1
|
Mousavi Z, Bagheri M, Rostaminasab G, Mikaeili A, Djalilian AR, Rezakhani L. Tissue engineering strategies for ocular regeneration; from bench to the bedside. Heliyon 2024; 10:e39398. [PMID: 39497964 PMCID: PMC11532841 DOI: 10.1016/j.heliyon.2024.e39398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Millions globally suffer from visual impairment, complicating the management of eye diseases due to various ocular barriers. The eye's complex structure and the limitations of existing treatments have spurred interest in tissue engineering (TE) as a solution. This approach offers new functionalities and improves therapeutic outcomes over traditional drug delivery methods, creating opportunities for treating various eye disorders, from corneal injuries to retinal degeneration. In our review of recent articles concerning the use of scaffolds for eye repair, we categorized scaffolds employed in eye TE from recent studies into four types based on tissue characteristics: natural, synthetic, biohybrid, and decellularized tissue. Additionally, we gathered data on the cell types and animal models associated with each scaffold. This allowed us to gather valuable insights into the benefits and drawbacks of each material. Our research elucidates that, in comparison to conventional treatment modalities, scaffolds in TE emulate the extracellular matrix (ECM) of the eye and facilitate cell proliferation and tissue regeneration. These scaffolds can be precisely tailored to incorporate growth factors that augment the healing process while also providing considerable advantages such as bacterial inhibition, biocompatibility, and enhanced durability. However, they also have drawbacks, such as potential immune responses, poor tissue integration, complex and costly manufacturing, and inconsistent degradation rates that can affect their effectiveness. In this review, we provide an overview of the present condition of eye regenerative treatments, assess notable preclinical and clinical research endeavors, contemplate the obstacles encountered, and speculate on potential advancements in the upcoming decade.
Collapse
Affiliation(s)
- Zeinab Mousavi
- Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masood Bagheri
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolhamid Mikaeili
- Medical Biology Research Center, Health Technology Institute, Kermanshah, University of Medical Sciences, Kermanshah, Iran
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Hu Z, Jiang Z, Meng S, Liu R, Yang K. Research Progress on the Osteogenesis-Related Regulatory Mechanisms of Human Umbilical Cord Mesenchymal Stem Cells. Stem Cell Rev Rep 2023; 19:1252-1267. [PMID: 36917312 DOI: 10.1007/s12015-023-10521-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2023] [Indexed: 03/16/2023]
Abstract
In recent years, research on human umbilical cord mesenchymal stem cells (hUCMSCs) derived from human umbilical cord tissue has accelerated and entered clinical application research. Compared with mesenchymal stem cells (MSCs) from other sources, hUCMSCs can be extracted from different parts of umbilical cord or from the whole umbilical cord. It has the characteristics of less ethical controversy, high differentiation potential, strong proliferation ability, efficient expansion in vitro, avoiding immune rejection and immune privilege, and avoids the limitations of lack of embryonic stem cells, heterogeneity, ethical and moral constraints. hUCMSCs avoid the need for embryonic stem cell sources, heterogeneity, and ethical and moral constraints. Bone defects are very common in clinical practice, but completely effective bone tissue regeneration treatment is challenging. Currently, autologous bone transplantation and allogeneic bone transplantation are main treatment approaches in clinical work, but each has different shortcomings, such as limited sources, invasiveness, immune rejection and insufficient osteogenic ability. Therefore, to solve the bottleneck of bone tissue regeneration and repair, a great amount of research has been carried out to explore the clinical advantages of hUCMSCs as seed cells to promote osteogenesis.However, the regulation of osteogenic differentiation of hUCMSCs is an extremely complex process. Although a large number of studies have demonstrated that the role of hUCMSCs in enhancing local bone regeneration and repair through osteogenic differentiation and transplantation into the body involves multiple signaling pathways, there is no relevant article that summarize the findings. This article discusses the osteogenesis-related regulatory mechanisms of hUCMSCs, summarizes the currently known related mechanisms, and speculates on the possible signals.
Collapse
Affiliation(s)
- Zhengqi Hu
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zhiliang Jiang
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Shengzi Meng
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Rong Liu
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Kun Yang
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
3
|
Ho MT, Ortin-Martinez A, Yan NE, Comanita L, Gurdita A, Pham Truong V, Cui H, Wallace VA, Shoichet MS. Hydrogel assisted photoreceptor delivery inhibits material transfer. Biomaterials 2023; 298:122140. [PMID: 37163876 DOI: 10.1016/j.biomaterials.2023.122140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Cell therapy holds tremendous promise for vision restoration; yet donor cell survival and integration continue to limit efficacy of these strategies. Transplanted photoreceptors, which mediate light sensitivity in the retina, transfer cytoplasmic components to host photoreceptors instead of integrating into the tissue. Donor cell material transfer could, therefore, function as a protein augmentation strategy to restore photoreceptor function. Biomaterials, such as hyaluronan-based hydrogels, can support donor cell survival but have not been evaluated for effects on material transfer. With increased survival, we hypothesized that we would achieve greater material transfer; however, the opposite occurred. Photoreceptors delivered to the subretinal space in mice in a hyaluronan and methylcellulose (HAMC) hydrogel showed reduced material transfer. We examined mitochondria transfer in vitro and cytosolic protein transfer in vivo and demonstrate that HAMC significantly reduced transfer in both contexts, which we ascribe to reduced cell-cell contact. Nanotube-like donor cell protrusions were significantly reduced in the hydrogel-transplanted photoreceptors compared to the saline control group, which suggests that HAMC limits the contact required to the host retina for transfer. Thus, HAMC can be used to manipulate the behaviour of transplanted donor cells in cell therapy strategies.
Collapse
Affiliation(s)
- Margaret T Ho
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Arturo Ortin-Martinez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nicole E Yan
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Akshay Gurdita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Victor Pham Truong
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hong Cui
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.
| | - Molly S Shoichet
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Moghaddam SV, Abedi F, Lotfi H, Salehi R, Barzegar A, Eslaminejad MB, Khalili M, Alizadeh E. An efficient method for cell sheet bioengineering from rBMSCs on thermo-responsive PCL-PEG-PCL copolymer. J Biol Eng 2023; 17:27. [PMID: 37024910 PMCID: PMC10080813 DOI: 10.1186/s13036-023-00346-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/25/2023] [Indexed: 04/08/2023] Open
Abstract
Utilizing both medium enrichment and a thermos-responsive substrate to maintain the cell-to-cell junctions and extracellular matrix (ECM) intact, cell sheet technology has emerged as a ground-breaking approach. Investigating the possibility of using sodium selenite (as medium supplementation) and PCL-PEG-PCL (as vessel coating substrate) in the formation of the sheets from rat bone marrow-derived mesenchymal stem cells (rBMSCs) was the main goal of the present study. To this end, first, Polycaprolactone-co-Poly (ethylene glycol)-co-Polycaprolactone triblock copolymer (PCEC) was prepared by ring-opening copolymerization method and characterized by FTIR, 1 H NMR, and GPC. The sol-gel-sol phase transition temperature of the PCEC aqueous solutions with various concentrations was either measured. Next, rBMSCs were cultured on the PCEC, and let be expanded in five different media containing vitamin C (50 µg/ml), sodium selenite (0.1 µM), vitamin C and sodium selenite (50 µg/ml + 0.1 µM), Trolox, and routine medium. The proliferation of the cells exposed to each material was evaluated. Produced cell sheets were harvested from the polymer surface by temperature reduction and phenotypically analyzed via an inverted microscope, hematoxylin and eosin (H&E) staining, and field emission scanning electron microscopy (FESEM). Through the molecular level, the expression of the stemness-related genes (Sox2, Oct-4, Nanog), selenium-dependent enzymes (TRX, GPX-1), and aging regulator gene (Sirt1) were measured by q RT-PCR. Senescence in cell sheets was checked by beta-galactosidase assay. The results declared the improved ability of the rBMSCs for osteogenesis and adipogenesis in the presence of antioxidants vitamin C, sodium selenite, and Trolox in growth media. The data indicated that in the presence of vitamin C and sodium selenite, the quality of the cell sheet was risen by reducing the number of senescent cells and high transcription of the stemness genes. Monolayers produced by sodium selenite was in higher-quality than the ones produced by vitamin C.
