1
|
Ho KW, Liu YL, Huang BC, Hong ST, Yang SH, Liao TY, Liu ES, Chen YT, Huang YZ, Leu YL, Chen CY, Chen BM, Roffler SR, Cheng TL. Targeted internalization and activation of glycosidic switch liposomes by a biological macromolecule mPEG×EphA2 increases therapeutic efficacy against lung cancer. Int J Biol Macromol 2025; 300:140138. [PMID: 39842595 DOI: 10.1016/j.ijbiomac.2025.140138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Glycosidic switch liposome (GSL) technology efficiently encapsulates and stabilizes potent anticancer drugs in liposomes using a reversible glucuronide ester. Enzymatic hydrolysis of the glucuronide switch in target cell lysosomes produces parental drug. Our study examined the potential of a bispecific macromolecule, a polyethylene glycol (PEG) engager (mPEG×EphA2), generated by fusing a humanized anti-methoxy PEG (mPEG) Fab with an anti-EphA2 single-chain antibody, to increase GSL uptake into cancer cells and boost the anticancer activity by targeting PEG on GSL and an internalizing tumor antigen. Combining GSL with the PEG engager creates αEphA2/GSL, targeting cancer cells to generate topoisomerase I poison 9-aminocamptothecin (9 AC) for cell killing. Targeted liposomes can bind CL1-5 human lung adenocarcinoma cells and increase GSL internalization from 0 % to 62.4 % in 60 min. αEphA2/GSL showed slightly higher cellular cytotoxicity than non-targeted GSL, but targeted GSL increased 9 AC intratumoral concentrations by 8.4 fold at 24 h. The 9 AC tumor/blood ratio of αEphA2/GSL was nearly 6-fold higher than αDNS/GSL (control engager GSL). Using targeted GSL, five of seven mice with solid CL1-5 tumors were cured. The mPEG×EphA2 engager can enhance GSL drug uptake and generation, boosting lung cancer treatment efficacy, suggesting that αEphA2/GSL is a promising treatment for tumors overexpressing EphA2.
Collapse
Affiliation(s)
- Kai-Wen Ho
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ling Liu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bo-Cheng Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Shih-Ting Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hung Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taiwan
| | - Tzu-Yi Liao
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - En-Shuo Liu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Tung Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Zhong Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Lin Leu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chiao-Yun Chen
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Steve R Roffler
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Meng JL, Dong ZX, Chen YR, Lin MH, Liu YC, Roffler SR, Lin WW, Chang CY, Tzou SC, Cheng TL, Huang HC, Li ZQ, Lin YC, Su YC. pH-Responsive Polyethylene Glycol Engagers for Enhanced Brain Delivery of PEGylated Nanomedicine to Treat Glioblastoma. ACS NANO 2025; 19:307-321. [PMID: 39749925 PMCID: PMC11752499 DOI: 10.1021/acsnano.4c05906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The blood-brain barrier (BBB) remains a major obstacle for effective delivery of therapeutics to treat central nervous system (CNS) disorders. Although transferrin receptor (TfR)-mediated transcytosis is widely employed for brain drug delivery, the inefficient release of therapeutic payload hinders their efficacy from crossing the BBB. Here, we developed a pH-responsive anti-polyethylene glycol (PEG) × anti-TfR bispecific antibody (pH-PEG engagerTfR) that can complex with PEGylated nanomedicine at physiological pH to trigger TfR-mediated transcytosis in the brain microvascular endothelial cells, while rapidly dissociating from PEGylated nanomedicine at acidic endosomes for efficient release of PEGylated nanomedicine to cross the BBB. The pH-PEG engagerTfR significantly increased the accumulation of PEGylated nanomedicine in the mouse brain compared to wild-type PEG engagerTfR (WT-PEG engagerTfR). pH-PEG engagerTfR-decorated PEGylated liposomal doxorubicin exhibited an enhanced antitumor effect and extended survival in a human glioblastoma (GBM) orthotopic xenograft mice model. Conditional release of PEGylated nanomedicine during BBB-related receptor-mediated transcytosis by pH-PEG engagerTfR is promising for enhanced brain drug delivery to treat CNS disorders.
Collapse
Affiliation(s)
- Jun-Lun Meng
- Department
of Biological Science and Technology, Center for Intelligent Drug
Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Zi-Xuan Dong
- Department
of Biological Science and Technology, Center for Intelligent Drug
Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yan-Ru Chen
- Department
of Biological Science and Technology, Center for Intelligent Drug
Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Meng-Hsuan Lin
- Department
of Biological Science and Technology, Center for Intelligent Drug
Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Ching Liu
- Department
of Biological Science and Technology, Center for Intelligent Drug
Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Steve R. Roffler
- Institute
of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
- Graduate
Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wen-Wei Lin
- School
of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chin-Yuan Chang
- Department
of Biological Science and Technology, Center for Intelligent Drug
Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Shey-Cherng Tzou
- Department
of Biological Science and Technology, Center for Intelligent Drug
Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Biomedical Science and Environmental Biology, Drug Development
and Value Creation Research Center, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Tian-Lu Cheng
- Department
of Biomedical Science and Environmental Biology, Drug Development
and Value Creation Research Center, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Hsiao-Chen Huang
- Department
of Biological Science and Technology, Center for Intelligent Drug
Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Zhi-Qin Li
- Department
of Biological Science and Technology, Center for Intelligent Drug
Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yen-Cheng Lin
- Department
of Biological Science and Technology, Center for Intelligent Drug
Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Cheng Su
- Department
of Biological Science and Technology, Center for Intelligent Drug
Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Biomedical Science and Environmental Biology, Drug Development
and Value Creation Research Center, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Leng G, Duan B, Liu J, Li S, Zhao W, Wang S, Hou G, Qu J. The advancements and prospective developments in anti-tumor targeted therapy. Neoplasia 2024; 56:101024. [PMID: 39047659 PMCID: PMC11318541 DOI: 10.1016/j.neo.2024.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Cancer poses a major threat to human health worldwide. The development of anti-tumor materials provides new modalities for cancer diagnosis and treatment. In this review, we comprehensively summarize the research progress and clinical applications of anti-tumor materials. First, we introduce the etiology and pathogenesis of cancer, and the significance and challenges of anti-tumor materials research. Then, we classify anti-tumor materials and discuss their mechanisms of action. After that, we elaborate the research advances and clinical applications of anti-tumor materials, including those targeting tumor cells and therapeutic instruments. Finally, we discuss the future perspectives and challenges in the field of anti-tumor materials. This review aims to provide an overview of the current status of anti-tumor materials research and application, and to offer insights into future directions in this rapidly evolving field, which holds promise for more precise, efficient and customized treatment of cancer.
Collapse
Affiliation(s)
- Guorui Leng
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Baorong Duan
- Research Center for Leather and Protein of College of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Junjie Liu
- Department of Physics, Binzhou Medical University, Yantai 264003, China
| | - Song Li
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Wenwen Zhao
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Shanshan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Jiale Qu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China.
| |
Collapse
|
4
|
Ho KW, Liu YL, Liao TY, Liu ES, Cheng TL. Strategies for Non-Covalent Attachment of Antibodies to PEGylated Nanoparticles for Targeted Drug Delivery. Int J Nanomedicine 2024; 19:10045-10064. [PMID: 39371476 PMCID: PMC11453133 DOI: 10.2147/ijn.s479270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Polyethylene glycol (PEG)-modified nanoparticles (NPs) often struggle with reduced effectiveness against metastasis and liquid tumors due to limited tumor cell uptake and therapeutic efficacy. To address this, actively targeted liposomes with enhanced tumor selectivity and internalization are being developed to improve uptake and treatment outcomes. Using bi-functional proteins to functionalize PEGylated NPs and enhance targeted drug delivery through non-covalent attachment methods has emerged as a promising approach. Among these, the one-step and two-step targeting strategies stand out for their simplicity, efficiency, and versatility. The one-step strategy integrates streptavidin-tagged antibodies or bispecific antibodies (bsAbs: PEG/DIG × marker) directly into PEGylated NPs. This method uses the natural interactions between antibodies and PEG for stable, specific binding, allowing the modification of biotin/Fc-binding molecules like protein A, G, or anti-Fc peptide. Simply mixing bsAbs with PEGylated NPs improves tumor targeting and internalization. The two-step strategy involves first accumulating bsAbs (PEG/biotin × tumor marker) on the tumor cell surface, triggering an initial attack via antibody-dependent and complement-dependent cytotoxicity. These bsAbs then capture PEGylated NPs, initiating a second wave of internalization and cytotoxicity. Both strategies aim to enhance the targeting capabilities of PEGylated NPs by enabling specific recognition and binding to disease-specific markers or receptors. This review provides potential pathways for accelerating clinical translation in the development of targeted nanomedicine.
Collapse
Affiliation(s)
- Kai-Wen Ho
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ling Liu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Yi Liao
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - En-Shuo Liu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Moles E, Chang DW, Mansfeld FM, Duly A, Kimpton K, Logan A, Howard CB, Thurecht KJ, Kavallaris M. EGFR Targeting of Liposomal Doxorubicin Improves Recognition and Suppression of Non-Small Cell Lung Cancer. Int J Nanomedicine 2024; 19:3623-3639. [PMID: 38660023 PMCID: PMC11042481 DOI: 10.2147/ijn.s450534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/23/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Despite improvements in chemotherapy and molecularly targeted therapies, the life expectancy of patients with advanced non-small cell lung cancer (NSCLC) remains less than 1 year. There is thus a major global need to advance new treatment strategies that are more effective for NSCLC. Drug delivery using liposomal particles has shown success at improving the biodistribution and bioavailability of chemotherapy. Nevertheless, liposomal drugs lack selectivity for the cancer cells and have a limited ability to penetrate the tumor site, which severely limits their therapeutic potential. Epidermal growth factor receptor (EGFR) is overexpressed in NSCLC tumors in about 80% of patients, thus representing a promising NSCLC-specific target for redirecting liposome-embedded chemotherapy to the tumor site. Methods Herein, we investigated the targeting of PEGylated liposomal doxorubicin (Caelyx), a powerful off-the-shelf antitumoral liposomal drug, to EGFR as a therapeutic strategy to improve the specific delivery and intratumoral accumulation of chemotherapy in NSCLC. EGFR-targeting of Caelyx was enabled through its complexing with a polyethylene glycol (PEG)/EGFR bispecific antibody fragment. Tumor targeting and therapeutic potency of our treatment approach were investigated in vitro using a panel of NSCLC cell lines and 3D tumoroid models, and in vivo in a cell line-derived tumor xenograft model. Results Combining Caelyx with our bispecific antibody generated uniform EGFR-targeted particles with improved binding and cytotoxic efficacy toward NSCLC cells. Effects were exclusive to cancer cells expressing EGFR, and increments in efficacy positively correlated with EGFR density on the cancer cell surface. The approach demonstrated increased penetration within 3D spheroids and was effective at targeting and suppressing the growth of NSCLC tumors in vivo while reducing drug delivery to the heart. Conclusion EGFR targeting represents a successful approach to enhance the selectivity and therapeutic potency of liposomal chemotherapy toward NSCLC.
