1
|
Xiao S, Ahn DU. Formulation and characterization of protein-based complexes for nutrient delivery: Impact of polysaccharides on the encapsulation of curcumin with ovalbumin. Food Chem 2025; 486:144617. [PMID: 40339414 DOI: 10.1016/j.foodchem.2025.144617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/21/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Curcumin (CUR) has many bioactive functions and is susceptible to environmental stresses. Ovalbumin/polysaccharide complexes are widely used in CUR encapsulation. However, no comprehensive report on how the complexation of different polysaccharides will affect the encapsulating properties of ovalbumin (OVA) is available. The present study analyzed the effect of polysaccharides, alginate (AL), gum arabic (GA), or carboxymethyl cellulose (CMC) on the encapsulation properties of OVA. The particle size of OVA was increased upon complexing with polysaccharides or CUR. SEM and CLSM of all the CUR-loaded complexes showed irregular and sponge-like or layered structure and CUR and OVA were co-localized. CUR demonstrated significantly improved light and thermal stability, especially at pH 7.0. An enhanced (p < 0.05) antioxidant activity of CUR upon encapsulation with OVA was observed. Polysaccharides did not affect CUR encapsulation or stability but may delay the release rate of CUR.
Collapse
Affiliation(s)
- Shulan Xiao
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States of America; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, United States of America.
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
2
|
Yakubu J, Natsaridis E, du Toit T, Barata IS, Tagit O, Pandey AV. Nanoparticles with curcumin and piperine modulate steroid biosynthesis in prostate cancer. Sci Rep 2025; 15:13613. [PMID: 40253525 PMCID: PMC12009323 DOI: 10.1038/s41598-025-98102-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/09/2025] [Indexed: 04/21/2025] Open
Abstract
Endogenous androgens are pivotal in the development and progression of prostate cancer (PC). We investigated nanoparticle formulations of curcumin and piperine in modulating steroidogenesis within PC cells. Using multiple PC cell lines (LNCaP, VCaP, DU145 and PC3) we studied the effects of curcumin, piperine, and their nanoparticle formulations-curcumin nanoparticles, piperine nanoparticles, and curcumin-piperine nanoparticles (CPN)-on cell viability, migration, and steroid biosynthesis. Curcumin and its nanoparticle formulations significantly reduced cell viability in PC cells, with curcumin-piperine nanoparticles showing the highest efficacy. These treatments also inhibited cell migration, with CPN exhibiting the most pronounced effect. In assays for steroid biosynthesis, curcumin, and its nanoparticle formulations, as well as piperine and its nanoparticles, selectively inhibited 17α-hydroxylase and 17,20-lyase activities of cytochrome P450 17A1 (CYP17A1). Abiraterone, a CYP17A1 inhibitor, displayed a broader inhibition of steroid metabolism including cytochrome P450 21-hydroxylase activity, whereas curcumin and piperine provided a more targeted inhibition profile. Analysis of steroid metabolites by liquid chromatography-mass spectrometry revealed that CPN caused significant reduction of androstenedione and cortisol, suggesting potential synergistic effects. In conclusion, nanoformulations co-loaded with curcumin and piperine offer an effective approach to targeting steroidogenesis and could be promising candidates for therapies aimed at managing androgen-dependent PC.
Collapse
Affiliation(s)
- Jibira Yakubu
- Pediatric Endocrinology, University Children's Hospital, University Hospital Bern, Inselspital, Freiburgstrasse 15, KIKL C837, 3010, Bern, Switzerland
- Translational Hormone Research Program, Department of Biomedical Research, Faculty of Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Evangelos Natsaridis
- Group of Biointerfaces, Institute of Chemistry and Bioanalytics, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Therina du Toit
- Translational Hormone Research Program, Department of Biomedical Research, Faculty of Medicine, University of Bern, Bern, Switzerland
- Department of Nephrology and Hypertension, University Hospital Bern, Inselspital, Bern, Switzerland
| | - Isabel Sousa Barata
- Pediatric Endocrinology, University Children's Hospital, University Hospital Bern, Inselspital, Freiburgstrasse 15, KIKL C837, 3010, Bern, Switzerland
- Translational Hormone Research Program, Department of Biomedical Research, Faculty of Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Oya Tagit
- Group of Biointerfaces, Institute of Chemistry and Bioanalytics, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Amit V Pandey
- Pediatric Endocrinology, University Children's Hospital, University Hospital Bern, Inselspital, Freiburgstrasse 15, KIKL C837, 3010, Bern, Switzerland.
- Translational Hormone Research Program, Department of Biomedical Research, Faculty of Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Guo Z, Zhang Y, Gong Y, Li G, Pan J, Dou D, Ma K, Cui C, Liu Y, Zhu X. Antibody functionalized curcuma-derived extracellular vesicles loaded with doxorubicin overcome therapy-induced senescence and enhance chemotherapy. J Control Release 2025; 379:377-389. [PMID: 39814319 DOI: 10.1016/j.jconrel.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Conventional cancer treatments often induce a sustained DNA damage response (DDR) in tumor cells, leading to therapy-induced senescence (TIS), characterized by permanent cell cycle arrest and resistance to apoptosis. These senescent cells secrete senescence-associated secretory phenotypes (SASP), which can promote tumor progression and create an immunosuppressive microenvironment. This study introduces a novel approach to enhance chemotherapy efficacy by using functionalized curcuma-derived extracellular vesicles (DR5-CNV/DOX) to target and eliminate senescent tumor cells and inhibit their SASP. Curcuma-derived extracellular vesicles (CNV) were loaded with the chemotherapeutic drug doxorubicin (DOX) and surface-modified with an antibody targeting death receptor 5 (DR5), which is overexpressed on senescent tumor cells. In vitro experiments demonstrated that DR5-CNV/DOX effectively targeted senescent tumor cells, promoting apoptosis and suppressing SASP production. In vivo studies confirmed the inhibition of epithelial-mesenchymal transition (EMT) initiation, angiogenesis, and modulation of the tumor immune microenvironment, enhancing chemotherapy efficacy and demonstrating promising biocompatibility. This study highlights the potential of plant-derived extracellular vesicles as a novel drug delivery system to overcome senescent tumor cells and their SASP.
Collapse
Affiliation(s)
- Zhaoming Guo
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China; School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China.
| | - Yi Zhang
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Yuwei Gong
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Guqing Li
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Jiawei Pan
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Danni Dou
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Kun Ma
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Changhao Cui
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Yubo Liu
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China.
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China; Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
4
|
Siddiqui AJ, Adnan M, Saxena J, Alam MJ, Abdelgadir A, Badraoui R, Singh R. Therapeutic Potential of Plant- and Marine-Derived Bioactive Compounds in Prostate Cancer: Mechanistic Insights and Translational Applications. Pharmaceuticals (Basel) 2025; 18:286. [PMID: 40143065 PMCID: PMC11946378 DOI: 10.3390/ph18030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
It is widely recognized that prostate cancer is a multifaceted illness that is the second most common cause of cancer-related fatalities among males. Natural sources from both plants and marine organisms have long been used in treating various diseases and in the discovery of new pharmaceutical compounds. Medicinal plants, in particular, provide bioactive substances like alkaloids, phenolic compounds, terpenes, and steroids. In addition, marine natural products play a crucial role in the search for novel cancer treatments. A substantial number of anticancer drugs have been derived from natural sources, including plants, marine organisms, and microorganisms. In fact, over the past 60 years, 80% of new chemical entities have originated from natural sources, which are generally considered safer than synthetic compounds. This review seeks to emphasize the role of phytochemical compounds derived from both plant and marine sources in prostate cancer, highlighting their potential therapeutic impact. It is also intended to support global researchers working on the identification of natural-based treatments for prostate cancer.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara 391760, Gujarat, India;
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Abdelmushin Abdelgadir
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| |
Collapse
|
5
|
Kashyap VK, Sharma BP, Pandey D, Singh AK, Peasah-Darkwah G, Singh B, Roy KK, Yallapu MM, Chauhan SC. Small Molecule with Big Impact: Metarrestin Targets the Perinucleolar Compartment in Cancer Metastasis. Cells 2024; 13:2053. [PMID: 39768145 PMCID: PMC11674295 DOI: 10.3390/cells13242053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Metarrestin (ML246) is a first-in-class pyrrole-pyrimidine-derived small molecule that selectively targets the perinucleolar compartment (PNC). PNC is a distinct subnuclear structure predominantly found in solid tumor cells. The occurrence of PNC demonstrates a positive correlation with malignancy, serving as an indicator of tumor aggressiveness, progression, and metastasis. Various promising preclinical results have led to the clinical translation of metarrestin into a first-in-human trial. This review aims to summarize (i) the current understanding of the structure and function of PNC and its role in cancer progression and metastasis, (ii) key findings from studies examining the effect of metarrestin on various cancers across the translational spectrum, including in vitro, in vivo, and human clinical trial studies, and (iii) the pharmaceutical relevance of metarrestin as a promising anticancer candidate. Furthermore, our molecular docking and MD simulation studies show that metarrestin binds to eEF1A1 and eEF1A2 with a strong and stable affinity and inhibits eEF1A2 more efficiently compared to eEF1A1. The promising results from preclinical studies suggest that metarrestin has the potential to revolutionize the treatment of cancer, heralding a paradigm shift in its therapeutic management.