Collapse
Affiliation(s)
- Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Cehajic-Kapetanovic J, Singh MS, Zrenner E, MacLaren RE. Bioengineering strategies for restoring vision. Nat Biomed Eng 2023; 7:387-404. [PMID: 35102278 DOI: 10.1038/s41551-021-00836-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Late-stage retinal degenerative disease involving photoreceptor loss can be treated by optogenetic therapy, cell transplantation and retinal prostheses. These approaches aim to restore light sensitivity to the retina as well as visual perception by integrating neuronal responses for transmission to the cortex. In age-related macular degeneration, some cell-based therapies also aim to restore photoreceptor-supporting tissue to prevent complete photoreceptor loss. In the earlier stages of degeneration, gene-replacement therapy could attenuate retinal-disease progression and reverse loss of function. And gene-editing strategies aim to correct the underlying genetic defects. In this Review, we highlight the most promising gene therapies, cell therapies and retinal prostheses for the treatment of retinal disease, discuss the benefits and drawbacks of each treatment strategy and the factors influencing whether functional tissue is reconstructed and repaired or replaced with an electronic device, and summarize upcoming technologies for enhancing the restoration of vision.
Collapse
Affiliation(s)
- Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | | | - Eberhart Zrenner
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
6
|
Monville C, Goureau O, Ben M'Barek K. Photoreceptor Cell Replacement Using Pluripotent Stem Cells: Current Knowledge and Remaining Questions. Cold Spring Harb Perspect Med 2023; 13:a041309. [PMID: 36617642 PMCID: PMC9899646 DOI: 10.1101/cshperspect.a041309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Retinal degeneration is an increasing global burden without cure for the majority of patients. Once retinal cells have degenerated, vision is permanently lost. Different strategies have been developed in recent years to prevent retinal degeneration or to restore sight (e.g., gene therapy, cell therapy, and electronic implants). Herein, we present current treatment strategies with a focus on cell therapy for photoreceptor replacement using human pluripotent stem cells. We will describe the state of the art and discuss obstacles and limitations observed in preclinical animal models as well as future directions to improve graft integration and functionality.
Collapse
Affiliation(s)
- Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
- Université Paris-Saclay, Université d'Evry, U861, 91100 Corbeil-Essonnes, France
| | - Olivier Goureau
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, 75012 Paris, France
| | - Karim Ben M'Barek
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
- Université Paris-Saclay, Université d'Evry, U861, 91100 Corbeil-Essonnes, France
- Centre d'Etude des Cellules Souches, 91100 Corbeil-Essonnes, France
| |
Collapse
|
7
|
Dromel PC, Singh D, Alexander-Katz A, Kurisawa M, Spector M, Young M. Mechano-Chemical Effect of Gelatin- and HA-Based Hydrogels on Human Retinal Progenitor Cells. Gels 2023; 9:gels9010058. [PMID: 36661824 PMCID: PMC9858647 DOI: 10.3390/gels9010058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Engineering matrices for cell therapy requires design criteria that include the ability of these materials to support, protect and enhance cellular behavior in vivo. The chemical and mechanical formulation of the biomaterials can influence not only target cell phenotype but also cellular differentiation. In this study, we have demonstrated the effect of a gelatin (Gtn)-hyaluronic acid (HA) hydrogel on human retinal progenitor cells (hRPCs) and show that by altering the mechanical properties of the materials, cellular behavior is altered as well. We have created an interpenetrating network polymer capable of encapsulating hRPCs. By manipulating the stiffness of the hydrogel, the differentiation potential of the hRPCs was controlled. Interpenetrating network 75 (IPN 75; 75% HA) allowed higher expression of rod photoreceptor markers, whereas cone photoreceptor marker expression was found to be higher in IPN 50. In vivo testing of these living matrices performed in Long-Evans rats showed higher levels of rod photoreceptor marker expression when IPN 75 was injected versus IPN 50. These biomaterials mimic biological cues that are required to simulate the dynamic complexity of natural retinal ECM. These hydrogels can be used as a vehicle for cell delivery in vivo as well as for expansion and differentiation in an in vitro 3D system in a highly reproducible manner.
Collapse
Affiliation(s)
- Pierre C. Dromel
- Schepens Eye Research Institute of Massachusetts Ear and Eye, Mass General Brigham, Harvard Medical School, 20 Staniford Street, Boston, MA 02144, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Deepti Singh
- Schepens Eye Research Institute of Massachusetts Ear and Eye, Mass General Brigham, Harvard Medical School, 20 Staniford Street, Boston, MA 02144, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Motoichi Kurisawa
- Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| | - Myron Spector
- VA Boston Healthcare System, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02155, USA
| | - Michael Young
- Schepens Eye Research Institute of Massachusetts Ear and Eye, Mass General Brigham, Harvard Medical School, 20 Staniford Street, Boston, MA 02144, USA
- Correspondence:
| |
Collapse
|
8
|
Wu A, Lu R, Lee E. Tissue engineering in age-related macular degeneration: a mini-review. J Biol Eng 2022; 16:11. [PMID: 35578246 PMCID: PMC9109377 DOI: 10.1186/s13036-022-00291-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Age-related macular degeneration (AMD) is a progressive, degenerative disease of the macula, leading to severe visual loss in the elderly population. There are two types of AMD: non-exudative ('dry') AMD and exudative ('wet') AMD. Non-exudative AMD is characterized by drusen formation and macular atrophy, while the blood vessels are not leaky. Exudative AMD is a more advanced form of the disease, featured with abnormal blood vessel growth and vascular leakage. Even though anti-angiogenic therapies have been effective in treating wet AMD by normalizing blood vessels, there is no treatment available to prevent or treat dry AMD. Currently, the mechanisms of drusen formation and macular atrophy in the dry AMD are poorly understood, in part because the currently available in vivo models of AMD could not decouple and isolate the complex biological and biophysical factors in the macular region for a detailed mechanism study, including the complement system, angiogenesis factors, extracellular matrix, etc. In the present review article, we describe the biological background of AMD and the key cells and structures in AMD, including retinal epithelium, photoreceptor, Bruch's membrane, and choriocapillaris. We also discuss pre-clinical animal models of AMD and in vivo tissue-engineered approaches, including cell suspension injection and organoid-derived cell sheet transplantation. We also discuss in vitro tissue-engineered models for AMD research. Specifically, we evaluate and compare currently available two- and three-dimensional AMD tissue-engineered models that mimic key anatomical players in AMD progression, including pathophysiological characteristics in Bruch's membrane, photoreceptor, and choriocapillaris. Finally, we discuss the limitation of current AMD models and future directions.
Collapse
Affiliation(s)
- Andres Wu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Ann S. Bowers College of Computing and Information Science, Cornell University, Ithaca, NY, 14853, USA
| | - Renhao Lu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
9
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
10
|
Rizzolo LJ, Nasonkin IO, Adelman RA. Retinal Cell Transplantation, Biomaterials, and In Vitro Models for Developing Next-generation Therapies of Age-related Macular Degeneration. Stem Cells Transl Med 2022; 11:269-281. [PMID: 35356975 PMCID: PMC8968686 DOI: 10.1093/stcltm/szac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Retinal pigment epithelium (RPE) cells grown on a scaffold, an RPE patch, have potential to ameliorate visual impairment in a limited number of retinal degenerative conditions. This tissue-replacement therapy is suited for age-related macular degeneration (AMD), and related diseases. RPE cells must be transplanted before the disease reaches a point of no return, represented by the loss of photoreceptors. Photoreceptors are specialized, terminally differentiated neurosensory cells that must interact with RPE's apical processes to be functional. Human photoreceptors are not known to regenerate. On the RPE's basal side, the RPE transplant must induce the reformation of the choriocapillaris, thereby re-establishing the outer blood-retinal barrier. Because the scaffold is positioned between the RPE and choriocapillaris, it should ideally degrade and be replaced by the natural extracellular matrix that separates these tissues. Besides biodegradable, the scaffolds need to be nontoxic, thin enough to not affect the focal length of the eye, strong enough to survive the transplant procedure, yet flexible enough to conform to the curvature of the retina. The challenge is patients with progressing AMD treasure their remaining vision and fear that a risky surgical procedure will further degrade their vision. Accordingly, clinical trials only treat eyes with severe impairment that have few photoreceptors to interact with the transplanted patch. Although safety has been demonstrated, the cell-replacement mechanism and efficacy remain difficult to validate. This review covers the structure of the retina, the pathology of AMD, the limitations of cell therapy approaches, and the recent progress in developing retinal therapies using biomaterials.
