1
|
McLoughlin ST, Wilcox P, Caccamese JF, Fisher JP. Osteoblast-Mesenchymal Stem Cell Coculture Drives In Vitro Osteogenesis in 3D Bioprinted Periosteum. Tissue Eng Part A 2025. [PMID: 40256807 DOI: 10.1089/ten.tea.2025.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
The periosteum serves as a local source of osteoprogenitor cells and vasculature, therefore influencing the key processes of osteogenesis and neovascularization during bone healing. However, it is often not considered in traditional bone tissue engineering strategies. The periosteum consists of two stratified cell layers, including an inner cambium layer, which serves as a local source of osteoblasts (OBs) and osteoprogenitor cells, and an outer fibrous layer, which hosts vasculature, collagen fibers, and support cells. While several studies have investigated different methodologies to produce tissue-engineered periosteum (TEP) substitutes, few have evaluated the roles of specific cell types within the inner cambium layer and their patterning in 3D environments on underlying bone tissue development. Therefore, we sought to investigate whether mesenchymal stem cells (MSCs) alone, OBs alone, or a 1:1 mixture of the two would result in increased osteogenic differentiation of bone layer MSCs in a 3D bioprinted periosteum-bone coculture model in vitro. We first evaluated these effects in a 2D transwell model, demonstrating that OB-containing cultures, either alone or in a mixed population with MSCs, upregulated alkaline phosphatase activity and runt-related transcription factor 2 (RUNX2) expression. In the 3D bioprinted model, the mixed population showed higher levels of RUNX2 expression and calcium deposition, indicating increased osteogenic differentiation within the bone layer. Results obtained from this study provide evidence that a mixed population of MSCs and OBs within the inner cambium layer of TEP can increase bone regeneration.
Collapse
Affiliation(s)
| | - Paige Wilcox
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - John F Caccamese
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Zhu J, Li M, Yang S, Zou Y, Lv Y. Multifunctional electrospinning periosteum: Development status and prospect. J Biomater Appl 2025; 39:996-1013. [PMID: 39797782 DOI: 10.1177/08853282251315186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively. This review explores the construction strategies for functionalized electrospun periosteum from the following perspectives: ⅰ) bioactive factor modification (bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) etc.), ⅱ) inorganic compound modification, ⅲ) drug modification, ⅳ) artificial periosteum in response to physical stimuli. Furthermore, the construction of artificial periosteum through electrospinning, in conjunction with other strategies, is also analyzed. Finally, the current challenges and prospects for the development of electrospinning periosteum are also discussed.
Collapse
Affiliation(s)
- Jinli Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| | - Meifeng Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| | - Shuoshuo Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| | - Yang Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
- School of Environmental Engineering, Wuhan Textile University, Wuhan, P.R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| |
Collapse
|
3
|
Zhuang Y, Wu D, Zhou L, Liu B, Zhao X, Yang J, Liu W, Wang Z, Zheng Y, Shi X. Electrospun Biomimetic Periosteum Promotes Diabetic Bone Defect Regeneration through Regulating Macrophage Polarization and Sequential Drug Release. ACS Biomater Sci Eng 2025; 11:1690-1704. [PMID: 39908041 DOI: 10.1021/acsbiomaterials.4c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The inadequate vascularization and abnormal immune microenvironment in the diabetic bone defect region present a significant challenge to osteogenic regulation. Inspired by the distinctive characteristics of healing staged in diabetic bone defects and the structure-function relationship in the natural periosteum, we fabricated an electrospun bilayer biomimetic periosteum (Bilayer@E) to promote regeneration of diabetic bone defects. Here, the inner layer of biomimetic periosteum was fabricated using coaxial electrospinning fibers, with a shell incorporating zinc oxide nanoparticles (ZnO NPs) and a core containing silicon dioxide nanoparticles (SiO2 NPs) mimicking the cambium of periosteum; the outer layer consisted of randomly aligned electrospun fibers loaded with deferoxamine (DFO), simulating the fibrous layer of periosteum; finally, epigallocatechin-3-gallate (EGCG) was coated onto the bilayer membrane to obtain Bilayer@E. The presence of EGCG on the Bilayer@E surface efficiently triggers a phenotypic transition in macrophages, shifting them from an M1 proinflammatory state to an M2 anti-inflammatory state. Moreover, the sequential release of ZnO NPs, DFO, and SiO2 NPs exhibits antimicrobial characteristics while coordinating angiogenesis and promoting osteogenic mineralization in cells. Importantly, the biomimetic periosteum shows strong in vivo bone tissue and periosteal regeneration properties in diabetic rats. The integration of sequential drug release and immunomodulation, tailored to meet the specific healing requirements during bone regeneration, offers new insights for advancing the application of biomaterials in this field.