Collapse
Affiliation(s)
- Vivek K. Kashyap
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| | - Bhuvnesh P. Sharma
- Department of Biotechnology, Bhagwant University, Ajmer 305004, Rajasthan, India
| | - Divya Pandey
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Ajay K. Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Godwin Peasah-Darkwah
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| | - Bhupesh Singh
- School of Applied Sciences, OM Sterling Global University, Hisar 125001, Haryana, India
| | - Kuldeep K. Roy
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Murali M. Yallapu
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| |
Collapse
|
6
|
Keshavarz Shahbaz S, Koushki K, Izadi O, Penson PE, Sukhorukov VN, Kesharwani P, Sahebkar A. Advancements in curcumin-loaded PLGA nanoparticle delivery systems: progressive strategies in cancer therapy. J Drug Target 2024; 32:1207-1232. [PMID: 39106154 DOI: 10.1080/1061186x.2024.2389892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Cancer is a leading cause of death worldwide, and imposes a substantial socioeconomic burden with little impact especially on aggressive types of cancer. Conventional therapies have many serious side effects including generalised systemic toxicity which limits their long-term use. Tumour resistance and recurrence is another main problem associated with conventional therapy. Purified or extracted natural products have been investigated as cost-effective cancer chemoprotective agents with the potential to reverse or delaying carcinogenesis. Curcumin (CUR) as a natural polyphenolic component, exhibits many pharmacological activities such as anti-cancer, anti-inflammatory, anti-microbial, activity against neurodegenerative diseases including Alzheimer, antidiabetic activities (type II diabetes), anticoagulant properties, wound healing effects in both preclinical and clinical studies. Despite these effective protective properties, CUR has several limitations, including poor aqueous solubility, low bioavailability, chemical instability, rapid metabolism and a short half-life time. To overcome the pharmaceutical problems associated with free CUR, novel nanomedicine strategies (including polymeric nanoparticles (NPs) such as poly (lactic-co-glycolic acid) (PLGA) NPs have been developed. These formulations have the potential to improve the therapeutic efficacy of curcuminoids. In this review, we comprehensively summarise and discuss recent in vitro and in vivo studies to explore the pharmaceutical significance and clinical benefits of PLGA-NPs delivery system to improve the efficacy of CUR in the treatment of cancer.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Khadijeh Koushki
- Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Omid Izadi
- Department of Industrial Engineering, ACECR Institute of Higher Education Kermanshah, Kermanshah, Iran
| | - Peter E Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Chinigò G, Ruffinatti FA, Munaron L. The potential of TRP channels as new prognostic and therapeutic targets against prostate cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189226. [PMID: 39586480 DOI: 10.1016/j.bbcan.2024.189226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Prostate cancer (PCa) is the second deadliest cancer among men worldwide. Particularly critical is its development towards metastatic androgen-independent forms for which the current therapies are ineffective. Indeed, the 5-year relative survival for PCa drops dramatically to 34 % in the presence of metastases. The superfamily of Transient Receptor Potential (TRP) channels could answer the urgent request to identify new prognostic and therapeutic tools against metastatic PCa. Indeed, this class of ion channels revealed an appealing de-regulation during PCa development and its progression towards aggressive forms. Altered expression and/or functionality of several TRPs have been associated with the PCa metastatic cascade by significantly impacting tumor growth, invasiveness, and angiogenesis. In this review, we will dissect the contribution of TRP channels in such hallmarks of PCa and then discuss their applicability as new prognostic and therapeutic agents in the fight against metastatic PCa. In particular, the great potential of TRPM8, TRPV6, and TRPA1 in opening the way to new treatment perspectives will be highlighted.
Collapse
Affiliation(s)
- Giorgia Chinigò
- University of Turin, Department of Life Sciences and Systems Biology, via Accademia Albertina 13, 10123 Turin, Italy.
| | | | - Luca Munaron
- University of Turin, Department of Life Sciences and Systems Biology, via Accademia Albertina 13, 10123 Turin, Italy.
| |
Collapse
|
8
|
Pucci G, Savoca G, Iacoviello G, Russo G, Forte GI, Cavalieri V. Curcumin's Radioprotective Effects on Zebrafish Embryos. Antioxidants (Basel) 2024; 13:1281. [PMID: 39594423 PMCID: PMC11590968 DOI: 10.3390/antiox13111281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Radiation modifiers are largely studied for their contribution to enlarging the treatment window. Curcumin is already known for its antioxidant properties; however, its role as a radioprotector in preclinical studies is affected by the well-known low absorption and bioavailability of curcumin. In this study, curcumin's radioprotection ability has been evaluated in zebrafish larvae, by taking advantage of quantifying curcumin absorption and evaluating its fluorescence in transparent embryos. A curcumin range of 1-10 μM was tested to select the non-toxic concentrations to be used for a pre-treatment of photon beam irradiation using a 2-15 Gy range of doses. The post-treatment analysis within 120 h post-fertilization (hpf) included an assessment of mortality and malformation rates and behavioral and gene expression analysis. A total of 2.5 and 5 μM of curcumin pre-treatment showed a radioprotective role, significantly reducing the frequency of embryo malformations and damaged entities. This sparing effect disappeared using 15 Gy, showing the radiation effect's prevalence. Gene expression analysis reconducted this radioprotective ability for antioxidant gene network activation. The curcumin-induced activation of the antioxidant gene network promoted radioprotection in zebrafish.
Collapse
Affiliation(s)
- Gaia Pucci
- Institute of Bioimaging and Complex Biological Systems (IBSBC)—National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.R.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld. 16, 90128 Palermo, Italy
| | - Gaetano Savoca
- Radiation Oncology Unit, ARNAS-Civico Hospital, 90100 Palermo, Italy; (G.S.); (G.I.)
| | - Giuseppina Iacoviello
- Radiation Oncology Unit, ARNAS-Civico Hospital, 90100 Palermo, Italy; (G.S.); (G.I.)
| | - Giorgio Russo
- Institute of Bioimaging and Complex Biological Systems (IBSBC)—National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.R.)
| | - Giusi I. Forte
- Institute of Bioimaging and Complex Biological Systems (IBSBC)—National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.R.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld. 16, 90128 Palermo, Italy
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld. 16, 90128 Palermo, Italy
- Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Bld. 16, 90128 Palermo, Italy
| |
Collapse
|
9
|
Mazaheri-Tehrani S, Rouzbahani S, Heidari-Beni M. The Association Between Anti-Neoplastic Effects of Curcumin and Urogenital Cancers: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9347381. [PMID: 39445208 PMCID: PMC11496585 DOI: 10.1155/2024/9347381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Background: Curcumin is a polyphenol compound with anticancer effects. We aimed to review the anti-neoplastic effects of curcumin on urogenital cancers, by regulating different microRNA expressions. Methods: A systematic search was conducted in Medline (PubMed), Embase, Scopus, and Web of Science up to the end of August 2024. All English, in vitro, and observational studies that evaluated the effect of curcumin on preventing or treating urogenital cancers through its impact on microRNA expression were included. In vivo or silico studies were excluded. Result: A total of 2549 records were found. Finally, 25 studies were included. Twelve studies assessed the effect of curcumin on prostate cancer, six studies on ovarian cancer, three studies on cervical cancer, three studies on bladder cancer, and one study on renal cancer. MicroRNAs are small noncoding RNAs that regulate the post-transcriptional pathways. They possess pivotal roles in different fundamental mechanisms in cells such as differentiation, migration, apoptosis, and proliferation. Curcumin exerts its anticancer effects on urogenital neoplasms by upregulating tumor suppressor microRNAs (miR-143, miR-145, miR-Let-7, miR-101, miR-3127, miR-3178, miR-1275, miR-3198, miR-1908, miR-770, miR-1247, miR-411, miR-34a, miR-383, miR-708, miR-483, miR-199a, miR-335, miR-503, miR-10b, miR-551a, miR-9, miR-203, miR-7110, miR-29b, and miR-126) and downregulating oncogenic microRNAs (miR-21, miR-210, miR-382, miR-654, miR-494, miR-193b, miR-671, miR-222, miR-23b, miR-664, miR-183, miR-214, miR-320a, miR-23a, miR-30a, miR-320d, miR-1285, miR-32, miR-181a, miR-205, miR-216a, miR-1246, and miR-106b). Conclusion: Cell proliferation is inhibited, and cell apoptosis is induced by curcumin in different urogenital cancers through suppressing oncogenic microRNAs or provoking tumor suppressor microRNAs.
Collapse
Affiliation(s)
- Sadegh Mazaheri-Tehrani
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Rouzbahani
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Motahar Heidari-Beni
- Department of Nutrition, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Aliyari M, Hashemy SI, Hashemi SF, Reihani A, Kesharwani P, Hosseini H, Sahebkar A. Targeting the Akt signaling pathway: Exploiting curcumin's anticancer potential. Pathol Res Pract 2024; 261:155479. [PMID: 39068859 DOI: 10.1016/j.prp.2024.155479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Cancer is recognized as one of the leading causes of death worldwide. In recent years, advancements in early detection and expanding treatment options have contributed to a decrease in mortality rates. However, the emergence of drug-resistant cancers necessitates the exploration of innovative and more effective drugs. The Akt kinases play a central role in various signaling pathways that regulate crucial cellular processes, including cell growth, proliferation, survival, angiogenesis, and glucose metabolism. Due to frequent disruptions of the Akt signaling pathway in numerous human cancers and its broad biological implications, targeting this pathway has become a key focus in combating tumor aggressiveness and a promising avenue for therapeutic intervention. Curcumin, a compound found in turmeric, has been extensively studied for its potential as an anti-cancer agent. It demonstrates inhibitory effects on cancer initiation, progression, and metastasis by influencing various processes involved in tumor growth and development. These effects are achieved through negative regulation of transcription factors, growth factors, cytokines, protein kinases, and other oncogenic molecules. This review aims to explore curcumin's anticancer activity against different types of cancer mediated via the PI3K/Akt signaling pathway, as well as its practical applications in treatment.
Collapse
Affiliation(s)
- Mahdieh Aliyari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Fatemeh Hashemi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirali Reihani
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Ren C, Tu Q, He J. Fabrication of pH-responsive temozolomide (TMZ)-clacked tannic acid-altered zeolite imidazole nanoframeworks (ZIF-8) enhance anticancer activity and apoptosis induction in glioma cancer cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1978-1998. [PMID: 38953298 DOI: 10.1080/09205063.2024.2364533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024]
Abstract
Glioma cancer is the primary cause of cancer-related fatalities globally for both men and women. Traditional chemotherapy treatments for this condition frequently result in reduced efficacy and significant adverse effects. This investigation developed a new drug delivery system for the chemotherapeutic drug temozolomide (TMZ) using pH-sensitive drug delivery zeolitic imidazolate frameworks (ZIF-8). These nanoplatforms demonstrate excellent biocompatibility and hold potential for cancer therapy. Utilizing the favorable reaction milieu offered by ZIFs, a 'one-pot method' was employed for the fabrication and loading of drugs, leading to a good capacity for loading. TMZ@TA@ZIF-8 NPs exhibit a notable response to an acidic milieu, resulting in an enhanced drug release pattern characterized by a controlled release outcome. The effectiveness of TMZ@TA@ZIF-8 NPs in inhibiting the migration and invasion of U251 glioma cancer cells, as well as promoting apoptosis, was confirmed through various tests, including MTT (3-(4,5)-dimethylthiahiazo(-z-y1)) assay, DAPI/PI dual staining, and cell scratch assay. The biochemical fluorescent staining assays showed that TMZ@TA@ZIF-8 NPs potentially improved ROS, reduced MMP, and triggered apoptosis in U251 cells. In U251 cells treated with NPs, the p53, Bax, Cyt-C, caspase-3, -8, and -9 expressions were significantly enhanced, while Bcl-2 expression was diminished. These outcomes show the potential of TMZ@TA@ZIF-8 NPs as a therapeutic agent with anti-glioma properties. Overall, the pH-responsive drug delivery systems we fabricated using TMZ@TA@ZIF-8 NPs show great potential for cancer treatment. This approach has the potential to make significant contributions to the improvement of cancer therapy by overcoming the problems associated with TMZ-based treatments.