Collapse
Affiliation(s)
- Ernest Moles
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW, 2052, Australia
| | - David W Chang
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia
| | - Friederike M Mansfeld
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia
| | - Alastair Duly
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Kathleen Kimpton
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
| | - Amy Logan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW, 2052, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
6
|
Logan A, Howard CB, Huda P, Kimpton K, Ma Z, Thurecht KJ, McCarroll JA, Moles E, Kavallaris M. Targeted delivery of polo-like kinase 1 siRNA nanoparticles using an EGFR-PEG bispecific antibody inhibits proliferation of high-risk neuroblastoma. J Control Release 2024; 367:806-820. [PMID: 38341177 DOI: 10.1016/j.jconrel.2024.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
High-risk neuroblastoma has poor survival due to treatment failure and off-target side effects of therapy. Small molecule inhibitors have shown therapeutic efficacy at targeting oncogenic cell cycle dysregulators, such as polo-like kinase 1 (PLK1). However, their clinical success is limited by a lack of efficacy and specificity, causing off-target toxicity. Herein, we investigate a new treatment strategy whereby a bispecific antibody (BsAb) with dual recognition of methoxy polyethylene glycol (PEG) and a neuroblastoma cell-surface receptor, epidermal growth factor receptor (EGFR), is combined with a PEGylated small interfering RNA (siRNA) lipid nanoparticle, forming BsAb-nanoparticle RNA-interference complexes for targeted PLK1 inhibition against high-risk neuroblastoma. Therapeutic efficacy of this strategy was explored in neuroblastoma cell lines and a tumor xenograft model. Using ionizable lipid-based nanoparticles as a low-toxicity and clinically safe approach for siRNA delivery, we identified that their complexing with EGFR-PEG BsAb resulted in increases in cell targeting (1.2 to >4.5-fold) and PLK1 gene silencing (>2-fold) against EGFR+ high-risk neuroblastoma cells, and enhancements correlated with EGFR expression on the cells (r > 0.94). Through formulating nanoparticles with PEG-lipids ranging in diffusivity, we further identified a highly diffusible PEG-lipid which provided the most pronounced neuroblastoma cell binding, PLK1 silencing, and significantly reduced cancer growth in vitro in high-risk neuroblastoma cell cultures and in vivo in a tumor-xenograft mouse model of the disease. Together, this work provides an insight on the role of PEG-lipid diffusivity and EGFR targeting as potentially relevant variables influencing the therapeutic efficacy of siRNA nanoparticles in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Amy Logan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia; UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW 2052, Australia; School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW 2052, Australia; UNSW Centre for Childhood Cancer Research, UNSW, Sydney, NSW 2052, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLsD, 4072, Australia
| | - Pie Huda
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLsD, 4072, Australia
| | - Kathleen Kimpton
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia; School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia
| | - Zerong Ma
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia; UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW 2052, Australia; School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW 2052, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLsD, 4072, Australia; Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, QLD 4072, Australia
| | - Joshua A McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia; UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW 2052, Australia; School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW 2052, Australia
| | - Ernest Moles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia; UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW 2052, Australia; School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW 2052, Australia.
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia; UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW 2052, Australia; School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW 2052, Australia.
| |
Collapse
|
7
|
Chen HJ, Cheng YA, Chen YT, Li CC, Huang BC, Hong ST, Chen IJ, Ho KW, Chen CY, Chen FM, Wang JY, Roffler SR, Cheng TL, Wu TH. Targeting and internalizing PEGylated nanodrugs to enhance the therapeutic efficacy of hematologic malignancies by anti-PEG bispecific antibody (mPEG × CD20). Cancer Nanotechnol 2023; 14:78. [DOI: 10.1186/s12645-023-00230-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/15/2023] [Indexed: 01/12/2025] Open
Abstract
Abstract
Background
PEGylated nanoparticles (PEG-NPs) are not effective for hematologic malignancies as they lack the enhanced permeability and retention effect (EPR effect). Tumor-targeted PEG-NPs can systemically track lymphoma and actively internalize into cancer cells to enhance therapeutic efficacy. We generated an anti-PEG bispecific antibody (BsAb; mPEG × CD20) which was able to simultaneously bind to methoxy PEG on liposomes and CD20 to form multivalent αCD20-armed liposomes. This αCD20-armed liposome was able to crosslink CD20 on lymphoma cells to enhance cellular internalization and the anti-cancer efficacy of the liposomes to lymphoma. We generated mPEG × CD20 and used this bispecific antibody to modify PEGylated liposomal doxorubicin (PLD) through a one-step formulation.
Results
αCD20-armed PLD (αCD20/PLD) specifically targeted CD20+ Raji cells and enhanced PLD internalization 56-fold after 24 h. αCD20/PLD also increased cytotoxicity to Raji cells by 15.2-fold in comparison with PLD and control mPEG × DNS-modified PLD (αDNS/PLD). mPEG × CD20 significantly enhanced the tumor accumulation 2.8-fold in comparison with mPEG × DNS-conjugated PEGylated liposomal DiD in Raji tumors. Moreover, αCD20/PLD had significantly greater therapeutic efficacy as compared to αDNS/PLD (P < 0.0001) and PLD(P < 0.0001), and αCD20/PLD-treated mice had a 90% survival rate at 100-day post-treatment.
Conclusions
Modification of mPEG × CD20 can confer PLD with CD20 specificity to enhance the internalization and the anti-cancer efficacy of PEG-NPs. This therapeutic strategy can conveniently be used to modify various PEG-NPs with anti-PEG BsAb to overcome the lack of EPR effect of hematologic malignancies and improve therapeutic efficacy.
Collapse
|
8
|
Chen WA, Chang DY, Chen BM, Lin YC, Barenholz Y, Roffler SR. Antibodies against Poly(ethylene glycol) Activate Innate Immune Cells and Induce Hypersensitivity Reactions to PEGylated Nanomedicines. ACS NANO 2023; 17:5757-5772. [PMID: 36926834 PMCID: PMC10062034 DOI: 10.1021/acsnano.2c12193] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/03/2023] [Indexed: 06/09/2023]
Abstract
Nanomedicines and macromolecular drugs can induce hypersensitivity reactions (HSRs) with symptoms ranging from flushing and breathing difficulties to hypothermia, hypotension, and death in the most severe cases. Because many normal individuals have pre-existing antibodies that bind to poly(ethylene glycol) (PEG), which is often present on the surface of nanomedicines and macromolecular drugs, we examined if and how anti-PEG antibodies induce HSRs to PEGylated liposomal doxorubicin (PLD). Anti-PEG IgG but not anti-PEG IgM induced symptoms of HSRs including hypothermia, altered lung function, and hypotension after PLD administration in C57BL/6 and nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Hypothermia was significantly reduced by blocking FcγRII/III, by depleting basophils, monocytes, neutrophils, or mast cells, and by inhibiting secretion of histamine and platelet-activating factor. Anti-PEG IgG also induced hypothermia in mice after administration of other PEGylated liposomes, nanoparticles, or proteins. Humanized anti-PEG IgG promoted binding of PEGylated nanoparticles to human immune cells and induced secretion of histamine from human basophils in the presence of PLD. Anti-PEG IgE could also induce hypersensitivity reactions in mice after administration of PLD. Our results demonstrate an important role for IgG antibodies in induction of HSRs to PEGylated nanomedicines through interaction with Fcγ receptors on innate immune cells and provide a deeper understanding of HSRs to PEGylated nanoparticles and macromolecular drugs that may facilitate development of safer nanomedicines.
Collapse
Affiliation(s)
- Wei-An Chen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Deng-Yuan Chang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bing-Mae Chen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chen Lin
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate
Institute of Life Sciences, National Defense
Medical Center, Taipei 11529, Taiwan
| | - Yechezekel Barenholz
- Department
of Biochemistry, Faculty of Medicine, The
Hebrew University, Jerusalem 91120, Israel
| | - Steve R. Roffler
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate
Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Lin YC, Chen BM, Tran TTM, Chang TC, Al-Qaisi TS, Roffler SR. Accelerated clearance by antibodies against methoxy PEG depends on pegylation architecture. J Control Release 2023; 354:354-367. [PMID: 36641121 DOI: 10.1016/j.jconrel.2023.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/16/2023]
Abstract
Methoxy polyethylene glycol (mPEG) is attached to many proteins, peptides, nucleic acids and nanomedicines to improve their biocompatibility. Antibodies that bind PEG are present in many individuals and can be generated upon administration of pegylated therapeutics. Anti-PEG antibodies that bind to the PEG "backbone" can accelerate drug clearance and detrimentally affect drug activity and safety, but no studies have examined how anti-methoxy PEG (mPEG) antibodies, which selectively bind the terminus of mPEG, affect pegylated drugs. Here, we investigated how defined IgG and IgM monoclonal antibodies specific to the PEG backbone (anti-PEG) or terminal methoxy group (anti-mPEG) affect pegylated liposomes or proteins with a single PEG chain, a single branched PEG chain, or multiple PEG chains. Large immune complexes can be formed between all pegylated compounds and anti-PEG antibodies but only pegylated liposomes formed large immune complexes with anti-mPEG antibodies. Both anti-PEG IgG and IgM antibodies accelerated the clearance of all pegylated compounds but anti-mPEG antibodies did not accelerate clearance of proteins with a single or branched PEG molecule. Pegylated liposomes were primarily taken up by Kupffer cells in the liver, but both anti-PEG and anti-mPEG antibodies directed uptake of a heavily pegylated protein to liver sinusoidal endothelial cells. Our results demonstrate that in contrast to anti-PEG antibodies, immune complex formation and drug clearance induced by anti-mPEG antibodies depends on pegylation architecture; compounds with a single or branched PEG molecule are unaffected by anti-mPEG antibodies but are increasingly affected as the number of PEG chain in a structure increases.
