1
|
Wu Y, Song Y, Soto J, Hoffman T, Lin X, Zhang A, Chen S, Massad RN, Han X, Qi D, Yeh KW, Fang Z, Eoh J, Gu L, Rowat AC, Gu Z, Li S. Viscoelastic extracellular matrix enhances epigenetic remodeling and cellular plasticity. Nat Commun 2025; 16:4054. [PMID: 40307238 PMCID: PMC12043949 DOI: 10.1038/s41467-025-59190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Extracellular matrices of living tissues exhibit viscoelastic properties, yet how these properties regulate chromatin and the epigenome remains unclear. Here, we show that viscoelastic substrates induce changes in nuclear architecture and epigenome, with more pronounced effects on softer surfaces. Fibroblasts on viscoelastic substrates display larger nuclei, lower chromatin compaction, and differential expression of distinct sets of genes related to the cytoskeleton and nuclear function, compared to those on elastic surfaces. Slow-relaxing viscoelastic substrates reduce lamin A/C expression and enhance nuclear remodeling. These structural changes are accompanied by a global increase in euchromatin marks and local increase in chromatin accessibility at cis-regulatory elements associated with neuronal and pluripotent genes. Consequently, viscoelastic substrates improve the reprogramming efficiency from fibroblasts into neurons and induced pluripotent stem cells. Collectively, our findings unravel the roles of matrix viscoelasticity in epigenetic regulation and cell reprogramming, with implications for designing smart materials for cell fate engineering.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yang Song
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Lin
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Aaron Zhang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Siyu Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ramzi N Massad
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Han
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Dongping Qi
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kun-Wei Yeh
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhiwei Fang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Joon Eoh
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Amy C Rowat
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhen Gu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Zhu F, Nie G. Cell reprogramming: methods, mechanisms and applications. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:12. [PMID: 40140235 PMCID: PMC11947411 DOI: 10.1186/s13619-025-00229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Cell reprogramming represents a powerful approach to achieve the conversion cells of one type into cells of another type of interest, which has substantially changed the landscape in the field of developmental biology, regenerative medicine, disease modeling, drug discovery and cancer immunotherapy. Cell reprogramming is a complex and ordered process that involves the coordination of transcriptional, epigenetic, translational and metabolic changes. Over the past two decades, a range of questions regarding the facilitators/barriers, the trajectories, and the mechanisms of cell reprogramming have been extensively investigated. This review summarizes the recent advances in cell reprogramming mediated by transcription factors or chemical molecules, followed by elaborating on the important roles of biophysical cues in cell reprogramming. Additionally, this review will detail our current understanding of the mechanisms that govern cell reprogramming, including the involvement of the recently discovered biomolecular condensates. Finally, the review discusses the broad applications and future directions of cell reprogramming in developmental biology, disease modeling, drug development, regenerative/rejuvenation therapy, and cancer immunotherapy.
Collapse
Affiliation(s)
- Fei Zhu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Akter MZ, Tufail F, Ahmad A, Oh YW, Kim JM, Kim S, Hasan MM, Li L, Lee DW, Kim YS, Lee SJ, Kim HS, Ahn Y, Choi YJ, Yi HG. Harnessing native blueprints for designing bioinks to bioprint functional cardiac tissue. iScience 2025; 28:111882. [PMID: 40177403 PMCID: PMC11964760 DOI: 10.1016/j.isci.2025.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Cardiac tissue lacks regenerative capacity, making heart transplantation the primary treatment for end-stage heart failure. Engineered cardiac tissues developed through three-dimensional bioprinting (3DBP) offer a promising alternative. However, reproducing the native structure, cellular diversity, and functionality of cardiac tissue requires advanced cardiac bioinks. Major obstacles in CTE (cardiac tissue engineering) include accurately characterizing bioink properties, replicating the cardiac microenvironment, and achieving precise spatial organization. Optimizing bioink properties to closely mimic the extracellular matrix (ECM) is essential, as deviations may result in pathological effects. This review encompasses the rheological and electromechanical properties of bioinks and the function of the cardiac microenvironment in the design of functional cardiac constructs. Furthermore, it focuses on improving the rheological characteristics, printability, and functionality of bioinks, offering valuable perspectives for developing new bioinks especially designed for CTE.
Collapse
Affiliation(s)
- Mst Zobaida Akter
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Fatima Tufail
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ashfaq Ahmad
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoon Wha Oh
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Min Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seoyeon Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Md Mehedee Hasan
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Longlong Li
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Weon Lee
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Su-jin Lee
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Youngkeun Ahn
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Yeong-Jin Choi
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
- Advanced Materials Engineering, Korea National University of Science and Technology (UST), Changwon, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Nam Y, Song Y, Seo SJ, Ko GR, Lee SH, Cha E, Kwak SM, Kim S, Shin M, Jin Y, Lee JS. Metabolic reprogramming via mitochondrial delivery for enhanced maturation of chemically induced cardiomyocyte-like cells. MedComm (Beijing) 2024; 5:e70005. [PMID: 39611044 PMCID: PMC11604293 DOI: 10.1002/mco2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 11/30/2024] Open
Abstract
Heart degenerative diseases pose a significant challenge due to the limited ability of native heart to restore lost cardiomyocytes. Direct cellular reprogramming technology, particularly the use of small molecules, has emerged as a promising solution to prepare functional cardiomyocyte through faster and safer processes without genetic modification. However, current methods of direct reprogramming often exhibit low conversion efficiencies and immature characteristics of the generated cardiomyocytes, limiting their use in regenerative medicine. This study proposes the use of mitochondrial delivery to metabolically reprogram chemically induced cardiomyocyte-like cells (CiCMs), fostering enhanced maturity and functionality. Our findings show that mitochondria sourced from high-energy-demand organs (liver, brain, and heart) can enhance structural maturation and metabolic functions. Notably, heart-derived mitochondria resulted in CiCMs with a higher oxygen consumption rate capacity, enhanced electrical functionality, and higher sensitivity to hypoxic condition. These results are related to metabolic changes caused by increased number and size of mitochondria and activated mitochondrial fusion after mitochondrial treatment. In conclusion, our study suggests that mitochondrial delivery into CiCMs can be an effective strategy to promote cellular maturation, potentially contributing to the advancement of regenerative medicine and disease modeling.
Collapse
Affiliation(s)
- Yena Nam
- Department of PhysiologyGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoulRepublic of Korea
| | - Yoonji Song
- Department of Biomedical EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Seung Ju Seo
- Department of PhysiologyGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoulRepublic of Korea
| | - Ga Ryang Ko
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Seung Hyun Lee
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Eunju Cha
- Department of PhysiologyGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoulRepublic of Korea
| | - Su Min Kwak
- Department of MedicineCollege of MedicineYonsei University Graduate SchoolSeoulRepublic of Korea
| | - Sumin Kim
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Mikyung Shin
- Department of Biomedical EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Center for Neuroscience Imaging ResearchInstitute for Basic Science (IBS)SuwonRepublic of Korea
| | - Yoonhee Jin
- Department of PhysiologyGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoulRepublic of Korea
- Department of MedicineCollege of MedicineYonsei University Graduate SchoolSeoulRepublic of Korea
| | - Jung Seung Lee
- Department of Biomedical EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Department of MetaBioHealthSungkyunkwan University (SKKU)SuwonRepublic of Korea
| |
Collapse
|
5
|
Vellayappan MV, Duarte F, Sollogoub C, Dirrenberger J, Guinault A, Frith JE, Parkington HC, Molotnikov A, Cameron NR. Creation of Grooved Tissue Engineering Scaffolds from Architectured Multilayer Polymer Composites by a Tuneable One-Step Degradation Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401902. [PMID: 38949308 DOI: 10.1002/smll.202401902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/03/2024] [Indexed: 07/02/2024]
Abstract
The surface properties of biomaterials interact directly with biological systems, influencing cellular responses, tissue integration, and biocompatibility. Surface topography plays a critical role in cardiac tissue engineering by affecting electrical conductivity, cardiomyocyte alignment, and contractile function. Current methods for controlling surface properties and topography in cardiac tissue engineering scaffolds are limited, expensive, and lack precision. This study introduces a low-cost, one-step degradation process to create scaffolds with well-defined micro-grooves from multilayered 3D printed poly(lactic acid)/thermoplastic polyurethane composites. The approach provides control over erosion rate and surface morphology, allowing easy tuning of scaffold topographical cues for tissue engineering applications. The findings reported in this study provide a library of easily tuneable scaffold topographical cues. A strong dependence of neonatal rat cardiomyocyte (NRCM) contact guidance with the multilayers' dimension and shape in partially degraded polylactic acid (PLA)/thermoplastic polyurethane (TPU) samples is observed. NRCMs cultured on samples with a layer thickness of 13 ± 2 µm and depth of 4.7 ± 0.2 µm demonstrate the most regular contractions. Hence, the proposed fabrication scheme can be used to produce a new generation of biomaterials with excellent controllability determined by multilayer thickness, printing parameters, and degradation treatment duration.
Collapse
Affiliation(s)
- Muthu Vignesh Vellayappan
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3800, Australia
| | - Francisco Duarte
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3800, Australia
| | - Cyrille Sollogoub
- PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University, 151 boulevard de l'Hopital, Paris, 75013, France
| | - Justin Dirrenberger
- PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University, 151 boulevard de l'Hopital, Paris, 75013, France
| | - Alain Guinault
- PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University, 151 boulevard de l'Hopital, Paris, 75013, France
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3800, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedicine Discovery Institute, Monash University, 26, Innovation Walk, Victoria, 3800, Australia
| | - Andrey Molotnikov
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3800, Australia
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3800, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
- Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
6
|
Umeyama T, Matsuda T, Nakashima K. Lineage Reprogramming: Genetic, Chemical, and Physical Cues for Cell Fate Conversion with a Focus on Neuronal Direct Reprogramming and Pluripotency Reprogramming. Cells 2024; 13:707. [PMID: 38667322 PMCID: PMC11049106 DOI: 10.3390/cells13080707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Although lineage reprogramming from one cell type to another is becoming a breakthrough technology for cell-based therapy, several limitations remain to be overcome, including the low conversion efficiency and subtype specificity. To address these, many studies have been conducted using genetics, chemistry, physics, and cell biology to control transcriptional networks, signaling cascades, and epigenetic modifications during reprogramming. Here, we summarize recent advances in cellular reprogramming and discuss future directions.