Collapse
Affiliation(s)
- Chongwen Ren
- Department of Neurosurgery, Dongying People's Hospital, Dongying Hospital of Shandong Provincial Hospital Group, Dongying, China
| | - Qingqing Tu
- Department of Emergency, Dongying People's Hospital, Dongying Hospital of Shandong Provincial Hospital Group, Dongying, China
| | - Jinchao He
- Department of Neurosurgery, Dongying People's Hospital, Dongying Hospital of Shandong Provincial Hospital Group, Dongying, China
| |
Collapse
|
12
|
Chavan DD, Bhosale RR, Thorat VM, Shete AS, Patil SJ, Tiwari DD. Recent Advances in the Development and Utilization of Nanoparticles for the Management of Malignant Solid Tumors. Cureus 2024; 16:e70312. [PMID: 39469411 PMCID: PMC11513206 DOI: 10.7759/cureus.70312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The purpose of nanotechnology-based drug delivery systems or novel drug delivery systems is to improve the effectiveness of therapy, and their promising properties have led to their increasing significance in the management of cancer. The researchers have primarily focused on designing novel nanocarriers, like nanoparticles (NPs), that can effectively deliver drugs to target cells and respond specifically to conditions particular to cancer. Whether passive or active targeting, these nanocarriers can deliver therapeutic cargoes to the tumor site to release the drug from the drug delivery systems. The purpose of this study is to provide recent scientific literature and key findings to researchers as well as the scientific community from the medical and pharmaceutical domains by reporting current advancements in the development of NPs for the treatment of different malignant solid tumors, such as colorectal, pancreatic, prostate, and cervical cancer.
Collapse
Affiliation(s)
- Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Wathar, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Amol S Shete
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| |
Collapse
|
13
|
De Giorgi A, Bellussi FM, Parlani S, Lucisano A, Silvestri E, Aryal S, Park S, Key J, Fasano M. Diffusion of curcumin in PLGA-based carriers for drug delivery: a molecular dynamics study. J Mol Model 2024; 30:219. [PMID: 38896158 PMCID: PMC11186890 DOI: 10.1007/s00894-024-06023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
CONTEXT The rapid growth and diversification of drug delivery systems have been significantly supported by advancements in micro- and nano-technologies, alongside the adoption of biodegradable polymeric materials like poly(lactic-co-glycolic acid) (PLGA) as microcarriers. These developments aim to reduce toxicity and enhance target specificity in drug delivery. The use of in silico methods, particularly molecular dynamics (MD) simulations, has emerged as a pivotal tool for predicting the dynamics of species within these systems. This approach aids in investigating drug delivery mechanisms, thereby reducing the costs associated with design and prototyping. In this study, we focus on elucidating the diffusion mechanisms in curcumin-loaded PLGA particles, which are critical for optimizing drug release and efficacy in therapeutic applications. METHODS We utilized MD to explore the diffusion behavior of curcumin in PLGA drug delivery systems. The simulations, executed with GROMACS, modeled curcumin molecules in a representative volume element of PLGA chains and water, referencing molecular structures from the Protein Data Bank and employing the CHARMM force field. We generated PLGA chains of varying lengths using the Polymer Modeler tool and arranged them in a bulk-like environment with Packmol. The simulation protocol included steps for energy minimization, T and p equilibration, and calculation of the isotropic diffusion coefficient from the mean square displacement. The Taguchi method was applied to assess the effects of hydration level, PLGA chain length, and density on diffusion. RESULTS Our results provide insight into the influence of PLGA chain length, hydration level, and polymer density on the diffusion coefficient of curcumin, offering a mechanistic understanding for the design of efficient drug delivery systems. The sensitivity analysis obtained through the Taguchi method identified hydration level and PLGA density as the most significant input parameters affecting curcumin diffusion, while the effect of PLGA chain length was negligible within the simulated range. We provided a regression equation capable to accurately fit MD results. The regression equation suggests that increases in hydration level and PLGA density result in a decrease in the diffusion coefficient.
Collapse
Affiliation(s)
- Alessandro De Giorgi
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | | | - Stefano Parlani
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Andrea Lucisano
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Emanuele Silvestri
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Susmita Aryal
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, Gangwon State, Republic of Korea
| | - Sanghyo Park
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, Gangwon State, Republic of Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, Gangwon State, Republic of Korea.
| | - Matteo Fasano
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| |
Collapse
|
14
|
Wang KN, Zhou K, Zhong NN, Cao LM, Li ZZ, Xiao Y, Wang GR, Huo FY, Zhou JJ, Liu B, Bu LL. Enhancing cancer therapy: The role of drug delivery systems in STAT3 inhibitor efficacy and safety. Life Sci 2024; 346:122635. [PMID: 38615745 DOI: 10.1016/j.lfs.2024.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, resides in the nucleus to regulate genes essential for vital cellular functions, including survival, proliferation, self-renewal, angiogenesis, and immune response. However, continuous STAT3 activation in tumor cells promotes their initiation, progression, and metastasis, rendering STAT3 pathway inhibitors a promising avenue for cancer therapy. Nonetheless, these inhibitors frequently encounter challenges such as cytotoxicity and suboptimal biocompatibility in clinical trials. A viable strategy to mitigate these issues involves delivering STAT3 inhibitors via drug delivery systems (DDSs). This review delineates the regulatory mechanisms of the STAT3 signaling pathway and its association with cancer. It offers a comprehensive overview of the current application of DDSs for anti-STAT3 inhibitors and investigates the role of DDSs in cancer treatment. The conclusion posits that DDSs for anti-STAT3 inhibitors exhibit enhanced efficacy and reduced adverse effects in tumor therapy compared to anti-STAT3 inhibitors alone. This paper aims to provide an outline of the ongoing research and future prospects of DDSs for STAT3 inhibitors. Additionally, it presents our insights on the merits and future outlook of DDSs in cancer treatment.
Collapse
Affiliation(s)
- Kang-Ning Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jun-Jie Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial, Anyang Sixth People's Hospital, Anyang 45500, China.
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
15
|
Zoi V, Kyritsis AP, Galani V, Lazari D, Sioka C, Voulgaris S, Alexiou GA. The Role of Curcumin in Cancer: A Focus on the PI3K/Akt Pathway. Cancers (Basel) 2024; 16:1554. [PMID: 38672636 PMCID: PMC11048628 DOI: 10.3390/cancers16081554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer is a life-threatening disease and one of the leading causes of death worldwide. Despite significant advancements in therapeutic options, most available anti-cancer agents have limited efficacy. In this context, natural compounds with diverse chemical structures have been investigated for their multimodal anti-cancer properties. Curcumin is a polyphenol isolated from the rhizomes of Curcuma longa and has been widely studied for its anti-inflammatory, anti-oxidant, and anti-cancer effects. Curcumin acts on the regulation of different aspects of cancer development, including initiation, metastasis, angiogenesis, and progression. The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathway is a key target in cancer therapy, since it is implicated in initiation, proliferation, and cancer cell survival. Curcumin has been found to inhibit the PI3K/Akt pathway in tumor cells, primarily via the regulation of different key mediators, including growth factors, protein kinases, and cytokines. This review presents the therapeutic potential of curcumin in different malignancies, such as glioblastoma, prostate and breast cancer, and head and neck cancers, through the targeting of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
| | | | - Vasiliki Galani
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, 45500 Ioannina, Greece
| | - Diamanto Lazari
- Laboratory of Pharmacognosy, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrissa Sioka
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
| | - Spyridon Voulgaris
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
- Department of Neurosurgery, University of Ioannina, 45500 Ioannina, Greece
| | - Georgios A. Alexiou
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
- Department of Neurosurgery, University of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
16
|
Chen H, Xing C, Lei H, Yan B, Zhang H, Tong T, Guan Y, Kang Y, Pang J. ROS-driven supramolecular nanoparticles exhibiting efficient drug delivery for chemo/Chemodynamic combination therapy for Cancer treatment. J Control Release 2024; 368:637-649. [PMID: 38484895 DOI: 10.1016/j.jconrel.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Drug-based supramolecular self-assembling delivery systems have enhanced the bioavailability of chemotherapeutic drugs and reduced systemic side effects; however, improving the delivery efficiency and responsive release ability of these systems remains challenging. This study focuses primarily on the utilization of per-6-thio-β-cyclodextrin (CD) to link a significant quantity of paclitaxel (PTX) via ROS-sensitive thioketal (TK) linkages (designated as CDTP), thereby allowing efficiently drug release when exposed to high levels of reactive oxygen species (ROS) in the tumor microenvironment. To construct these supramolecular nanoparticles (NPs) with CDTP, we introduced PEGylated ferrocene (Fc) through host-guest interactions. The intracellular hydrogen peroxide (H2O2) is converted into hydroxyl radicals (•OH) through the Fc-catalyzed Fenton reaction. Additionally, the generated Fc+ consumes the antioxidant glutathione (GSH). In both in vivo and in vitro experiments, CDTP@Fc-PEG NPs were absorbed effectively by tumor cells, which increased levels of ROS and decreased levels of GSH, disrupting the redox balance of cancer cells and increasing their sensitivity to chemotherapy. Furthermore, CDTP@Fc-PEG NPs exhibited high tumor accumulation and cytotoxicity without causing significant toxicity to healthy organs. Collectively, our results suggest CDTP@Fc-PEG NPs as a promising supramolecular nano-delivery platform for high drug-loading of PTX and synergistic chemotherapy.