Collapse
Affiliation(s)
- Lawrence J Rizzolo
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
- Department of Surgery, Yale University, New Haven, CT, USA
| | | | - Ron A Adelman
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Huang Y, Huang Z, Tang Z, Chen Y, Huang M, Liu H, Huang W, Ye Q, Jia B. Research Progress, Challenges, and Breakthroughs of Organoids as Disease Models. Front Cell Dev Biol 2021; 9:740574. [PMID: 34869324 PMCID: PMC8635113 DOI: 10.3389/fcell.2021.740574] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/28/2021] [Indexed: 01/14/2023] Open
Abstract
Traditional cell lines and xenograft models have been widely recognized and used in research. As a new research model, organoids have made significant progress and development in the past 10 years. Compared with traditional models, organoids have more advantages and have been applied in cancer research, genetic diseases, infectious diseases, and regenerative medicine. This review presented the advantages and disadvantages of organoids in physiological development, pathological mechanism, drug screening, and organ transplantation. Further, this review summarized the current situation of vascularization, immune microenvironment, and hydrogel, which are the main influencing factors of organoids, and pointed out the future directions of development.
Collapse
Affiliation(s)
- Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Weibo Huang
- Department of stomatology, Guangdong Provincial Corps Hospital, Chinese People's Armed Police Force, Guangzhou, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Esfahani SN, Resto Irizarry AM, Xue X, Lee SBD, Shao Y, Fu J. Micro/nanoengineered technologies for human pluripotent stem cells maintenance and differentiation. NANO TODAY 2021; 41:101310. [PMID: 34745321 PMCID: PMC8570530 DOI: 10.1016/j.nantod.2021.101310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human pluripotent stem cells (hPSCs) are a promising source of cells for cell replacement-based therapies as well as modeling human development and diseases in vitro. However, achieving fate control of hPSC with a high yield and specificity remains challenging. The fate specification of hPSCs is regulated by biochemical and biomechanical cues in their environment. Driven by this knowledge, recent exciting advances in micro/nanoengineering have been leveraged to develop a broad range of tools for the generation of extracellular biomechanical and biochemical signals that determine the behavior of hPSCs. In this review, we summarize such micro/nanoengineered technologies for controlling hPSC fate and highlight the role of biochemical and biomechanical cues such as substrate rigidity, surface topography, and cellular confinement in the hPSC-based technologies that are on the horizon.
Collapse
Affiliation(s)
- Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel Byung-Deuk Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Shao
- Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Jiangping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
13
|
Wagstaff EL, Heredero Berzal A, Boon CJF, Quinn PMJ, ten Asbroek ALMA, Bergen AA. The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. Int J Mol Sci 2021; 22:7081. [PMID: 34209272 PMCID: PMC8268497 DOI: 10.3390/ijms22137081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.
Collapse
Affiliation(s)
- Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center—New York-Presbyterian Hospital, New York, NY 10032, USA;
| | | | - Arthur A. Bergen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
14
|
Maturation and Protection Effect of Retinal Tissue-Derived Bioink for 3D Cell Printing Technology. Pharmaceutics 2021; 13:pharmaceutics13070934. [PMID: 34201702 PMCID: PMC8309106 DOI: 10.3390/pharmaceutics13070934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/12/2023] Open
Abstract
Retinal degeneration is a leading cause of incurable vision loss and blindness. The increasing incidence of retinal degeneration has triggered research into the development of in vitro retinal models for drug development and retinal alternatives for transplantation. However, the complex retinal structure and the retinal microenvironment pose serious challenges. Although 3D cell printing technology has been widely used in tissue engineering, including in vitro model development and regeneration medicine, currently available bioinks are insufficient to recapitulate the complex extracellular matrix environment of the retina. Therefore, in this study, we developed a retinal decellularized extracellular matrix (RdECM) from the porcine retina and evaluated its characteristics. The RdECM conserved the ECM components from the native retina without cellular components. Then, we mixed the RdECM with collagen to form a bioink and confirmed its suitability for 3D cell printing. We further studied the effect of the RdECM bioink on the differentiation of Muller cells. The retinal protective effect of the RdECM bioink was confirmed through a retinal degeneration animal model. Thus, we believe that the RdECM bioink is a promising candidate for retinal tissue engineering.
Collapse
|
15
|
Singh D, Chen X, Xia T, Ghiassi-Nejad M, Tainsh L, Adelman RA, Rizzolo LJ. Partially Differentiated Neuroretinal Cells Promote Maturation of the Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2021; 61:9. [PMID: 33151282 PMCID: PMC7671856 DOI: 10.1167/iovs.61.13.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Purpose Many studies have demonstrated the ability of the retinal pigment epithelium (RPE) to foster the maturation of the developing retina. Few studies have examined the reciprocal effects of developing retina on the RPE. Methods RPE isolated from human fetal RPE or differentiated from human stem cells was cultured on Transwell filter inserts. Retinal progenitor cells (RPCs) were differentiated from human stem cells and cultured on a planar scaffold composed of gelatin, chondroitin sulfate, hyaluronic acid, and laminin-521. Cultures were analyzed by quantitative RT-PCR, immunofluorescence, immunoblotting, and transepithelial electrical resistance (TER). Results RPCs initially differentiated into several retina-like cell types that segregated from one another and formed loosely organized layers or zones. With time, the presumptive photoreceptor and ganglion cell layers persisted, but the intervening zone became dominated by cells that expressed glial markers with no evidence of bipolar cells or interneurons. Co-culture of this underdeveloped retinoid with the RPE resulted in a thickened layer of recoverin-positive cells but did not prevent the loss of interneuron markers in the intervening zone. Although photoreceptor inner and outer segments were not observed, immunoblots revealed that co-culture increased expression of rhodopsin and red/green opsin. Co-culture of the RPE with this underdeveloped retinal culture increased the TER of the RPE and the expression of RPE signature genes. Conclusions These studies indicated that an immature neurosensory retina can foster maturation of the RPE; however, the ability of RPE alone to foster maturation of the neurosensory retina is limited.
Collapse
Affiliation(s)
- Deepti Singh
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, United States.,Department of Ophthalmology and Visual Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Xiaoyu Chen
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, United States.,Department of Ophthalmology and Visual Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, United States.,Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tina Xia
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, United States.,Department of Ophthalmology and Visual Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Maryam Ghiassi-Nejad
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, United States.,Department of Ophthalmology and Visual Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Laurel Tainsh
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, United States.,Department of Ophthalmology and Visual Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Ron A Adelman
- Department of Ophthalmology and Visual Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Lawrence J Rizzolo
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, United States.,Department of Ophthalmology and Visual Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
16
|
Lee IK, Ludwig AL, Phillips MJ, Lee J, Xie R, Sajdak BS, Jager LD, Gong S, Gamm DM, Ma Z. Ultrathin micromolded 3D scaffolds for high-density photoreceptor layer reconstruction. SCIENCE ADVANCES 2021; 7:eabf0344. [PMID: 33883135 PMCID: PMC8059936 DOI: 10.1126/sciadv.abf0344] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/04/2021] [Indexed: 05/06/2023]
Abstract
Polymeric scaffolds are revolutionizing therapeutics for blinding disorders affecting the outer retina, a region anatomically and functionally defined by light-sensitive photoreceptors. Recent engineering advances have produced planar scaffolds optimized for retinal pigment epithelium monolayer delivery, which are being tested in early-stage clinical trials. We previously described a three-dimensional scaffold supporting a polarized photoreceptor monolayer, but photoreceptor somata typically occupy multiple densely packed strata to maximize light detection. Thus, patients with severe photoreceptor degeneration are expected to extract greater benefits from higher-density photoreceptor delivery. Here, we describe the microfabrication of a biodegradable scaffold patterned for high-density photoreceptor replacement. The "ice cube tray" structure optimizes mechanical properties and cell-to-biomaterial load, enabling production of a multicellular photoreceptor layer designed for outer retinal reconstruction. Our approach may also be useful in the production of a multitude of micro- and nanoscale structures for multilayered cell delivery in other tissues.