Collapse
Affiliation(s)
- Yi-Chen Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Trieu Thi My Tran
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Tien-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Talal Salem Al-Qaisi
- Department of Medical Laboratory Sciences, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Steve R Roffler
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
10
|
Cheng WJ, Lin SY, Chuang KH, Chen M, Ho HO, Chen LC, Hsieh CM, Sheu MT. Combined Docetaxel/Pictilisib-Loaded mPEGylated Nanocarriers with Dual HER2 Targeting Antibodies for Synergistic Chemotherapy of Breast Cancer. Int J Nanomedicine 2022; 17:5353-5374. [PMID: 36419719 PMCID: PMC9677924 DOI: 10.2147/ijn.s388066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/06/2022] [Indexed: 09/08/2024] Open
Abstract
Introduction Approximately 15%~30% of breast cancers have gene amplification or overexpression of the human epidermal growth factor receptor 2 (HER2), resulting in the chemotherapy resistance, a more-aggressive phenotype and poor prognosis. Methods We propose a strategy of nanocarriers co-loaded with docetaxel (DTX) and pictilisib (PIC) at a synergistic ratio and non-covalently bound with dual anti-HER2 epitopes bispecific antibodies (BsAbs: anti-HER2-IV/methoxy-polyethylene glycol (mPEG) and anti-HER2-II/methoxy-PEG) for synergistic targeting to overcome the therapeutic dilemmas of the resistance for HER2-targetable chemodrugs. DTX/PIC-loaded nanocarriers (D/P_NCs) were prepared with single emulsion methods and characterized using dynamic light scattering analysis, and the drug content was assayed by high-performance liquid chromatographic method. The integrity and function of BsABs were evaluated using sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and enzyme-linked immunosorbent assay (ELISA). The in vitro cell studies and in vivo breast tumor-bearing mice model were used to evaluate the anti-cancer effect and biosafety of formulations. Results D/P_NCs optimally prepared exhibited a spherical morphology with small particle sizes (~140 nm), high drug loading (~5.5%), and good colloidal stability. The synergistic tumor cytotoxicity of loading DTX and PIC at 2:1 ratio in D/P_NCs was discovered. The BsAbs are successfully decorated on mPEGylated DTX/PIC-loaded nanocarriers via anti-mPEG moiety. In vitro studies revealed that non-covalent decoration with dual BsAbs on D_P-NCs significantly and synergistically increased cellular uptake, while with loading DTX and PIC at a synergistic ratio of 2:1 in D/P_NCs further resulted in synergistic cytotoxicity. In vivo tumor inhibition studies showed the comparable results for synergistic antitumor efficacy while minimizing systemic toxicity of chemodrugs. Conclusion Non-covalent modification with dual distinct epitopes BsAbs on the nanocarriers loaded with dual chemodrugs at a synergistic ratio was expected to be a promising therapeutic platform to overcome the chemoresistance of various cancers and warrants further development for future therapy in the clinical.
Collapse
Affiliation(s)
- Wei-Jie Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shyr-Yi Lin
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
- PhD Program in Clinical Drug Development of Chinese Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-O Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ling-Chun Chen
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Nguyen MTT, Shih YC, Lin MH, Roffler SR, Hsiao CY, Cheng TL, Lin WW, Lin EC, Jong YJ, Chang CY, Su YC. Structural determination of an antibody that specifically recognizes polyethylene glycol with a terminal methoxy group. Commun Chem 2022; 5:88. [PMID: 35936993 PMCID: PMC9340711 DOI: 10.1038/s42004-022-00709-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Covalent attachment of methoxy poly(ethylene) glycol (mPEG) to therapeutic molecules is widely employed to improve their systemic circulation time and therapeutic efficacy. mPEG, however, can induce anti-PEG antibodies that negatively impact drug therapeutic effects. However, the underlying mechanism for specific binding of antibodies to mPEG remains unclear. Here, we determined the first co-crystal structure of the humanized 15-2b anti-mPEG antibody in complex with mPEG, which possesses a deep pocket in the antigen-binding site to accommodate the mPEG polymer. Structural and mutational analyses revealed that mPEG binds to h15-2b via Van der Waals and hydrogen bond interactions, whereas the methoxy group of mPEG is stabilized in a hydrophobic environment between the VH:VL interface. Replacement of the heavy chain hydrophobic V37 residue with a neutral polar serine or threonine residue offers additional hydrogen bond interactions with methoxyl and hydroxyl groups, resulting in cross-reactivity to mPEG and OH-PEG. Our findings provide insights into understanding mPEG-binding specificity and antigenicity of anti-mPEG antibodies.
Collapse
Affiliation(s)
- Minh-Tram T. Nguyen
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Chien Shih
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Meng-Hsuan Lin
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Steve R. Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiao-Yu Hsiao
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Wei Lin
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - En-Chi Lin
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yuh-Jyh Jong
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Departments of Pediatrics and Laboratory Medicine, and Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biomedical Science and Environmental Biology, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Cheng Su
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biomedical Science and Environmental Biology, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
13
|
Chen M, Sheu MT, Cheng TL, Roffler SR, Lin SY, Chen YJ, Cheng YA, Cheng JJ, Chang HY, Wu TY, Kao AP, Ho YS, Chuang KH. A novel anti-tumor/anti-tumor-associated fibroblast/anti-mPEG tri-specific antibody to maximize the efficacy of mPEGylated nanomedicines against fibroblast-rich solid tumor. Biomater Sci 2021; 10:202-215. [PMID: 34826322 DOI: 10.1039/d1bm01218e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The therapeutic efficacy of methoxypolyethylene glycol (mPEG)-coated nanomedicines in solid tumor treatment is hindered by tumor-associated fibroblasts (TAFs), which promote tumor progression and form physical barriers. We developed an anti-HER2/anti-FAP/anti-mPEG tri-specific antibody (TsAb) for one-step conversion of mPEG-coated liposomal doxorubicin (Lipo-Dox) to immunoliposomes, which simultaneously target HER2+ breast cancer cells and FAP+ TAFs. The non-covalent modification did not adversely alter the physical characteristics and stability of Lipo-Dox. The TsAb-Lipo-Dox exhibited specific targeting and enhanced cytotoxicity against mono- and co-cultured HER2+ breast cancer cells and FAP+ TAFs, compared to bi-specific antibody (BsAb) modified or unmodified Lipo-Dox. An in vivo model of human breast tumor containing TAFs also revealed the improved tumor accumulation and therapeutic efficacy of TsAb-modified mPEGylated liposomes without signs of toxicity. Our data indicate that arming clinical mPEGylated nanomedicines with the TsAb is a feasible and applicable approach for overcoming the difficulties caused by TAFs in solid tumor treatment.
Collapse
Affiliation(s)
- Michael Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tian-Lu Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shyr-Yi Lin
- Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jou Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Yi-An Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Jing-Jy Cheng
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hsin-Yu Chang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Tung-Yun Wu
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - An-Pei Kao
- Stemforce Biotechnology Co., Ltd, Chiayi City, Taiwan
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Cancer Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei, Taiwan. .,Ph.D Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan.,Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Chen BM, Cheng TL, Roffler SR. Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies. ACS NANO 2021; 15:14022-14048. [PMID: 34469112 DOI: 10.1021/acsnano.1c05922] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyethylene glycol (PEG) is a flexible, hydrophilic simple polymer that is physically attached to peptides, proteins, nucleic acids, liposomes, and nanoparticles to reduce renal clearance, block antibody and protein binding sites, and enhance the half-life and efficacy of therapeutic molecules. Some naïve individuals have pre-existing antibodies that can bind to PEG, and some PEG-modified compounds induce additional antibodies against PEG, which can adversely impact drug efficacy and safety. Here we provide a framework to better understand PEG immunogenicity and how antibodies against PEG affect pegylated drug and nanoparticles. Analysis of published studies reveals rules for predicting accelerated blood clearance of pegylated medicine and therapeutic liposomes. Experimental studies of anti-PEG antibody binding to different forms, sizes, and immobilization states of PEG are also provided. The widespread use of SARS-CoV-2 RNA vaccines that incorporate PEG in lipid nanoparticles make understanding possible effects of anti-PEG antibodies on pegylated medicines even more critical.
Collapse
Affiliation(s)
- Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Tian-Lu Cheng
- Center for Biomarkers and Biotech Drugs, Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
15
|
Ghani S, Deravi N, Pirzadeh M, Rafiee B, Gatabi ZR, Bandehpour M, Yarian F. Antibody fragment and targeted colorectal cancer therapy: A global systematic review. Curr Pharm Biotechnol 2021; 23:1061-1071. [PMID: 34375187 DOI: 10.2174/1389201022666210810104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Antibody-based therapeutics have been evidenced promising for the treatment of colorectal cancer patients. However, the size and long circulating half-lives of antibodies can limit their reproducible manufacture in clinical studies. Consequently, in novel therapeutic approaches conventional antibodies are minimized and engineered to produce fragments like Fab, scFv, nanobody, bifunctional antibody, bispecific antibody, minibody and diabody to preserve their high affinity and specificity to target pharmaceutical nanoparticle conjugates. This systematic review for the first time aimed to elucidate the role of various antibody fragments in colorectal cancer treatment. METHOD A systematic literature search in web of sciences, PubMed, Scopus, Google scholar and ProQuest was conducted. Reference lists of the articles were reviewed to identify the relevant papers. The full text search included articles published in English during 1990-2021. RESULTS Most the 53 included studies were conducted in vitro and in most conducted studies single-chain antibodies were among the most used antibody fragments. Most antibodies targeted CEA in the treatment of colorectal cancer. Moreover, a large number of studies observed apoptosis induction and tumor growth inhibition. In addition, few studies implicated the role of the innate immune system as an indirect mechanisms of tumor growth by enhancing NK-cell killing. CONCLUSION Antibody-based therapy was demonstrated to be of a great promise in the treatment of colorectal cancer rather than common treatments such as radiotherapy, chemotherapy, and surgical operations. This type of specified cancer treatment can also induce the activation of innate and specific immune system to eradicate tumor cells.