Collapse
Affiliation(s)
- Huikun Chen
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chengyuan Xing
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Hanqi Lei
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Binyuan Yan
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tongyu Tong
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yupeng Guan
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Pang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
17
|
Wu J, Ji H, Li T, Guo H, Xu H, Zhu J, Tian J, Gao M, Wang X, Zhang A. Targeting the prostate tumor microenvironment by plant-derived natural products. Cell Signal 2024; 115:111011. [PMID: 38104704 DOI: 10.1016/j.cellsig.2023.111011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Prostate cancer is among the most common malignancies for men, with limited therapy options for last stages of the tumor. There are some different options for treatment and control of prostate tumor growth. However, targeting some specific molecules and cells within tumors has been attracted interests in recent years. The tumor microenvironment (TME) has an important role in the initiation of various malignancies, which can also expand the progression of tumor and facilitate invasion of malignant cells. By regulating immune responses and distinct changes in the metabolism of cells in the tumor, TME has substantial effects in the resistance of cancer cells to therapy. TME in various solid cancers like prostate cancer includes various cells, including cancer cells, supportive stromal cells, immunosuppressive cells, and anticancer inflammatory cells. Natural products including herbal-derived agents and also other natural compounds have been well studied for their anti-tumor potentials. These compounds may modulate various signaling pathways involved in TME, such as immune responses, the metabolism of cells, epigenetics, angiogenesis, and extracellular matrix (ECM). This paper provides a review of the current knowledge of prostate TME and complex interactions in this environment. Additionally, the potential use of natural products and also nanoparticles loaded with natural products as therapeutic adjuvants on different cells and therapeutic targets within prostate TME will be discussed.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Hao Ji
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Tiantian Li
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Haifeng Guo
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - HaiFei Xu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Jinfeng Zhu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Jiale Tian
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Mingde Gao
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Xiaolin Wang
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China.
| | - Aihua Zhang
- The operating room of Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China.
| |
Collapse
|
18
|
Li R, Hu Z, Qiao Q, Zhou D, Sun M. Anti-NOTCH1 therapy with OMP-52 M51 inhibits salivary adenoid cystic carcinoma by depressing epithelial-mesenchymal transition (EMT) process and inducing ferroptosis. Toxicol Appl Pharmacol 2024; 484:116825. [PMID: 38253083 DOI: 10.1016/j.taap.2024.116825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Salivary adenoid cystic carcinoma (ACC) is a common type of salivary gland cancer, and the mechanisms underlying its progression still remain poorly understood without efficient therapies. NOTCH1, an evolutionally conserved cell-cell signaling pathway, is involved in the progression of ACC. In our study, we attempted to explore whether NOTCH1 suppression using the monoclonal anti-NOTCH1 antibody OMP-52 M51 could be of potential for ACC treatment. Here, we identified NOTCH1 elevation in human ACC tissues compared with the matched normal samples. Patients with metastasis expressed much higher NOTCH1. We then found that OMP-52 M51 markedly reduced the expression of NOTCH1 and its intracellular active form NICD1 (NOTCH1 intracellular domain). Importantly, OMP-52 M51 markedly reduced the proliferation, migration and invasion of ACC cells. RNA-Seq and in vitro studies further showed that OMP-52 M51 significantly induced ferroptosis in ACC cells, indicated by the increased cellular malondialdehyde (MDA), iron contents and lipid ROS production, and decreased glutathione (GSH) levels. Further, remarkable glutathione peroxidase 4 (GPX4) reduction was detected in ACC cells with OMP-52 M51 treatment. However, promoting NOTCH1 expression markedly abolished the function of OMP-52 M51 to induce ferroptosis. Intriguingly, low-dose OMP-52 M51 strongly facilitated the capacity of ferroptosis inducer erastin to trigger ferroptotic cell death, revealing that OMP-52 M51 could improve the sensitivity of ACC cells to ferroptosis. In vivo, OMP-52 M51 administration suppressed tumor growth and induced ferroptosis in the constructed ACC xenograft mouse model. Collectively, our findings demonstrated that NOTCH1 inhibition by OMP-52 M51 represses the proliferation and epithelial-mesenchymal transition (EMT) in ACCs, and promotes ferroptosis, revealing the potential therapeutical application of OMP-52 M51 in ACC.
Collapse
Affiliation(s)
- Ran Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zelong Hu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Quanxin Qiao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Die Zhou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Minglei Sun
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
19
|
Besasie BD, Saha A, DiGiovanni J, Liss MA. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia 2024; 91:90-106. [PMID: 37776274 DOI: 10.1177/03915603231202304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The major barriers to phytonutrients in prostate cancer therapy are non-specific mechanisms and bioavailability issues. Studies have pointed to a synergistic combination of curcumin (CURC) and ursolic acid (UA). We investigate this combination using a systematic review process to assess the most likely mechanistic pathway and human testing in prostate cancer. We used the PRISMA statement to screen titles, abstracts, and the full texts of relevant articles and performed a descriptive analysis of the literature reviewed for study inclusion and consensus of the manuscript. The most common molecular and cellular pathway from articles reporting on the pathways and effects of CURC (n = 173) in prostate cancer was NF-κB (n = 25, 14.5%). The most common molecular and cellular pathway from articles reporting on the pathways and effects of UA (n = 24) in prostate cancer was caspase 3/caspase 9 (n = 10, 41.6%). The three most common molecular and cellular pathway from articles reporting on the pathways and effects of both CURC and UA (n = 193) in prostate cancer was NF-κB (n = 28, 14.2%), Akt (n = 22, 11.2%), and androgen (n = 19, 9.6%). Therefore, we have identified the potential synergistic target pathways of curcumin and ursolic acid to involve NF-κB, Akt, androgen receptors, and apoptosis pathways. Our review highlights the limited human studies and specific effects in prostate cancer.
Collapse
Affiliation(s)
- Benjamin D Besasie
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
- Department of Urology, South Texas Veterans Healthcare System, USA
| |
Collapse
|
20
|
Pranav, Ghali ENHK, Chauhan N, Tiwari R, Cabrera M, Chauhan SC, Yallapu MM. One-step simultaneous liquid phase exfoliation-induced chirality in graphene and their chirality-mediated microRNA delivery. MATERIALS ADVANCES 2023; 4:6199-6212. [PMID: 38021466 PMCID: PMC10680132 DOI: 10.1039/d3ma00611e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
Graphene (G) has established itself as an exciting prospect for a broad range of applications owing to its remarkable properties. Recent innovations in chiral nanosystems have led to sensors, drug delivery, catalysis, etc. owing to the stereospecific interactions between various nanosystems and enantiomers. As the molecular structure of G itself is achiral introducing chirality in G by simple attachment of a functional group (a chiral ligand) on the G nanosheet may result in more diverse applications. Herein, we demonstrate direct liquid phase exfoliation and chiral induction in G nanosheets abbreviated as l-graphene and d-graphene in the presence of chiral l-tyrosine and d-tyrosine and by applying high-temperature sonication. The obtained exfoliated nanosheets demonstrated stable chirality confirmed by circular dichroism. Fourier transform infrared (FTIR) spectra, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetry (DSC) showed functional, structural, morphological, surface, and thermal characteristics of l-graphene and d-graphene. The hemo-compatibility of these chiral graphenes was evaluated for the very first time utilizing human red blood cells. Lastly, for the very first time, an attempt was made to explore enantiomeric binding between chiral l-graphene and d-graphene with microRNA (miR-205) and their possibility towards chirality-mediated gene delivery in prostate cancerous cells.
Collapse
Affiliation(s)
- Pranav
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Eswara N H K Ghali
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Rahul Tiwari
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Marco Cabrera
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| |
Collapse
|
21
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
22
|
Zhu X, Quan YY, Yin ZJ, Li M, Wang T, Zheng LY, Feng SQ, Zhao JN, Li L. Sources, morphology, phytochemistry, pharmacology of Curcumae Longae Rhizoma, Curcumae Radix, and Curcumae Rhizoma: a review of the literature. Front Pharmacol 2023; 14:1229963. [PMID: 37719857 PMCID: PMC10500466 DOI: 10.3389/fphar.2023.1229963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Curcumae Longae Rhizoma (turmeric), Curcumae Radix and Curcumae Rhizoma are derived from the Curcuma species, and have gradually become three of the most commonly used medicinal herbs in China due to their different origins, processing methods and medicinal part. These three herbs have certain similarities in morphology, chemical composition, and pharmacological effects. All three of these herbs contain curcuminoids and volatile oil compounds, which exhibit anti-inflammatory, anti-tumor, antioxidant, and neuroprotective properties, although modern clinical applications have their own requirements. At present, there is no systematic guidelines for the clinical application of these three of Curcuma species; consequently, there is a high risk of unwanted phenomena associated with the mixing and indiscriminate use of these herbs. In this review, we focus predominantly on morphology, chemical composition, and the pharmacological activity of these three Curcuma herbs and summarize the current status of research in this field. Our goal is to provide a better understanding of clinical value of these Curcuma species so that we can provide reference guidelines for their further development, utilization and rational clinical application.
Collapse
Affiliation(s)
- Xin Zhu
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu, China
| | - Yun-yun Quan
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Zhu-jun Yin
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Min Li
- Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu, China
| | - Ting Wang
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Lu-yao Zheng
- Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu, China
| | - Shi-qi Feng
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Jun-ning Zhao
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu, China
| | - Li Li
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| |
Collapse
|
23
|
Xiao S, Ahn DU. Co-encapsulation of fish oil with essential oils and lutein/curcumin to increase the oxidative stability of fish oil powder. Food Chem 2023; 410:135465. [PMID: 36641907 DOI: 10.1016/j.foodchem.2023.135465] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The oxidation-resistant and multi-functional fish oil powders were produced by co-encapsulating fish oil with essential oils, lutein, and curcumin. The ovalbumin/alginate complex was used as the wall, and the wall-to-oil ratio was fixed at 1:1 based on yield, oil recovery, and internalization efficiency (IE). Surface oil was removed to better understand the characteristics of the fish oil powders. Scanning electron microscopy (SEM) results indicated that the freeze-dried fish oil powders had irregular shapes with visible pores on the surface. Covalent bonds and electrostatic interactions within the ovalbumin/alginate complex were detected through FTIR. The garlic essential oil-added sample showed the strongest oxidative stability throughout the storage period (30 days). This work showed that fish oil had been encapsulated successfully and multi-functional fish oil powders could be produced by dissolving lipophilic bioactive compounds in fish oil before encapsulation.
Collapse
Affiliation(s)
- Shulan Xiao
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, United States.
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
24
|
Lankoff A, Czerwińska M, Kruszewski M. Nanoparticle-Based Radioconjugates for Targeted Imaging and Therapy of Prostate Cancer. Molecules 2023; 28:molecules28104122. [PMID: 37241862 DOI: 10.3390/molecules28104122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Prostate cancer is the second most frequent malignancy in men worldwide and the fifth leading cause of death by cancer. Although most patients initially benefit from therapy, many of them will progress to metastatic castration-resistant prostate cancer, which still remains incurable. The significant mortality and morbidity rate associated with the progression of the disease results mainly from a lack of specific and sensitive prostate cancer screening systems, identification of the disease at mature stages, and failure of anticancer therapy. To overcome the limitations of conventional imaging and therapeutic strategies for prostate cancer, various types of nanoparticles have been designed and synthesized to selectively target prostate cancer cells without causing toxic side effects to healthy organs. The purpose of this review is to briefly discuss the selection criteria of suitable nanoparticles, ligands, radionuclides, and radiolabelling strategies for the development of nanoparticle-based radioconjugates for targeted imaging and therapy of prostate cancer and to evaluate progress in the field, focusing attention on their design, specificity, and potential for detection and/or therapy.