Collapse
Affiliation(s)
- In-Kyu Lee
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Allison L Ludwig
- Department of Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - M Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Juhwan Lee
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Benjamin S Sajdak
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Lindsey D Jager
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Shaoqin Gong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - David M Gamm
- Department of Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhenqiang Ma
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Materials Science and Engineering, University of Wisconsin- Madison, WI 53706, USA
- Department of Engineering Physics, University of Wisconsin- Madison, WI 53706, USA
- Grainger Institute for Engineering, University of Wisconsin- Madison, WI 53706, USA
| |
Collapse
|
17
|
Liu F, Peng S, Adelman RA, Rizzolo LJ. Knockdown of Claudin-19 in the Retinal Pigment Epithelium Is Accompanied by Slowed Phagocytosis and Increased Expression of SQSTM1. Invest Ophthalmol Vis Sci 2021; 62:14. [PMID: 33591357 PMCID: PMC7900869 DOI: 10.1167/iovs.62.2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/22/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Besides regulating paracellular diffusion, claudin-19 modulates the expression of proteins essential for the retinal pigment epithelium (RPE). This study asks how RPE responds when the expression of claudin-19 is reduced. Methods In stem cell-derived RPE, claudin-19 and sequestosome-1/p62 (SQSTM1) were knocked down with siRNAs. Expression was monitored by quantitative RT-PCR and western blotting. Morphology and function were monitored by immunocytochemistry and transepithelial electrical resistance (TER). Phagocytosis of photoreceptor outer segments (POSs) was followed by fluorescence-activated cell sorting and western blotting. Pharmacology was used to assess the effects of AMP-activated protein kinase (AMPK) and SQSTM1 on phagocytosis. Enzymatic activity was measured using commercial assay kits. Results Knockdown of claudin-19 reduced the TER without affecting the integrity of the apical junctional complex, as assessed by the distribution of zonula occludens-1 and filamentous actin. AMPK was activated without apparent effect on autophagy. Activation of AMPK alone had little effect on phagocytosis. Without affecting ingestion, knockdown reduced the rate of POS degradation and increased the steady-state levels of LC3B and SQSTM1. Proteasome inhibitors also retarded degradation, as did knockdown of SQSTM1. The expression of metallothioneins and the activity of superoxide dismutase increased. Conclusions Knockdown of claudin-19 slowed the degradation of internalized POSs. The study questions the role of activated AMPK in phagocytosis and suggests a role for SQSTM1. Further, knockdown was associated with a partial oxidative stress response. The study opens new avenues of experimentation to explore these essential RPE functions.
Collapse
Affiliation(s)
- Fanfei Liu
- Aier School of Ophthalmology, Central South University, Changsha, China
- Department of Surgery, Yale University, New Haven, Connecticut, United States
- Deparment of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut, United States
| | - Shaomin Peng
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Ron A. Adelman
- Deparment of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut, United States
| | - Lawrence J. Rizzolo
- Department of Surgery, Yale University, New Haven, Connecticut, United States
- Deparment of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
18
|
The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells 2021; 10:cells10020240. [PMID: 33513719 PMCID: PMC7912181 DOI: 10.3390/cells10020240] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
The rapid progress in the field of stem cell research has laid strong foundations for their use in regenerative medicine applications of injured or diseased tissues. Growing evidences indicate that some observed therapeutic outcomes of stem cell-based therapy are due to paracrine effects rather than long-term engraftment and survival of transplanted cells. Given their ability to cross biological barriers and mediate intercellular information transfer of bioactive molecules, extracellular vesicles are being explored as potential cell-free therapeutic agents. In this review, we first discuss the state of the art of regenerative medicine and its current limitations and challenges, with particular attention on pluripotent stem cell-derived products to repair organs like the eye, heart, skeletal muscle and skin. We then focus on emerging beneficial roles of extracellular vesicles to alleviate these pathological conditions and address hurdles and operational issues of this acellular strategy. Finally, we discuss future directions and examine how careful integration of different approaches presented in this review could help to potentiate therapeutic results in preclinical models and their good manufacturing practice (GMP) implementation for future clinical trials.
Collapse
|
19
|
Jemni-Damer N, Guedan-Duran A, Fuentes-Andion M, Serrano-Bengoechea N, Alfageme-Lopez N, Armada-Maresca F, Guinea GV, Perez-Rigueiro J, Rojo F, Gonzalez-Nieto D, Kaplan DL, Panetsos F. Biotechnology and Biomaterial-Based Therapeutic Strategies for Age-Related Macular Degeneration. Part II: Cell and Tissue Engineering Therapies. Front Bioeng Biotechnol 2020; 8:588014. [PMID: 33363125 PMCID: PMC7758210 DOI: 10.3389/fbioe.2020.588014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related Macular Degeneration (AMD) is an up-to-date untreatable chronic neurodegenerative eye disease of multifactorial origin, and the main causes of blindness in over 65 y.o. people. It is characterized by a slow progression and the presence of a multitude of factors, highlighting those related to diet, genetic heritage and environmental conditions, present throughout each of the stages of the illness. Current therapeutic approaches, mainly consisting on intraocular drug delivery, are only used for symptoms relief and/or to decelerate the progression of the disease. Furthermore, they are overly simplistic and ignore the complexity of the disease and the enormous differences in the symptomatology between patients. Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, different treatment options have to be considered. Cell therapy is a very promising alternative to drug-based approaches for AMD treatment. Cells delivered to the affected tissue as a suspension have shown poor retention and low survival rate. A solution to these inconveniences has been the encapsulation of these cells on biomaterials, which contrive to their protection, gives them support, and favor their retention of the desired area. We offer a two-papers critical review of the available and under development AMD therapeutic approaches, from a biomaterials and biotechnological point of view. We highlight benefits and limitations and we forecast forthcoming alternatives based on novel biomaterials and biotechnology methods. In this second part we review the preclinical and clinical cell-replacement approaches aiming at the development of efficient AMD-therapies, the employed cell types, as well as the cell-encapsulation and cell-implant systems. We discuss their advantages and disadvantages and how they could improve the survival and integration of the implanted cells.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
| | - Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - María Fuentes-Andion
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
| | - Nora Serrano-Bengoechea
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Nuria Alfageme-Lopez
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | | | - Gustavo V. Guinea
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - José Perez-Rigueiro
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Francisco Rojo
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|
20
|
Ghareeb AE, Lako M, Steel DH. Coculture techniques for modeling retinal development and disease, and enabling regenerative medicine. Stem Cells Transl Med 2020; 9:1531-1548. [PMID: 32767661 PMCID: PMC7695644 DOI: 10.1002/sctm.20-0201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022] Open
Abstract
Stem cell-derived retinal organoids offer the opportunity to cure retinal degeneration of wide-ranging etiology either through the study of in vitro models or the generation of tissue for transplantation. However, despite much work in animals and several human pilot studies, satisfactory therapies have not been developed. Two major challenges for retinal regenerative medicine are (a) physical cell-cell interactions, which are critical to graft function, are not formed and (b) the host environment does not provide suitable queues for development. Several strategies offer to improve the delivery, integration, maturation, and functionality of cell transplantation. These include minimally invasive delivery, biocompatible material vehicles, retinal cell sheets, and optogenetics. Optimizing several variables in animal models is practically difficult, limited by anatomical and disease pathology which is often different to humans, and faces regulatory and ethical challenges. High-throughput methods are needed to experimentally optimize these variables. Retinal organoids will be important to the success of these models. In their current state, they do not incorporate a representative retinal pigment epithelium (RPE)-photoreceptor interface nor vascular elements, which influence the neural retina phenotype directly and are known to be dysfunctional in common retinal diseases such as age-related macular degeneration. Advanced coculture techniques, which emulate the RPE-photoreceptor and RPE-Bruch's-choriocapillaris interactions, can incorporate disease-specific, human retinal organoids and overcome these drawbacks. Herein, we review retinal coculture models of the neural retina, RPE, and choriocapillaris. We delineate the scientific need for such systems in the study of retinal organogenesis, disease modeling, and the optimization of regenerative cell therapies for retinal degeneration.