Collapse
Affiliation(s)
- Yu Zhuang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Dingwei Wu
- Department of Orthopedics, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, China
| | - Lvyang Zhou
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Boyuan Liu
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xingkai Zhao
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Wenge Liu
- Department of Orthopedics, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, China
| | - Zhenyu Wang
- Department of Orthopedics, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, China
| | - Yunquan Zheng
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| |
Collapse
|
4
|
Jiang C, Miao T, Xing X, Schilling KJ, Lenhard N, Wang L, McDowell S, Nilsson BL, Wang H, Zhang X. Masquelet Inspired in Vivo Engineered Extracellular Matrix as Functional Periosteum for Bone Defect Repair and Reconstruction. Adv Healthc Mater 2025; 14:e2404975. [PMID: 39840608 PMCID: PMC11913577 DOI: 10.1002/adhm.202404975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Indexed: 01/23/2025]
Abstract
The Masquelet technique that combines a foreign body reaction (FBR)-induced vascularized tissue membrane with staged bone grafting for reconstruction of segmental bone defect has gained wide attention in Orthopedic surgery. The success of Masquelet hinges on its ability to promote formation of a "periosteum-like" FBR-induced membrane at the bone defect site. Inspired by Masquelet's technique, here a novel approach is devised to create periosteum mimetics from decellularized extracellular matrix (dECM), engineered in vivo through FBR, for reconstruction of segmental bone defects. The approach involved 3D printing of polylactic acid (PLA) template with desired pattern/architecture, followed by subcutaneous implantation of the template to form tissue, and depolymerization and decellularization to generate dECM with interconnected channels. The dECM matrices produces from the same mice (autologous) or from different mice (allogenic) are used as a functional periosteum for repair of structural bone allograft in a murine segmental bone defect model. This study shows that autologous dECM performed better than allogenic dECM, further permitting local delivery of low dose BMP-2 to enhance allograft incorporation. The success of this current approach can establish a new line of versatile, patient-specific, and periosteum-like autologous dECM for bone regeneration, offering personalized therapeutics to patients with impaired healing.
Collapse
Affiliation(s)
- Chen Jiang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Tianfeng Miao
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Xiaojie Xing
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Kevin J Schilling
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Nicholas Lenhard
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Lichen Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Susan McDowell
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| |
Collapse
|
5
|
Zou S, Xu G, Zheng Z, Chen T, Huang Y. Repair of Osteochondral Defect with Acellular Cartilage Matrix and Thermosensitive Hydrogel Scaffold. Tissue Eng Part A 2024. [PMID: 39636733 DOI: 10.1089/ten.tea.2024.0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
In the present study, acellular cartilage matrix (ACM) was modified with poly-l-lysine/hyaluronic acid (PLL/HA) multilayers via detergent-enzyme chemical digestion and layer-by-layer self-assembly technology. This modified ACM was then loaded with Transforming Growth Factor Beta 3 (TGF-β3) and incorporated into a thermosensitive hydrogel (TH) to create a HA/PLL-ACM/TH composite scaffold with sustained-release function. This study aimed to evaluate the efficacy of this novel composite scaffold in promoting chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and facilitating osteochondral defect repair. In vitro, isolated, and cultured rat BMSCs were inoculated in equal amounts into TH, ACM/TH, and HA/PLL-ACM/TH groups, with or without TGF-β3 supplementation, for 21 days. Western blot (WB) analysis and immunofluorescence staining were employed to assess the expression levels of collagen II, aggrecan, and SOX-9. In vivo, osteochondral defect was created in the Sprague-Dawley rat trochlea using microdrilling. TH, ACM/TH, and HA/PLL-ACM/TH scaffolds, with or without TGF-β3, were implanted into the defect. After 6 weeks, the repairs were evaluated macroscopically, using Micro computed tomography (micro-CT), histological analysis, and immunohistochemistry. The results demonstrated that the HA/PLL-ACM/TH scaffold loaded with TGF-β3 significantly upregulated the expression of collagen II, aggrecan, and SOX-9 compared with the control and other experimental groups. Furthermore, at 6 weeks postsurgery, the HA/PLL-ACM/TH group loaded with TGF-β3 exhibited superior tissue formation on the joint surface, as confirmed by micro-CT and histological evidence, indicating improved osteochondral repair. These findings suggest that the HA/PLL-ACM/TH scaffold loaded with TGF-β3 holds promise as a therapeutic strategy for osteochondral defect and offers a novel approach for utilizing acellular cartilage microfilaments.