Collapse
Affiliation(s)
- Taichi Umeyama
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | | |
Collapse
|
7
|
Visone R, Paoletti C, Cordiale A, Nicoletti L, Divieto C, Rasponi M, Chiono V, Occhetta P. In Vitro Mechanical Stimulation to Reproduce the Pathological Hallmarks of Human Cardiac Fibrosis on a Beating Chip and Predict The Efficacy of Drugs and Advanced Therapies. Adv Healthc Mater 2024; 13:e2301481. [PMID: 37941521 PMCID: PMC11468947 DOI: 10.1002/adhm.202301481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Cardiac fibrosis is one of the main causes of heart failure, significantly contributing to mortality. The discovery and development of effective therapies able to heal fibrotic pathological symptoms thus remain of paramount importance. Micro-physiological systems (MPS) are recently introduced as promising platforms able to accelerate this finding. Here a 3D in vitro model of human cardiac fibrosis, named uScar, is developed by imposing a cyclic mechanical stimulation to human atrial cardiac fibroblasts (AHCFs) cultured in a 3D beating heart-on-chip and exploited to screen drugs and advanced therapeutics. The sole provision of a cyclic 10% uniaxial strain at 1 Hz to the microtissues is sufficient to trigger fibrotic traits, inducing a consistent fibroblast-to-myofibroblast transition and an enhanced expression and production of extracellular matrix (ECM) proteins. Standard of care anti-fibrotic drugs (i.e., Pirfenidone and Tranilast) are confirmed to be efficient in preventing the onset of fibrotic traits in uScar. Conversely, the mechanical stimulation applied to the microtissues limit the ability of a miRNA therapy to directly reprogram fibroblasts into cardiomyocytes (CMs), despite its proved efficacy in 2D models. Such results demonstrate the importance of incorporating in vivo-like stimulations to generate more representative 3D in vitro models able to predict the efficacy of therapies in patients.
Collapse
Affiliation(s)
- Roberta Visone
- BiomimX SrlMilan20157Italy
- Department of ElectronicsInformatics and BioengineeringPolitecnico di MilanoMilan20133Italy
| | - Camilla Paoletti
- Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurin10129Italy
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research)Pisa56122Italy
| | - Alessandro Cordiale
- Department of ElectronicsInformatics and BioengineeringPolitecnico di MilanoMilan20133Italy
| | - Letizia Nicoletti
- Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurin10129Italy
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research)Pisa56122Italy
| | - Carla Divieto
- Istituto Nazionale di Ricerca MetrologicaDivision of Advanced Materials and Life SciencesTurin10135Italy
| | - Marco Rasponi
- Department of ElectronicsInformatics and BioengineeringPolitecnico di MilanoMilan20133Italy
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research)Pisa56122Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurin10129Italy
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research)Pisa56122Italy
| | - Paola Occhetta
- BiomimX SrlMilan20157Italy
- Department of ElectronicsInformatics and BioengineeringPolitecnico di MilanoMilan20133Italy
| |
Collapse
|
8
|
Wang Q, Spurlock B, Liu J, Qian L. Fibroblast Reprogramming in Cardiac Repair. JACC Basic Transl Sci 2024; 9:145-160. [PMID: 38362341 PMCID: PMC10864899 DOI: 10.1016/j.jacbts.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 02/17/2024]
Abstract
Cardiovascular disease is one of the major causes of death worldwide. Limited proliferative capacity of adult mammalian cardiomyocytes has prompted researchers to exploit regenerative therapy after myocardial injury, such as myocardial infarction, to attenuate heart dysfunction caused by such injury. Direct cardiac reprogramming is a recently emerged promising approach to repair damaged myocardium by directly converting resident cardiac fibroblasts into cardiomyocyte-like cells. The achievement of in vivo direct reprogramming of fibroblasts has been shown, by multiple laboratories independently, to improve cardiac function and mitigate fibrosis post-myocardial infarction, which holds great potential for clinical application. There have been numerous pieces of valuable work in both basic and translational research to enhance our understanding and continued refinement of direct cardiac reprogramming in recent years. However, there remain many challenges to overcome before we can truly take advantage of this technique to treat patients with ischemic cardiac diseases. Here, we review recent progress of fibroblast reprogramming in cardiac repair, including the optimization of several reprogramming strategies, mechanistic exploration, and translational efforts, and we make recommendations for future research to further understand and translate direct cardiac reprogramming from bench to bedside. Challenges relating to these efforts will also be discussed.
Collapse
Affiliation(s)
- Qiaozi Wang
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brian Spurlock
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Soto J, Song Y, Wu Y, Chen B, Park H, Akhtar N, Wang P, Hoffman T, Ly C, Sia J, Wong S, Kelkhoff DO, Chu J, Poo M, Downing TL, Rowat AC, Li S. Reduction of Intracellular Tension and Cell Adhesion Promotes Open Chromatin Structure and Enhances Cell Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300152. [PMID: 37357983 PMCID: PMC10460843 DOI: 10.1002/advs.202300152] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/13/2023] [Indexed: 06/27/2023]
Abstract
The role of transcription factors and biomolecules in cell type conversion has been widely studied. Yet, it remains unclear whether and how intracellular mechanotransduction through focal adhesions (FAs) and the cytoskeleton regulates the epigenetic state and cell reprogramming. Here, it is shown that cytoskeletal structures and the mechanical properties of cells are modulated during the early phase of induced neuronal (iN) reprogramming, with an increase in actin cytoskeleton assembly induced by Ascl1 transgene. The reduction of actin cytoskeletal tension or cell adhesion at the early phase of reprogramming suppresses the expression of mesenchymal genes, promotes a more open chromatin structure, and significantly enhances the efficiency of iN conversion. Specifically, reduction of intracellular tension or cell adhesion not only modulates global epigenetic marks, but also decreases DNA methylation and heterochromatin marks and increases euchromatin marks at the promoter of neuronal genes, thus enhancing the accessibility for gene activation. Finally, micro- and nano-topographic surfaces that reduce cell adhesions enhance iN reprogramming. These novel findings suggest that the actin cytoskeleton and FAs play an important role in epigenetic regulation for cell fate determination, which may lead to novel engineering approaches for cell reprogramming.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Yang Song
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Yifan Wu
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Binru Chen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Hyungju Park
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Navied Akhtar
- Department of Biomedical EngineeringUniversity of CaliforniaIrvineCA92617USA
| | - Peng‐Yuan Wang
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Oujiang LaboratoryKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceInstitute of AgingWenzhou Medical UniversityWenzhouZhejiang325024China
| | - Tyler Hoffman
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Chau Ly
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCA90095USA
| | - Junren Sia
- Department of BioengineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - SzeYue Wong
- Department of BioengineeringUniversity of CaliforniaBerkeleyCA94720USA
| | | | - Julia Chu
- Department of BioengineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Mu‐Ming Poo
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Timothy L. Downing
- Department of Biomedical EngineeringUniversity of CaliforniaIrvineCA92617USA
| | - Amy C. Rowat
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCA90095USA
| | - Song Li
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Department of MedicineUniversity of CaliforniaLos AngelesCA90095USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCA90095USA
- Jonsson Comprehensive Cancer CenterDavid Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCA90095USA
| |
Collapse
|
10
|
Aalikhani M, Alikhani M, Khajeniazi S, Khosravi A, Bazi Z, Kianmehr A. Positive effect of miR-2392 on fibroblast to cardiomyocyte-like cell fate transition: an in silico and in vitro study. Gene 2023; 879:147598. [PMID: 37393060 DOI: 10.1016/j.gene.2023.147598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
INTRODUCTION Somatic cell fate transition is now gained great importance in tissue regeneration. Currently, research is focused on heart tissue regeneration by reprogramming diverse cells into cardiomyocyte-like cells. Here, we examined the possible effect of miRNAs on the transdifferentiation of fibroblasts into cardiomyocyte-like cells. METHODS First heart-specific miRNAs were identified by comparing the gene expression profiles of heart tissue to other body tissues using bioinformatic techniques. After identifying heart-specific miRNAs, their cellular and molecular functions were studied using the miRWalk and miRBase databases. Then the candidate miRNA was cloned into a lentiviral vector. Following, human dermal fibroblasts were cultured and treated with compounds forskolin, valproic acid, and CHIR99021. After 24 h, the lentivector harboring miRNA gene was transfected into the cells to initiate the transdifferentiation process. Finally, after a two-week treatment period, the efficiency of transdifferentiation was examined by inspecting the appearance of the cells and measuring the expression levels of cardiac genes and proteins using RT-qPCR and immunocytochemistry techniques. RESULTS Nine miRNAs were identified with higher expression in the heart. The miR-2392 was nominated as the candidate miRNA due to its function and specific expression in the heart. This miRNA has a direct connection with genes involved in cell growth and differentiation; e.g., MAPK and Wnt signaling pathways. According to in vitro results cardiac genes and proteins demonstrated an increase in expression in the fibroblasts that simultaneously received the three chemicals and miR-2392. CONCLUSION Considering the ability of miR-2392 to induce the expression of cardiac genes and proteins in fibroblast cells, it can induce fibroblasts to differentiate into cardiomyocyte-like cells. Therefore, miR-2392 could be further optimized for cardiomyocyte regeneration, tissue repair, and drug design studies.