Collapse
Affiliation(s)
- Ali E. Ghareeb
- Sunderland Eye Infirmary, South Tyneside and Sunderland NHS Foundation TrustSunderlandUK
- Biosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Majlinda Lako
- Biosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - David H. Steel
- Sunderland Eye Infirmary, South Tyneside and Sunderland NHS Foundation TrustSunderlandUK
- Biosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
21
|
Hua ZQ, Liu H, Wang N, Jin ZB. Towards stem cell-based neuronal regeneration for glaucoma. PROGRESS IN BRAIN RESEARCH 2020; 257:99-118. [PMID: 32988476 DOI: 10.1016/bs.pbr.2020.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glaucoma is a neurodegenerative disease as a leading cause of global blindness. Retinal ganglion cell (RGC) apoptosis and optic nerve damage are the main pathological changes. Patients have elevated intraocular pressure and progressive visual field loss. Unfortunately, current treatments for glaucoma merely stay at delaying the disease progression. As a promising treatment, stem cell-based neuronal regeneration therapy holds potential for glaucoma, thereby great efforts have been paid on it. RGC regeneration and transplantation are key approaches for the future treatment of glaucoma. A line of studies have shown that a variety of cells can be used to regenerate RGCs, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells (RPCs). In this review, we overview the current progress on the regeneration of pluripotent stem cell-derived RGCs and outlook the perspective and challenges in this field.
Collapse
Affiliation(s)
- Zi-Qi Hua
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hui Liu
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.
| |
Collapse
|
22
|
Liu Y, Huang L, Yuan W, Zhang D, Gu Y, Huang J, Murphy S, Ali M, Zhang Y, Song L. Sustained release of stromal cell-derived factor-1 alpha from silk fibroin microfiber promotes urethral reconstruction in rabbits. J Biomed Mater Res A 2020; 108:1760-1773. [PMID: 32276293 DOI: 10.1002/jbm.a.36943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
We developed a stromal cell-derived factor-1 alpha (SDF-1α)-aligned silk fibroin (SF)/three-dimensional porous bladder acellular matrix graft (3D-BAMG) composite scaffold for long-section ventral urethral regeneration and repair in vivo. SDF-1α-aligned SF microfiber/3D-BAMG, aligned SF microfiber/3D-BAMG, and nonaligned SF microfiber/3D-BAMG scaffolds were prepared using electrostatic spinning and wet processing. Adipose-derived stem cell (ADSC) and bone marrow stromal cell (BMSC) migration was assessed in the SDF-1α-loaded scaffolds. Sustained SDF-1α release in vitro and vivo was analyzed using enzyme-linked immunosorbent assay (ELISA) and western blotting, respectively. The scaffolds were used to repair a 1.5 × 1 cm2 ventral urethral defect in male rabbits in vivo. General observation and retrograde urinary tract contrast assessment were used to examine urethral lumen patency and continuity at 1 and 3 months post-surgery. Postoperative rehabilitation was evaluated using histological detection. The composite scaffolds sustained SDF-1α release for over 16 days in vitro. SDF-1α-aligned SF nanofiber promoted regeneration of urethral mucosa, submucosal smooth muscles, and microvasculature, increased cellular proliferation, and reduced collagen deposition. SDF-1α expression was increased in reconstructed urethra at 3 months post-surgery in SDF-1α-aligned SF group. SDF-1α-aligned SF microfiber/3D-BAMG scaffolds may be used to repair and reconstruct long urethral defects because they accelerate urethral regeneration.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China.,Department of Urology, Weifang People's Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Li Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Wei Yuan
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China.,Department of Urology, Weifang People's Hospital, Weifang Medical University, Weifang, Shandong, China.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Dongliang Zhang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yubo Gu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jianwen Huang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Sean Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Mohamed Ali
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.,Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Lujie Song
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
23
|
Chen X, Singh D, Adelman RA, Rizzolo LJ. Unstimulated, Serum-free Cultures of Retinal Pigment Epithelium Excrete Large Mounds of Drusen-like Deposits. Curr Eye Res 2020; 45:1390-1394. [PMID: 32202447 DOI: 10.1080/02713683.2020.1740744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: A hallmark of age-related macular degeneration is the accumulation of deposits of lipids and proteins, called drusen, in Bruch's membrane. Several culture models of retinal pigment epithelia (RPE) develop drusen-like deposits. We examined whether prolonged culture of RPE with a retina-like tissue affected the number or size of these deposits. Methods: RPE and retinal progenitor cells (RPC) were differentiated from induced pluripotent stem cells derived from fetal tissue and maintained in serum-free medium containing the B27 supplement. RPE was cultured on Transwell filter inserts, and RPC were cultured on a planar matrix composed of gelatin, hyaluronic acid, and chondroitin sulfate. After seeding the filter, RPC were layered on top of the RPE. RPE ± RPC were cultured for six months. The function of RPE tight junctions was assessed by the transepithelial electrical resistance. Cultures were stained for actin, neutral lipids, APOE, TIMP3, vitronectin, and calcium deposits. Morphometric analysis was used to determine the number and volume of the "druse". Results: After six months, the TER was greater for the co-cultures (304 ± 11 Ω× cm2 vs 243 ± 7 Ω× cm2, p < .01). RPE formed mounds of druse-like deposits that contained, vitronectin, APOE, TIMP3 and calcium deposits, but lipids were undetected. The mounds overlay areas of the filter where no lipid was detected in the pores, and the RPE overlying the mounds was often thin. The number of "druse"/100,000 μm2 was 5.0 ± 0.4 (co-cultures) vs 2.3 ± 0.1 (monocultures) (p < .05). The total volume of "drusen"/100,000 μm3 was 15,133 ± 1544 (co-cultures) vs 5,993 ± 872 (monocultures) (p < .05). There was no statistical difference between the size-distribution of druse-like particles formed by each culture. Conclusions: Covering the apical membrane of RPE with a thick tissue increased the number of druse-like deposits. The apparent size limitation of the deposits may reflect the apparent interruption of the of lipid cycle found at the basal membrane of the RPE.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Surgery, Yale University , New Haven, Connecticut, USA.,Department of Ophthalmology and Visual Science, Yale University , New Haven, Connecticut, USA.,Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, China
| | - Deepti Singh
- Department of Surgery, Yale University , New Haven, Connecticut, USA.,Department of Ophthalmology and Visual Science, Yale University , New Haven, Connecticut, USA
| | - Ron A Adelman
- Department of Ophthalmology and Visual Science, Yale University , New Haven, Connecticut, USA
| | - Lawrence J Rizzolo
- Department of Surgery, Yale University , New Haven, Connecticut, USA.,Department of Ophthalmology and Visual Science, Yale University , New Haven, Connecticut, USA
| |
Collapse
|
24
|
Guan S, Zhang K, Li J. Recent Advances in Extracellular Matrix for Engineering Stem Cell Responses. Curr Med Chem 2019; 26:6321-6338. [DOI: 10.2174/0929867326666190704121309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/02/2018] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
Stem cell transplantation is an advanced medical technology, which brings hope for the
treatment of some difficult diseases in the clinic. Attributed to its self-renewal and differential
ability, stem cell research has been pushed to the forefront of regenerative medicine and has become
a hot topic in tissue engineering. The surrounding extracellular matrix has physical functions
and important biological significance in regulating the life activities of cells, which may play crucial
roles for in situ inducing specific differentiation of stem cells. In this review, we discuss the
stem cells and their engineering application, and highlight the control of the fate of stem cells, we
offer our perspectives on the various challenges and opportunities facing the use of the components
of extracellular matrix for stem cell attachment, growth, proliferation, migration and differentiation.