Collapse
Affiliation(s)
- Shengtao Zou
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guochao Xu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhenyu Zheng
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tianming Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yixing Huang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Hui H, Song Y, Liu H, Fan J, Sha Z, Li H, Lu J, Zhang Q, Fei X, Zhu M. Integrating molecular-caged nano-hydroxyapatite into post-crosslinked PVA nanofibers for artificial periosteum. BIOMATERIALS ADVANCES 2024; 165:214001. [PMID: 39216317 DOI: 10.1016/j.bioadv.2024.214001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Artificial periosteum is deemed a novel strategy for inducing endogenous bone regeneration, but ideal periosteum substitutes achieved by orchestrating a biomimetic microenvironment for bone regeneration remain a significant challenge. Here, we design and fabricate a hybridized nanofiber-based artificial periosteum with boosted osteoinduction properties. Via a "molecular cage" biomineralization strategy, nano-hydroxyapatite (nano-HAp) with a controllable size (∼22 nm) and excellent dispersion serves as unique nano-additives for water-soluble polyvinyl-alcohol (PVA)-based artificial periosteum. The PVA/HAp composite is electrospun into nanofibers to replicate the extracellular-matrix-inspired nanostructure for inducing cell adhesion, proliferation, and fate manipulation. A simple post-crosslinking treatment is subsequently applied to further booster its mechanical strength (6.6 MPa) and swelling stability. The optimized sample of C-PVA/HAp (10 wt% nano-HAp) artificial periosteum features excellent biocompatibility and remarkable in vitro mineralization. Cell experiments demonstrate that its effectively boasted cell modulation for enhanced osteogenesis without the aid of growth factors, showing a possible activation of the ERK/MAPK signaling pathway. This work provides an effective strategy for designing novel HAp nano-additives and expands the possibility of biomimetic fabrication for more advanced nanofiber-based artificial periosteum.
Collapse
Affiliation(s)
- Hu Hui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yuheng Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongmei Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiahui Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhou Sha
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongchuang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jian Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qian Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Tian L, Zhao X, Chen F, Zhao F, Liu K, Liu J, Wan Q, Li X, Zhu X, Chen X, Zhang X. A Bottom-Up Approach to Assemble Cell-Laden Biomineralized Nanofiber Mats into 3D Multilayer Periosteum Mimics for Bone Regeneration. NANO LETTERS 2024; 24:14574-14583. [PMID: 39515848 DOI: 10.1021/acs.nanolett.4c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The creation of complex multilayer periosteal graft structures is challenging. This study introduced a novel bottom-up approach to assemble cell-laden nanofiber mats into a three-dimensional (3D) multilayer periosteum mimic, successfully replicating the hierarchical complexity of the natural periosteum. These nanofiber mats, which were fabricated by electrospinning, surface modification, and stimulated body fluid (SBF) immersion, are composed of nanoscale polycaprolactone (PCL) fibers coated with a mineralized collagen layer along the fiber orientation. They closely resembled the natural periosteal matrix, thereby promoting osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. The biomimetic periosteum, constructed via layer-by-layer assembly, offered advantages such as a multilayer nanofibrous structure, controlled cell distribution, a reservoir for osteoprogenitors, and enhanced pro-osteogenic potential. The rat calvarial bone defect model confirmed its potent bone repair capacity. This study presents an efficient approach to construct tissue-engineered periosteum mimics, holding promise for serving as periosteal grafts in orthopedic applications.
Collapse
Affiliation(s)
- Luoqiang Tian
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangrong Zhao
- State Key Laboratory of Oral Diseases and National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Fuying Chen
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Fengxin Zhao
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Keting Liu
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jiajun Liu
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qiwen Wan
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Department of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Mao J, Sun Z, Wang S, Bi J, Xue L, Wang L, Wang H, Jiao G, Chen Y. Multifunctional Bionic Periosteum with Ion Sustained-Release for Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403976. [PMID: 39225563 PMCID: PMC11497021 DOI: 10.1002/advs.202403976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/28/2024] [Indexed: 09/04/2024]
Abstract
In this study, a novel bionic periosteum (BP)-bioactive glass fiber membrane (BGFM) is designed. The introduction of magnesium ion (Mg2+) and zinc ion (Zn2+) change the phase separation during the electrospinning (ES) jet stretching process. The fiber's pore structure transitions from connected to closed pores, resulting in a decrease in the rapid release of metal ions while also improving degradation via reducing filling quality. Additionally, the introduction of magnesium (Mg) and zinc (Zn) lead to the formation of negative charged tetrahedral units (MgO4 2- and ZnO4 2-) in the glass network. These units effectively trap positive charged metal ions, further inhibiting ion release. In vitro experiments reveal that the deigned bionic periosteum regulates the polarization of macrophages toward M2 type, thereby establishing a conducive immune environment for osteogenic differentiation. Bioinformatics analysis indicate that BP enhanced bone repair via the JAK-STAT signaling pathway. The slow release of metal ions from the bionic periosteum can directly enhance osteogenic differentiation and vascularization, thereby accelerating bone regeneration. Finally, the bionic periosteum exhibits remarkable capabilities in angiogenesis and osteogenesis, demonstrating its potential for bone repair in a rat calvarial defect model.