Collapse
Affiliation(s)
- Anna Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 15, 25-406 Kielce, Poland
| | - Malwina Czerwińska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska, 02-776 Warsaw, Poland
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
25
|
Ghobadi N, Asoodeh A. Co-administration of curcumin with other phytochemicals improves anticancer activity by regulating multiple molecular targets. Phytother Res 2023; 37:1688-1702. [PMID: 36883534 DOI: 10.1002/ptr.7794] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
Natural plant phytochemicals are effective against different types of diseases, including cancer. Curcumin, a powerful herbal polyphenol, exerts inhibitory effects on cancer cell proliferation, angiogenesis, invasion, and metastasis through interaction with different molecular targets. However, the clinical use of curcumin is limited due to poor solubility in water and metabolism in the liver and intestine. The synergistic effects of curcumin with some phytochemicals such as resveratrol, quercetin, epigallocatechin-3-gallate, and piperine can improve its clinical efficacy in cancer treatment. The present review specifically focuses on anticancer mechanisms related to the co-administration of curcumin with other phytochemicals, including resveratrol, quercetin, epigallocatechin-3-gallate, and piperine. According to the molecular evidence, the phytochemical combinations exert synergistic effects on suppressing cell proliferation, reducing cellular invasion, and inducing apoptosis and cell cycle arrest. This review also emphasizes the significance of the co-delivery vehicles-based nanoparticles of such bioactive phytochemicals that could improve their bioavailability and reduce their systemic dose. Further high-quality studies are needed to firmly establish the clinical efficacy of the phytochemical combinations.
Collapse
Affiliation(s)
- Niloofar Ghobadi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
26
|
Delivery of curcumin within emulsome nanoparticles enhances the anti-cancer activity in androgen-dependent prostate cancer cell. Mol Biol Rep 2023; 50:2531-2543. [PMID: 36607480 DOI: 10.1007/s11033-022-08208-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Curcumin, a dietary polyphenol isolated from turmeric, is a potent phytochemical possessing intrinsic anticancer activities against various cancer types including prostate cancer. However, low water solubility and bioavailability of the compound are major challenges against its medical use. The objective of this study is to evaluate the therapeutic potential of curcumin-loaded emulsome nanoparticular system, i.e. CurcuEmulsomes, for the treatment of androgen dependent LNCaP prostate cancer cell line. METHODS AND RESULTS The antiproliferative effect of both free curcumin and CurcuEmulsome were investigated comparatively on LNCaP and PNT1A cells. Cell viability data indicates that the inhibition in proliferation of LNCaP cells becomes more effective when curcumin is provided with its emulsome formulation rather than its free form. Corresponding to a therapeutic index of 2.25, Half maximal inhibitory (IC50) and cytotoxic (CC50) concentrations of CurcuEmulsomes for LNCaP and PNT1A cells were estimated as 17.1 µM and 38.6 µM, respectively. The fluorescence signal of autofluorescence curcumin was preserved within the CurcuEmulsomes at 72 h after the treatment. Thus, CurcuEmulsomes prolonged biological activity of curcumin. Induced apoptotic cell death and stimulated cell cycle arrest at G2/M phase were attributed to antiproliferative activity of CurcuEmulsomes. Treatment of LNCaP cells with CurcuEmulsomes increased expression of caspase-3 significantly by 11.76-fold, whereas decreased cyclin D1, Bcl-2 and AR expression levels significantly by of 0.18, 0.06 and 0.46-fold, respectively. CONCLUSIONS Presented safety and anticancer activity of CurcuEmulsomes on LNCaP cell line highlights the potential of CurcuEmulsomes to benefit intrinsic anticancer activities of curcumin in androgen dependent prostate cancer therapy.
Collapse
|
27
|
Gayathri K, Bhaskaran M, Selvam C, Thilagavathi R. Nano formulation approaches for curcumin delivery- a review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
28
|
Hayakawa S, Ohishi T, Oishi Y, Isemura M, Miyoshi N. Contribution of Non-Coding RNAs to Anticancer Effects of Dietary Polyphenols: Chlorogenic Acid, Curcumin, Epigallocatechin-3-Gallate, Genistein, Quercetin and Resveratrol. Antioxidants (Basel) 2022; 11:antiox11122352. [PMID: 36552560 PMCID: PMC9774417 DOI: 10.3390/antiox11122352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Growing evidence has been accumulated to show the anticancer effects of daily consumption of polyphenols. These dietary polyphenols include chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin, and resveratrol. These polyphenols have similar chemical and biological properties in that they can act as antioxidants and exert the anticancer effects via cell signaling pathways involving their reactive oxygen species (ROS)-scavenging activity. These polyphenols may also act as pro-oxidants under certain conditions, especially at high concentrations. Epigenetic modifications, including dysregulation of noncoding RNAs (ncRNAs) such as microRNAs, long noncoding RNAs, and circular RNAs are now known to be involved in the anticancer effects of polyphenols. These polyphenols can modulate the expression/activity of the component molecules in ROS-scavenger-triggered anticancer pathways (RSTAPs) by increasing the expression of tumor-suppressive ncRNAs and decreasing the expression of oncogenic ncRNAs in general. Multiple ncRNAs are similarly modulated by multiple polyphenols. Many of the targets of ncRNAs affected by these polyphenols are components of RSTAPs. Therefore, ncRNA modulation may enhance the anticancer effects of polyphenols via RSTAPs in an additive or synergistic manner, although other mechanisms may be operating as well.
Collapse
Affiliation(s)
- Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
- Correspondence: (S.H.); (N.M.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5531 (N.M.)
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Mamoru Isemura
- Tea Science Center, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Correspondence: (S.H.); (N.M.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5531 (N.M.)
| |
Collapse
|
29
|
Massironi A, Marzorati S, Marinelli A, Toccaceli M, Gazzotti S, Ortenzi MA, Maggioni D, Petroni K, Verotta L. Synthesis and Characterization of Curcumin-Loaded Nanoparticles of Poly(Glycerol Sebacate): A Novel Highly Stable Anticancer System. Molecules 2022; 27:molecules27206997. [PMID: 36296595 PMCID: PMC9606863 DOI: 10.3390/molecules27206997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The research for alternative administration methods for anticancer drugs, towards enhanced effectiveness and selectivity, represents a major challenge for the scientific community. In the last decade, polymeric nanostructured delivery systems represented a promising alternative to conventional drug administration since they ensure secure transport to the selected target, providing active compounds protection against elimination, while minimizing drug toxicity to non-target cells. In the present research, poly(glycerol sebacate), a biocompatible polymer, was synthesized and then nanostructured to allow curcumin encapsulation, a naturally occurring polyphenolic phytochemical isolated from the powdered rhizome of Curcuma longa L. Curcumin was selected as an anticancer agent in virtue of its strong chemotherapeutic activity against different cancer types combined with good cytocompatibility within healthy cells. Despite its strong and fascinating biological activity, its possible exploitation as a novel chemotherapeutic has been hampered by its low water solubility, which results in poor absorption and low bioavailability upon oral administration. Hence, its encapsulation within nanoparticles may overcome such issues. Nanoparticles obtained through nanoprecipitation, an easy and scalable technique, were characterized in terms of size and stability over time using dynamic light scattering and transmission electron microscopy, confirming their nanosized dimensions and spherical shape. Finally, biological investigation demonstrated an enhanced cytotoxic effect of curcumin-loaded PGS-NPs on human cervical cancer cells compared to free curcumin.
Collapse
Affiliation(s)
- Alessio Massironi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
- Correspondence: (A.M.); (K.P.)
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Alessandra Marinelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Marta Toccaceli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Stefano Gazzotti
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Marco Aldo Ortenzi
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daniela Maggioni
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Katia Petroni
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Correspondence: (A.M.); (K.P.)
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
30
|
Hashemi M, Mirzaei S, Barati M, Hejazi ES, Kakavand A, Entezari M, Salimimoghadam S, Kalbasi A, Rashidi M, Taheriazam A, Sethi G. Curcumin in the treatment of urological cancers: Therapeutic targets, challenges and prospects. Life Sci 2022; 309:120984. [PMID: 36150461 DOI: 10.1016/j.lfs.2022.120984] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Abstract
Urological cancers include bladder, prostate and renal cancers that can cause death in males and females. Patients with urological cancers are mainly diagnosed at an advanced disease stage when they also develop resistance to therapy or poor response. The use of natural products in the treatment of urological cancers has shown a significant increase. Curcumin has been widely used in cancer treatment due to its ability to trigger cell death and suppress metastasis. The beneficial effects of curcumin in the treatment of urological cancers is the focus of current review. Curcumin can induce apoptosis in the three types of urological cancers limiting their proliferative potential. Furthermore, curcumin can suppress invasion of urological cancers through EMT inhibition. Notably, curcumin decreases the expression of MMPs, therefore interfering with urological cancer metastasis. When used in combination with chemotherapy agents, curcumin displays synergistic effects in suppressing cancer progression. It can also be used as a chemosensitizer. Based on pre-clinical studies, curcumin administration is beneficial in the treatment of urological cancers and future clinical applications might be considered upon solving problems related to the poor bioavailability of the compound. To improve the bioavailability of curcumin and increase its therapeutic index in urological cancer suppression, nanostructures have been developed to favor targeted delivery.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maryamsadat Barati
- Department of Biology, Faculty of Basic (Fundamental) Science, Shahr Qods Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
31
|
Que Y, Yang Y, Zafar H, Wang D. Tetracycline-grafted mPEG-PLGA micelles for bone-targeting and osteoporotic improvement. Front Pharmacol 2022; 13:993095. [PMID: 36188546 PMCID: PMC9515468 DOI: 10.3389/fphar.2022.993095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Aim: We aimed to create a nano drug delivery system with tetracycline (TC)-grafted methoxy poly-(ethylene-glycol)‒poly-(D, L-lactic-co-glycolic acid) (mPEG‒PLGA) micelles (TC‒mPEG‒PLGA) with TC and mPEG‒PLGA for potential bone targeting. Prospectively, TC‒mPEG‒PLGA aims to deliver bioactive compounds, such as astragaloside IV (AS), for osteoporotic therapy. Methods: Preparation and evaluation of TC‒mPEG‒PLGA were accomplished via nano-properties, cytotoxicity, uptake by MC3T3-E1 cells, ability of hydroxyapatite targeting and potential bone targeting in vivo, as well as pharmacodynamics in a rat model. Results: The measured particle size of AS-loaded TC‒mPEG‒PLGA micelles was an average of 52.16 ± 2.44 nm, which exhibited a sustained release effect compared to that by free AS. The TC‒mPEG‒PLGA demonstrated low cytotoxicity and was easily taken by MC3T3-E1 cells. Through assaying of bone targeting in vitro and in vivo, we observed that TC‒mPEG‒PLGA could effectively increase AS accumulation in bone. A pharmacodynamics study in mice suggested potentially increased bone mineral density by AS-loaded TC‒mPEG‒PLGA in ovariectomized rats compared to that by free AS. Conclusion: The nano drug delivery system (TC‒mPEG‒PLGA) could target bone in vitro and in vivo, wherein it may be used as a novel delivery method for the enhancement of therapeutic effects of drugs with osteoporotic activity.