Collapse
Affiliation(s)
- Sepideh Ghani
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Behnam Rafiee
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Zahra Rezanejad Gatabi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mojgan Bandehpour
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yarian
- SBUMS, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, Iran
| |
Collapse
|
16
|
Cheng WJ, Lin SY, Chen M, Chen LC, Ho HO, Chuang KH, Sheu MT. Active Tumoral/Tumor Environmental Dual-Targeting by Non-Covalently Arming with Trispecific Antibodies or Dual-Bispecific Antibodies on Docetaxel-Loaded mPEGylated Nanocarriers to Enhance Chemotherapeutic Efficacy and Minimize Systemic Toxicity. Int J Nanomedicine 2021; 16:4017-4030. [PMID: 34140769 PMCID: PMC8203191 DOI: 10.2147/ijn.s301237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE This study was aimed at developing the trispecific antibodies (anti-EGFR/anti-FAP/anti-mPEG, TsAb) or dual bispecific antibodies (anti-EGFR/anti-mPEG and anti-FAP/anti-mPEG) docetaxel (DTX)-loaded mPEGylated lecithin-stabilized micelles (mPEG-lsbPMs) for improving the targeting efficiency and therapeutic efficacy. METHODS mPEG-lsbPMs were simply prepared via thin film method. The trispecific antibodies or bispecific antibodies bound the mPEG-lsbPMs by anti-mPEG Fab fragment. The formulations were characterized by DLS and TEM; in vitro and in vivo studies were also conducted to evaluate the cellular uptake, cell cytotoxicity and therapeutic efficacy. RESULTS The particle sizes of mPEG-lsbPMs with or without the antibodies were around 100 nm; the formulations showed high encapsulation efficiencies of 97.12%. The TsAb and dual bispecific antibodies were fabricated and demonstrated their targeting ability. Two EGFR-overexpressed cell lines (HT-29 and MIA PaCa-2) were co-cultured with FAP-overexpressed WS1 cells (HT-29/WS1; MIA PaCa-2/WS1) to mimic a tumor coexisting in the tumor microenvironment. Cellular binding study revealed that the binding of anti-FAP micelles to three co-culture ratios (4:1, 1:1, and 1:4) of HT-29/EGFR to WS1/FAP was significantly higher than that for TsAb micelles and dual (1:1) micelles, and the binding of those targeting antibodies to WS1/FAP and MIA PaCa-2/EGFR was equally efficacious resulting in a similar binding amount of the TsAb and dual BsAbs (1:1) with the co-culture of MIA PaCa-2/EGFR and WS1/FAP at a 1:1 ratio. Antitumor efficacy study showed that treatment with DTX-loaded mPEG-lsbPMs modified with or without BsAbs, dual BsAbs (1:1), and TsAbs was enhanced in inhibiting tumor growth compared with that for Tynen® while showing fewer signs of adverse effects. CONCLUSION Active targeting of both tumors and TAF-specific antigens was able to increase the affinity of DTX-loaded mPEG-lsbPMs toward tumor cells and TAFs leading to successive uptake by tumor cells or TAFs which enhanced their chemotherapeutic efficacy against antigen-positive cancer cells.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/administration & dosage
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/pharmacology
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Agents, Immunological/pharmacology
- Cancer-Associated Fibroblasts/drug effects
- Cell Line, Tumor
- Coculture Techniques
- Docetaxel/administration & dosage
- Docetaxel/pharmacokinetics
- Drug Carriers/administration & dosage
- Drug Carriers/chemistry
- Drug Delivery Systems/methods
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/immunology
- Humans
- Injections, Intradermal
- Lecithins/chemistry
- Male
- Mice, Nude
- Micelles
- Particle Size
- Polyethylene Glycols/chemistry
- Rats, Sprague-Dawley
- Tumor Microenvironment/drug effects
- Xenograft Model Antitumor Assays
- Mice
- Rats
Collapse
Affiliation(s)
- Wei-Jie Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shyr-Yi Lin
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael Chen
- PhD Program in Clinical Drug Development of Chinese Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ling-Chun Chen
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Hsiu-O Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsiang Chuang
- PhD Program in Clinical Drug Development of Chinese Herbal Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Lin WW, Cheng YA, Li CC, Ho KW, Chen HJ, Chen IJU, Huang BC, Liu HJ, Lu YC, Cheng CM, Huang MY, Lai HW, Cheng TL. Enhancement of tumor tropism of mPEGylated nanoparticles by anti-mPEG bispecific antibody for ovarian cancer therapy. Sci Rep 2021; 11:7598. [PMID: 33828191 PMCID: PMC8027450 DOI: 10.1038/s41598-021-87271-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer is highly metastatic, with a high frequency of relapse, and is the most fatal gynecologic malignancy in women worldwide. It is important to elevate the drug susceptibility and cytotoxicity of ovarian cancer cells, thereby eliminating resident cancer cells for more effective therapeutic efficacy. Here, we developed a bispecific antibody (BsAb; mPEG × HER2) that can easily provide HER2+ tumor tropism to mPEGylated liposomal doxorubicin (PLD) and further increase the drug accumulation in cancer cells via receptor-mediated endocytosis, and improve the cytotoxicity and therapeutic efficacy of HER2+ ovarian tumors. The mPEG × HER2 can simultaneously bind to mPEG molecules on the surface of PLD and HER2 antigen on the surface of ovarian cancer cells. Simply mixing the mPEG × HER2 with PLD was able to confer HER2 specificity of PLD to HER2+ ovarian cancer cells and efficiently trigger endocytosis and enhance cytotoxicity by 5.4-fold as compared to non-targeted PLD. mPEG × HER2-modified PLD was able to significantly increase the targeting and accumulation of HER2+ ovarian tumor by 220% as compared with non-targeted PLD. It could also significantly improve the anti-tumor activity of PLD (P < 0.05) with minimal obvious toxicity in a tumor-bearing mouse model. We believe that the mPEG × HER2 can significantly improve the therapeutic efficacy, potentially reduce the relapse freqency and thereby achieve good prognosis in ovarian cancer patients.
Collapse
Affiliation(s)
- Wen-Wei Lin
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Laboratory Medicine, Post Baccalaureat Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-An Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Chia-Ching Li
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Kai-Wen Ho
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei-Jen Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-J U Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Bo-Cheng Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Ju Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Chi Lu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Chiu-Min Cheng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- Department of Radiation Oncology, Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Wen Lai
- Endoscopic and Oncoplastic Breast Surgery Center, Comprehensive Breast Cancer Center, Changhua Christian Hospital, 135 Nanxiao Street, Changhua, 500, Taiwan. .,Division of General Surgery, Changhua Christian Hospital, Changhua, Taiwan. .,Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan. .,Minimal Invasive Surgery Research Center, Changhua Christian Hospital, Changhua, Taiwan.
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
18
|
Synthetic chemical ligands and cognate antibodies for biorthogonal drug targeting and cell engineering. Adv Drug Deliv Rev 2021; 170:281-293. [PMID: 33486005 DOI: 10.1016/j.addr.2021.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022]
Abstract
A vast range of biomedical applications relies on the specificity of interactions between an antigen and its cognate receptor or antibody. This specificity can be highest when said antigen is a non-natural (synthetic) molecule introduced into a biological setting as a bio-orthogonal ligand. This review aims to present the development of this methodology from the early discovery of haptens a century ago to the recent clinical trials. We discuss such methodologies as antibody recruitment, artificial internalizing receptors and chemically induced dimerization, present the use of chimeric receptors and/or bispecific antibodies to achieve drug targeting and transcytosis, and illustrate how these platforms most impressively found use in the engineering of therapeutic cells such as the chimeric antigen receptor cells. This review aims to be of interest to a broad scientific audience and to spur the development of synthetic artificial ligands for biomedical applications.
Collapse
|
19
|
Ho KW, Chen IJU, Cheng YA, Liao TY, Liu ES, Chen HJ, Lu YC, Su YC, Roffler SR, Huang BC, Liu HJ, Huang MY, Chen CY, Cheng TL. Double attack strategy for leukemia using a pre-targeting bispecific antibody (CD20 Ab-mPEG scFv) and actively attracting PEGylated liposomal doxorubicin to enhance anti-tumor activity. J Nanobiotechnology 2021; 19:16. [PMID: 33422061 PMCID: PMC7796588 DOI: 10.1186/s12951-020-00752-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tumor-targeted nanoparticles hold great promise as new tools for therapy of liquid cancers. Furthermore, the therapeutic efficacy of nanoparticles can be improved by enhancing the cancer cellular internalization. METHODS In this study, we developed a humanized bispecific antibody (BsAbs: CD20 Ab-mPEG scFv) which retains the clinical anti-CD20 whole antibody (Ofatumumab) and is fused with an anti-mPEG single chain antibody (scFv) that can target the systemic liquid tumor cells. This combination achieves the therapeutic function and simultaneously "grabs" Lipo-Dox® (PEGylated liposomal doxorubicin, PLD) to enhance the cellular internalization and anticancer activity of PLD. RESULTS We successfully constructed the CD20 Ab-mPEG scFv and proved that CD20 Ab-mPEG scFv can target CD20-expressing Raji cells and simultaneously grab PEGylated liposomal DiD increasing the internalization ability up to 60% in 24 h. We further showed that the combination of CD20 Ab-mPEG scFv and PLD successfully led to a ninefold increase in tumor cytotoxicity (LC50: 0.38 nM) compared to the CD20 Ab-DNS scFv and PLD (lC50: 3.45 nM) in vitro. Importantly, a combination of CD20 Ab-mPEG scFv and PLD had greater anti-liquid tumor efficacy (P = 0.0005) in Raji-bearing mice than CD20 Ab-DNS scFv and PLD. CONCLUSION Our results indicate that this "double-attack" strategy using CD20 Ab-mPEG scFv and PLD can retain the tumor targeting (first attack) and confer PLD tumor-selectivity (second attack) to enhance PLD internalization and improve therapeutic efficacy in liquid tumors.
Collapse
Affiliation(s)
- Kai-Wen Ho
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-J U Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-An Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Yi Liao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - En-Shuo Liu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei-Jen Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Chi Lu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Cheng Su
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Molecular Medicine and Bioengineering, Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Steve R Roffler
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bo-Cheng Huang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Ju Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiao-Yun Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Imaging, Kaohsiung Medical University Hospital, Sanmin Dist, No.100, Tzyou 1st Rd, Kaohsiung, Taiwan.