Collapse
Affiliation(s)
- Mahdi Aalikhani
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Alikhani
- Department of Cardiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safoura Khajeniazi
- Department of Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Bazi
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran; Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Anvarsadat Kianmehr
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran; Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
11
|
Perveen S, Vanni R, Lo Iacono M, Rastaldo R, Giachino C. Direct Reprogramming of Resident Non-Myocyte Cells and Its Potential for In Vivo Cardiac Regeneration. Cells 2023; 12:1166. [PMID: 37190075 PMCID: PMC10136631 DOI: 10.3390/cells12081166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cardiac diseases are the foremost cause of morbidity and mortality worldwide. The heart has limited regenerative potential; therefore, lost cardiac tissue cannot be replenished after cardiac injury. Conventional therapies are unable to restore functional cardiac tissue. In recent decades, much attention has been paid to regenerative medicine to overcome this issue. Direct reprogramming is a promising therapeutic approach in regenerative cardiac medicine that has the potential to provide in situ cardiac regeneration. It consists of direct cell fate conversion of one cell type into another, avoiding transition through an intermediary pluripotent state. In injured cardiac tissue, this strategy directs transdifferentiation of resident non-myocyte cells (NMCs) into mature functional cardiac cells that help to restore the native tissue. Over the years, developments in reprogramming methods have suggested that regulation of several intrinsic factors in NMCs can help to achieve in situ direct cardiac reprogramming. Among NMCs, endogenous cardiac fibroblasts have been studied for their potential to be directly reprogrammed into both induced cardiomyocytes and induced cardiac progenitor cells, while pericytes can transdifferentiate towards endothelial cells and smooth muscle cells. This strategy has been indicated to improve heart function and reduce fibrosis after cardiac injury in preclinical models. This review summarizes the recent updates and progress in direct cardiac reprogramming of resident NMCs for in situ cardiac regeneration.
Collapse
Affiliation(s)
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | | | | | | |
Collapse
|
12
|
Jin Y, Kim H, Min S, Choi YS, Seo SJ, Jeong E, Kim SK, Lee HA, Jo SH, Park JH, Park BW, Sim WS, Kim JJ, Ban K, Kim YG, Park HJ, Cho SW. Three-dimensional heart extracellular matrix enhances chemically induced direct cardiac reprogramming. SCIENCE ADVANCES 2022; 8:eabn5768. [PMID: 36516259 PMCID: PMC9750148 DOI: 10.1126/sciadv.abn5768] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 11/12/2022] [Indexed: 06/17/2023]
Abstract
Direct cardiac reprogramming has emerged as a promising therapeutic approach for cardiac regeneration. Full chemical reprogramming with small molecules to generate cardiomyocytes may be more amenable than genetic reprogramming for clinical applications as it avoids safety concerns associated with genetic manipulations. However, challenges remain regarding low conversion efficiency and incomplete cardiomyocyte maturation. Furthermore, the therapeutic potential of chemically induced cardiomyocytes (CiCMs) has not been investigated. Here, we report that a three-dimensional microenvironment reconstituted with decellularized heart extracellular matrix can enhance chemical reprogramming and cardiac maturation of fibroblasts to cardiomyocytes. The resultant CiCMs exhibit elevated cardiac marker expression, sarcomeric organization, and improved electrophysiological features and drug responses. We investigated the therapeutic potential of CiCMs reprogrammed in three-dimensional heart extracellular matrix in a rat model of myocardial infarction. Our platform can facilitate the use of CiCMs for regenerative medicine, disease modeling, and drug screening.
Collapse
Affiliation(s)
- Yoonhee Jin
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyeok Kim
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung Ju Seo
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eunseon Jeong
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Su Kyeom Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyang-Ae Lee
- Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Bong-Woo Park
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Woo-Sup Sim
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin-Ju Kim
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Hun-Jun Park
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Liu M, Liu J, Zhang T, Wang L. Direct cardiac reprogramming: Toward the era of multi-omics analysis. CELL INSIGHT 2022; 1:100058. [PMID: 37193352 PMCID: PMC10120284 DOI: 10.1016/j.cellin.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 05/18/2023]
Abstract
Limited regenerative capacity of adult cardiomyocytes precludes heart repair and regeneration after cardiac injury. Direct cardiac reprograming that converts scar-forming cardiac fibroblasts (CFs) into functional induced-cardiomyocytes (iCMs) offers promising potential to restore heart structure and heart function. Significant advances have been achieved in iCM reprogramming using genetic and epigenetic regulators, small molecules, and delivery strategies. Recent researches on the heterogeneity and reprogramming trajectories elucidated novel mechanisms of iCM reprogramming at single cell level. Here, we review recent progress in iCM reprogramming with a focus on multi-omics (transcriptomic, epigenomic and proteomic) researches to investigate the cellular and molecular machinery governing cell fate conversion. We also highlight the future potential using multi-omics approaches to dissect iCMs conversion for clinal applications.
Collapse
Affiliation(s)
- Mengxin Liu
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Jie Liu
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Tong Zhang
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Li Wang
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
14
|
Song Y, Soto J, Chen B, Hoffman T, Zhao W, Zhu N, Peng Q, Liu L, Ly C, Wong PK, Wang Y, Rowat AC, Kurdistani SK, Li S. Transient nuclear deformation primes epigenetic state and promotes cell reprogramming. NATURE MATERIALS 2022; 21:1191-1199. [PMID: 35927431 PMCID: PMC9529815 DOI: 10.1038/s41563-022-01312-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/14/2022] [Indexed: 05/22/2023]
Abstract
Cell reprogramming has wide applications in tissue regeneration, disease modelling and personalized medicine. In addition to biochemical cues, mechanical forces also contribute to the modulation of the epigenetic state and a variety of cell functions through distinct mechanisms that are not fully understood. Here we show that millisecond deformation of the cell nucleus caused by confinement into microfluidic channels results in wrinkling and transient disassembly of the nuclear lamina, local detachment of lamina-associated domains in chromatin and a decrease of histone methylation (histone H3 lysine 9 trimethylation) and DNA methylation. These global changes in chromatin at the early stage of cell reprogramming boost the conversion of fibroblasts into neurons and can be partially reproduced by inhibition of histone H3 lysine 9 and DNA methylation. This mechanopriming approach also triggers macrophage reprogramming into neurons and fibroblast conversion into induced pluripotent stem cells, being thus a promising mechanically based epigenetic state modulation method for cell engineering.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Binru Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Weikang Zhao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Ninghao Zhu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Qin Peng
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Longwei Liu
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Chau Ly
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Amy C Rowat
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Cyclic Stretching Induces Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes through Nuclear-Mechanotransduction. Tissue Eng Regen Med 2022; 19:781-792. [PMID: 35258794 PMCID: PMC9294081 DOI: 10.1007/s13770-021-00427-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 11/22/2021] [Accepted: 12/21/2021] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND During cardiogenesis, cardiac cells receive various stimuli, such as biomechanical and chemical cues, from the surrounding microenvironment, and these signals induce the maturation of heart cells. Mechanical force, especially tensile force in the heart, is one of the key stimuli that induce cardiomyocyte (CM) maturation through mechanotransduction, a process through which physical cues are transformed into biological responses. However, the effects and mechanisms of tensile force on cell maturation are poorly studied. METHODS In this study, we developed a cyclic stretch system that mimics the mechanical environment of the heart by loading tensile force to human-induced pluripotent stem cell (hiPSC)-derived CMs. hiPSC-CMs cultured with the cyclic stretch system analyzed morphological change, immunofluorescent staining, expression of maturation markers in mRNA, and beating properties compared to static cultures. RESULTS hiPSC-CMs cultured with the cyclic stretch system showed increased cell alignment, sarcomere length and expression of maturation markers in mRNA, such as TNNI3, MYL2 and TTN, compared to static cultures. Especially, the expression of genes related to nuclear mechanotransduction, such as Yap1, Lamin A/C, plectin, and desmin, was increased in the cyclically stretched hiPSC-CMs. Furthermore, the volume of the nucleus was increased by as much as 120% in the cyclic stretch group. CONCLUSION These results revealed that nuclear mechanotransduction induced by tensile force is involved in CM maturation. Together, these findings provide novel evidence suggesting that nuclear mechanotransduction induced by tensile force is involved in the regulation of cardiac maturation.
Collapse
|
16
|
Rhodes ADY, Duran-Mota JA, Oliva N. Current progress in bionanomaterials to modulate the epigenome. Biomater Sci 2022; 10:5081-5091. [PMID: 35880652 DOI: 10.1039/d2bm01027e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in genomics during the 1990s have made it possible to study and identify genetic and epigenetic responses of cells and tissues to various drugs and environmental factors. This has accelerated the number of targets available to treat a range of diseases from cancer to wound healing disorders. Equally interesting is the understanding of how bio- and nanomaterials alter gene expression through epigenetic mechanisms, and whether they have the potential to elicit a positive therapeutic response without requiring additional biomolecule delivery. In fact, from a cell's perspective, a biomaterial is nothing more than an environmental factor, and so it has the power to epigenetically modulate gene expression of cells in contact with it. Understanding these epigenetic interactions between biomaterials and cells will open new avenues in the development of technologies that can not only provide biological signals (i.e. drugs, growth factors) necessary for therapy and regeneration, but also intimately interact with cells to promote the expression of genes of interest. This review article aims to summarise the current state-of-the-art and progress on the development of bio- and nanomaterials to modulate the epigenome.