Collapse
Affiliation(s)
- Yunduan Que
- Department of Orthopedics, Nanjing Gaochun People’s Hospital, Gaochun Economic Development Zone, Nanjing, China
| | - Yuhang Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hajra Zafar, ; Dongming Wang,
| | - Dongming Wang
- Department of Orthopedics, Nanjing Gaochun People’s Hospital, Gaochun Economic Development Zone, Nanjing, China
- *Correspondence: Hajra Zafar, ; Dongming Wang,
| |
Collapse
|
32
|
Johnson RP, Ratnacaram CK, Kumar L, Jose J. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resist Updat 2022; 64:100865. [PMID: 36099796 DOI: 10.1016/j.drup.2022.100865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PC) is the most prevalent male urogenital cancer worldwide. PC patients presenting an advanced or metastatic cancer succumb to the disease, even after therapeutic interventions including radiotherapy, surgery, androgen deprivation therapy (ADT), and chemotherapy. One of the hallmarks of PC is evading immune surveillance and chronic inflammation, which is a major challenge towards designing effective therapeutic formulations against PC. Chronic inflammation in PC is often characterized by tumor microenvironment alterations, epithelial-mesenchymal transition and extracellular matrix modifications. The inflammatory events are modulated by reactive nitrogen and oxygen species, inflammatory cytokines and chemokines. Major signaling pathways in PC includes androgen receptor, PI3K and NF-κB pathways and targeting these inter-linked pathways poses a major therapeutic challenge. Notably, many conventional treatments are clinically unsuccessful, due to lack of targetability and poor bioavailability of the therapeutics, untoward toxicity and multidrug resistance. The past decade witnessed an advancement of nanotechnology as an excellent therapeutic paradigm for PC therapy. Modern nanovectorization strategies such as stimuli-responsive and active PC targeting carriers offer controlled release patterns and superior anti-cancer effects. The current review initially describes the classification, inflammatory triggers and major inflammatory pathways of PC, various PC treatment strategies and their limitations. Subsequently, recent advancement in combinatorial nanotherapeutic approaches, which target PC inflammatory pathways, and the mechanism of action are discussed. Besides, the current clinical status and prospects of PC homing nanovectorization, and major challenges to be addressed towards the advancement PC therapy are also addressed.
Collapse
Affiliation(s)
- Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Chandrahas Koumar Ratnacaram
- Cell Signaling and Cancer Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576 104, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
33
|
Renal cell carcinoma management: A step to nano-chemoprevention. Life Sci 2022; 308:120922. [PMID: 36058262 DOI: 10.1016/j.lfs.2022.120922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
Renal cell carcinoma (RCC) is one of the most common kidney cancers, responsible for nearly 90 % of all renal malignancies. Despite the availability of many treatment strategies, RCC still remains to be an incurable disease due to its resistivity towards conventional therapies. Nanotechnology is an emerging field of science that offers newer possibilities in therapeutics including cancer medicine, specifically by targeted delivery of anticancer drugs. Several phytochemicals are known for their anti-cancer properties and have been regarded as chemopreventive agents. However, the hydrophobic nature of many phytochemicals decreases its bioavailability and distribution, thus showing limited therapeutic effect. Application of nanotechnology to enhance chemoprevention is an effective strategy to increase the bioavailability of phytochemicals and thereby its therapeutic efficacy. The present review focuses on the utility of nanotechnology in RCC treatment and chemopreventive agents of RCC. We have also visualized the future prospects of nanomolecules in the prevention and cure of RCC.
Collapse
|
34
|
J591 functionalized paclitaxel-loaded PLGA nanoparticles successfully inhibited PSMA overexpressing LNCaP cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Poddar NK, Agarwal D, Agrawal Y, Wijayasinghe YS, Mukherjee A, Khan S. Deciphering the enigmatic crosstalk between prostate cancer and Alzheimer's disease: A current update on molecular mechanisms and combination therapy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166524. [PMID: 35985445 DOI: 10.1016/j.bbadis.2022.166524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) and prostate cancer (PCa) are considered the leading causes of death in elderly people worldwide. Although both these diseases have striking differences in their pathologies, a few underlying mechanisms are similar when cell survival is considered. In the current study, we employed an in-silico approach to decipher the possible role of bacterial proteins in the initiation and progression of AD and PCa. We further analyzed the molecular connections between these two life-threatening diseases. The androgen deprivation therapy used against PCa has been shown to promote castrate resistant PCa as well as AD. In addition, cell signaling pathways, such as Akt, IGF, and Wnt contribute to the progression of both AD and PCa. Besides, various proteins and genes are also common in disease progression. One such similarity is mTOR signaling. mTOR is the common downstream target for many signaling pathways and plays a vital role in both PCa and AD. Targeting mTOR can be a favorable line of treatment for both AD and PCa. However, drug resistance is one of the challenges in effective drug therapy. A few drugs that target mTOR have now become ineffective due to the development of resistance. In that regard, phytochemicals can be a rich source of novel drug candidates as they can act via multiple mechanisms. This review also presents mTOR targeting phytochemicals with promising anti-PCa, anti-AD activities, and approaches to overcome the issues associated with phytochemical-based therapies in clinical trials.
Collapse
Affiliation(s)
- Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| | - Disha Agarwal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Yamini Agrawal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | | | - Arunima Mukherjee
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Shahanavaj Khan
- Department of Health Sciences, Novel Global Community Educational Foundation, NSW, Australia; Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia; Department of Medical Lab Technology, Indian Institute of health and Technology (IIHT), Deoband, 247554 Saharanpur, UP, India.
| |
Collapse
|
36
|
Integrative Analysis of Bulk RNA-Seq and Single-Cell RNA-Seq Unveils the Characteristics of the Immune Microenvironment and Prognosis Signature in Prostate Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6768139. [PMID: 35909899 PMCID: PMC9325591 DOI: 10.1155/2022/6768139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
The immune microenvironment is a culmination of the collaborative effort of immune cells and is important in cancer development. The underlying mechanisms of the tumor immune microenvironment in regulating prostate cancer (PRAD) are unclear. In the current study, 144 natural killer cell-related genes were identified using differential expression, single-sample gene set enrichment analysis, and weighted gene coexpression network analysis. Furthermore, VCL, ACTA2, MYL9, MYLK, MYH11, TPM1, ACTG2, TAGLN, and FLNC were selected as hub genes via the protein-protein interaction network. Based on the expression patterns of the hub genes, endothelial, epithelial, and tissue stem cells were identified as key cell subpopulations, which could regulate PRAD via immune response, extracellular signaling, and protein formation. Moreover, 27 genes were identified as prognostic signatures and used to construct the risk score model. Receiver operating characteristic curves revealed the good performance of the risk score model in both the training and testing datasets. Different chemotherapeutic responses were observed between the low- and high-risk groups. Additionally, a nomogram based on the risk score and other clinical features was established to predict the 1-, 3-, and 5-year progression-free interval of patients with PRAD. This study provides novel insights into the molecular mechanisms of the immune microenvironment and its role in the pathogenesis of PARD. The identification of key cell subpopulations has a potential therapeutic and prognostic use in PRAD.
Collapse
|
37
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
38
|
Preparation of curcumin loaded hyaluronic acid-poly (lactic-co-glycolic acid) micelles with pH response and tumor targeting. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
de Oliveira TV, Stein R, de Andrade DF, Beck RCR. Preclinical studies of the antitumor effect of curcumin-loaded polymeric nanocapsules: A systematic review and meta-analysis. Phytother Res 2022; 36:3202-3214. [PMID: 35778819 DOI: 10.1002/ptr.7538] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/09/2022] [Accepted: 06/12/2022] [Indexed: 12/11/2022]
Abstract
Curcumin, a plant-derived compound, has various well-known biological effects (anti-inflammatory, antioxidant, antitumor, among others) as well as some important limitations for formulators, such as poor water solubility and low oral bioavailability. Its nanoencapsulation is reported to overcome these drawbacks and to improve its in vivo efficacy. Here, data from preclinical in vivo studies evaluating the antitumor efficacy of curcumin-loaded polymeric nanocapsules are collected, analyzed, and discussed as a systematic review. Meta-analyses are performed to assess the contribution of this nanoencapsulation compared with nonencapsulated curcumin. Eighteen studies (116 animals) meet the inclusion criteria. The evidence that curcumin-loaded polymeric nanocapsules inhibits tumor growth (SMD: -3.03; 95% CI: -3.84, -2.21; p < 0.00001) and decreases tumor weight (SMD: -3.96; 95% CI: -6.22, -1.70; p = 0.0006) in rodents is established, regardless of the solid tumor model. To assess the quality of the studies included in the review a bias risk analysis was performed using the SYRCLE's RoB tool. Therefore, encapsulation in polymeric nanocapsules represents an important tool to improve the antitumor effects of curcumin, and this systematic review paves the way for future clinical studies and the translation of curcumin formulations into novel nanomedicines for human cancer treatment.