Collapse
Affiliation(s)
- Junjie Mao
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Zhenqian Sun
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
- The First Clinical Medical SchoolShandong UniversityJinanShandong250012P. R. China
| | - Shidong Wang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijing100044P. R. China
| | - Jianqiang Bi
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Lu Xue
- Shandong Second Medical UniversityWeifangShandong261000P. R. China
- Shanxian Central HospitalHezeShandong274300P. R. China
| | - Lu Wang
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Hongliang Wang
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Guangjun Jiao
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Yunzhen Chen
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| |
Collapse
|
9
|
Zhang X, Deng C, Qi S. Periosteum Containing Implicit Stem Cells: A Progressive Source of Inspiration for Bone Tissue Regeneration. Int J Mol Sci 2024; 25:2162. [PMID: 38396834 PMCID: PMC10889827 DOI: 10.3390/ijms25042162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The periosteum is known as the thin connective tissue covering most bone surfaces. Its extrusive bone regeneration capacity was confirmed from the very first century-old studies. Recently, pluripotent stem cells in the periosteum with unique physiological properties were unveiled. Existing in dynamic contexts and regulated by complex molecular networks, periosteal stem cells emerge as having strong capabilities of proliferation and multipotential differentiation. Through continuous exploration of studies, we are now starting to acquire more insight into the great potential of the periosteum in bone formation and repair in situ or ectopically. It is undeniable that the periosteum is developing further into a more promising strategy to be harnessed in bone tissue regeneration. Here, we summarized the development and structure of the periosteum, cell markers, and the biological features of periosteal stem cells. Then, we reviewed their pivotal role in bone repair and the underlying molecular regulation. The understanding of periosteum-related cellular and molecular content will help enhance future research efforts and application transformation of the periosteum.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Prosthodontics, Shanghai Stomatological Hospital, School of Stomatology, Fudan University, Shanghai 200001, China;
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Chen Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Shengcai Qi
- Department of Prosthodontics, Shanghai Stomatological Hospital, School of Stomatology, Fudan University, Shanghai 200001, China;
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| |
Collapse
|
10
|
Han X, Saiding Q, Cai X, Xiao Y, Wang P, Cai Z, Gong X, Gong W, Zhang X, Cui W. Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds. NANO-MICRO LETTERS 2023; 15:239. [PMID: 37907770 PMCID: PMC10618155 DOI: 10.1007/s40820-023-01187-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023]
Abstract
Blood vessels are essential for nutrient and oxygen delivery and waste removal. Scaffold-repairing materials with functional vascular networks are widely used in bone tissue engineering. Additive manufacturing is a manufacturing technology that creates three-dimensional solids by stacking substances layer by layer, mainly including but not limited to 3D printing, but also 4D printing, 5D printing and 6D printing. It can be effectively combined with vascularization to meet the needs of vascularized tissue scaffolds by precisely tuning the mechanical structure and biological properties of smart vascular scaffolds. Herein, the development of neovascularization to vascularization to bone tissue engineering is systematically discussed in terms of the importance of vascularization to the tissue. Additionally, the research progress and future prospects of vascularized 3D printed scaffold materials are highlighted and presented in four categories: functional vascularized 3D printed scaffolds, cell-based vascularized 3D printed scaffolds, vascularized 3D printed scaffolds loaded with specific carriers and bionic vascularized 3D printed scaffolds. Finally, a brief review of vascularized additive manufacturing-tissue scaffolds in related tissues such as the vascular tissue engineering, cardiovascular system, skeletal muscle, soft tissue and a discussion of the challenges and development efforts leading to significant advances in intelligent vascularized tissue regeneration is presented.
Collapse
Affiliation(s)
- Xiaoyu Han
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, 250013, Shandong, People's Republic of China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Xiaolu Cai
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China
| | - Yi Xiao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Peng Wang
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, 250013, Shandong, People's Republic of China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Xuan Gong
- University of Texas Southwestern Medical Center, Dallas, TX, 75390-9096, USA
| | - Weiming Gong
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, 250013, Shandong, People's Republic of China.
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
11
|
Xin H, Tomaskovic-Crook E, Al Maruf DSA, Cheng K, Wykes J, Manzie TGH, Wise SG, Crook JM, Clark JR. From Free Tissue Transfer to Hydrogels: A Brief Review of the Application of the Periosteum in Bone Regeneration. Gels 2023; 9:768. [PMID: 37754449 PMCID: PMC10530949 DOI: 10.3390/gels9090768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
The periosteum is a thin layer of connective tissue covering bone. It is an essential component for bone development and fracture healing. There has been considerable research exploring the application of the periosteum in bone regeneration since the 19th century. An increasing number of studies are focusing on periosteal progenitor cells found within the periosteum and the use of hydrogels as scaffold materials for periosteum engineering and guided bone development. Here, we provide an overview of the research investigating the use of the periosteum for bone repair, with consideration given to the anatomy and function of the periosteum, the importance of the cambium layer, the culture of periosteal progenitor cells, periosteum-induced ossification, periosteal perfusion, periosteum engineering, scaffold vascularization, and hydrogel-based synthetic periostea.