Collapse
Affiliation(s)
- Shuaimeng Guan
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
25
|
Sung TC, Li HF, Higuchi A, Kumar SS, Ling QD, Wu YW, Burnouf T, Nasu M, Umezawa A, Lee KF, Wang HC, Chang Y, Hsu ST. Effect of cell culture biomaterials for completely xeno-free generation of human induced pluripotent stem cells. Biomaterials 2019; 230:119638. [PMID: 31810728 DOI: 10.1016/j.biomaterials.2019.119638] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) were generated on several biomaterials from human amniotic fluid in completely xeno-free and feeder-free conditions via the transfection of pluripotent genes using a nonintegrating RNA Sendai virus vector. The effect of xeno-free culture medium on the efficiency of the establishment of human amniotic fluid stem cells from amniotic fluid was evaluated. Subsequently, the effect of cell culture biomaterials on the reprogramming efficiency was investigated during the reprogramming of human amniotic fluid stem cells into hiPSCs. Cells cultured in laminin-511, laminin-521, and Synthemax II-coated dishes and hydrogels having optimal elasticity that were engrafted with specific oligopeptides derived from vitronectin could be reprogrammed into hiPSCs with high efficiency. The reprogrammed cells expressed pluripotency proteins and had the capability to differentiate into cells derived from all three germ layers in vitro and in vivo. Human iPSCs could be generated successfully and at high efficiency (0.15-0.25%) in completely xeno-free conditions from the selection of optimal cell culture biomaterials.
Collapse
Affiliation(s)
- Tzu-Cheng Sung
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China; Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan
| | - Hsing-Fen Li
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan
| | - Akon Higuchi
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China; Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan; Wenzhou Institute, University of Chinese Academy of Sciences, No. 16, Xinsan Road, Hi-tech Industry Park, Wenzhou, Zhejiang, China; Department of Reproduction, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan; Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, 200, Chung-Bei Rd., Chungli, Taoyuan, 320, Taiwan; Center for Emergent Matter Science, Riken, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei, 221, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Cellular Therapies and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michiyo Nasu
- Department of Reproduction, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Akihiro Umezawa
- Department of Reproduction, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kuei-Fang Lee
- Precision Medical Laboratory, Lee's OB/GYN Clinic, No. 9, Ln. 31, Sec. 2, Jinshan S. Rd., Da'an Dist., Taipei, 106, Taiwan
| | - Han-Chow Wang
- Department of Obstetrics and Gynecology, Hungchi Women & Children's Hospital, No.223, Yuanhua Rd., Taoyuan, 320, Taiwan
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, 200, Chung-Bei Rd., Chungli, Taoyuan, 320, Taiwan
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, 77, Kuangtai Road, Pingjen City, Taoyuan, 32405, Taiwan
| |
Collapse
|
26
|
Tavakoli Z, Yazdian F, Tabandeh F, Sheikhpour M. Regenerative medicine as a novel strategy for AMD treatment: a review. Biomed Phys Eng Express 2019; 6:012001. [PMID: 33438587 DOI: 10.1088/2057-1976/ab269a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Age-related macular degeneration (AMD) is known as a major cause of irreversible blindness in elderly adults. The segment of the retina responsible for central vision damages in the disease process. Degeneration of retinal pigmented epithelium (RPE) cells, photoreceptors, and choriocapillaris associated with aging participate for visual loss. In 2010, AMD involved 6.6% of all blindness cases around the world. Some of the researches have evaluated the replacing of damaged RPE in AMD patients by using the cells from various sources. Today, the advancement of RPE differentiation or generation from stem cells has been gained, and currently, clinical trials are testing the efficiency and safety of replacing degenerated RPE with healthy RPE. However, the therapeutic success of RPE transplantation may be restricted unless the transplanted cells can be adhered, distributed and survive for long-term in the transplanted site without any infections. In recent years a variety of scaffold types were used as a carrier for RPE transplantation and AMD treatment. In this review, we have discussed types of scaffolds; natural or synthetic, solid or hydrogel and their results in RPE replacement. Eventually, our aim is highlighting the novel and best scaffold carriers that may have potentially promoting the efficacy of RPE transplantation.
Collapse
Affiliation(s)
- Zahra Tavakoli
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
27
|
Fields MA, Del Priore LV, Adelman RA, Rizzolo LJ. Interactions of the choroid, Bruch's membrane, retinal pigment epithelium, and neurosensory retina collaborate to form the outer blood-retinal-barrier. Prog Retin Eye Res 2019; 76:100803. [PMID: 31704339 DOI: 10.1016/j.preteyeres.2019.100803] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
The three interacting components of the outer blood-retinal barrier are the retinal pigment epithelium (RPE), choriocapillaris, and Bruch's membrane, the extracellular matrix that lies between them. Although previously reviewed independently, this review integrates these components into a more wholistic view of the barrier and discusses reconstitution models to explore the interactions among them. After updating our understanding of each component's contribution to barrier function, we discuss recent efforts to examine how the components interact. Recent studies demonstrate that claudin-19 regulates multiple aspects of RPE's barrier function and identifies a barrier function whereby mutations of claudin-19 affect retinal development. Co-culture approaches to reconstitute components of the outer blood-retinal barrier are beginning to reveal two-way interactions between the RPE and choriocapillaris. These interactions affect barrier function and the composition of the intervening Bruch's membrane. Normal or disease models of Bruch's membrane, reconstituted with healthy or diseased RPE, demonstrate adverse effects of diseased matrix on RPE metabolism. A stumbling block for reconstitution studies is the substrates typically used to culture cells are inadequate substitutes for Bruch's membrane. Together with human stem cells, the alternative substrates that have been designed offer an opportunity to engineer second-generation culture models of the outer blood-retinal barrier.
Collapse
Affiliation(s)
- Mark A Fields
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Lucian V Del Priore
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Ron A Adelman
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Lawrence J Rizzolo
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA; Department of Surgery, Yale University School of Medicine, PO Box 208062, New Haven, CT, 06520-8062, USA.
| |
Collapse
|
28
|
Huang HJ, Tsai YL, Lin SH, Hsu SH. Smart polymers for cell therapy and precision medicine. J Biomed Sci 2019; 26:73. [PMID: 31623607 PMCID: PMC6798433 DOI: 10.1186/s12929-019-0571-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/01/2019] [Indexed: 12/28/2022] Open
Abstract
Soft materials have been developed very rapidly in the biomedical field over the past 10 years because of advances in medical devices, cell therapy, and 3D printing for precision medicine. Smart polymers are one category of soft materials that respond to environmental changes. One typical example is the thermally-responsive polymers, which are widely used as cell carriers and in 3D printing. Self-healing polymers are one type of smart polymers that have the capacity to recover the structure after repeated damages and are often injectable through needles. Shape memory polymers are another type with the ability to memorize their original shape. These smart polymers can be used as cell/drug/protein carriers. Their injectability and shape memory performance allow them to be applied in bioprinting, minimally invasive surgery, and precision medicine. This review will describe the general materials design, characterization, as well as the current progresses and challenges of these smart polymers.
Collapse
Affiliation(s)
- Hung-Jin Huang
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan, Republic of China
| | - Yu-Liang Tsai
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan, Republic of China
| | - Shih-Ho Lin
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan, Republic of China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan, Republic of China.
- Research and Development Center for Medical Devices, National Taiwan University, Taipei, Taiwan.
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Miaoli, 35053, Taiwan, Republic of China.
| |
Collapse
|
29
|
Wright CB, Becker SM, Low LA, Tagle DA, Sieving PA. Improved Ocular Tissue Models and Eye-On-A-Chip Technologies Will Facilitate Ophthalmic Drug Development. J Ocul Pharmacol Ther 2019; 36:25-29. [PMID: 31166829 PMCID: PMC6985761 DOI: 10.1089/jop.2018.0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
In this study, we describe efforts by the National Eye Institute (NEI) and National Center for Advancing Translational Science (NCATS) to catalyze advances in 3-dimensional (3-D) ocular organoid and microphysiological systems (MPS). We reviewed the recent literature regarding ocular organoids and tissue chips. Animal models, 2-dimensional cell culture models, and postmortem human tissue samples provide the vision research community with insights critical to understanding pathophysiology and therapeutic development. The advent of induced pluripotent stem cell technologies provide researchers with enticing new approaches and tools that augment study in more traditional models to provide the scientific community with insights that have previously been impossible to obtain. Efforts by the National Institutes of Health (NIH) have already accelerated the pace of scientific discovery, and recent advances in ocular organoid and MPS modeling approaches have opened new avenues of investigation. In addition to more closely recapitulating the morphologies and physiological responses of in vivo human tissue, key breakthroughs have been made in the past year to resolve long-standing scientific questions regarding tissue development, molecular signaling, and pathophysiological mechanisms that promise to provide advances critical to therapeutic development and patient care. 3-D tissue culture modeling and MPS offer platforms for future high-throughput testing of therapeutic candidates and studies of gene interactions to improve models of complex genetic diseases with no well-defined etiology, such as age-related macular degeneration and Fuchs' dystrophy.