Collapse
Affiliation(s)
- Thayse V de Oliveira
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, Porto Alegre, Brazil
| | - Renan Stein
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, Porto Alegre, Brazil
| | - Diego F de Andrade
- Laboratório Federal de Defesa Agropecuária (LFDA), Secretaria de Defesa Agropecuária (SDA), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Estrada Retiro da Ponta Grossa, Porto Alegre, Brazil
| | - Ruy C R Beck
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, Porto Alegre, Brazil
| |
Collapse
|
40
|
Grolez GP, Chinigò G, Barras A, Hammadi M, Noyer L, Kondratska K, Bulk E, Oullier T, Marionneau-Lambot S, Le Mée M, Rétif S, Lerondel S, Bongiovanni A, Genova T, Roger S, Boukherroub R, Schwab A, Fiorio Pla A, Gkika D. TRPM8 as an Anti-Tumoral Target in Prostate Cancer Growth and Metastasis Dissemination. Int J Mol Sci 2022; 23:ijms23126672. [PMID: 35743115 PMCID: PMC9224463 DOI: 10.3390/ijms23126672] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 02/04/2023] Open
Abstract
In the fight against prostate cancer (PCa), TRPM8 is one of the most promising clinical targets. Indeed, several studies have highlighted that TRPM8 involvement is key in PCa progression because of its impact on cell proliferation, viability, and migration. However, data from the literature are somewhat contradictory regarding the precise role of TRPM8 in prostatic carcinogenesis and are mostly based on in vitro studies. The purpose of this study was to clarify the role played by TRPM8 in PCa progression. We used a prostate orthotopic xenograft mouse model to show that TRPM8 overexpression dramatically limited tumor growth and metastasis dissemination in vivo. Mechanistically, our in vitro data revealed that TRPM8 inhibited tumor growth by affecting the cell proliferation and clonogenic properties of PCa cells. Moreover, TRPM8 impacted metastatic dissemination mainly by impairing cytoskeleton dynamics and focal adhesion formation through the inhibition of the Cdc42, Rac1, ERK, and FAK pathways. Lastly, we proved the in vivo efficiency of a new tool based on lipid nanocapsules containing WS12 in limiting the TRPM8-positive cells' dissemination at metastatic sites. Our work strongly supports the protective role of TRPM8 on PCa progression, providing new insights into the potential application of TRPM8 as a therapeutic target in PCa treatment.
Collapse
Affiliation(s)
- Guillaume P. Grolez
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille, 59000 Villeneuve d’Ascq, France; (G.P.G.); (G.C.); (L.N.); (K.K.); (A.F.P.)
| | - Giorgia Chinigò
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille, 59000 Villeneuve d’Ascq, France; (G.P.G.); (G.C.); (L.N.); (K.K.); (A.F.P.)
- Department of Life Science and Systems Biology, University of Turin, 10123 Turin, Italy;
| | - Alexandre Barras
- CNRS, Centrale Lille, Univ. Lille, Univ. Polytechnique Hauts-de-France, UMR 8520—IEMN, 59000 Lille, France; (A.B.); (M.H.); (R.B.)
| | - Mehdi Hammadi
- CNRS, Centrale Lille, Univ. Lille, Univ. Polytechnique Hauts-de-France, UMR 8520—IEMN, 59000 Lille, France; (A.B.); (M.H.); (R.B.)
| | - Lucile Noyer
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille, 59000 Villeneuve d’Ascq, France; (G.P.G.); (G.C.); (L.N.); (K.K.); (A.F.P.)
| | - Kateryna Kondratska
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille, 59000 Villeneuve d’Ascq, France; (G.P.G.); (G.C.); (L.N.); (K.K.); (A.F.P.)
| | - Etmar Bulk
- Institute of Physiology II, University of Münster, 48149 Münster, Germany; (E.B.); (A.S.)
| | - Thibauld Oullier
- Cancéropôle du Grand Ouest, Plateforme In Vivo, 44000 Nantes, France; (T.O.); (S.M.-L.)
| | | | - Marilyne Le Mée
- CNRS UAR44, PHENOMIN-TAAM, 45071 Orléans, France; (M.L.M.); (S.R.); (S.L.)
| | - Stéphanie Rétif
- CNRS UAR44, PHENOMIN-TAAM, 45071 Orléans, France; (M.L.M.); (S.R.); (S.L.)
| | - Stéphanie Lerondel
- CNRS UAR44, PHENOMIN-TAAM, 45071 Orléans, France; (M.L.M.); (S.R.); (S.L.)
| | - Antonino Bongiovanni
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41—UMS 2014—PLBS, University of Lille, 59000 Lille, France;
| | - Tullio Genova
- Department of Life Science and Systems Biology, University of Turin, 10123 Turin, Italy;
- Nanostructured Interfaces and Surfaces Centre of Excellence (NIS), University of Turin, 10123 Turin, Italy
| | - Sébastien Roger
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France;
| | - Rabah Boukherroub
- CNRS, Centrale Lille, Univ. Lille, Univ. Polytechnique Hauts-de-France, UMR 8520—IEMN, 59000 Lille, France; (A.B.); (M.H.); (R.B.)
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, 48149 Münster, Germany; (E.B.); (A.S.)
| | - Alessandra Fiorio Pla
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille, 59000 Villeneuve d’Ascq, France; (G.P.G.); (G.C.); (L.N.); (K.K.); (A.F.P.)
- Department of Life Science and Systems Biology, University of Turin, 10123 Turin, Italy;
- CNRS UAR44, PHENOMIN-TAAM, 45071 Orléans, France; (M.L.M.); (S.R.); (S.L.)
| | - Dimitra Gkika
- CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University Lille, 59000 Villeneuve d’Ascq, France
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Institut Universitaire de France (IUF), 75231 Paris, France
- Correspondence:
| |
Collapse
|
41
|
Choksi AU, Khan AI, Lokeshwar SD, Segal D, Weiss RM, Martin DT. Functionalized nanoparticles targeting biomarkers for prostate cancer imaging and therapy. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:142-153. [PMID: 35874285 PMCID: PMC9301064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Nanomedicine is an evolving field of scientific research with unique advantages and challenges for the detection and treatment of medical diseases. Since 1995, the FDA has approved the administration of nanoparticle-based therapies. The initial generation of nanoparticles relied on an enhanced permeability and retention effect, associated with an increased penetrability of tumor related blood vessels. With increasing knowledge of biomarkers and molecular targets, active targeting of circulating tumor cells by nanoparticles provides an exciting area for application. The selective targeting of prostate cancer cells using a nanotechnology-based mechanism has the potential to optimize the delivery of therapeutic payloads directly to prostate cancer cells while minimizing systemic toxicities. The molecular targets that have been studied include prostate specific membrane antigen, gastrin-releasing peptide protein, glucose related protein, CD44, claudin, C-X-C chemokine receptor type 4 (CXCR-4), and adenosine. The clinical potential for nanoparticle-based therapies is supported by several studies that have progressed past the preclinical stage into clinical trials. In this review, we present the molecular biomarkers that have been targeted by ligands conjugated to the surface of nanoparticles for prostate cancer imaging and therapy.
Collapse
Affiliation(s)
- Ankur U Choksi
- Department of Urology, Yale School of Medicine New Haven, CT, USA
| | - Amir I Khan
- Department of Urology, Yale School of Medicine New Haven, CT, USA
| | - Soum D Lokeshwar
- Department of Urology, Yale School of Medicine New Haven, CT, USA
| | - Daniel Segal
- Department of Urology, Yale School of Medicine New Haven, CT, USA
| | - Robert M Weiss
- Department of Urology, Yale School of Medicine New Haven, CT, USA
| | - Darryl T Martin
- Department of Urology, Yale School of Medicine New Haven, CT, USA
| |
Collapse
|
42
|
Anti-Cancer Effects of Dietary Polyphenols via ROS-Mediated Pathway with Their Modulation of MicroRNAs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123816. [PMID: 35744941 PMCID: PMC9227902 DOI: 10.3390/molecules27123816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
Consumption of coffee, tea, wine, curry, and soybeans has been linked to a lower risk of cancer in epidemiological studies. Several cell-based and animal studies have shown that dietary polyphenols like chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin and resveratrol play a major role in these anticancer effects. Several mechanisms have been proposed to explain the anticancer effects of polyphenols. Depending on the cellular microenvironment, these polyphenols can exert double-faced actions as either an antioxidant or a prooxidant, and one of the representative anticancer mechanisms is a reactive oxygen species (ROS)-mediated mechanism. These polyphenols can also influence microRNA (miR) expression. In general, they can modulate the expression/activity of the constituent molecules in ROS-mediated anticancer pathways by increasing the expression of tumor-suppressive miRs and decreasing the expression of oncogenic miRs. Thus, miR modulation may enhance the anticancer effects of polyphenols through the ROS-mediated pathways in an additive or synergistic manner. More precise human clinical studies on the effects of dietary polyphenols on miR expression will provide convincing evidence of the preventive roles of dietary polyphenols in cancer and other diseases.
Collapse
|
43
|
Mirzaei A, Jahanshahi F, Khatami F, Reis LO, Aghamir SMK. Human prostate cancer cell epithelial-to-mesenchymal transition as a novel target of arsenic trioxide and curcumin therapeutic approach. Tissue Cell 2022; 76:101805. [PMID: 35487055 DOI: 10.1016/j.tice.2022.101805] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Arsenic trioxide (As2O3) as an inorganic compound is used to treat various cancers and other diseases. It has been reported that arsenic trioxide induced cellular apoptosis in certain kinds of cancers, including prostate cancers. The present study aimed to elucidate the crucial cooperative role of arsenic trioxide and Curcumin and their ability to protect against prostate cancers by targeting the epithelial-to-mesenchymal transition and expression of apoptosis-related genes. MATERIAL AND METHODS The human prostate cell lines (LNCaP and PC3) were treated with different concentrations of Curcumin and As2O3 alone and combined to find effective doses and IC50 values. Percentages of apoptotic cells were evaluated by Annexin/P.I. staining, the proliferative inhibitory effect was assessed by Micro Culture Tetrazolium Test (MTT), and mRNA levels of KLK2, E-cadherin, SNAIL, angiogenesis genes (VEGFA and VEGFC), and apoptosis genes (BAX, Bcl2, and P53) expression were investigated by the real-time PCR method. ANOVA and t-test were used to appraise the results. RESULTS For the first time, we presented that the combination therapy of Curcumin and As2O3 increases prostate cancer cell apoptosis and inhibits proliferation; Our data displayed that Curcumin (15 μM and 10 μM in PC3 and LNCap), As2O3 (8 μM and 5 μM in PC3 and LNCap), and also their combination (15 μM Curcumin and 8 μM As2O3 in PC3, 10 μM Curcumin and 5 μM As2O3 in LNCap cell lines) significantly increased the percentage of apoptotic cells and inhibited cell growth (P < 0.05) compared with each drug alone. Generally, both cell lines treated with the combination of Curcumin and As2O3 displayed decreased angiogenesis genes (VEGFA and VEGFC), apoptosis genes (BAX and Bcl2), and prostate cancer marker (KLK2), the zinc-finger protein (SNAIL); and an increase in expression (P < 0.05) of cell-cell adhesion molecule (E-cadherin) and tumor suppressor gene (P53) genes. CONCLUSIONS The antitumor effects of combination therapy with As2O3 and Curcumin have been displayed on prostate cancer cell lines (LNCaP and PC3), which probably originates from their potential to induce apoptosis and inhibit the growth of prostate cancer cells simultaneously.