Collapse
Affiliation(s)
- Hai Xin
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (D.S.A.A.M.); (K.C.); (J.W.); (T.G.H.M.); (J.R.C.)
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Eva Tomaskovic-Crook
- Arto Hardy Family Biomedical Innovation Hub, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (E.T.-C.); (J.M.C.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (D.S.A.A.M.); (K.C.); (J.W.); (T.G.H.M.); (J.R.C.)
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Kai Cheng
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (D.S.A.A.M.); (K.C.); (J.W.); (T.G.H.M.); (J.R.C.)
- Royal Prince Alfred Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - James Wykes
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (D.S.A.A.M.); (K.C.); (J.W.); (T.G.H.M.); (J.R.C.)
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Timothy G. H. Manzie
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (D.S.A.A.M.); (K.C.); (J.W.); (T.G.H.M.); (J.R.C.)
| | - Steven G. Wise
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Jeremy M. Crook
- Arto Hardy Family Biomedical Innovation Hub, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (E.T.-C.); (J.M.C.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Jonathan R. Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (D.S.A.A.M.); (K.C.); (J.W.); (T.G.H.M.); (J.R.C.)
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Royal Prince Alfred Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW 2050, Australia
| |
Collapse
|
12
|
Liu C, Lou Y, Sun Z, Ma H, Sun M, Li S, You D, Wu J, Ying B, Ding W, Yu M, Wang H. 4D Printing of Personalized-Tunable Biomimetic Periosteum with Anisotropic Microstructure for Accelerated Vascularization and Bone Healing. Adv Healthc Mater 2023; 12:e2202868. [PMID: 37171209 DOI: 10.1002/adhm.202202868] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/12/2023] [Indexed: 05/13/2023]
Abstract
An ideal biomimetic periosteum is expected to wrap various bone surfaces to orchestrate an optimal microenvironment for bone regeneration, including facilitating local vascularization, recruiting osteoblasts, and mineralizing the extracellular matrix (ECM). To mimic the role of the natural periosteum in promoting bone repair, a 4D printing technique to inlay aligned cell sheets on shape-shifting hydrogel is used, containing biophysical signals and spatially adjustable physical properties, for the first time. The outer hydrogel layer endows the biomimetic periosteum with the ability to digitally coordinate its 3D geometry to match the specific macroscopic bone shape to maintain a bone healing microenvironment. The inner aligned human mesenchymal stem cells (hMSCs) layer not only promotes the migration and angiogenesis of co-cultured cells but also exhibits excellent osteogenic differentiation properties. In vivo experiments show that apart from morphing preset shapes as physical barriers, the aligned biomimetic periosteum can actively facilitate local angiogenesis and early-stage osteogenesis. Altogether, this present work provides a novel route to construct a personalized biomimetic periosteum with anisotropic microstructure by introducing a tunable shape to maintain the bone reconstruction microenvironment and this strategy can be extended to repair sophisticated bone defects.
Collapse
Affiliation(s)
- Chao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, 310000, China
| | - Yiting Lou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, 310000, China
| | - Zheyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, 310000, China
| | - Haiying Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, 310000, China
| | - Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, 310000, China
| | - Shengjie Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, 310000, China
- Department of Stomatology, The First Affiliated Hospital of Ningbo University, 59 Liuting street, Ningbo, 315000, China
| | - Dongqi You
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, 310000, China
| | - Junjie Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, 310000, China
| | - Binbin Ying
- Department of Stomatology, The First Affiliated Hospital of Ningbo University, 59 Liuting street, Ningbo, 315000, China
| | - Wanghui Ding
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, 310000, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, 310000, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, 310000, China
| |
Collapse
|
13
|
Corral-Nájera K, Chauhan G, Serna-Saldívar SO, Martínez-Chapa SO, Aeinehvand MM. Polymeric and biological membranes for organ-on-a-chip devices. MICROSYSTEMS & NANOENGINEERING 2023; 9:107. [PMID: 37649779 PMCID: PMC10462672 DOI: 10.1038/s41378-023-00579-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 09/01/2023]
Abstract
Membranes are fundamental elements within organ-on-a-chip (OOC) platforms, as they provide adherent cells with support, allow nutrients (and other relevant molecules) to permeate/exchange through membrane pores, and enable the delivery of mechanical or chemical stimuli. Through OOC platforms, physiological processes can be studied in vitro, whereas OOC membranes broaden knowledge of how mechanical and chemical cues affect cells and organs. OOCs with membranes are in vitro microfluidic models that are used to replace animal testing for various applications, such as drug discovery and disease modeling. In this review, the relevance of OOCs with membranes is discussed as well as their scaffold and actuation roles, properties (physical and material), and fabrication methods in different organ models. The purpose was to aid readers with membrane selection for the development of OOCs with specific applications in the fields of mechanistic, pathological, and drug testing studies. Mechanical stimulation from liquid flow and cyclic strain, as well as their effects on the cell's increased physiological relevance (IPR), are described in the first section. The review also contains methods to fabricate synthetic and ECM (extracellular matrix) protein membranes, their characteristics (e.g., thickness and porosity, which can be adjusted depending on the application, as shown in the graphical abstract), and the biological materials used for their coatings. The discussion section joins and describes the roles of membranes for different research purposes and their advantages and challenges.