Collapse
Affiliation(s)
- Anna D Y Rhodes
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK.
| | - Jose Antonio Duran-Mota
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK. .,Materials Engineering Group (GEMAT), IQS Barcelona, Barcelona 08017, Spain
| | - Nuria Oliva
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK.
| |
Collapse
|
17
|
Jiang B, Ou W, Shamul JG, Chen H, Van Belleghem S, Stewart S, Liu Z, Fisher JP, He X. Rock inhibitor may compromise human induced pluripotent stem cells for cardiac differentiation in 3D. Bioact Mater 2022; 9:508-522. [PMID: 34786523 PMCID: PMC8581226 DOI: 10.1016/j.bioactmat.2021.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
Cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) are valuable for the understanding/treatment of the deadly heart diseases and their drug screening. However, the very much needed homogeneous 3D cardiac differentiation of human iPSCs is still challenging. Here, it is discovered surprisingly that Rock inhibitor (RI), used ubiquitously to improve the survival/yield of human iPSCs, induces early gastrulation-like change to human iPSCs in 3D culture and may cause their heterogeneous differentiation into all the three germ layers (i.e., ectoderm, mesoderm, and endoderm) at the commonly used concentration (10 μM). This greatly compromises the capacity of human iPSCs for homogeneous 3D cardiac differentiation. By reducing the RI to 1 μM for 3D culture, the human iPSCs retain high pluripotency/quality in inner cell mass-like solid 3D spheroids. Consequently, the beating efficiency of 3D cardiac differentiation can be improved to more than 95 % in ~7 days (compared to less than ~50 % in 14 days for the 10 μM RI condition). Furthermore, the outset beating time (OBT) of all resultant cardiac spheroids (CSs) is synchronized within only 1 day and they form a synchronously beating 3D construct after 5-day culture in gelatin methacrylol (GelMA) hydrogel, showing high homogeneity (in terms of the OBT) in functional maturity of the CSs. Moreover, the resultant cardiomyocytes are of high quality with key functional ultrastructures and highly responsive to cardiac drugs. These discoveries may greatly facilitate the utilization of human iPSCs for understanding and treating heart diseases.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
| | - James G. Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
| | - Hao Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
| | - Sarah Van Belleghem
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
| | - Zhenguo Liu
- Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, 65212, United States
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, United States
| |
Collapse
|
18
|
Xie Y, Liu J, Qian L. Direct cardiac reprogramming comes of age: Recent advance and remaining challenges. Semin Cell Dev Biol 2022; 122:37-43. [PMID: 34304993 PMCID: PMC8782931 DOI: 10.1016/j.semcdb.2021.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023]
Abstract
The adult human heart has limited regenerative capacity. As such, the massive cardiomyocyte loss due to myocardial infarction leads to scar formation and adverse cardiac remodeling, which ultimately results in chronic heart failure. Direct cardiac reprogramming that converts cardiac fibroblast into functional cardiomyocyte-like cells (also called iCMs) holds great promise for heart regeneration. Cardiac reprogramming has been achieved both in vitro and in vivo by using a variety of cocktails that comprise transcription factors, microRNAs, or small molecules. During the past several years, great progress has been made in improving reprogramming efficiency and understanding the underlying molecular mechanisms. Here, we summarize the direct cardiac reprogramming methods, review the current advances in understanding the molecular mechanisms of cardiac reprogramming, and highlight the novel insights gained from single-cell omics studies. Finally, we discuss the remaining challenges and future directions for the field.
Collapse
|
19
|
Kryszak B, Szustakiewicz K, Dzienny P, Junka A, Paleczny J, Szymczyk-Ziółkowska P, Hoppe V, Grzymajło M, Antończak A. 'Cookies on a tray': Superselective hierarchical microstructured poly(l-lactide) surface as a decoy for cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112648. [PMID: 35034812 DOI: 10.1016/j.msec.2022.112648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
In this research we developed a micro-sized hierarchical structures on a poly(l-lactide) (PLLA) surface. The obtained structures consist of round-shaped protrusions with a diameter of ~20 μm, a height of ~3 μm, and the distance between them ~30 μm. We explored the effect of structuring PLLA to design a non-cytotoxic material with increased roughness to encourage cells to settle on the surface. The PLLA films were prepared using the casting melt extrusion technique and were modified using ultra-short pulse irradiation - a femtosecond laser operating at λ = 1030 nm. A hierarchical microstructure was obtained resembling 'cookies on a tray'. The cellular response of fibro- and osteoblasts cell lines was investigated. The conducted research has shown that the laser-modified surface is more conducive to cell adhesion and growth (compared to unmodified surface) to such an extent that allows the formation of highly-selectively patterns consisting of living cells. In contrast to eukaryotic cells, the pathogenic bacteria Staphylococcus aureus covered modified and unmodified structures in an even, non-preferential manner. In turn, adhesion pattern of eukaryotic fungus Saccharomyces boulardii resembled that of fibro- and osteoblast cells rather than that of Staphylococcus. The discovered effect can be used for fabrication of personalized and smart implants in regenerative medicine.
Collapse
Affiliation(s)
- Bartłomiej Kryszak
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Konrad Szustakiewicz
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Paulina Dzienny
- Laser and Fiber Electronics Group, Faculty of Electronics, Photonics and Microsystem, WUST, Poland
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | | | - Viktoria Hoppe
- Center for Advanced Manufacturing Technologies, Faculty of Mechanical Engineering, WUST, Poland
| | - Michał Grzymajło
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Arkadiusz Antończak
- Laser and Fiber Electronics Group, Faculty of Electronics, Photonics and Microsystem, WUST, Poland
| |
Collapse
|
20
|
Hsu Y, Huang K, Cheng K. Resuscitating the Field of Cardiac Regeneration: Seeking Answers from Basic Biology. Adv Biol (Weinh) 2021; 6:e2101133. [PMID: 34939372 DOI: 10.1002/adbi.202101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Heart failure (HF) is one of the leading causes for hospital admissions worldwide. HF patients are classified based on the chronic changes in left ventricular ejection fraction (LVEF) as preserved (LVEF ≥ 50%), reduced (LVEF ≤ 40%), or mid-ranged (40% < LVEF < 50%) HFs. Treatments nowadays can prevent HFrEF progress, whereas only a few of the treatments have been proven to be effective in improving the survival of HFpEF. In this review, numerous mediators involved in the pathogenesis of HF are summarized. The regional upstream signaling and their diagnostic and therapeutic potential are also discussed. Additionally, the recent challenges and development in cardiac regenerative therapy that hold opportunities for future research and clinical translation are discussed.
Collapse
Affiliation(s)
- Yaching Hsu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
21
|
Paoletti C, Chiono V. Bioengineering Methods in MicroRNA-Mediated Direct Reprogramming of Fibroblasts Into Cardiomyocytes. Front Cardiovasc Med 2021; 8:750438. [PMID: 34760946 PMCID: PMC8573325 DOI: 10.3389/fcvm.2021.750438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Ischemic heart disease is the major cause of mortality worldwide. Despite the most recent pharmacological progresses, cardiac regeneration is yet not possible, and heart transplantation is the only therapeutic option for end-stage heart failure. Traditional cardiac regenerative medicine approaches, such as cell therapies and tissue engineering, have failed in the obtainment of human functional cardiac tissue, mainly due to unavailability of high quantities of autologous functional cardiomyocytes (CMs), low grafting efficiency, and/or arrhythmic events. Direct reprogramming (DR) of fibroblasts into induced CMs (iCMs) has emerged as a new promising approach for myocardial regeneration by in situ transdifferentiation or providing additional CM source for cell therapy. Among available DR methods, non-viral transfection with microRNAs (miRcombo: miR-1, miR-133, miR-208, and miR-499) appears promising for future clinical translation. MiRcombo transfection of fibroblasts could be significantly improved by the development of safe nanocarriers, efficiently delivering their cargo to target cells at the required stoichiometric ratio and overall dose in due times. Newly designed in vitro 3D culture microenvironments, providing biomimetic biophysical and biochemical stimuli to miRcombo-transfected cells, significantly increase the yield of fibroblast transdifferentiation into iCMs, enhancing CM gene expression. Epigenetic regulation of gene expression programs, critical to cell lineage commitment, can also be promoted by the administration of specific anti-inflammatory and anti-fibrotic soluble factors, helping in suppressing fibroblast signature. The aim of this mini-review is to introduce the readers to a relatively unknown field of cardiac research integrating bioengineering tools as relevant for the progress of miRNA-mediated cardiac DR.
Collapse
Affiliation(s)
- Camilla Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
22
|
Yamakawa H, Ieda M. Cardiac regeneration by direct reprogramming in this decade and beyond. Inflamm Regen 2021; 41:20. [PMID: 34193320 PMCID: PMC8247073 DOI: 10.1186/s41232-021-00168-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Japan faces an increasing incidence of heart disease, owing to a shift towards a westernized lifestyle and an aging demographic. In cases where conventional interventions are not appropriate, regenerative medicine offers a promising therapeutic option. However, the use of stem cells has limitations, and therefore, “direct cardiac reprogramming” is emerging as an alternative treatment. Myocardial regeneration transdifferentiates cardiac fibroblasts into cardiomyocytes in situ. Three cardiogenic transcription factors: Gata4, Mef2c, and Tbx5 (GMT) can induce direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs), in mice. However, in humans, additional factors, such as Mesp1 and Myocd, are required. Inflammation and immune responses hinder the reprogramming process in mice, and epigenetic modifiers such as TET1 are involved in direct cardiac reprogramming in humans. The three main approaches to improving reprogramming efficiency are (1) improving direct cardiac reprogramming factors, (2) improving cell culture conditions, and (3) regulating epigenetic factors. miR-133 is a potential candidate for the first approach. For the second approach, inhibitors of TGF-β and Wnt signals, Akt1 overexpression, Notch signaling pathway inhibitors, such as DAPT ((S)-tert-butyl 2-((S)-2-(2-(3,5-difluorophenyl) acetamido) propanamido)-2-phenylacetate), fibroblast growth factor (FGF)-2, FGF-10, and vascular endothelial growth factor (VEGF: FFV) can influence reprogramming. Reducing the expression of Bmi1, which regulates the mono-ubiquitination of histone H2A, alters histone modification, and subsequently the reprogramming efficiency, in the third approach. In addition, diclofenac, a non-steroidal anti-inflammatory drug, and high level of Mef2c overexpression could improve direct cardiac reprogramming. Direct cardiac reprogramming needs improvement if it is to be used in humans, and the molecular mechanisms involved remain largely elusive. Further advances in cardiac reprogramming research are needed to bring us closer to cardiac regenerative therapy.
Collapse
Affiliation(s)
- Hiroyuki Yamakawa
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjiku-ku, Tokyo, 160-8582, Japan. .,Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki, 305-8575, Japan.
| |
Collapse
|
23
|
Van Handel B, Wang L, Ardehali R. Environmental factors influence somatic cell reprogramming to cardiomyocyte-like cells. Semin Cell Dev Biol 2021; 122:44-49. [PMID: 34083115 DOI: 10.1016/j.semcdb.2021.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022]
Abstract
Direct cardiac reprogramming, which refers to somatic cell (i.e. fibroblast) fate conversion to cardiomyocyte-like cell without transitioning through an intermediate pluripotent state, provides a novel therapeutic strategy for heart regeneration by converting resident cardiac fibroblasts to cardiomyocytes in situ. However, several limitations need to be addressed prior to clinical translation of this technology. They include low efficiency of reprogramming, heterogeneity of starting fibroblasts, functional immaturity of induced cardiomyocytes (iCMs), virus immunogenicity and toxicity, incomplete understanding of changes in the epigenetic landscape as fibroblasts undergo reprogramming, and the environmental factors that influence fate conversion. Several studies have demonstrated that a combination of enforced expression of cardiac transcription factors along with certain cytokines and growth factors in the presence of favorable environmental cues (including extracellular matrix, topography, and mechanical properties) enhance the efficiency and quality of direct reprogramming. This paper reviews the literature on the influence of the microenvironment on direct cardiac reprogramming in vitro and in vivo.