Collapse
Affiliation(s)
- Charles B. Wright
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Steven M. Becker
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Lucie A. Low
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Danilo A. Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Paul A. Sieving
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
30
|
Wheway G, Nazlamova L, Turner D, Cross S. 661W Photoreceptor Cell Line as a Cell Model for Studying Retinal Ciliopathies. Front Genet 2019; 10:308. [PMID: 31024622 PMCID: PMC6459963 DOI: 10.3389/fgene.2019.00308] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
The retina contains several ciliated cell types, including the retinal pigment epithelium (RPE) and photoreceptor cells. The photoreceptor cilium is one of the most highly modified sensory cilia in the human body. The outer segment of the photoreceptor is a highly elaborate primary cilium, containing stacks or folds of membrane where the photopigment molecules are located. Perhaps unsurprisingly, defects in cilia often lead to retinal phenotypes, either as part of syndromic conditions involving other organs, or in isolation in the so-called retinal ciliopathies. The study of retinal ciliopathies has been limited by a lack of retinal cell lines. RPE1 retinal pigment epithelial cell line is commonly used in such studies, but the existence of a photoreceptor cell line has largely been neglected in the retinal ciliopathy field. 661W cone photoreceptor cells, derived from mouse, have been widely used as a model for studying macular degeneration, but not described as a model for studying retinal ciliopathies such as retinitis pigmentosa. Here, we characterize the 661W cell line as a model for studying retinal ciliopathies. We fully characterize the expression profile of these cells, using whole transcriptome RNA sequencing, and provide this data on Gene Expression Omnibus for the advantage of the scientific community. We show that these cells express the majority of markers of cone cell origin. Using immunostaining and confocal microscopy, alongside scanning electron microscopy, we show that these cells grow long primary cilia, reminiscent of photoreceptor outer segments, and localize many cilium proteins to the axoneme, membrane and transition zone. We show that siRNA knockdown of cilia genes Ift88 results in loss of cilia, and that this can be assayed by high-throughput screening. We present evidence that the 661W cell line is a useful cell model for studying retinal ciliopathies.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Human Development and Health, Southampton General Hospital, Southampton, United Kingdom
| | - Liliya Nazlamova
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Human Development and Health, Southampton General Hospital, Southampton, United Kingdom
| | - Dann Turner
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom
| | - Stephen Cross
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
31
|
Xie S, Zhou Y, Tang Y, Chen C, Li S, Zhao C, Hu J, Lu H. -Book-shaped decellularized tendon matrix scaffold combined with bone marrow mesenchymal stem cells-sheets for repair of achilles tendon defect in rabbit. J Orthop Res 2019; 37:887-897. [PMID: 30816590 DOI: 10.1002/jor.24255] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/17/2019] [Indexed: 02/04/2023]
Abstract
Tissue-engineering approaches have great potential to improve the treatment of tendon injuries which are major musculoskeletal disorders. The purpose of this study was to assess the tissue engineering potential of a novel multilayered decellularized tendon "book" scaffold with bone marrow mesenchymal stem cells (BMSCs) sheets for repair of an Achilles tendon defect in a rabbit model. In this study, we developed a novel book-shaped decellularized scaffold derived from the extracellular matrix of tendon tissues from New Zealand white rabbits. Hematoxylin and eosin (H&E) staining, 4', 6-diamidino-2-phenylindole (DAPI) staining, DNA quantitation, and scanning electron microscopy (SEM) confirmed the efficiency of decellularization. After culturing BMSCs on decellularized scaffolds, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, SEM, quantitative real time polymerase chain reaction (qRT-PCR), and immunofluorescence analysis demonstrated that decellularized scaffolds have the capacity to yield homogeneous distribution and alignment of BMSCs, as well as support their differentiation into tendon. Tenomodulin and Alpha-1 collagen type I are important indicators for evaluating tenogenic differentiation of BMSCs. When decellularized "book" scaffolds with BMSCs sheets were used to repair a 1 mm Achilles tendon defect, histomorphological analysis, immunohistochemical assessment, and biomechanical testing showed that the book-shaped decellularized tendon matrix scaffold and BMSCs sheets could promote the regeneration of type I collagen at the wound site during healing, and improve the mechanical properties of the repaired tendon. Therefore, the results of this study suggest that the novel decellularized "book" tendon scaffolds combined with BMSCs sheets have therapeutic effects on improving the healing quality of the Achilles tendon. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-11, 2019.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yongchun Zhou
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Department of Orthopedic, Shaanxi Provincial People's Hospital, Xi'an, 710000, People's Republic of China
| | - Yifu Tang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Can Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Chunfeng Zhao
- Division of Orthopedic Research and Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, 55905
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| |
Collapse
|
32
|
Singh D, Thomas D. Advances in medical polymer technology towards the panacea of complex 3D tissue and organ manufacture. Am J Surg 2019; 217:807-808. [DOI: 10.1016/j.amjsurg.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022]
|
33
|
Park J, Baranov P, Aydin A, Abdelgawad H, Singh D, Niu W, Kurisawa M, Spector M, Young MJ. In Situ Cross-linking Hydrogel as a Vehicle for Retinal Progenitor Cell Transplantation. Cell Transplant 2019; 28:596-606. [PMID: 30917696 PMCID: PMC7103606 DOI: 10.1177/0963689719825614] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One of the current limitations of retinal transplantation of stem cells as well as other cell types is the dispersion of cells from the injection site (including loss of cells into the vitreous chamber) and low survival after transplantation. Gelatin-hydroxyphenyl propionic acid (Gtn-HPA) conjugate is a biodegradable polymer that can undergo covalent cross-linking in situ, allowing for injection of incorporated cells through a small caliber needle followed by gel formation in vivo. We tested the hypothesis that Gtn-HPA hydrogel supports survival and integration of retinal progenitor cells (RPCs) post-transplantation. In vitro compatibility and in vivo graft survival were assessed by mixing an equal volume of Gtn-HPA conjugate and RPC suspension and triggering enzyme-mediated gelation, using minute amounts of horseradish peroxidase and peroxide. Immunocytochemistry showed >80% survival of cells and minimal apoptosis for cells incorporated into Gtn-HPA, equivalent to controls grown on fibronectin-coated flasks. RPCs undergoing mitosis were seen within the three-dimensional Gtn-HPA hydrogel, but the percentage of Ki-67-positive cells was lower compared with the monolayer controls. For in vivo studies, gel-cell mixture or cell suspension in saline was trans-sclerally injected into the left eye of female Long Evans rats immunosuppressed with cyclosporine A. Grafts survived at the 1 week time point of the study, with Gtn-HPA-delivered grafts showing less inflammatory response demonstrated by anti-leukocyte staining. More eyes in the gel-cell mixture group showed surviving cells in the subretinal space compared with saline-delivered controls, while the number of cells surviving per graft was not significantly different between the two groups. This work demonstrates an injectable in situ cross-linking hydrogel as a potential vehicle for stem cell delivery in the retina.