Collapse
Affiliation(s)
- Kendra Corral-Nájera
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Gaurav Chauhan
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Sergio O. Serna-Saldívar
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Sergio O. Martínez-Chapa
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Mohammad Mahdi Aeinehvand
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| |
Collapse
|
14
|
Amarjargal A, Moazzami Goudarzi Z, Cegielska O, Gradys A, Kolbuk D, Kalaska B, Ruszczyńska A, Sajkiewicz P. A facile one-stone-two-birds strategy for fabricating multifunctional 3D nanofibrous scaffolds. Biomater Sci 2023; 11:5502-5516. [PMID: 37378581 DOI: 10.1039/d3bm00837a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Local bacterial infections lead to delayed wound healing and in extreme cases, such as diabetic foot ulcers, to non-healing due to the impaired cellular function in such wounds. Thus, many scientists have focused on developing advanced therapeutic platforms to treat infections and promote cellular proliferation and angiogenesis. This study presents a facile approach for designing nanofibrous scaffolds in three dimensions (3D) with enhanced antibacterial activity to meet the need of treating chronic diabetic wounds. Being a cationic surfactant as well as an antimicrobial agent, octenidine (OCT) makes a 2D membrane hydrophilic, enabling it to be modified into a 3D scaffold in a "one stone, two birds" manner. Aqueous sodium borohydride (NaBH4) solution plays a dual role in the fabrication process, functioning as both a reducing agent for the in situ synthesis of silver nanoparticles (Ag NPs) anchored on the nanofiber surface and a hydrogen gas producer for expanding the 2D membranes into fully formed 3D nanofiber scaffolds, as demonstrated by morphological analyses. Various techniques were used to characterize the developed scaffold (e.g., SEM, XRD, DSC, FTIR, and surface wettability), demonstrating a multilayered porous structure and superhydrophilic properties besides showing sustained and prolonged release of OCT (61% ± 1.97 in 144 h). Thanks to the synergistic effect of OCT and Ag NPs, the antibacterial performance of the 3D scaffold was significantly higher than that of the 2D membrane. Moreover, cell viability was studied in vitro on mouse fibroblasts L929, and the noncytotoxic character of the 3D scaffold was confirmed. Overall, it is shown that the obtained multifunctional 3D scaffold is an excellent candidate for diabetic wound healing and skin repair.
Collapse
Affiliation(s)
- Altangerel Amarjargal
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
- Power Engineering School, Mongolian University of Science and Technology, 8th khoroo, Baga toiruu, Sukhbaatar district, Ulaanbaatar 14191, Mongolia.
| | - Zahra Moazzami Goudarzi
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| | - Olga Cegielska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| | - Arkadiusz Gradys
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| | - Dorota Kolbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland
| | - Anna Ruszczyńska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki I Wigury 101, 02-089 Warszawa, Poland
| | - Pawel Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| |
Collapse
|
15
|
Jiang T, Su W, Li Y, Jiang M, Zhang Y, Xian CJ, Zhai Y. Research Progress on Nanomaterials for Tissue Engineering in Oral Diseases. J Funct Biomater 2023; 14:404. [PMID: 37623649 PMCID: PMC10455101 DOI: 10.3390/jfb14080404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Due to their superior antibacterial properties, biocompatibility and high conductivity, nanomaterials have shown a broad prospect in the biomedical field and have been widely used in the prevention and treatment of oral diseases. Also due to their small particle sizes and biodegradability, nanomaterials can provide solutions for tissue engineering, especially for oral tissue rehabilitation and regeneration. At present, research on nanomaterials in the field of dentistry focuses on the biological effects of various types of nanomaterials on different oral diseases and tissue engineering applications. In the current review, we have summarized the biological effects of nanoparticles on oral diseases, their potential action mechanisms and influencing factors. We have focused on the opportunities and challenges to various nanomaterial therapy strategies, with specific emphasis on overcoming the challenges through the development of biocompatible and smart nanomaterials. This review will provide references for potential clinical applications of novel nanomaterials in the field of oral medicine for the prevention, diagnosis and treatment of oral diseases.