Collapse
Affiliation(s)
- Ben Van Handel
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Department of Orthopedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Lingjun Wang
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Chen W, Bian W, Zhou Y, Zhang J. Cardiac Fibroblasts and Myocardial Regeneration. Front Bioeng Biotechnol 2021; 9:599928. [PMID: 33842440 PMCID: PMC8026894 DOI: 10.3389/fbioe.2021.599928] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
The billions of cardiomyocytes lost to acute myocardial infarction (MI) cannot be replaced by the limited regenerative capacity of adult mammalian hearts, and despite decades of research, there are still no clinically effective therapies for remuscularizing and restoring damaged myocardial tissue. Although the majority of the cardiac mass is composed of cardiomyocytes, cardiac fibroblasts (CFs) are one type of most numerous cells in the heart and the primary drivers of fibrosis, which prevents ventricular rupture immediately after MI but the fibrotic scar expansion and LV dilatation can eventually lead to heart failure. However, embryonic CFs produce cytokines that can activate proliferation in cultured cardiomyocytes, and the structural proteins produced by CFs may regulate cardiomyocyte cell-cycle activity by modulating the stiffness of the extracellular matrix (ECM). CFs can also be used to generate induced-pluripotent stem cells and induced cardiac progenitor cells, both of which can differentiate into cardiomyocytes and vascular cells, but cardiomyocytes appear to be more readily differentiated from iPSCs that have been reprogrammed from CFs than from other cell types. Furthermore, the results from recent studies suggest that cultured CFs, as well as the CFs present in infarcted hearts, can be reprogrammed directly into cardiomyocytes. This finding is very exciting as should we be able to successfully increase the efficiency of this reprogramming, we could remuscularize the injured ventricle and restore the LV function without need the transplantation of cells or cell products. This review summarizes the role of CFs in the innate response to MI and how their phenotypic plasticity and involvement in ECM production might be manipulated to improve cardiac performance in injured hearts.
Collapse
Affiliation(s)
- Wangping Chen
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weihua Bian
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yang Zhou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
25
|
He L, Chen X. Cardiomyocyte Induction and Regeneration for Myocardial Infarction Treatment: Cell Sources and Administration Strategies. Adv Healthc Mater 2020; 9:e2001175. [PMID: 33000909 DOI: 10.1002/adhm.202001175] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Occlusion of coronary artery and subsequent damage or death of myocardium can lead to myocardial infarction (MI) and even heart failure-one of the leading causes of deaths world wide. Notably, myocardium has extremely limited regeneration potential due to the loss or death of cardiomyocytes (i.e., the cells of which the myocardium is comprised) upon MI. A variety of stem cells and stem cell-derived cardiovascular cells, in situ cardiac fibroblasts and endogenous proliferative epicardium, have been exploited to provide renewable cellular sources to treat injured myocardium. Also, different strategies, including direct injection of cell suspensions, bioactive molecules, or cell-incorporated biomaterials, and implantation of artificial cardiac scaffolds (e.g., cell sheets and cardiac patches), have been developed to deliver renewable cells and/or bioactive molecules to the MI site for the myocardium regeneration. This article briefly surveys cell sources and delivery strategies, along with biomaterials and their processing techniques, developed for MI treatment. Key issues and challenges, as well as recommendations for future research, are also discussed.
Collapse
Affiliation(s)
- Lihong He
- Department of Cell Biology Medical College of Soochow University Suzhou 215123 China
| | - Xiongbiao Chen
- Department of Mechanical Engineering Division of Biomedical Engineering University of Saskatchewan Saskatoon S7N5A9 Canada
| |
Collapse
|
26
|
Ramaswamy Y, Roohani I, No YJ, Madafiglio G, Chang F, Zhang F, Lu Z, Zreiqat H. Nature-inspired topographies on hydroxyapatite surfaces regulate stem cells behaviour. Bioact Mater 2020; 6:1107-1117. [PMID: 33102949 PMCID: PMC7569262 DOI: 10.1016/j.bioactmat.2020.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
Surface topography is one of the key factors in regulating interactions between materials and cells. While topographies presented to cells in vivo are non-symmetrical and in complex shapes, current fabrication techniques are limited to replicate these complex geometries. In this study, we developed a microcasting technique and successfully produced imprinted hydroxyapatite (HAp) surfaces with nature-inspired (honeycomb, pillars, and isolated islands) topographies. The in vitro biological performance of the developed non-symmetrical topographies was evaluated using adipose-derived stem cells (ADSCs). We demonstrated that ADSCs cultured on all HAp surfaces, except honeycomb patterns, presented well-defined stress fibers and expressed focal adhesion protein (paxillin) molecules. Isolated islands topographies significantly promoted osteogenic differentiation of ADSCs with increased alkaline phosphatase activity and upregulation of key osteogenic markers, compared to the other topographies and the control unmodified (flat) HAp surface. In contrast, honeycomb topographies hampered the ability of the ADSCs to proliferate and differentiate to the osteogenic lineage. This work presents a facile technique to imprint nature-derived topographies on the surface of bioceramics which opens up opportunities for the development of bioresponsive interfaces in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yogambha Ramaswamy
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia.,Australian Research Centre for Innovative BioEngineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Iman Roohani
- School of Chemistry, Australian Centre for Nanomedicine, University of New South Wales, Sydney NSW, Australia
| | - Young Jung No
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia.,Australian Research Centre for Innovative BioEngineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Genevieve Madafiglio
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Frank Chang
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Furong Zhang
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Zufu Lu
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia.,Australian Research Centre for Innovative BioEngineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia.,Australian Research Centre for Innovative BioEngineering, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
27
|
Kumar A, Mali P. Mapping regulators of cell fate determination: Approaches and challenges. APL Bioeng 2020; 4:031501. [PMID: 32637855 PMCID: PMC7332300 DOI: 10.1063/5.0004611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Given the limited regenerative capacities of most organs, strategies are needed to efficiently generate large numbers of parenchymal cells capable of integration into the diseased organ. Although it was initially thought that terminally differentiated cells lacked the ability to transdifferentiate, it has since been shown that cellular reprogramming of stromal cells to parenchymal cells through direct lineage conversion holds great potential for the replacement of post-mitotic parenchymal cells lost to disease. To this end, an assortment of genetic, chemical, and mechanical cues have been identified to reprogram cells to different lineages both in vitro and in vivo. However, some key challenges persist that limit broader applications of reprogramming technologies. These include: (1) low reprogramming efficiencies; (2) incomplete functional maturation of derived cells; and (3) difficulty in determining the typically multi-factor combinatorial recipes required for successful transdifferentiation. To improve efficiency by comprehensively identifying factors that regulate cell fate, large scale genetic and chemical screening methods have thus been utilized. Here, we provide an overview of the underlying concept of cell reprogramming as well as the rationale, considerations, and limitations of high throughput screening methods. We next follow with a summary of unique hits that have been identified by high throughput screens to induce reprogramming to various parenchymal lineages. Finally, we discuss future directions of applying this technology toward human disease biology via disease modeling, drug screening, and regenerative medicine.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
28
|
Soft Matrix Promotes Cardiac Reprogramming via Inhibition of YAP/TAZ and Suppression of Fibroblast Signatures. Stem Cell Reports 2020; 15:612-628. [PMID: 32857980 PMCID: PMC7486305 DOI: 10.1016/j.stemcr.2020.07.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 01/14/2023] Open
Abstract
Direct cardiac reprogramming holds great potential for regenerative medicine. However, it remains inefficient, and induced cardiomyocytes (iCMs) generated in vitro are less mature than those in vivo, suggesting that undefined extrinsic factors may regulate cardiac reprogramming. Previous in vitro studies mainly used hard polystyrene dishes, yet the effect of substrate rigidity on cardiac reprogramming remains unclear. Thus, we developed a Matrigel-based hydrogel culture system to determine the roles of matrix stiffness and mechanotransduction in cardiac reprogramming. We found that soft matrix comparable with native myocardium promoted the efficiency and quality of cardiac reprogramming. Mechanistically, soft matrix enhanced cardiac reprogramming via inhibition of integrin, Rho/ROCK, actomyosin, and YAP/TAZ signaling and suppression of fibroblast programs, which were activated on rigid substrates. Soft substrate further enhanced cardiac reprogramming with Sendai virus vectors via YAP/TAZ suppression, increasing the reprogramming efficiency up to ∼15%. Thus, mechanotransduction could provide new targets for improving cardiac reprogramming. Hydrogel culture reveals the role of mechanotransduction in cardiac reprogramming Soft ECM comparable with native myocardium promotes cardiac reprogramming Soft ECM promotes cardiac reprogramming via YAP/TAZ/fibroblast signaling inhibition Soft ECM promotes Sendai virus vector-mediated cardiac reprogramming
Collapse
|
29
|
Fang J, Hsueh YY, Soto J, Sun W, Wang J, Gu Z, Khademhosseini A, Li S. Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS NANO 2020; 14:1296-1318. [PMID: 32011856 PMCID: PMC10067273 DOI: 10.1021/acsnano.9b04837] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cell reprogramming is a revolutionized biotechnology that offers a powerful tool to engineer cell fate and function for regenerative medicine, disease modeling, drug discovery, and beyond. Leveraging advances in biomaterials and micro/nanotechnologies can enhance the reprogramming performance in vitro and in vivo through the development of delivery strategies and the control of biophysical and biochemical cues. In this review, we present an overview of the state-of-the-art technologies for cell reprogramming and highlight the recent breakthroughs in engineering biomaterials with micro/nanotechnologies to improve reprogramming efficiency and quality. Finally, we discuss future directions and challenges for reprogramming technologies and clinical translation.
