicated that DSPIONs had no cytotoxicity and the conjugates had significantly reduced the toxicity (IC50 = 1.36 μg mL(-1)) compared to free Dox (IC50 = 0.533 μg mL(-1)). Furthermore, confocal microscopic data of cell uptake suggest that less cytotoxicity of Dox-DSPIONs may be attributed to the cellular internalization of the conjugates and sustainable release of Dox from the formulation in the cytoplasm. More importantly, the results from the rabbit VX2 liver tumor model test under an external magnetic field showed that the conjugates had approximately twice the anti-tumor activity and two and a half times the animal survival rate, respectively, compared to free Dox. Collectively, our data have demonstrated that Dox-DSPIONs have less toxicity with better antitumor effectiveness in in vitro and in vivo applications, suggesting that the conjugates have potential to be developed into chemo-therapeutic formulations.
Collapse
Affiliation(s)
- Mingli Peng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Peng F, Cao Z, Ji X, Chu B, Su Y, He Y. Silicon nanostructures for cancer diagnosis and therapy. Nanomedicine (Lond) 2015; 10:2109-23. [DOI: 10.2217/nnm.15.53] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The emergence of nanotechnology suggests new and exciting opportunities for early diagnosis and therapy of cancer. During the recent years, silicon-based nanomaterials featuring unique properties have received great attention, showing high promise for myriad biological and biomedical applications. In this review, we will particularly summarize latest representative achievements on the development of silicon nanostructures as a powerful platform for cancer early diagnosis and therapy. First, we introduce the silicon nanomaterial-based biosensors for detecting cancer markers (e.g., proteins, tumor-suppressor genes and telomerase activity, among others) with high sensitivity and selectivity under molecular level. Then, we summarize in vitro and in vivo applications of silicon nanostructures as efficient nanoagents for cancer therapy. Finally, we discuss the future perspective of silicon nanostructures for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Fei Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Zhaohui Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Xiaoyuan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Binbin Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yuanyuan Su
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yao He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
39
|
Wan H, Zhang Y, Zhang W, Zou H. Robust two-photon visualized nanocarrier with dual targeting ability for controlled chemo-photodynamic synergistic treatment of cancer. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9608-9618. [PMID: 25893951 DOI: 10.1021/acsami.5b01165] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In consideration of the intrinsic complexity of cancer, just being a delivery nanovehicle for the nanocarrier is no longer enough to fulfill requirements of dealing with cancer. In this regard, the multifunctional nanocarrier appears to be an appealing choice in cancer treatment. Herein, the novel multifunctional nanocarrier (Fe3O4-NS-C3N4@mSiO2-PEG-RGD) possessing properties of dual targeting (the peptide- and magnetism-mediated targeting), imaging (one- and two-photon modes), pH-triggered release of loaded anticancer drug, and synergistic treatment (photodynamic therapy (PDT) combined with chemotherapy) are successfully developed. The nanocarrier specifically centralizes within cancer cells with the enhanced amount through the dual targeting ability and is facilely tracked under one- and two-photon imaging modes attributed to the autofluorescence. Then, visible light irradiation-induced PDT combined with low pH-triggered chemotherapy synergistically cooperate to efficiently kill cancer cells. Following the above process, the multifunctional nanocarrier demonstrates effective inhibition of the growth of A549 and HeLa cancer cells. The efficient manipulation of Fe3O4-NS-C3N4@mSiO2-PEG-RGD also implies potential applications of the multifunctional nanocarrier in delivery of different agents. Furthermore, it might also broaden the scope of fabrication of the multifunctional nanocarrier for inhibiting the growth of cancer cells.
Collapse
Affiliation(s)
- Hao Wan
- ‡Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | | | - Weibing Zhang
- ‡Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | | |
Collapse
|
40
|
Radio frequency responsive nano-biomaterials for cancer therapy. J Control Release 2015; 204:85-97. [DOI: 10.1016/j.jconrel.2015.02.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 12/25/2022]
|
41
|
Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood. Cell Mol Bioeng 2015; 8:137-150. [PMID: 25798204 PMCID: PMC4361771 DOI: 10.1007/s12195-015-0381-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
During metastasis, circulating tumor cells migrate away from a primary tumor via the blood circulation to form secondary tumors in distant organs. Mounting evidence from clinical observations indicates that the number of circulating tumor cells (CTCs) in the blood correlates with the progression of solid tumors before and during chemotherapy. Beyond the well-established role of CTCs as a fluid biopsy, however, the field of targeting CTCs for the prevention or reduction of metastases has just emerged. Conventional cancer therapeutics have a relatively short circulation time in the blood which may render the killing of CTCs inefficient due to reduced exposure of CTCs to drugs. Nevertheless, over the past few decades, the development of nanoparticles and nanoformulations to improve the half-life and release profile of drugs in circulation has rejuvenated certain traditional medicines in the emerging field of CTC neutralization. This review focuses on how the principles of nanomedicine may be applied to target CTCs. Moreover, inspired by the interactions between CTCs and host cells in the blood circulation, novel biomimetic approaches for targeted drug delivery are presented.