Collapse
Affiliation(s)
- Tong Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Wen Su
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yan Li
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Mingyuan Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yonghong Zhang
- Department of Orthopaedics, The 2nd Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Cory J. Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| |
Collapse
|
16
|
McLoughlin S, McKenna AR, Fisher JP. Fabrication Strategies for Engineered Thin Membranous Tissues. ACS APPLIED BIO MATERIALS 2023. [PMID: 37314953 DOI: 10.1021/acsabm.3c00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thin membranous tissues (TMTs) are anatomical structures consisting of multiple stratified cell layers, each less than 100 μm in thickness. While these tissues are small in scale, they play critical roles in normal tissue function and healing. Examples of TMTs include the tympanic membrane, cornea, periosteum, and epidermis. Damage to these structures can be caused by trauma or congenital disabilities, resulting in hearing loss, blindness, dysfunctional bone development, and impaired wound repair, respectively. While autologous and allogeneic tissue sources for these membranes exist, they are significantly limited by availability and patient complications. Tissue engineering has therefore become a popular strategy for TMT replacement. However, due to their complex microscale architecture, TMTs are often difficult to replicate in a biomimetic manner. The critical challenge in TMT fabrication is balancing fine resolution with the ability to mimic complex target tissue anatomy. This Review reports existing TMT fabrication strategies, their resolution and material capabilities, cell and tissue response, and the advantages and disadvantages of each technique.
Collapse
Affiliation(s)
- Shannon McLoughlin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, United States
| | - Abigail Ruth McKenna
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, United States
- Department of Biology, University of Maryland, College Park, Maryland 20742, United States
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
17
|
He Y, Liang L, Luo C, Zhang ZY, Huang J. Strategies for in situ tissue engineering of vascularized bone regeneration (Review). Biomed Rep 2023; 18:42. [PMID: 37325184 PMCID: PMC10265129 DOI: 10.3892/br.2023.1625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/03/2023] [Indexed: 06/17/2023] Open
Abstract
Numerous physiological processes occur following bone fracture, including inflammatory cell recruitment, vascularization, and callus formation and remodeling. In particular circumstances, such as critical bone defects or osteonecrosis, the regenerative microenvironment is compromised, rendering endogenous stem/progenitor cells incapable of fully manifesting their reparative potential. Consequently, external interventions, such as grafting or augmentation, are frequently necessary. In situ bone tissue engineering (iBTE) employs cell-free scaffolds that possess microenvironmental cues, which, upon implantation, redirect the behavior of endogenous stem/progenitor cells towards a pro-regenerative inflammatory response and reestablish angiogenesis-osteogenesis coupling. This process ultimately results in vascularized bone regeneration (VBR). In this context, a comprehensive review of the current techniques and modalities in VBR-targeted iBTE technology is provided.
Collapse
Affiliation(s)
- Yijun He
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Lin Liang
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - Cheng Luo
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Jiongfeng Huang
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
| |
Collapse
|
18
|
Wang J, Chen G, Chen ZM, Wang FP, Xia B. Current strategies in biomaterial-based periosteum scaffolds to promote bone regeneration: A review. J Biomater Appl 2023; 37:1259-1270. [PMID: 36251764 DOI: 10.1177/08853282221135095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of periosteum rich in a variety of bone cells and growth factors in the treatment of bone defects has gradually been discovered. However, due to the limited number of healthy transplantable periosteum, there are still major challenges in the clinical treatment of critical-size bone defects. Various techniques for preparing biomimetic periosteal scaffolds that are similar in composition and structure to natural periosteal scaffold have gradually emerged. This article reviews the current preparation methods of biomimetic periosteal scaffolds based on various biomaterials, which are mainly divided into natural periosteal materials and various polymer biomaterials. Several preparation methods of biomimetic periosteal scaffolds with different principles are listed, their strengths and weaknesses are also discussed. It aims to provide a more systematic perspective for the preparation of biomimetic periosteal scaffolds in the future.