Collapse
Affiliation(s)
- Jun Fang
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yuan-Yu Hsueh
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Division of Plastic Surgery, Department of Surgery, College of Medicine , National Cheng Kung University Hospital , Tainan 70456 , Taiwan
| | - Jennifer Soto
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Wujin Sun
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| | - Jinqiang Wang
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| | - Zhen Gu
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
- Jonsson Comprehensive Cancer Center , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Ali Khademhosseini
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
- Department of Chemical and Biomolecular Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Radiology , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Song Li
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| |
Collapse
|
30
|
Abstract
Cardiovascular disease is the leading cause of death worldwide. Cardiomyocytes have limited regenerative capacity; consequently, regenerative therapies are in high demand. There are currently several potential strategies for heart regeneration, with one approach involving in situ generation of new cardiomyocytes from endogenous cell sources. Direct cardiac reprogramming has emerged as a novel therapeutic approach to regenerating the damaged heart by directly converting endogenous cardiac fibroblasts into cardiomyocyte-like cells. Following our first report of direct cardiac reprogramming, significant advances have elucidated the molecular mechanisms associated with cardiac reprogramming. These advances have also improved cardiac-reprogramming efficiency by enabling direct in vivo cardiac reprogramming. Moreover, progress has been made in cardiac reprogramming of human fibroblasts. Although basic research has supported substantial progress in this field, numerous challenges remain in terms of clinical application. Here, we review the current state of cardiac reprogramming as a new technology for understanding and treating cardiovascular diseases.
Collapse
|
31
|
Song Y, Soto J, Chen B, Yang L, Li S. Cell engineering: Biophysical regulation of the nucleus. Biomaterials 2020; 234:119743. [PMID: 31962231 DOI: 10.1016/j.biomaterials.2019.119743] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/02/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Cells live in a complex and dynamic microenvironment, and a variety of microenvironmental cues can regulate cell behavior. In addition to biochemical signals, biophysical cues can induce not only immediate intracellular responses, but also long-term effects on phenotypic changes such as stem cell differentiation, immune cell activation and somatic cell reprogramming. Cells respond to mechanical stimuli via an outside-in and inside-out feedback loop, and the cell nucleus plays an important role in this process. The mechanical properties of the nucleus can directly or indirectly modulate mechanotransduction, and the physical coupling of the cell nucleus with the cytoskeleton can affect chromatin structure and regulate the epigenetic state, gene expression and cell function. In this review, we will highlight the recent progress in nuclear biomechanics and mechanobiology in the context of cell engineering, tissue remodeling and disease development.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California, Los Angeles, CA, USA; School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Binru Chen
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Li Yang
- School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA, USA; Department of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
32
|
HORISAWA K, SUZUKI A. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:131-158. [PMID: 32281550 PMCID: PMC7247973 DOI: 10.2183/pjab.96.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cells of multicellular organisms have diverse characteristics despite having the same genetic identity. The distinctive phenotype of each cell is determined by molecular mechanisms such as epigenetic changes that occur throughout the lifetime of an individual. Recently, technologies that enable modification of the fate of somatic cells have been developed, and the number of studies using these technologies has increased drastically in the last decade. Various cell types, including neuronal cells, cardiomyocytes, and hepatocytes, have been generated using these technologies. Although most direct reprogramming methods employ forced transduction of a defined sets of transcription factors to reprogram cells in a manner similar to induced pluripotent cell technology, many other strategies, such as methods utilizing chemical compounds and microRNAs to change the fate of somatic cells, have also been developed. In this review, we summarize transcription factor-based reprogramming and various other reprogramming methods. Additionally, we describe the various industrial applications of direct reprogramming technologies.
Collapse
Affiliation(s)
- Kenichi HORISAWA
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi SUZUKI
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence should be addressed: A. Suzuki, Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
33
|
Hansel CS, Holme MN, Gopal S, Stevens MM. Advances in high-resolution microscopy for the study of intracellular interactions with biomaterials. Biomaterials 2020; 226:119406. [DOI: 10.1016/j.biomaterials.2019.119406] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
|
34
|
Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming. Adv Drug Deliv Rev 2020; 161-162:124-144. [PMID: 32822682 DOI: 10.1016/j.addr.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
The discovery of induced pluripotent stem cells (iPSCs), reprogrammed to pluripotency from somatic cells, has transformed the landscape of regenerative medicine, disease modelling and drug discovery pipelines. Since the first generation of iPSCs in 2006, there has been enormous effort to develop new methods that increase reprogramming efficiency, and obviate the need for viral vectors. In parallel to this, the promise of in vivo reprogramming to convert cells into a desired cell type to repair damage in the body, constitutes a new paradigm in approaches for tissue regeneration. This review article explores the current state of reprogramming techniques for iPSC generation with a specific focus on alternative methods that use biophysical and biochemical stimuli to reduce or eliminate exogenous factors, thereby overcoming the epigenetic barrier towards vector-free approaches with improved clinical viability. We then focus on application of iPSC for therapeutic approaches, by giving an overview of ongoing clinical trials using iPSCs for a variety of health conditions and discuss future scope for using materials and reagents to reprogram cells in the body.
Collapse
|
35
|
Zhang K, Xiao X, Wang X, Fan Y, Li X. Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies. J Mater Chem B 2019; 7:7090-7109. [PMID: 31702754 DOI: 10.1039/c9tb01682a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Topographical patterning has recently attracted lots of attention in regulating cell fate, understanding the mechanism of cell-microenvironment interactions, and solving the great issues of regenerative medicine. The introduced patterns offer topographical cues that can affect the reconstruction of the cytoskeleton or stimulate cell membrane receptors. Numerous studies have focused on these effects on cell behavior including attachment, migration, proliferation, and differentiation. In this review, five aspects of topographical patterning are discussed: (1) the process of typical micro-/nanotechniques and their advantages and limitations; (2) the effects of patterning on the mechanical properties and surface properties of substrates; (3) the influences of micro-/nanopatterns on the behavior of mesenchymal stem cells, as well as the underlying mechanisms; (4) the application of patterns to solve the issues of targeted organs (e.g., skin, nerves, blood vessels, bones, and heart). In the end, future perspectives that would help promote the efficiency of topographical patterning are proposed.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiongfu Xiao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China and Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
36
|
Song SY, Yoo J, Go S, Hong J, Sohn HS, Lee JR, Kang M, Jeong GJ, Ryu S, Kim SHL, Hwang NS, Char K, Kim BS. Cardiac-mimetic cell-culture system for direct cardiac reprogramming. Theranostics 2019; 9:6734-6744. [PMID: 31660065 PMCID: PMC6815967 DOI: 10.7150/thno.35574] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
Rationale: Cardiovascular diseases often cause substantial heart damage and even heart failure due to the limited regenerative capacity of adult cardiomyocytes. The direct cardiac reprogramming of fibroblasts could be a promising therapeutic option for these patients. Although exogenous transcriptional factors can induce direct cardiac reprogramming, the reprogramming efficiency is too low to be used clinically. Herein, we introduce a cardiac-mimetic cell-culture system that resembles the microenvironment in the heart and provides interactions with cardiomyocytes and electrical cues to the cultured fibroblasts for direct cardiac reprogramming. Methods: Nano-thin and nano-porous membranes and heart like electric stimulus were used in the cardiac-mimetic cell-culture system. The human neonatal dermal fibroblasts containing cardiac transcription factors were plated on the membrane and cultured with the murine cardiomyocyte in the presence of the electric stimulus. The reprogramming efficiency was evaluated by qRT-PCR and immunocytochemistry. Results: Nano-thin and nano-porous membranes in the culture system facilitated interactions between fibroblasts and cardiomyocytes in coculture. The cellular interactions and electric stimulation supplied by the culture system dramatically enhanced the cardiac reprogramming efficiency of cardiac-specific transcriptional factor-transfected fibroblasts. Conclusion: The cardiac-mimetic culture system may serve as an effective tool for producing a feasible number of reprogrammed cardiomyocytes from fibroblasts.
Collapse
|
37
|
Huebsch N. Translational mechanobiology: Designing synthetic hydrogel matrices for improved in vitro models and cell-based therapies. Acta Biomater 2019; 94:97-111. [PMID: 31129361 DOI: 10.1016/j.actbio.2019.05.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022]
Abstract
Synthetic hydrogels have ideal physiochemical properties to serve as reductionist mimics of the extracellular matrix (ECM) for studies on cellular mechanosensing. These studies range from basic observation of correlations between ECM mechanics and cell fate changes to molecular dissection of the underlying mechanisms. Despite intensive work on hydrogels to study mechanobiology, many fundamental questions regarding mechanosensing remain unanswered. In this review, I first discuss historical motivation for studying cellular mechanobiology, and challenges impeding this effort. I next overview recent efforts to engineer hydrogel properties to study cellular mechanosensing. Finally, I focus on in vitro modeling and cell-based therapies as applications of hydrogels that will exploit our ability to create micro-environments with physiologically relevant elasticity and viscoelasticity to control cell biology. These translational applications will not only use our current understanding of mechanobiology but will also bring new tools to study the fundamental problem of how cells sense their mechanical environment. STATEMENT OF SIGNIFICANCE: Hydrogels are an important tool for understanding how our cells can sense their mechanical environment, and to exploit that understanding in regenerative medicine. In the current review, I discuss historical work linking mechanics to cell behavior in vitro, and highlight the role hydrogels played in allowing us to understand how cells monitor mechanical cues. I then highlight potential translational applications of hydrogels with mechanical properties similar to those of the tissues where cells normally reside in our bodies, and discuss how these types of studies can provide clues to help us enhance our understanding of mechanosensing.