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
20
|
Cheng YA, Wu TH, Wang YM, Cheng TL, Chen IJ, Lu YC, Chuang KH, Wang CK, Chen CY, Lin RA, Chen HJ, Liao TY, Liu ES, Chen FM. Humanized bispecific antibody (mPEG × HER2) rapidly confers PEGylated nanoparticles tumor specificity for multimodality imaging in breast cancer. J Nanobiotechnology 2020; 18:118. [PMID: 32854720 PMCID: PMC7457265 DOI: 10.1186/s12951-020-00680-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Developing a universal strategy to improve the specificity and sensitivity of PEGylated nanoaparticles (PEG-NPs) for assisting in the diagnosis of tumors is important in multimodality imaging. Here, we developed the anti-methoxypolyethylene glycol (mPEG) bispecific antibody (BsAb; mPEG × HER2), which has dual specificity for mPEG and human epidermal growth factor receptor 2 (HER2), with a diverse array of PEG-NPs to confer nanoparticles with HER2 specificity and stronger intensity. Result We used a one-step formulation to rapidly modify the nanoprobes with mPEG × HER2 and optimized the modified ratio of BsAbs on several PEG-NPs (Lipo-DiR, SPIO, Qdot and AuNP). The αHER2/PEG-NPs could specifically target MCF7/HER2 cells (HER2++) but not MCF7/neo1 cells (HER2+/−). The αHER2/Lipo-DiR and αHER2/SPIO could enhance the sensitivity of untargeted PEG-NPs on MCF7/HER2 (HER2++). In in vivo imaging, αHER2/Lipo-DiR and αHER2/SPIO increased the specific targeting and enhanced PEG-NPs accumulation at 175% and 187% on 24 h, respectively, in HER2-overexpressing tumors. Conclusion mPEG × HER2, therefore, provided a simple one-step formulation to confer HER2-specific targeting and enhanced sensitivity and contrast intensity on HER2 positive tumors for multimodality imaging. ![]()
Collapse
Affiliation(s)
- Yi-An Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan
| | - Tung-Ho Wu
- Cardiovascular Division of Surgical Department, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd, Zuoying Dist, Kaohsiung, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, No. 1001, University Road, Hsinchu, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan
| | - I-Ju Chen
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan
| | - Yun-Chi Lu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, No.172-1, Sec. 2, Keelung Rd, Taipei, Taiwan
| | - Chih-Kuang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan
| | - Chiao-Yun Chen
- Department of Radiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan.,Department of Medical Imaging, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, Taiwan
| | - Rui-An Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan
| | - Huei-Jen Chen
- Graduate Institute of Medicine, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan
| | - Tzu-Yi Liao
- Graduate Institute of Medicine, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan
| | - En-Shuo Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan
| | - Fang-Ming Chen
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, Taiwan. .,Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, No.68, Jhonghua 3rd Rd, Cianjin District, Kaohsiung, Taiwan. .,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist, Kaohsiung, Taiwan.
| |
Collapse
|
21
|
Fletcher NL, Kempe K, Thurecht KJ. Next-Generation Polymeric Nanomedicines for Oncology: Perspectives and Future Directions. Macromol Rapid Commun 2020; 41:e2000319. [PMID: 32767396 DOI: 10.1002/marc.202000319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Precision polymers as advanced nanomedicines represent an appealing approach for the treatment of otherwise untreatable malignancies. By taking advantage of unique nanomaterial properties and implementing judicious design strategies, polymeric nanomedicines are able to be produced that overcome many barriers to effective treatment. Current key research focus areas anticipated to produce the greatest impact in polymer applications in nanomedicine for oncology include new strategies to achieve "active" targeting, polymeric pro-drug activation, and combinatorial polymer drug delivery approaches in combination with enhanced understanding of complex bio-nano interactions. These approaches, both in isolation or combination, form the next generation of precision nanomedicines with significant anticipated future health outcomes. Of necessity, these approaches will combine an intimate understanding of biological interactions with advanced materials design. This perspectives piece aims to highlight emerging opportunities that promise to be game changers in the nanomedicine oncology field. Discussed herein are current and next generation polymeric nanomedicines with a focus towards structures that are, or could, undergo clinical translation as well as highlight key advances in the field.
Collapse
Affiliation(s)
- Nicholas L Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Kristian Kempe
- Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
22
|
Liao R, Zhang XD, Li GZ, Qin KL, Yan X. Comparison of transcatheter arterial chemoembolization with raltitrexed plus liposomal doxorubicin vs. tegafur plus pirarubicin for unresectable hepatocellular carcinoma. J Gastrointest Oncol 2020; 11:747-759. [PMID: 32953158 PMCID: PMC7475337 DOI: 10.21037/jgo-20-59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND There is still no general consensus on the optimal chemotherapeutic agent selection for transcatheter arterial chemoembolization (TACE) in unresectable hepatocellular carcinoma (HCC). The present study aimed to compare the efficacy and safety of TACE with raltitrexed plus liposomal doxorubicin (R + PGLD) vs. tegafur plus pirarubicin (T + P) in patients with unresectable HCC. METHODS A total of 148 patients with unresectable HCC treated with TACE between January 2012 and December 2016 were retrospectively analyzed. Of them, 74 patients were in the R + PGLD group and 74 patients were in the T + P group (1:1). The treatment response of the tumor, overall survival (OS) time, and adverse effects were compared between the two groups. RESULTS There were no significant differences in patient characteristics or embolization effect (lipiodol deposition) between the two groups (P>0.05). R + PGLD treatment had a better clinical efficacy than T + P treatment (OR: 64.9% vs. 45.9%, P=0.031; DC: 89.2% vs. 74.3%, P=0.032). Portal vein invasion, hepatic vein invasion, tumor size and BCLC stage were associated with OR or DC after TACE using R + PGLD treatment. Survival analysis revealed that patients who received TACE with R + PGLD had a better prognosis than those treated with T + P. Moreover, some complications in the R + PGLD group, including vomiting, myelosuppression and cardiotoxicity, were significantly lower than those in the T + P group (P<0.05). CONCLUSIONS TACE with raltitrexed and liposomal doxorubicin could reduce the incidence of adverse reactions and significantly improve the OS of patients with unresectable HCC.
Collapse
Affiliation(s)
- Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xing-Diao Zhang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Gui-Zhong Li
- Department of General Surgery, Beibei Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ke-Le Qin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiong Yan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Chen E, Chen BM, Su YC, Chang YC, Cheng TL, Barenholz Y, Roffler SR. Premature Drug Release from Polyethylene Glycol (PEG)-Coated Liposomal Doxorubicin via Formation of the Membrane Attack Complex. ACS NANO 2020; 14:7808-7822. [PMID: 32142248 DOI: 10.1021/acsnano.9b07218] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Anti-polyethylene glycol (PEG) antibodies are present in many healthy individuals as well as in patients receiving polyethylene glycol-functionalized drugs. Antibodies against PEG-coated nanocarriers can accelerate their clearance, but their impact on nanodrug properties including nanocarrier integrity is unclear. Here, we show that anti-PEG IgG and IgM antibodies bind to PEG molecules on the surface of PEG-coated liposomal doxorubicin (Doxil, Doxisome, LC-101, and Lipo-Dox), resulting in complement activation, formation of the membrane attack complex (C5b-9) in the liposomal membrane, and rapid release of encapsulated doxorubicin from the liposomes. Drug release depended on both classical and alternative pathways of complement activation. Doxorubicin release of up to 40% was also observed in rats treated with anti-PEG IgG and PEG-coated liposomal doxorubicin. Our results demonstrate that anti-PEG antibodies can disrupt the membrane integrity of PEG-coated liposomal doxorubicin through activation of complement, which may alter therapeutic efficacy and safety in patients with high levels of pre-existing antibodies against PEG.
Collapse
Affiliation(s)
- Even Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Cheng Su
- Department of Biological Sciences and Technology, National Chiao Tung University, Hsin-Chu 1001, Taiwan
| | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yechezekel Barenholz
- Department of Biochemistry, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
24
|
Chen IJ, Cheng YA, Ho KW, Lin WW, Cheng KW, Lu YC, Hsieh YC, Huang CC, Chuang CH, Chen FM, Su YC, Roffler SR, Cheng TL. Bispecific antibody (HER2 × mPEG) enhances anti-cancer effects by precise targeting and accumulation of mPEGylated liposomes. Acta Biomater 2020; 111:386-397. [PMID: 32417267 DOI: 10.1016/j.actbio.2020.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022]
Abstract
Targeted antibodies and methoxy-PEGylated nanocarriers have gradually become a mainstream of cancer therapy. To increase the anti-cancer effects of targeted antibodies combined with mPEGylated liposomes (mPEG-liposomes), we describe a bispecific antibody in which an anti-methoxy-polyethylene glycol scFv (αmPEG scFv) was fused to the C-terminus of an anti-HER2 (αHER2) antibody to generate a HER2 × mPEG BsAb that retained the original efficacy of a targeted antibody while actively attracting mPEG-liposomes to accumulate at tumor sites. HER2 ×mPEG BsAb can simultaneously bind to HER2-high expressing MCF7/HER2 tumor cells and mPEG molecules on mPEG-liposomal doxorubicin (Lipo-Dox). Pre-incubation of HER2 × mPEG BsAb with cells increased the endocytosis of Lipo-DiD and enhanced the cytotoxicity of Lipo-Dox to MCF7/HER2 tumor cells. Furthermore, pre-treatment of HER2 × mPEG BsAb enhanced the tumor accumulation and retention of Lipo-DiR 2.2-fold in HER2-high expressing MCF7/HER2 tumors as compared to HER2-low expressing MCF7/neo1 tumors. Importantly, HER2 × mPEG BsAb plus Lipo-Dox significantly suppressed tumor growth as compared to control BsAb plus Lipo-Dox in MCF7/HER2 tumor-bearing mice. These results indicate that HER2 × mPEG BsAb can enhance tumor accumulation of mPEG-liposomes to improve the therapeutic efficacy of combination treatment. Anti-mPEG scFv can be fused to any kind of targeted antibody to generate BsAbs to actively attract mPEG-drugs and improve anti-cancer efficacy. STATEMENT OF SIGNIFICANCE: Antibody targeted therapy and PEGylated drugs have gradually become the mainstream of cancer therapy. To enhance the anti-cancer effects of targeted antibodies combined with PEGylated drugs is very important. To this aim, we fused an anti-PEG scFv to the C-terminal of HER2 targeted antibodies to generate a HER2×mPEG bispecific antibody (BsAb) to retain the original efficacy of targeted antibody whilst actively attract mPEG-liposomal drugs to accumulate at tumor sites. The present study demonstrates pre-treatment of HER2×mPEG BsAb can enhance tumor accumulation of mPEG-liposomal drugs to improve the therapeutic efficacy of combination treatment. Anti-mPEG scFv can be fused to any kind of targeted antibody to generate BsAbs to actively attract mPEG-drugs and improve anti-cancer efficacy.