Collapse
Affiliation(s)
- Akram Mirzaei
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jahanshahi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leonardo Oliveira Reis
- UroScience and Department of Surgery (Urology), School of Medical Sciences, University of Campinas, Unicamp, and Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
44
|
Hashem S, Ali TA, Akhtar S, Nisar S, Sageena G, Ali S, Al-Mannai S, Therachiyil L, Mir R, Elfaki I, Mir MM, Jamal F, Masoodi T, Uddin S, Singh M, Haris M, Macha M, Bhat AA. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed Pharmacother 2022; 150:113054. [PMID: 35658225 DOI: 10.1016/j.biopha.2022.113054] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is one of the leading causes of death and significantly burdens the healthcare system. Due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. The use of natural products as anticancer agents is an acceptable therapeutic approach due to accessibility, applicability, and reduced cytotoxicity. Natural products have been an incomparable source of anticancer drugs in the modern era of drug discovery. Along with their derivatives and analogs, natural products play a major role in cancer treatment by modulating the cancer microenvironment and different signaling pathways. These compounds are effective against several signaling pathways, mainly cell death pathways (apoptosis and autophagy) and embryonic developmental pathways (Notch pathway, Wnt pathway, and Hedgehog pathway). The historical record of natural products is strong, but there is a need to investigate the current role of natural products in the discovery and development of cancer drugs and determine the possibility of natural products being an important source of future therapeutic agents. Many target-specific anticancer drugs failed to provide successful results, which accounts for a need to investigate natural products with multi-target characteristics to achieve better outcomes. The potential of natural products to be promising novel compounds for cancer treatment makes them an important area of research. This review explores the significance of natural products in inhibiting the various signaling pathways that serve as drivers of carcinogenesis and thus pave the way for developing and discovering anticancer drugs.
Collapse
Affiliation(s)
- Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Tayyiba Akbar Ali
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Sabah Akhtar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | | | - Shahid Ali
- International Potato Center (CIP), Shillong, Meghalaya, India
| | - Sharefa Al-Mannai
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| | - Rashid Mir
- Prince Fahd Bin Sultan Research chair, Department Of Medical Lab Technology, FAMS, University of Tabuk,Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Muzaffar Mir
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Saudi Arabia
| | - Farrukh Jamal
- Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Muzafar Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India.
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
45
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
46
|
Zhou ZW, Long HZ, Xu SG, Li FJ, Cheng Y, Luo HY, Gao LC. Therapeutic Effects of Natural Products on Cervical Cancer: Based on Inflammatory Pathways. Front Pharmacol 2022; 13:899208. [PMID: 35645817 PMCID: PMC9136176 DOI: 10.3389/fphar.2022.899208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/09/2022] Open
Abstract
Inflammation is a protective response of the body to an irritant. When an inflammatory response occurs, immune cells are recruited to the injury, eliminating the irritation. The excessive inflammatory response can cause harm to the organism. Inflammation has been found to contribute to cervical cancer if there is a problem with the regulation of inflammatory response. Cervical cancer is one of the most common malignant tumors globally, and the incidence tends to be younger. The harm of cervical cancer cannot be ignored. The standard treatments for cervical cancer include surgery, radiotherapy and chemotherapy. However, the prognosis for this treatment is poor, so it is urgent to find a safer and more effective treatment. Natural products are considered excellent candidates for the treatment of cervical cancer. In this review, we first describe the mechanisms by which inflammation induces cervical cancer. Subsequently, we highlight natural products that can treat cervical cancer through inflammatory pathways. We also introduce natural products for the treatment of cervical cancer in clinical trials. Finally, methods to improve the anticancer properties of natural products were added, and the development status of natural products was discussed.
Collapse
Affiliation(s)
- Zi-Wei Zhou
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Hui-Zhi Long
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Shuo-Guo Xu
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Feng-Jiao Li
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Yan Cheng
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Hong-Yu Luo
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Li-Chen Gao
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| |
Collapse
|
47
|
Rashwan AK, Karim N, Xu Y, Hanafy NAN, Li B, Mehanni AHE, Taha EM, Chen W. An updated and comprehensive review on the potential health effects of curcumin-encapsulated micro/nanoparticles. Crit Rev Food Sci Nutr 2022; 63:9731-9751. [PMID: 35522080 DOI: 10.1080/10408398.2022.2070906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Curcumin (CUR) is a natural hydrophobic compound, which is available in turmeric rhizome. It has several bioactivities including antioxidant, anti-obesity, anti-diabetic, cardioprotective, anti-inflammatory, antimicrobial, anticancer, and other activities. Despite its medical and biological benefits, it is using in limitations because of its hydrophobicity and sensitivity. These unfavorable conditions further reduced the bioavailability (BA) and biological efficacy of CUR. This review summarizes the stability and BA of free- and encapsulated-CUR, as well as comprehensively discusses the potential biological activity of CUR-loaded various micro-/nano-encapsulation systems. The stability and BA of CUR can be improved via loading in different encapsulation systems, including nanoemulsions, liposomes, niosomes, biopolymer-based nanoparticles, nano-hydrogel, and others. Biopolymer-based nanoparticles (especially poly lactic-co-glycolic acid (PLGA), zein, and chitosan) and nano-gels are the best carriers for encapsulating and delivering CUR. Both delivery systems are suitable because of their excellent functional properties such as high encapsulation efficiency, well-stability against unfavorable conditions, and can be coated using other encapsulation systems. Based on available evidences, encapsulated-CUR exerted greater biological activities especially anticancer (breast cancer), antioxidant, antidiabetic, and neuroprotective effects.
Collapse
Affiliation(s)
- Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Naymul Karim
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Nemany A N Hanafy
- Nanomedicine Group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Abul-Hamd E Mehanni
- Department of Food Science and Nutrition, Faculty of Agriculture, Sohag University, Sohag, Egypt
| | - Eman M Taha
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
48
|
Gao YZ, Chen JC, Cui Z, Zhao CL, Wu YX. Biocompatible propylene glycol alginate-g-polytetrahydrofuran amphiphilic graft copolymers for highly effective drug carriers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Huo M, Xia A, Cheng W, Zhou M, Wang J, Shi T, Cai C, Jin W, Zhou M, Liao Y, Liao Z. Rutin Promotes Pancreatic Cancer Cell Apoptosis by Upregulating miRNA-877-3p Expression. Molecules 2022; 27:2293. [PMID: 35408691 PMCID: PMC9000526 DOI: 10.3390/molecules27072293] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: pancreatic cancer is one of the most serious cancers due to its rapid and inevitable fatality, which has been proved very difficult to treat, compared with many other common cancers. Thus, developing an effective therapeutic strategy, especially searching for potential drugs, is the focus of current research. The exact mechanism of rutin in pancreatic cancer remains unknown. (2) Method: three pancreatic cancer cell lines were used to study the anti-pancreatic cancer effect of rutin. The potent anti-proliferative, anti-migration and pro-apoptotic properties of rutin were uncovered by cell viability, a wound-healing migration assay, and a cell apoptosis assay. High-throughput sequencing technology was used to detect the change of miRNAs expression. Immunoblotting analysis was used to detect the expression of apoptotic proteins. (3) Results: CCK-8 and EDU assays revealed that rutin significantly inhibited pancreatic cancer cells’ proliferation (p < 0.05). A wound-healing assay showed that rutin significantly suppressed pancreatic cancer cells’ migration (p < 0.05). A flow cytometric assay showed that rutin could promote pancreatic cancer cells’ apoptosis. Intriguingly, rutin significantly upregulated miR-877-3p expression to repress the transcription of Bcl-2 and to induce pancreatic cancer cell apoptosis. Accordingly, rutin and miR-877-3p mimics could promote apoptotic protein expression. (4) Conclusions: our findings indicate that rutin plays an important role in anti-pancreatic cancer effects through a rutin-miR-877-3p-Bcl-2 axis and suggests a potential therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Mingxing Huo
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; (M.H.); (A.X.); (W.C.); (M.Z.); (J.W.); (T.S.); (C.C.)
| | - Aowen Xia
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; (M.H.); (A.X.); (W.C.); (M.Z.); (J.W.); (T.S.); (C.C.)
| | - Wenwen Cheng
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; (M.H.); (A.X.); (W.C.); (M.Z.); (J.W.); (T.S.); (C.C.)
| | - Mengjie Zhou
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; (M.H.); (A.X.); (W.C.); (M.Z.); (J.W.); (T.S.); (C.C.)
| | - Jiankang Wang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; (M.H.); (A.X.); (W.C.); (M.Z.); (J.W.); (T.S.); (C.C.)
| | - Tiantian Shi
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; (M.H.); (A.X.); (W.C.); (M.Z.); (J.W.); (T.S.); (C.C.)
| | - Cifeng Cai
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; (M.H.); (A.X.); (W.C.); (M.Z.); (J.W.); (T.S.); (C.C.)
| | - Wenqi Jin
- Department of Anorectal Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China;
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Yueling Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; (M.H.); (A.X.); (W.C.); (M.Z.); (J.W.); (T.S.); (C.C.)
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; (M.H.); (A.X.); (W.C.); (M.Z.); (J.W.); (T.S.); (C.C.)
| |
Collapse
|
50
|
Ohishi T, Hayakawa S, Miyoshi N. Involvement of microRNA modifications in anticancer effects of major polyphenols from green tea, coffee, wine, and curry. Crit Rev Food Sci Nutr 2022; 63:7148-7179. [PMID: 35289676 DOI: 10.1080/10408398.2022.2038540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that consumption of green tea, coffee, wine, and curry may contribute to a reduced risk of various cancers. However, there are some cancer site-specific differences in their effects; for example, the consumption of tea or wine may reduce bladder cancer risk, whereas coffee consumption may increase the risk. Animal and cell-based experiments have been used to elucidate the anticancer mechanisms of these compounds, with reactive oxygen species (ROS)-based mechanisms emerging as likely candidates. Chlorogenic acid (CGA), curcumin (CUR), epigallocatechin gallate (EGCG), and resveratrol (RSV) can act as antioxidants that activate AMP-activated protein kinase (AMPK) to downregulate ROS, and as prooxidants to generate ROS, leading to the downregulation of NF-κB. Polyphenols can modulate miRNA (miR) expression, with these dietary polyphenols shown to downregulate tumor-promoting miR-21. CUR, EGCG, and RSV can upregulate tumor-suppressing miR-16, 34a, 145, and 200c, but downregulate tumor-promoting miR-25a. CGA, EGCG, and RSV downregulate tumor-suppressing miR-20a, 93, and 106b. The effects of miRs may combine with ROS-mediated pathways, enhancing the anticancer effects of these polyphenols. More precise analysis is needed to determine how the different modulations of miRs by polyphenols relate to the cancer site-specific differences found in epidemiological studies related to the consumption of foods containing these polyphenols.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|