Collapse
Affiliation(s)
- Jeayoung Park
- 1 Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.,2 Yale School of Medicine, New Haven, CT, USA
| | - Petr Baranov
- 1 Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Aybike Aydin
- 1 Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Hany Abdelgawad
- 1 Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Deepti Singh
- 1 Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Wanting Niu
- 3 Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Myron Spector
- 3 Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael J Young
- 1 Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
34
|
Dorgau B, Felemban M, Hilgen G, Kiening M, Zerti D, Hunt NC, Doherty M, Whitfield P, Hallam D, White K, Ding Y, Krasnogor N, Al-Aama J, Asfour HZ, Sernagor E, Lako M. Decellularised extracellular matrix-derived peptides from neural retina and retinal pigment epithelium enhance the expression of synaptic markers and light responsiveness of human pluripotent stem cell derived retinal organoids. Biomaterials 2019; 199:63-75. [PMID: 30738336 DOI: 10.1016/j.biomaterials.2019.01.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/11/2019] [Accepted: 01/20/2019] [Indexed: 12/13/2022]
Abstract
Tissue specific extracellular matrices (ECM) provide structural support and enable access to molecular signals and metabolites, which are essential for directing stem cell renewal and differentiation. To mimic this phenomenon in vitro, tissue decellularisation approaches have been developed, resulting in the generation of natural ECM scaffolds that have comparable physical and biochemical properties of the natural tissues and are currently gaining traction in tissue engineering and regenerative therapies due to the ease of standardised production, and constant availability. In this manuscript we report the successful generation of decellularised ECM-derived peptides from neural retina (decel NR) and retinal pigment epithelium (decel RPE), and their impact on differentiation of human pluripotent stem cells (hPSCs) to retinal organoids. We show that culture media supplementation with decel RPE and RPE-conditioned media (CM RPE) significantly increases the generation of rod photoreceptors, whilst addition of decel NR and decel RPE significantly enhances ribbon synapse marker expression and the light responsiveness of retinal organoids. Photoreceptor maturation, formation of correct synapses between retinal cells and recording of robust light responses from hPSC-derived retinal organoids remain unresolved challenges for the field of regenerative medicine. Enhanced rod photoreceptor differentiation, synaptogenesis and light response in response to addition of decellularised matrices from RPE and neural retina as shown herein provide a novel and substantial advance in generation of retinal organoids for drug screening, tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Birthe Dorgau
- Institute of Genetic Medicine, Newcastle University, UK
| | | | | | | | - Darin Zerti
- Institute of Genetic Medicine, Newcastle University, UK
| | | | | | | | - Dean Hallam
- Institute of Genetic Medicine, Newcastle University, UK
| | | | - Yuchun Ding
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, UK
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, UK
| | - Jumana Al-Aama
- Department of Genetic Medicine and Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research o Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, UK.
| |
Collapse
|
35
|
Cell sheet technology: a promising strategy in regenerative medicine. Cytotherapy 2019; 21:3-16. [DOI: 10.1016/j.jcyt.2018.10.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/30/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022]
|
36
|
Tiwari S, Patil R, Bahadur P. Polysaccharide Based Scaffolds for Soft Tissue Engineering Applications. Polymers (Basel) 2018; 11:E1. [PMID: 30959985 PMCID: PMC6401776 DOI: 10.3390/polym11010001] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022] Open
Abstract
Soft tissue reconstructs require materials that form three-dimensional (3-D) structures supportive to cell proliferation and regenerative processes. Polysaccharides, due to their hydrophilicity, biocompatibility, biodegradability, abundance, and presence of derivatizable functional groups, are distinctive scaffold materials. Superior mechanical properties, physiological signaling, and tunable tissue response have been achieved through chemical modification of polysaccharides. Moreover, an appropriate formulation strategy enables spatial placement of the scaffold to a targeted site. With the advent of newer technologies, these preparations can be tailor-made for responding to alterations in temperature, pH, or other physiological stimuli. In this review, we discuss the developmental and biological aspects of scaffolds prepared from four polysaccharides, viz. alginic acid (ALG), chitosan (CHI), hyaluronic acid (HA), and dextran (DEX). Clinical studies on these scaffolds are also discussed.
Collapse
Affiliation(s)
- Sanjay Tiwari
- Maliba Pharmacy College, UKA Tarsadia University, Gopal-Vidyanagar Campus, Surat 394350, Gujarat, India.
| | - Rahul Patil
- Maliba Pharmacy College, UKA Tarsadia University, Gopal-Vidyanagar Campus, Surat 394350, Gujarat, India.
| | - Pratap Bahadur
- Chemistry Department, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India.
| |
Collapse
|
37
|
Tang Z, Jiang F, Zhang Y, Zhang Y, Huang X, Wang Y, Zhang D, Ni N, Liu F, Luo M, Fan X, Zhang W, Gu P. Mussel-inspired injectable hydrogel and its counterpart for actuating proliferation and neuronal differentiation of retinal progenitor cells. Biomaterials 2018; 194:57-72. [PMID: 30583149 DOI: 10.1016/j.biomaterials.2018.12.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022]
Abstract
Biomaterials-mediated retinal progenitor cell (RPC)-based transplantation therapy has shown substantial potential for retinal degeneration (RD), but it is limited by the poor RPC survival, proliferation and differentiation. Herein, the gelatin-hyaluronic acid (Gel-HA)-based hydrogels formed via moderate Michael-type addition reaction with or without the introduction of mussel-inspired polydopamine (PDA), i.e. Gel-HA-PDA and its counterpart Gel-HA hydrogels are developed, and their effects on the biological behaviour of RPCs, including adhesion, survival, proliferation, differentiation, delivery and migration are investigated. The hybrid hydrogels can adopt the intricate structure of the retina with suitable mechanical strength, degradation rate and biological activity to support cellular adhesion, survival and delivery. Meanwhile, Gel-HA hydrogel can remarkably promote RPC proliferation with much larger cell clusters, while Gel-HA-PDA hydrogel significantly enhances RPC adhesion and migration, and directs RPCs to preferentially differentiate toward retinal neurons such as photoreceptors (the most crucial cell-type for RD treatment), which is mainly induced by the activation of integrin α5β1-phosphatidylinositol-3-kinase (PI3K) pathway. This study demonstrates that Gel-HA hydrogel possesses great potential for RPC proliferation, while mussel-inspired PDA-modified Gel-HA hydrogel with superior biocompatibility can significantly promote RPC neuronal differentiation, providing new insights for developing biomedical materials applied for RPC-based transplantation therapy.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Fang Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yi Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Xiaolin Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Yuyao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Dandan Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Ni Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Feng Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Min Luo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China.
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China.
| |
Collapse
|
38
|
Bertucci TB, Dai G. Biomaterial Engineering for Controlling Pluripotent Stem Cell Fate. Stem Cells Int 2018; 2018:9068203. [PMID: 30627175 PMCID: PMC6304878 DOI: 10.1155/2018/9068203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/11/2018] [Indexed: 01/02/2023] Open
Abstract
Pluripotent stem cells (PSCs) represent an exciting cell source for tissue engineering and regenerative medicine due to their self-renewal and differentiation capacities. The majority of current PSC protocols rely on 2D cultures and soluble factors to guide differentiation; however, many other environmental signals are beginning to be explored using biomaterial platforms. Biomaterials offer new opportunities to engineer the stem cell niches and 3D environments for exploring biophysical and immobilized signaling cues to further our control over stem cell fate. Here, we review the biomaterial platforms that have been engineered to control PSC fate. We explore how altering immobilized biochemical cues and biophysical cues such as dimensionality, stiffness, and topography can enhance our control over stem cell fates. Finally, we highlight biomaterial culture systems that assist in the translation of PSC technologies for clinical applications.
Collapse
Affiliation(s)
- Taylor B Bertucci
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
39
|
Lemma ED, Spagnolo B, De Vittorio M, Pisanello F. Studying Cell Mechanobiology in 3D: The Two-Photon Lithography Approach. Trends Biotechnol 2018; 37:358-372. [PMID: 30343948 DOI: 10.1016/j.tibtech.2018.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022]
Abstract
Two-photon lithography is a laser writing technique that can produce 3D microstructures with resolutions below the diffraction limit. This review focuses on its applications to study mechanical properties of cells, an emerging field known as mechanobiology. We review 3D structural designs and materials in the context of new experimental designs, including estimating forces exerted by single cells, studying selective adhesion on substrates, and creating 3D networks of cells. We then focus on emerging applications, including structures for assessing cancer cell invasiveness, whose migration properties depend on the cell mechanical response to the environment, and 3D architectures and materials to study stem cell differentiation, as 3D structure shape and patterning play a key role in defining cell fates.
Collapse
Affiliation(s)
- Enrico Domenico Lemma
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy; Università del Salento, Dipartimento di Ingegneria dell'Innovazione, via per Monteroni snc, 73100 Lecce, Italy; Current address: Karlsruher Institut für Technologie, Zoologisches Institut, Zell- und Neurobiologie, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.
| | - Barbara Spagnolo
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy; Università del Salento, Dipartimento di Ingegneria dell'Innovazione, via per Monteroni snc, 73100 Lecce, Italy; These authors equally contributed to this work
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti snc, 73010 Arnesano, Italy; These authors equally contributed to this work.
| |
Collapse
|