Collapse
|
25
|
Lee CC, Su YC, Ko TP, Lin LL, Yang CY, Chang SSC, Roffler SR, Wang AHJ. Structural basis of polyethylene glycol recognition by antibody. J Biomed Sci 2020; 27:12. [PMID: 31907057 PMCID: PMC6945545 DOI: 10.1186/s12929-019-0589-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/18/2019] [Indexed: 12/28/2022] Open
Abstract
Background Polyethylene glycol (PEG) is widely used in industry and medicine. Anti-PEG antibodies have been developed for characterizing PEGylated drugs and other applications. However, the underlying mechanism for specific PEG binding has not been elucidated. Methods The Fab of two cognate anti-PEG antibodies 3.3 and 2B5 were each crystallized in complex with PEG, and their structures were determined by X-ray diffraction. The PEG-Fab interactions in these two crystals were analyzed and compared with those in a PEG-containing crystal of an unrelated anti-hemagglutinin 32D6-Fab. The PEG-binding stoichiometry was examined by using analytical ultracentrifuge (AUC). Results A common PEG-binding mode to 3.3 and 2B5 is seen with an S-shaped core PEG fragment bound to two dyad-related Fab molecules. A nearby satellite binding site may accommodate parts of a longer PEG molecule. The core PEG fragment mainly interacts with the heavy-chain residues D31, W33, L102, Y103 and Y104, making extensive contacts with the aromatic side chains. At the center of each half-circle of the S-shaped PEG, a water molecule makes alternating hydrogen bonds to the ether oxygen atoms, in a similar configuration to that of a crown ether-bound lysine. Each satellite fragment is clamped between two arginine residues, R52 from the heavy chain and R29 from the light chain, and also interacts with several aromatic side chains. In contrast, the non-specifically bound PEG fragments in the 32D6-Fab crystal are located in the elbow region or at lattice contacts. The AUC data suggest that 3.3-Fab exists as a monomer in PEG-free solution but forms a dimer in the presence of PEG-550-MME, which is about the size of the S-shaped core PEG fragment. Conclusions The differing amino acids in 3.3 and 2B5 are not involved in PEG binding but engaged in dimer formation. In particular, the light-chain residue K53 of 2B5-Fab makes significant contacts with the other Fab in a dimer, whereas the corresponding N53 of 3.3-Fab does not. This difference in the protein-protein interaction between two Fab molecules in a dimer may explain the temperature dependence of 2B5 in PEG binding, as well as its inhibition by crown ether.
Collapse
Affiliation(s)
- Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | - Yu-Cheng Su
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Li-Ling Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Ya Yang
- Medigen Biotechnology Corporation, Taipei, Taiwan
| | - Stanley Shi-Chung Chang
- Medigen Biotechnology Corporation, Taipei, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
26
|
Zhao D, Rajan R, Matsumura K. Dual Thermo- and pH-Responsive Behavior of Double Zwitterionic Graft Copolymers for Suppression of Protein Aggregation and Protein Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39459-39469. [PMID: 31592638 DOI: 10.1021/acsami.9b12723] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graft copolymers consisting of two different zwitterionic blocks were synthesized via reversible addition fragmentation chain transfer polymerization. These polymers showed dual properties of thermo- and pH-responsiveness in an aqueous solution. Ultraviolet-visible spectroscopy and dynamic light scattering were employed to study the phase behavior under varying temperatures and pH values. Unlike the phase transition temperatures of other graft copolymers containing nonionic blocks, the phase transition temperature of these polymers was easily tuned by changing the polymer concentration. Owing to the biocompatible and stimuli-responsive nature of the polymers, this system was shown to effectively release proteins (lysozyme) while simultaneously protecting them against denaturation. The positively charged lysozyme was shown to bind with the negatively charged polymer at the physiological pH (pH 7.4). However, it was subsequently released at pH 3, at which the polymer exhibits a positive charge. Protein aggregation studies using a residual enzymatic activity assay, circular dichroism, and a Thioflavin T assay revealed that the secondary structure of the lysozyme was retained even after harsh thermal treatment. The addition of these polymers helped the lysozyme retain its enzymatic activity and suppressed its fibrillation. Both polymers showed excellent protein protection properties, with the negatively charged polymer exhibiting slightly superior protein protection properties to those of the neutral polymer. To the best of the authors' knowledge, this is the first study to develop a graft copolymer system consisting of two different zwitterionic blocks that shows dual thermo- and pH-responsive properties. The presence of the polyampholyte structure enables these polymers to act as protein release agents, while simultaneously protecting the proteins from severe stress.
Collapse
Affiliation(s)
- Dandan Zhao
- School of Materials Science , Japan Advanced Institute of Science and, Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Robin Rajan
- School of Materials Science , Japan Advanced Institute of Science and, Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Kazuaki Matsumura
- School of Materials Science , Japan Advanced Institute of Science and, Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| |
Collapse
|
27
|
Parker CL, McSweeney MD, Lucas AT, Jacobs TM, Wadsworth D, Zamboni WC, Lai SK. Pretargeted delivery of PEG-coated drug carriers to breast tumors using multivalent, bispecific antibody against polyethylene glycol and HER2. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 21:102076. [PMID: 31394261 PMCID: PMC7224238 DOI: 10.1016/j.nano.2019.102076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
Abstract
Pretargeting is an increasingly explored strategy to improve nanoparticle targeting, in which pretargeting molecules that bind both selected epitopes on target cells and nanocarriers are first administered, followed by the drug-loaded nanocarriers. Bispecific antibodies (bsAb) represent a promising class of pretargeting molecules, but how different bsAb formats may impact the efficiency of pretargeting remains poorly understood, in particular Fab valency and Fc receptor (FcR)-binding of bsAb. We found the tetravalent bsAb markedly enhanced PEGylated nanoparticle binding to target HER2+ cells relative to the bivalent bsAb in vitro. Pretargeting with tetravalent bsAb with abrogated FcR binding increased tumor accumulation of PEGylated liposomal doxorubicin (PLD) 3-fold compared to passively targeted PLD alone, and 5-fold vs pretargeting with tetravalent bsAb with normal FcR binding in vivo. Our work demonstrates that multivalency and elimination of FcRn recycling are both important features of pretargeting molecules, and further supports pretargeting as a promising nanoparticle delivery strategy.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/pharmacology
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/pharmacology
- Cell Line, Tumor
- Drug Carriers/chemistry
- Drug Carriers/pharmacology
- Female
- Humans
- Mice, Nude
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Polyethylene Glycols/chemistry
- Polyethylene Glycols/pharmacology
- Receptor, ErbB-2/antagonists & inhibitors
- Xenograft Model Antitumor Assays
- omega-Chloroacetophenone
Collapse
Affiliation(s)
- Christina L Parker
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Morgan D McSweeney
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Andrew T Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States; Carolina Center for Nanotechnology Excellence, University of North Carolina at Chapel Hill, United States
| | - Timothy M Jacobs
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Daniel Wadsworth
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States; Carolina Center for Nanotechnology Excellence, University of North Carolina at Chapel Hill, United States
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
28
|
Tang J, Li B, Howard CB, Mahler SM, Thurecht KJ, Wu Y, Huang L, Xu ZP. Multifunctional lipid-coated calcium phosphate nanoplatforms for complete inhibition of large triple negative breast cancer via targeted combined therapy. Biomaterials 2019; 216:119232. [DOI: 10.1016/j.biomaterials.2019.119232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 11/25/2022]
|
29
|
Nurunnabi M, Khatun Z, Badruddoza AZM, McCarthy JR, Lee YK, Huh KM. Biomaterials and Bioengineering Approaches for Mitochondria and Nuclear Targeting Drug Delivery. ACS Biomater Sci Eng 2019. [DOI: 10.1021/acsbiomaterials.8b01615] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Md Nurunnabi
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
| | - Zehedina Khatun
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111 United States
| | - Abu Zayed Md Badruddoza
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219 United States
| | - Jason R. McCarthy
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-706, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
30
|
Cheng YA, Chen IJ, Su YC, Cheng KW, Lu YC, Lin WW, Hsieh YC, Kao CH, Chen FM, Roffler SR, Cheng TL. Enhanced drug internalization and therapeutic efficacy of PEGylated nanoparticles by one-step formulation with anti-mPEG bispecific antibody in intrinsic drug-resistant breast cancer. Biomater Sci 2019; 7:3404-3417. [DOI: 10.1039/c9bm00323a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
One-step formulation of BsAb with PLD is a simple method to enhance tumor specificity, internalization and the anti-cancer activity.
Collapse
|
31
|
Hamidi SR, Safdari Y, Sheikh Arabi M. Test bacterial inclusion body for activity prior to start denaturing and refolding processes to obtain active eukaryotic proteins. Protein Expr Purif 2018; 154:147-151. [PMID: 30389592 DOI: 10.1016/j.pep.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 02/05/2023]
Abstract
One of a major drawbacks correlated with expressing antibody fragments in bacterial cells is insolubility, which is often regarded as an obstacle in obtaining active molecules. Recombinant proteins aggregated as inclusion bodies within bacterial cells are thought to be unfolded or misfolded, and therefore inactive. So, denaturing and refolding strategies, which are laborious and sometime inefficient, are used to obtain correctly-folded active proteins. In the current study, we show that large quantities of correctly folded and completely active scFv molecules are there in bacterial inclusion bodies; they only need to be isolated from inclusion bodies.
Collapse
Affiliation(s)
- Seyedeh Roghayeh Hamidi
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Yaghoub Safdari
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mehdi Sheikh Arabi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
32
|
Su CY, Chen M, Chen LC, Ho YS, Ho HO, Lin SY, Chuang KH, Sheu MT. Bispecific antibodies (anti-mPEG/anti-HER2) for active tumor targeting of docetaxel (DTX)-loaded mPEGylated nanocarriers to enhance the chemotherapeutic efficacy of HER2-overexpressing tumors. Drug Deliv 2018; 25:1066-1079. [PMID: 29718725 PMCID: PMC6058516 DOI: 10.1080/10717544.2018.1466936] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 01/23/2023] Open
Abstract
Anti-mPEG/anti-human epidermal growth factor receptor 2 (HER2) bispecific antibodies (BsAbs) non-covalently bound to a docetaxel (DTX)-loaded mPEGylated lecithin-stabilized micellar drug delivery system (LsbMDDs) were endowed with active targetability to improve the chemotherapeutic efficacy of DTX. DTX-loaded mPEGylated LsbMDDs formulations were prepared using lecithin/DSPE-PEG(2K or 5K) nanosuspensions to hydrate the thin film, and then they were subjected to ultrasonication. Two BsAbs (anti-mPEG/anti-DNS or anti-HER2) were simply mixed with the LsbMDDs to form BsAbs-LsbMDDs formulations, respectively, referred as the DNS-LsbMDDs and HER2-LsbMDDs. Results demonstrated that the physical characteristics of the BsAbs-LsbMDDs were similar to those of the plain LsbMDDs but more slowly released DTX than that from the LsbMDDs. Results also showed that the HER2-LsbMDDs suppressed the growth of HER2-expressing MCF-7/HER2 tumors, increasing the amount taken up via an endocytosis pathway leading to high drug accumulation and longer retention in the tumor. In conclusion, the BsAbs-LsbMDDs preserved the physical properties of the LsbMDDs and actively targeted tumors with a drug cargo to enhance drug accumulation in tumors leading to greater antitumor activity against antigen-positive tumors.