Collapse
Affiliation(s)
- Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in Saint Louis, United States.
| |
Collapse
|
38
|
Ameliorating the Fibrotic Remodeling of the Heart through Direct Cardiac Reprogramming. Cells 2019; 8:cells8070679. [PMID: 31277520 PMCID: PMC6679082 DOI: 10.3390/cells8070679] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 12/20/2022] Open
Abstract
Coronary artery disease is the most common form of cardiovascular diseases, resulting in the loss of cardiomyocytes (CM) at the site of ischemic injury. To compensate for the loss of CMs, cardiac fibroblasts quickly respond to injury and initiate cardiac remodeling in an injured heart. In the remodeling process, cardiac fibroblasts proliferate and differentiate into myofibroblasts, which secrete extracellular matrix to support the intact structure of the heart, and eventually differentiate into matrifibrocytes to form chronic scar tissue. Discovery of direct cardiac reprogramming offers a promising therapeutic strategy to prevent/attenuate this pathologic remodeling and replace the cardiac fibrotic scar with myocardium in situ. Since the first discovery in 2010, many progresses have been made to improve the efficiency and efficacy of reprogramming by understanding the mechanisms and signaling pathways that are activated during direct cardiac reprogramming. Here, we overview the development and recent progresses of direct cardiac reprogramming and discuss future directions in order to translate this promising technology into an effective therapeutic paradigm to reverse cardiac pathological remodeling in an injured heart.
Collapse
|
39
|
Sadahiro T. Cardiac regeneration with pluripotent stem cell-derived cardiomyocytes and direct cardiac reprogramming. Regen Ther 2019; 11:95-100. [PMID: 31304202 PMCID: PMC6606831 DOI: 10.1016/j.reth.2019.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/20/2019] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease is the leading cause of death globally. Cardiomyocytes (CMs) have poor regenerative capacity, and pharmacological therapies have limited efficacy in severe heart failure. Currently, there are several promising strategies for cardiac regeneration. The most promising approach to remuscularize failing hearts is cell transplantation therapy using newly generated CMs from exogenous sources, such as pluripotent stem cells. Alternatively, approaches to generate new CMs from endogenous cell sources in situ may also repair the injured heart and improve cardiac function. Direct cardiac reprogramming has emerged as a novel therapeutic approach to regenerate injured hearts by directly converting endogenous cardiac fibroblasts into CM-like cells. Through cell transplantation and direct cardiac reprogramming, new CMs can be generated and scar tissue reduced to improve cardiac function; therefore, cardiac regeneration may serve as a powerful strategy for treatment of severe heart failure. While substantial progress has been made in these two strategies for cardiac regeneration over the past several years, challenges remain for clinical translation. This review provide an overview of previous reports and current challenges in this field.
Collapse
Key Words
- BMP, bone morphogenic protein
- CFs, cardiac fibroblasts
- CMs, cardiomyocytes
- CPCs, cardiac progenitor cells
- Cardiomyocytes
- Direct reprogramming
- ESCs, embryonic stem cells
- Fibroblasts
- GHMT, GMT plus Hand2
- GMT, Gata4
- MI, myocardial infarction
- Mef2c, and Tbx5
- PSCs, pluripotent stem cells
- Pluripotent stem cells
- Regeneration
- SeV-GMT, Sendai virus vector expressing GMT
- iCMs, induced cardiomyocyte-like cells
- iPSCs, induced pluripotent stem cells
- miRs, microRNAs
Collapse
Affiliation(s)
- Taketaro Sadahiro
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba City, Ibaraki, 305-8575, Japan
| |
Collapse
|
40
|
Yeh YT, Wei J, Thorossian S, Nguyen K, Hoffman C, Del Álamo JC, Serrano R, Li YSJ, Wang KC, Chien S. MiR-145 mediates cell morphology-regulated mesenchymal stem cell differentiation to smooth muscle cells. Biomaterials 2019; 204:59-69. [PMID: 30884320 PMCID: PMC6825513 DOI: 10.1016/j.biomaterials.2019.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
The use of biochemical signaling to derive smooth muscle cells (SMCs) from mesenchymal stem cells (MSCs) has been explored, but the induction of a fully functional SMC phenotype remains to be a major challenge. Cell morphology has been shown to regulate MSC differentiation into various lineages, including SMCs. We engineered substrates with microgrooves to induce cell elongation to study the mechanism underlying the MSC shape modulation in SMC differentiation. In comparison to those on flat substrates, MSCs cultured on engineered substrates were elongated with increased aspect ratios for both cell body and nucleus, as well as augmented cytoskeletal tensions. Biochemical studies indicated that the microgroove-elongated cells expressed significantly higher levels of SMC markers. MicroRNA analyses showed that up-regulation of miR-145 and the consequent repression of KLF4 in these elongated cells promoted MSC-to-SMC differentiation. Rho/ROCK inhibitions, which impair cytoskeletal tension, attenuated cell and nuclear elongations and disrupted the miR-145/KLF4 regulation for SMC differentiation. Furthermore, cell traction force measurements showed that miR-145 is essential for the functional contractility in the microgroove-induced SMC differentiation. Collectively, our findings demonstrate that, through a Rho-ROCK/miR-145/KLF4 pathway, the elongated cell shape serves as a decisive geometric cue to direct MSC differentiation into functional SMCs.
Collapse
Affiliation(s)
- Yi-Ting Yeh
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Josh Wei
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Satenick Thorossian
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Katherine Nguyen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Clarissa Hoffman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Juan C Del Álamo
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Ricardo Serrano
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Yi-Shuan Julie Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Kuei-Chun Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States.
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States.
| |
Collapse
|
41
|
Sun W, Lee J, Zhang S, Benyshek C, Dokmeci MR, Khademhosseini A. Engineering Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801039. [PMID: 30643715 PMCID: PMC6325626 DOI: 10.1002/advs.201801039] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/10/2018] [Indexed: 05/18/2023]
Abstract
Advances in genomic sequencing and bioinformatics have led to the prospect of precision medicine where therapeutics can be advised by the genetic background of individuals. For example, mapping cancer genomics has revealed numerous genes that affect the therapeutic outcome of a drug. Through materials and cell engineering, many opportunities exist for engineers to contribute to precision medicine, such as engineering biosensors for diagnosis and health status monitoring, developing smart formulations for the controlled release of drugs, programming immune cells for targeted cancer therapy, differentiating pluripotent stem cells into desired lineages, fabricating bioscaffolds that support cell growth, or constructing "organs-on-chips" that can screen the effects of drugs. Collective engineering efforts will help transform precision medicine into a more personalized and effective healthcare approach. As continuous progress is made in engineering techniques, more tools will be available to fully realize precision medicine's potential.
Collapse
Affiliation(s)
- Wujin Sun
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Junmin Lee
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Shiming Zhang
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Cole Benyshek
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Mehmet R. Dokmeci
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
- Department of RadiologyUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Ali Khademhosseini
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
- Department of RadiologyUniversity of California–Los AngelesLos AngelesCA90095USA
- Jonsson Comprehensive Cancer CenterUniversity of California–Los Angeles10833 Le Conte AveLos AngelesCA90024USA
- Department of Chemical and Biomolecular EngineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center of NanotechnologyDepartment of PhysicsKing Abdulaziz UniversityJeddah21569Saudi Arabia
- Department of Bioindustrial TechnologiesCollege of Animal Bioscience and TechnologyKonkuk UniversitySeoul05029Republic of Korea
| |
Collapse
|
42
|
Werner JH, Rosenberg JH, Um JY, Moulton MJ, Agrawal DK. Molecular discoveries and treatment strategies by direct reprogramming in cardiac regeneration. Transl Res 2019; 203:73-87. [PMID: 30142308 PMCID: PMC6289806 DOI: 10.1016/j.trsl.2018.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/27/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022]
Abstract
Cardiac tissue has minimal endogenous regenerative capacity in response to injury. Treatment options are limited following tissue damage after events such as myocardial infarction. Current strategies are aimed primarily at injury prevention, but attention has been increasingly targeted toward the development of regenerative therapies. This review focuses on recent developments in the field of cardiac fibroblast reprogramming into induced cardiomyocytes. Early efforts to produce cardiac regeneration centered around induced pluripotent stem cells, but clinical translation has proved elusive. Currently, techniques are being developed to directly transdifferentiate cardiac fibroblasts into induced cardiomyocytes. Viral vector-driven expression of a combination of transcription factors including Gata4, Mef2c, and Tbx5 induced cardiomyocyte development in mice. Subsequent combinational modifications have extended these results to human cell lines and increased efficacy. The miRNAs including combinations of miR-1, miR-133, miR-208, and miR-499 can improve or independently drive regeneration of cardiomyocytes. Similar results could be obtained by combinations of small molecules with or without transcription factor or miRNA expression. The local tissue environment greatly impacts favorability for reprogramming. Modulation of signaling pathways, especially those mediated by VEGF and TGF-β, enhance differentiation to cardiomyocytes. Current reprogramming strategies are not ready for clinical application, but recent breakthroughs promise regenerative cardiac therapies in the near future.
Collapse
Affiliation(s)
- John H Werner
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska
| | - John H Rosenberg
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska
| | - John Y Um
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Michael J Moulton
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska.
| |
Collapse
|
43
|
Pieuchot L, Marteau J, Guignandon A, Dos Santos T, Brigaud I, Chauvy PF, Cloatre T, Ponche A, Petithory T, Rougerie P, Vassaux M, Milan JL, Tusamda Wakhloo N, Spangenberg A, Bigerelle M, Anselme K. Curvotaxis directs cell migration through cell-scale curvature landscapes. Nat Commun 2018; 9:3995. [PMID: 30266986 PMCID: PMC6162274 DOI: 10.1038/s41467-018-06494-6] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 11/27/2022] Open
Abstract
Cells have evolved multiple mechanisms to apprehend and adapt finely to their environment. Here we report a new cellular ability, which we term “curvotaxis” that enables the cells to respond to cell-scale curvature variations, a ubiquitous trait of cellular biotopes. We develop ultra-smooth sinusoidal surfaces presenting modulations of curvature in all directions, and monitor cell behavior on these topographic landscapes. We show that adherent cells avoid convex regions during their migration and position themselves in concave valleys. Live imaging combined with functional analysis shows that curvotaxis relies on a dynamic interplay between the nucleus and the cytoskeleton—the nucleus acting as a mechanical sensor that leads the migrating cell toward concave curvatures. Further analyses show that substratum curvature affects focal adhesions organization and dynamics, nuclear shape, and gene expression. Altogether, this work identifies curvotaxis as a new cellular guiding mechanism and promotes cell-scale curvature as an essential physical cue. The effect that microscale surface curvature has on cell migration has not been evaluated. Here the authors fabricate sinusoidal 3D surfaces and show that the cell nucleus and cytoskeleton cooperate to guide cells to concave valleys in a process they coin curvotaxis.