Collapse
|
42
|
Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-015-0378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
43
|
Li X, Gao C, Wu Y, Cheng CY, Xia W, Zhang Z. Combination delivery of Adjudin and Doxorubicin via integrating drug conjugation and nanocarrier approaches for the treatment of drug-resistant cancer cells. J Mater Chem B 2015; 3:1556-1564. [PMID: 27182439 DOI: 10.1039/c4tb01764a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Combination therapy has been regarded as a potent strategy to overcome multidrug resistance (MDR). In this study, we adopt Adjudin (ADD), a mitochondria inhibitor, and Doxorubicin (DOX), a common chemo-drug, to treat drug-resistant cancer cells (MCF-7/ADR) in combination. Given the different physico-chemical properties of ADD and DOX, we develop a novel drug formulation (ADD-DOX (M)) by integrating drug conjugation and nanocarrier approaches to realize the co-delivery of the two drugs. We demonstrate the conjugation of ADD and DOX via formation of an acid-sensitive hydrazone bond, and then the encapsulation of ADD-DOX conjugates by DSPE-PEG2000 micelles with high drug encapsulation efficiency and well-controllable drug loading efficiency. The obtained ADD-DOX (M) micelles are found to be stable under physiological conditions, but can rapidly release drugs within acidic environments. Following cellular experiments confirm that ADD-DOX (M) vehicles can be internalized by MCF-7/ADR cancer cells through an endocytic pathway and exist within the moderate acidic endolysosomes, thus accelerating the hydrolysis of ADD-DOX and the release of free ADD and DOX. As a result, the ADD-DOX (M) formulation exhibits an excellent anti-MDR effect. In summary, we for the first time report the combinational use of ADD and DOX with an effective co-delivery strategy for the treatment of MDR cancer cells.
Collapse
Affiliation(s)
- Xu Li
- Tongji School of Pharmacy, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, P.R. China. ; Tel: +86-027-83601832
| | - Cuixia Gao
- Tongji School of Pharmacy, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, P.R. China. ; Tel: +86-027-83601832
| | - Yupei Wu
- Tongji School of Pharmacy, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, P.R. China. ; Tel: +86-027-83601832
| | - C-Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Zhiping Zhang
- Tongji School of Pharmacy, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, P.R. China. ; Tel: +86-027-83601832
| |
Collapse
|
44
|
Shi J, Xu Y, Wang X, Zhang L, Zhu J, Pang T, Bao X. Synthesis and evaluation of a novel Rhodamine B pyrene [2]rotaxane as an intracellular delivery agent for doxorubicin. Org Biomol Chem 2015; 13:7517-29. [DOI: 10.1039/c5ob00934k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RhBPy [2]rotaxane has been demonstrated to be an efficient transport agent for delivering the cancer drug doxorubicin (DOX) into tumor cells.
Collapse
Affiliation(s)
- Jiaxin Shi
- Department of Biochemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- P.R. China
| | - Yuan Xu
- Jiangsu Key Laboratory of Drug Screening and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Xinlong Wang
- Department of Chemistry
- School of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing
- P.R. China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Jing Zhu
- Department of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- P.R. China
| | - Tao Pang
- Jiangsu Key Laboratory of Drug Screening and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Xiaofeng Bao
- Department of Biochemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- P.R. China
| |
Collapse
|
45
|
Xia B, Wang B, Zhang W, Shi J. High loading of doxorubicin into styrene-terminated porous silicon nanoparticles via π-stacking for cancer treatments in vitro. RSC Adv 2015. [DOI: 10.1039/c5ra04843e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Styrene-terminated PSiNPs were fabricated for high loading of doxorubicin via π-stacking, which exhibited an excellent capability for killing cancer cells.
Collapse
Affiliation(s)
- Bing Xia
- Key Laboratory of Forest Genetics & Biotechnology (Ministry of Education of China)
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
- Advanced Analysis & Testing Center
| | - Bin Wang
- Advanced Analysis & Testing Center
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Wenyi Zhang
- Key Laboratory of Forest Genetics & Biotechnology (Ministry of Education of China)
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology (Ministry of Education of China)
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| |
Collapse
|
46
|
Ouertani R, Hamdi A, Amri C, Khalifa M, Ezzaouia H. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method. NANOSCALE RESEARCH LETTERS 2014; 9:574. [PMID: 25349554 PMCID: PMC4209156 DOI: 10.1186/1556-276x-9-574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/01/2014] [Indexed: 06/02/2023]
Abstract
In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films.
Collapse
Affiliation(s)
- Rachid Ouertani
- Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l'Énergie, Technopôle de Borj-Cédria, BP 95, 2050 Hammam-Lif, Tunisie
| | - Abderrahmen Hamdi
- Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l'Énergie, Technopôle de Borj-Cédria, BP 95, 2050 Hammam-Lif, Tunisie
| | - Chohdi Amri
- Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l'Énergie, Technopôle de Borj-Cédria, BP 95, 2050 Hammam-Lif, Tunisie
| | - Marouan Khalifa
- Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l'Énergie, Technopôle de Borj-Cédria, BP 95, 2050 Hammam-Lif, Tunisie
| | - Hatem Ezzaouia
- Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l'Énergie, Technopôle de Borj-Cédria, BP 95, 2050 Hammam-Lif, Tunisie
| |
Collapse
|
47
|
Xia B, Zhang W, Shi J, Xiao SJ. A novel strategy to fabricate doxorubicin/bovine serum albumin/porous silicon nanocomposites with pH-triggered drug delivery for cancer therapy in vitro. J Mater Chem B 2014; 2:5280-5286. [DOI: 10.1039/c4tb00307a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|