Collapse
Affiliation(s)
- Chia-Yu Su
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| | - Michael Chen
- Ph.D. Program in Clinical Drug Development of Chinese Herbal Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ling-Chun Chen
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan, ROC
| | - Yuan-Soon Ho
- Graduate Institute of Medical Sciences, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hsiu-O Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| | - Shyr-Yi Lin
- Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan, ROC
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Kuo-Hsiang Chuang
- Ph.D. Program in Clinical Drug Development of Chinese Herbal Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| |
Collapse
|
33
|
Burnouf PA, Leu YL, Su YC, Wu K, Lin WC, Roffler SR. Reversible glycosidic switch for secure delivery of molecular nanocargos. Nat Commun 2018; 9:1843. [PMID: 29748577 PMCID: PMC5945669 DOI: 10.1038/s41467-018-04225-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/12/2018] [Indexed: 01/08/2023] Open
Abstract
Therapeutic drugs can leak from nanocarriers before reaching their cellular targets. Here we describe the concept of a chemical switch which responds to environmental conditions to alternate between a lipid-soluble state for efficient cargo loading and a water-soluble state for stable retention of cargos inside liposomes. A cue-responsive trigger allows release of the molecular cargo at specific cellular sites. We demonstrate the utility of a specific glycosidic switch for encapsulation of potent anticancer drugs and fluorescent compounds. Stable retention of drugs in liposomes allowed generation of high tumor/blood ratios of parental drug in tumors after enzymatic hydrolysis of the glycosidic switch in the lysosomes of cancer cells. Glycosidic switch liposomes could cure mice bearing human breast cancer tumors without significant weight loss. The chemical switch represents a general method to load and retain cargos inside liposomes, thereby offering new perspectives in engineering safe and effective liposomes for therapy and imaging. Retention of drugs loaded into liposomes is a major challenge to effective targeted drug delivery. Here, the authors report on the modification of drugs with a glycosidic pH sensitive switch to improve encapsulation and retention of drugs and demonstrate application in an in vivo cancer model.
Collapse
Affiliation(s)
- Pierre-Alain Burnouf
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Yu-Lin Leu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Yu-Cheng Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kenneth Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Chi Lin
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
34
|
Lee C, Choi JE, Park GY, Lee T, Kim J, An SSA, Song JK, Paik HJ. Size-tunable protein–polymer hybrid carrier for cell internalization. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Sivaram AJ, Wardiana A, Howard CB, Mahler SM, Thurecht KJ. Recent Advances in the Generation of Antibody-Nanomaterial Conjugates. Adv Healthc Mater 2018; 7. [PMID: 28961378 DOI: 10.1002/adhm.201700607] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/31/2017] [Indexed: 01/11/2023]
Abstract
Targeted nanomedicines have significantly changed the way new therapeutics are designed to treat disease. Central to successful therapeutics is the ability to control the dynamics of protein-nanomaterial interactions to enhance the therapeutic effect of the nanomedicine. The aim of this review is to illustrate the diversity and versatility of the conjugation approaches involved in the synthesis of antibody-nanoparticle conjugates, and highlight significant new advances in the field of bioconjugation. Such nanomedicines have found utility as both advanced therapeutic agents, as well as more complex imaging contrast agents that can provide both anatomical and functional information of diseased tissue. While such conjugates show significant promise as next generation targeted nanomedicines, it is recognized that there are in fact no clinically approved targeted therapeutics on the market. This fact is reflected upon within this review, and attempts are made to draw some reasoning from the complexities associated with the bioconjugation chemistry approaches that are typically utilized. Present trends, as well as future directions of next generation targeted nanomedicines are also discussed.
Collapse
Affiliation(s)
- Amal J. Sivaram
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- Centre for Advanced Imaging (CAI) University of Queensland QLD 4072 Australia
- ARC Centre of Excellence in Convergent BioNano Science and Technology Queensland Node University of Queensland St Lucia 4072 Australia
| | - Andri Wardiana
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
| | - Christopher B. Howard
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- Centre for Advanced Imaging (CAI) University of Queensland QLD 4072 Australia
- ARC Training Centre for Biopharmaceutical Innovation Brisbane University of Queensland QLD 4072 Australia
| | - Stephen M. Mahler
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- ARC Training Centre for Biopharmaceutical Innovation Brisbane University of Queensland QLD 4072 Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology University of Queensland QLD 4072 Australia
- Centre for Advanced Imaging (CAI) University of Queensland QLD 4072 Australia
- ARC Centre of Excellence in Convergent BioNano Science and Technology Queensland Node University of Queensland St Lucia 4072 Australia
| |
Collapse
|
36
|
Carter T, Mulholland P, Chester K. Antibody-targeted nanoparticles for cancer treatment. Immunotherapy 2017; 8:941-58. [PMID: 27381686 DOI: 10.2217/imt.16.11] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nanoparticles (NPs) are diverse and versatile with physical properties that can be employed for use in cancer medicine. Targeting NPs using antibodies and antibody fragments could overcome some of the limitations seen with current targeted therapies. This review will discuss the role of antibody-targeted NPs in the treatment of cancer: as delivery vehicles, targeted theranostic agents and in the evolving field of cancer hyperthermia.
Collapse
Affiliation(s)
- Thomas Carter
- UCL Cancer Institute, University College London, London, UK
| | - Paul Mulholland
- UCL Cancer Institute, University College London, London, UK.,University College London Hospitals NHS Foundation Trust, London, UK
| | - Kerry Chester
- UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
37
|
Conditional internalization of PEGylated nanomedicines by PEG engagers for triple negative breast cancer therapy. Nat Commun 2017; 8:15507. [PMID: 28593948 PMCID: PMC5472176 DOI: 10.1038/ncomms15507] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 04/03/2017] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) lacks effective treatment options due to the absence of traditional therapeutic targets. The epidermal growth factor receptor (EGFR) has emerged as a promising target for TNBC therapy because it is overexpressed in about 50% of TNBC patients. Here we describe a PEG engager that simultaneously binds polyethylene glycol and EGFR to deliver PEGylated nanomedicines to EGFR+ TNBC. The PEG engager displays conditional internalization by remaining on the surface of TNBC cells until contact with PEGylated nanocarriers triggers rapid engulfment of nanocargos. PEG engager enhances the anti-proliferative activity of PEG-liposomal doxorubicin to EGFR+ TNBC cells by up to 100-fold with potency dependent on EGFR expression levels. The PEG engager significantly increases retention of fluorescent PEG probes and enhances the antitumour activity of PEGylated liposomal doxorubicin in human TNBC xenografts. PEG engagers with specificity for EGFR are promising for improved treatment of EGFR+ TNBC patients. The majority of treatment options for cancers are ineffective due to limited therapeutic targeting. Here, the authors develop bispecific antibodies that effectively target nanomaterials to triple-negative breast cancer cell receptors and deliver therapeutics leading to inhibition of tumour growth.
Collapse
|
38
|
Khatun Z, Choi YS, Kim YG, Yoon K, Nurunnabi M, Li L, Lee E, Kang HC, Huh KM. Bioreducible Poly(ethylene glycol)-Triphenylphosphonium Conjugate as a Bioactivable Mitochondria-Targeting Nanocarrier. Biomacromolecules 2017; 18:1074-1085. [PMID: 28257184 DOI: 10.1021/acs.biomac.6b01324] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bioactivable nanocarrier systems have favorable characteristics such as high cellular uptake, target specificity, and an efficient intracellular release mechanism. In this study, we developed a bioreducible methoxy polyethylene glycol (mPEG)-triphenylphosphonium (TPP) conjugate (i.e., mPEG-(ss-TPP)2 conjugate) as a vehicle for mitochondrial drug delivery. A bioreducible linkage with two disulfide bond-containing end groups was used at one end of the hydrophilic mPEG for conjugation with lipophilic TPP molecules. The amphiphilic mPEG-(ss-TPP)2 self-assembled in aqueous media, which thereby formed core-shell structured nanoparticles (NPs) with good colloidal stability, and efficiently encapsulated the lipophilic anticancer drug doxorubicin (DOX). The DOX-loaded mPEG-(ss-TPP)2 NPs were characterized in terms of their physicochemical and morphological properties, drug-loading and release behaviors, in vitro anticancer effects, and mitochondria-targeting capacity. Our results suggest that bioreducible DOX-loaded mPEG-(ss-TPP)2 NPs can induce fast drug release with enhanced mitochondrial uptake and have a better therapeutic effect than nonbioreducible NPs.
Collapse
Affiliation(s)
| | - Yeon Su Choi
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea , 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | | | | | | | | | | | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea , 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | | |
Collapse
|
39
|
Dengl S, Sustmann C, Brinkmann U. Engineered hapten-binding antibody derivatives for modulation of pharmacokinetic properties of small molecules and targeted payload delivery. Immunol Rev 2016; 270:165-77. [PMID: 26864111 PMCID: PMC4755198 DOI: 10.1111/imr.12386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hapten‐binding antibodies have for more than 50 years played a pivotal role in immunology, paving the way to antibody generation (as haptens are very important and robust immunogens), to antibody characterization (as the first structures generated more than 40 years ago were those of hapten binders), and enabled and expanded antibody engineering technologies. The latter field of engineered antibodies evolved over many years and many steps resulting in recombinant humanized or human‐derived antibody derivatives in multiple formats. Today, hapten‐binding antibodies are applied not only as reagents and tools (where they still play an important part) but evolved also to engineered targeting and pretargeting vehicles for disease diagnosis and therapy. Here we describe recent applications of hapten‐binding antibodies and of engineered mono‐ and bispecific hapten‐binding antibody derivatives. We have designed and applied these molecules for the modulation of the pharmacokinetic properties of small compounds or peptides. They are also integrated as additional binding entities into bispecific antibody formats. Here they serve as non‐covalent or covalent coupling modules to haptenylated compounds, to enable targeted payload delivery to disease tissues or cells.