Collapse
Affiliation(s)
- Laurent Pieuchot
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France. .,Université de Strasbourg, Strasbourg, F-67081, France.
| | - Julie Marteau
- Université de Valenciennes et du Hainaut Cambrésis, LAMIH, UMR-CNRS 8201, Le Mont Houy, Valenciennes, F-59313, France
| | - Alain Guignandon
- Univ Lyon, UJM-Saint-Etienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Etienne, France
| | - Thomas Dos Santos
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| | - Isabelle Brigaud
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| | | | - Thomas Cloatre
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| | - Arnaud Ponche
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| | - Tatiana Petithory
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| | - Pablo Rougerie
- Laboratório de Biomineralização, Centro de Ciênça da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Maxime Vassaux
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, F-13288, France
| | - Jean-Louis Milan
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, F-13288, France
| | - Nayana Tusamda Wakhloo
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| | - Arnaud Spangenberg
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| | - Maxence Bigerelle
- Université de Valenciennes et du Hainaut Cambrésis, LAMIH, UMR-CNRS 8201, Le Mont Houy, Valenciennes, F-59313, France
| | - Karine Anselme
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| |
Collapse
|
44
|
Klose K, Gossen M, Stamm C. Turning fibroblasts into cardiomyocytes: technological review of cardiac transdifferentiation strategies. FASEB J 2018; 33:49-70. [DOI: 10.1096/fj.201800712r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kristin Klose
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT) Berlin Germany
- Charité–Universitätsmedizin Berlin Berlin Germany
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- Helmholtz‐Zentrum Geesthacht (HZG)Institute of Biomaterial Science Teltow Germany
| | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT) Berlin Germany
- Charité–Universitätsmedizin Berlin Berlin Germany
- German Centre for Cardiovascular Research (DZHK)Partner Site Berlin Berlin Germany
- Department of Cardiothoracic and Vascular SurgeryDeutsches Herzzentrum Berlin (DHZB) Berlin Germany
| |
Collapse
|
45
|
Direct Cardiac Reprogramming: A Novel Approach for Heart Regeneration. Int J Mol Sci 2018; 19:ijms19092629. [PMID: 30189626 PMCID: PMC6165160 DOI: 10.3390/ijms19092629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/01/2018] [Accepted: 09/01/2018] [Indexed: 12/12/2022] Open
Abstract
Cardiac diseases are among the most common causes of death globally. Cardiac muscle has limited proliferative capacity, and regenerative therapies are highly in demand as a new treatment strategy. Although pluripotent reprogramming has been developed, it has obstacles, such as a potential risk of tumor formation, poor survival of the transplanted cells, and high cost. We previously reported that fibroblasts can be directly reprogrammed to cardiomyocytes by overexpressing a combination of three cardiac-specific transcription factors (Gata4, Mef2c, Tbx5 (together, GMT)). We and other groups have promoted cardiac reprogramming by the addition of certain miRNAs, cytokines, and epigenetic factors, and unraveled new molecular mechanisms of cardiac reprogramming. More recently, we discovered that Sendai virus (SeV) vector expressing GMT could efficiently and rapidly reprogram fibroblasts into integration-free cardiomyocytes in vitro via robust transgene expression. Gene delivery of SeV-GMT also improves cardiac function and reduces fibrosis after myocardial infarction in mice. Through direct cardiac reprogramming, new cardiomyocytes can be generated and scar tissue reduced to restore cardiac function, and, thus, direct cardiac reprogramming may serve as a powerful strategy for cardiac regeneration. Here, we provide an overview of the previous reports and current challenges in this field.
Collapse
|
46
|
Kong YP, Rioja AY, Xue X, Sun Y, Fu J, Putnam AJ. A systems mechanobiology model to predict cardiac reprogramming outcomes on different biomaterials. Biomaterials 2018; 181:280-292. [PMID: 30096562 DOI: 10.1016/j.biomaterials.2018.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/27/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
During normal development, the extracellular matrix (ECM) regulates cell fate mechanically and biochemically. However, the ECM's influence on lineage reprogramming, a process by which a cell's developmental cycle is reversed to attain a progenitor-like cell state followed by subsequent differentiation into a desired cell phenotype, is unknown. Using a material mimetic of the ECM, here we show that ligand identity, ligand density, and substrate modulus modulate indirect cardiac reprogramming efficiency, but were not individually correlated with phenotypic outcomes in a predictive manner. Alternatively, we developed a data-driven model using partial least squares regression to relate short-term cell states, defined by quantitative mechanosensitive responses to different material environments, with long-term changes in phenotype. This model was validated by accurately predicting the reprogramming outcomes on a different material platform. Collectively, these findings suggest a means to rapidly screen candidate biomaterials that support reprogramming with high efficiency, without subjecting cells to the entire reprogramming process.
Collapse
Affiliation(s)
- Yen P Kong
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ana Y Rioja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
| | - Jianping Fu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
47
|
Generalized Empirical Bayes Modeling via Frequentist Goodness of Fit. Sci Rep 2018; 8:9983. [PMID: 29967358 PMCID: PMC6040203 DOI: 10.1038/s41598-018-28130-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/11/2018] [Indexed: 11/17/2022] Open
Abstract
The two key issues of modern Bayesian statistics are: (i) establishing principled approach for distilling statistical prior that is consistent with the given data from an initial believable scientific prior; and (ii) development of a consolidated Bayes-frequentist data analysis workflow that is more effective than either of the two separately. In this paper, we propose the idea of “Bayes via goodness-of-fit” as a framework for exploring these fundamental questions, in a way that is general enough to embrace almost all of the familiar probability models. Several examples, spanning application areas such as clinical trials, metrology, insurance, medicine, and ecology show the unique benefit of this new point of view as a practical data science tool.
Collapse
|
48
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 521] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
49
|
Kim JJ, Hou L, Yang G, Mezak NP, Wanjare M, Joubert LM, Huang NF. Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells. Cell Mol Bioeng 2017; 10:417-432. [PMID: 28936269 DOI: 10.1007/s12195-017-0502-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Human induced pluripotent stem cells (iPSCs) are a promising source of endothelial cells (iPSC-ECs) for engineering three-dimensional (3D) vascularized cardiac tissues. To mimic cardiac microvasculature, in which capillaries are oriented in parallel, we hypothesized that endothelial differentiation of iPSCs within topographically aligned 3D scaffolds would be a facile one-step approach to generate iPSC-ECs as well as induce aligned vascular organization. METHODS Human iPSCs underwent endothelial differentiation within electrospun 3D polycaprolactone (PCL) scaffolds having either randomly oriented or parallel-aligned microfibers. Using transcriptional, protein, and endothelial functional assays, endothelial differentiation was compared between conventional two-dimensional (2D) films and 3D scaffolds having either randomly oriented or aligned microfibers. Furthermore, the role of parallel-aligned microfiber patterning on the organization of vessel-like networks was assessed. RESULTS The cells in both the randomly oriented and aligned 3D scaffolds demonstrated an 11-fold upregulation in gene expression of the endothelial phenotypic marker, CD31, compared to cells on 2D films. This upregulation corresponded to >3-fold increase in CD31 protein expression in 3D scaffolds, compared to 2D films. Concomitantly, other endothelial phenotypic markers including CD144 and endothelial nitric oxide synthase also showed significant transcriptional upregulation in 3D scaffolds by >7-fold, compared to 2D films. Nitric oxide production, which is characteristic of endothelial function, was produced 4-fold more abundantly in 3D scaffolds, compared to on 2D PCL films. Within aligned scaffolds, the iPSC-ECs displayed parallel-aligned vascular-like networks with 70% longer branch length, compared to cells in randomly oriented scaffolds, suggesting that fiber topography modulates vascular network-like formation and patterning. CONCLUSION Together, these results demonstrate that 3D scaffold structure promotes endothelial differentiation, compared to 2D substrates, and that aligned topographical patterning induces anisotropic vascular network organization.
Collapse
Affiliation(s)
- Joseph J Kim
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Luqia Hou
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Guang Yang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Nicholas P Mezak
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Maureen Wanjare
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lydia M Joubert
- Cell Sciences Imaging Facility, Stanford University Medical School, Stanford, CA, USA
| | - Ngan F Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
50
|
Yanamandala M, Zhu W, Garry DJ, Kamp TJ, Hare JM, Jun HW, Yoon YS, Bursac N, Prabhu SD, Dorn GW, Bolli R, Kitsis RN, Zhang J. Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering. J Am Coll Cardiol 2017; 70:766-775. [PMID: 28774384 PMCID: PMC5553556 DOI: 10.1016/j.jacc.2017.06.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Abstract
Transplantations of various stem cells or their progeny have repeatedly improved cardiac performance in animal models of myocardial injury; however, the benefits observed in clinical trials have been generally less consistent. Some of the recognized challenges are poor engraftment of implanted cells and, in the case of human cardiomyocytes, functional immaturity and lack of electrical integration, leading to limited contribution to the heart's contractile activity and increased arrhythmogenic risks. Advances in tissue and genetic engineering techniques are expected to improve the survival and integration of transplanted cells, and to support structural, functional, and bioenergetic recovery of the recipient hearts. Specifically, application of a prefabricated cardiac tissue patch to prevent dilation and to improve pumping efficiency of the infarcted heart offers a promising strategy for making stem cell therapy a clinical reality.
Collapse
Affiliation(s)
- Mounica Yanamandala
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Wuqiang Zhu
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Timothy J Kamp
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Joshua M Hare
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Young-Sup Yoon
- Department of Medicine, Emory University, and Severance Biomedical Science Institute, Yonsei University College of Medicine, Atlanta, Georgia
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Sumanth D Prabhu
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky
| | - Richard N Kitsis
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|