Collapse
Affiliation(s)
- Stefan Dengl
- 1Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Penzberg, Penzberg, Germany
| | - Claudio Sustmann
- 1Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Penzberg, Penzberg, Germany
| | - Ulrich Brinkmann
- 1Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Penzberg, Penzberg, Germany
| |
Collapse
|
40
|
Chen BM, Su YC, Chang CJ, Burnouf PA, Chuang KH, Chen CH, Cheng TL, Chen YT, Wu JY, Roffler SR. Measurement of Pre-Existing IgG and IgM Antibodies against Polyethylene Glycol in Healthy Individuals. Anal Chem 2016; 88:10661-10666. [PMID: 27726379 DOI: 10.1021/acs.analchem.6b03109] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polyethylene glycol (PEG) is a biocompatible polymer that is often attached to therapeutic molecules to improve bioavailability and therapeutic efficacy. Although antibodies with specificity for PEG may compromise the safety and effectiveness of PEGylated medicines, the prevalence of pre-existing anti-PEG antibodies in healthy individuals is unclear. Chimeric human anti-PEG antibody standards were created to accurately measure anti-PEG IgM and IgG antibodies by direct ELISA with confirmation by a competition assay in the plasma of 1504 healthy Han Chinese donors residing in Taiwan. Anti-PEG antibodies were detected in 44.3% of healthy donors with a high prevalence of both anti-PEG IgM (27.1%) and anti-PEG IgG (25.7%). Anti-PEG IgM and IgG antibodies were significantly more common in females as compared to males (32.0% vs 22.2% for IgM, p < 0.0001 and 28.3% vs 23.0% for IgG, p = 0.018). The prevalence of anti-PEG IgG antibodies was higher in younger (up to 60% for 20 year olds) as opposed to older (20% for >50 years) male and female donors. Anti-PEG IgG concentrations were negatively associated with donor age in both females (p = 0.0073) and males (p = 0.026). Both anti-PEG IgM and IgG strongly bound PEGylated medicines. The described assay can assist in the elucidation of the impact of anti-PEG antibodies on the safety and therapeutic efficacy of PEGylated medicines.
Collapse
Affiliation(s)
- Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica , Taipei 11529, Taiwan
| | - Yu-Cheng Su
- Institute of Biomedical Sciences, Academia Sinica , Taipei 11529, Taiwan
| | - Chia-Jung Chang
- Institute of Biomedical Sciences, Academia Sinica , Taipei 11529, Taiwan
| | | | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University , Taipei 11031, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica , Taipei 11529, Taiwan.,School of Chinese Medicine, China Medical University , Taichung 40447, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University , Kaohsiung 80708, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica , Taipei 11529, Taiwan.,Department of Pediatrics, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica , Taipei 11529, Taiwan.,School of Chinese Medicine, China Medical University , Taichung 40447, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica , Taipei 11529, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung 80708, Taiwan
| |
Collapse
|
41
|
Howard CB, Fletcher N, Houston ZH, Fuchs AV, Boase NRB, Simpson JD, Raftery LJ, Ruder T, Jones ML, de Bakker CJ, Mahler SM, Thurecht KJ. Overcoming Instability of Antibody-Nanomaterial Conjugates: Next Generation Targeted Nanomedicines Using Bispecific Antibodies. Adv Healthc Mater 2016; 5:2055-68. [PMID: 27283923 DOI: 10.1002/adhm.201600263] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/20/2016] [Indexed: 12/20/2022]
Abstract
Targeted nanomaterials promise improved therapeutic efficacy, however their application in nanomedicine is limited due to complexities associated with protein conjugations to synthetic nanocarriers. A facile method to generate actively targeted nanomaterials is developed and exemplified using polyethylene glycol (PEG)-functional nanostructures coupled to a bispecific antibody (BsAb) with dual specificity for methoxy PEG (mPEG) epitopes and cancer targets such as epidermal growth factor receptor (EGFR). The EGFR-mPEG BsAb binds with high affinity to recombinant EGFR (KD : 1 × 10(-9) m) and hyperbranched polymer (HBP) consisting of mPEG (KD : 10 × 10(-9) m) and demonstrates higher avidity for HBP compared to linear mPEG. The binding of BsAb-HBP bioconjugate to EGFR on MDA-MB-468 cancer cells is investigated in vitro using a fluorescently labeled polymer, and in in vivo xenograft models by small animal optical imaging. The antibody-targeted nanostructures show improved accumulation in tumor cells compared to non-targeted nanomaterials. This demonstrates a facile approach for tuning targeting ligand density on nanomaterials, by modulating surface functionality. Antibody fragments are tethered to the nanomaterial through simple mixing prior to administration to animals, overcoming the extensive procedures encountered for developing targeted nanomedicines.
Collapse
Affiliation(s)
- Christopher B. Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Nicholas Fletcher
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Zachary H. Houston
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Adrian V. Fuchs
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Nathan R. B. Boase
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Joshua D. Simpson
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Lyndon J. Raftery
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Tim Ruder
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Martina L. Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Christopher J. de Bakker
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Stephen M. Mahler
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Centre for Advanced Imaging (CAI) School of Chemical Engineering ARC Centre of Excellence in Convergent BioNano Science and Technology The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
42
|
Safdari Y, Ahmadzadeh V, Khalili M, Jaliani HZ, Zarei V, Erfani-Moghadam V. Use of single chain antibody derivatives for targeted drug delivery. Mol Med 2016; 22:258-270. [PMID: 27249008 DOI: 10.2119/molmed.2016.00043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/22/2016] [Indexed: 01/01/2023] Open
Abstract
Single chain antibodies (scFvs), which contain only the variable domains of full-length antibodies, are relatively small molecules that can be used for selective drug delivery. In this review, we display how scFv antibodies help improve the specificity and efficiency of drugs. Small interfering RNA (siRNA) delivery using scFv-drug fusion peptides, siRNA delivery using scFv-conjugated nanoparticles, targeted delivery using scFv-viral peptide- fusion proteins, use of scFv in fusion with cell penetrating peptides for effective targeted drug delivery, scFv-mediated targeted delivery of inorganic nanoparticles, scFv-mediated increase of tumor killing activity of granulocytes, use of scFv for tumor imaging, site-directed conjugation of scFv molecules to drug carrier systems, use of scFv to relieve pain, use of scFv for increasing drug loading efficiency are among the topics that are discussed here.
Collapse
Affiliation(s)
- Yaghoub Safdari
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahideh Ahmadzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Khalili
- Golestan Research Center of Gastroenterology and Hepatology (GRCGH), Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Zarei Jaliani
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vahid Zarei
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Vahid Erfani-Moghadam
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
43
|
Han H, Wang H, Chen Y, Li Z, Wang Y, Jin Q, Ji J. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy. NANOSCALE 2016; 8:283-291. [PMID: 26608864 DOI: 10.1039/c5nr06734k] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and "click" reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy.
Collapse
Affiliation(s)
- Haijie Han
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Haibo Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yangjun Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zuhong Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yin Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
44
|
Freise AC, Wu AM. In vivo imaging with antibodies and engineered fragments. Mol Immunol 2015; 67:142-52. [PMID: 25934435 PMCID: PMC4529772 DOI: 10.1016/j.molimm.2015.04.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Antibodies have clearly demonstrated their utility as therapeutics, providing highly selective and effective drugs to treat diseases in oncology, hematology, cardiology, immunology and autoimmunity, and infectious diseases. More recently, a pressing need for equally specific and targeted imaging agents for assessing disease in vivo, in preclinical models and patients, has emerged. This review summarizes strategies for developing and optimizing antibodies as targeted probes for use in non-invasive imaging using radioactive, optical, magnetic resonance, and ultrasound approaches. Recent advances in engineered antibody fragments and scaffolds, conjugation and labeling methods, and multimodality probes are highlighted. Importantly, antibody-based imaging probes are seeing new applications in detection and quantitation of cell surface biomarkers, imaging specific responses to targeted therapies, and monitoring immune responses in oncology and other diseases. Antibody-based imaging will provide essential tools to facilitate the transition to truly precision medicine.
Collapse
Affiliation(s)
- Amanda C Freise
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, USA
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, USA.
| |
Collapse
|
45
|
Tung HY, Su YC, Chen BM, Burnouf PA, Huang WC, Chuang KH, Yan YT, Cheng TL, Roffler SR. Selective Delivery of PEGylated Compounds to Tumor Cells by Anti-PEG Hybrid Antibodies. Mol Cancer Ther 2015; 14:1317-26. [PMID: 25852063 DOI: 10.1158/1535-7163.mct-15-0151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/25/2015] [Indexed: 11/16/2022]
Abstract
Polyethylene glycol (PEG) is attached to many peptides, proteins, liposomes, and nanoparticles to reduce their immunogenicity and improve their pharmacokinetic and therapeutic properties. Here, we describe hybrid antibodies that can selectively deliver PEGylated medicines, imaging agents, or nanomedicines to target cells. Human IgG1 hybrid antibodies αPEG:αHER2 and αPEG:αCD19 were shown by ELISA, FACS, and plasmon resonance to bind to both PEG and HER2 receptors on SK-BR-3 breast adenocarcinoma and BT-474 breast ductal carcinoma cells or CD19 receptors on Ramos and Raji Burkitt's lymphoma cells. In addition, αPEG:αHER2 specifically targeted PEGylated proteins, liposomes, and nanoparticles to SK-BR-3 cells that overexpressed HER2, but not to HER2-negative MCF-7 breast adenocarcinoma cells. Endocytosis of PEGylated nanoparticles into SK-BR-3 cells was induced specifically by the αPEG:αHER2 hybrid antibody, as observed by confocal imaging of the accumulation of Qdots inside SK-BR-3 cells. Treatment of HER2(+) SK-BR-3 and BT-474 cancer cells with αPEG:αHER2 and the clinically used chemotherapeutic agent PEGylated liposomal doxorubicin for 3 hours enhanced the in vitro effectiveness of PEGylated liposomal doxorubicin by over two orders of magnitude. Hybrid anti-PEG antibodies offer a versatile and simple method to deliver PEGylated compounds to cellular locations and can potentially enhance the therapeutic efficacy of PEGylated medicines.
Collapse
Affiliation(s)
- Hsin-Yi Tung
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Cheng Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pierre-Alain Burnouf
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Chiao Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tian-Lu Cheng
- Faculty of Biomedical Science and Environmental Biology, MedicoGenomic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
46
|
Ouyang H, Wang L, Yang S, Wang W, Wang L, Liu F, Fu Z. Chemiluminescence Reaction Kinetics-Resolved Multianalyte Immunoassay Strategy Using a Bispecific Monoclonal Antibody as the Unique Recognition Reagent. Anal Chem 2015; 87:2952-8. [DOI: 10.1021/ac5045093] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hui Ouyang
- Key
Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Limin Wang
- College
of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shijia Yang
- Key
Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Wenwen Wang
- Key
Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Lin Wang
- Key
Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Fengquan Liu
- College
of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Institute
of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu 210014, China
| | - Zhifeng Fu
- Key
Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|