Collapse
Affiliation(s)
- Jinsong Wang
- School of Pharmacy and Bioengineering, 232838Chongqing University of Technology, Chongqing, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, 232838Chongqing University of Technology, Chongqing, China
| | - Zhong M Chen
- School of Pharmacy and Bioengineering, 232838Chongqing University of Technology, Chongqing, China
| | - Fu P Wang
- School of Pharmacy and Bioengineering, 232838Chongqing University of Technology, Chongqing, China
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, 66530Chongqing Technology and Business University, Chongqing, China
| |
Collapse
|
19
|
Fang J, Liu H, Qiao W, Xu T, Yang Y, Xie H, Lam CH, Yeung KWK, Zhao X. Biomimicking Leaf-Vein Engraved Soft and Elastic Membrane Promotes Vascular Reconstruction. Adv Healthc Mater 2023; 12:e2201220. [PMID: 36330558 DOI: 10.1002/adhm.202201220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Hierarchical vasculature reconstruction is fundamental for tissue regeneration. The regeneration of functional vascular network requires a proper directional guidance, especially in case of large-size defects. To provide the "running track" for vasculature, a leaf-vein mimetic membrane using soft and elastic poly(lactide-co-propylene glycol-co-lactide) dimethacrylate is developed. Engraved with an interconnected and perfusable leaf-vein micropattern, the membrane can guide human umbilical vein endothelial cells (HUVECs) to form vasculature in vitro. In particular, the "running track" upregulates the angiogenesis-related gene expression and promotes the HUVECs to differentiate into tip cells and stalk cells via tuning vascular endothelial growth factor receptor 2 signaling transduction. As a proof of concept, its revascularization capability using a rat calvarial defect model in vivo is evaluated. The in vivo results demonstrate that the leaf-vein engraved membrane accelerates the formation and maturation of vasculature, leading to a hierarchical blood vessel network. With the superior pro-vasculature property, it is believed that the leaf-vein engraved membrane is not only an ideal candidate for the reconstruction of calvarial vasculature but also a promising solution for more complicated vasculature reconstruction, such as muscle, skin, and heart.
Collapse
Affiliation(s)
- Jinghan Fang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Huaqian Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Wei Qiao
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Tianpeng Xu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Huizhi Xie
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chun-Hei Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
20
|
Idumah CI. Phosphorene polymeric nanocomposites for biomedical applications: a review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2158333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
21
|
Li X, Dai B, Guo J, Zhu Y, Xu J, Xu S, Yao Z, Chang L, Li Y, He X, Chow DHK, Zhang S, Yao H, Tong W, Ngai T, Qin L. Biosynthesized Bandages Carrying Magnesium Oxide Nanoparticles Induce Cortical Bone Formation by Modulating Endogenous Periosteal Cells. ACS NANO 2022; 16:18071-18089. [PMID: 36108267 DOI: 10.1021/acsnano.2c04747] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bone grafting is frequently conducted to treat bone defects caused by trauma and tumor removal, yet with significant medical and socioeconomic burdens. Space-occupying bone substitutes remain challenging in the control of osteointegration, and meanwhile activation of endogenous periosteal cells by using non-space-occupying implants to promote new bone formation becomes another therapeutic strategy. Here, we fabricated a magnesium-based artificial bandage with optimal micropatterns for activating periosteum-associated biomineralization. Collagen was self-assembled on the surface of magnesium oxide nanoparticles embedded electrospun fibrous membranes as a hierarchical bandage structure to facilitate the integration with periosteum in situ. After the implantation on the surface of cortical bone in vivo, magnesium ions were released to generate a pro-osteogenic immune microenvironment by activating the endogenous periosteal macrophages into M2 phenotype and, meanwhile, promote blood vessel formation and neurite outgrowth. In a cortical bone defect model, magnesium-based artificial bandage guided the surrounding newly formed bone tissue to cover the defected area. Taken together, our study suggests that the strategy of stimulating bone formation can be achieved with magnesium delivery to periosteum in situ and the proposed periosteal bandages act as a bioactive media for accelerating bone healing.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Zhi Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Xuan He
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Shian Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| |
Collapse
|
22
|
Schilling K, Zhai Y, Zhou Z, Zhou B, Brown E, Zhang X. High-resolution imaging of the osteogenic and angiogenic interface at the site of murine cranial bone defect repair via multiphoton microscopy. eLife 2022; 11:e83146. [PMID: 36326085 PMCID: PMC9678361 DOI: 10.7554/elife.83146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
Abstract
The spatiotemporal blood vessel formation and specification at the osteogenic and angiogenic interface of murine cranial bone defect repair were examined utilizing a high-resolution multiphoton-based imaging platform in conjunction with advanced optical techniques that allow interrogation of the oxygen microenvironment and cellular energy metabolism in living animals. Our study demonstrates the dynamic changes of vessel types, that is, arterial, venous, and capillary vessel networks at the superior and dura periosteum of cranial bone defect, suggesting a differential coupling of the vessel type with osteoblast expansion and bone tissue deposition/remodeling during repair. Employing transgenic reporter mouse models that label distinct types of vessels at the site of repair, we further show that oxygen distributions in capillary vessels at the healing site are heterogeneous as well as time- and location-dependent. The endothelial cells coupling to osteoblasts prefer glycolysis and are less sensitive to microenvironmental oxygen changes than osteoblasts. In comparison, osteoblasts utilize relatively more OxPhos and potentially consume more oxygen at the site of repair. Taken together, our study highlights the dynamics and functional significance of blood vessel types at the site of defect repair, opening up opportunities for further delineating the oxygen and metabolic microenvironment at the interface of bone tissue regeneration.
Collapse
Affiliation(s)
- Kevin Schilling
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Yuankun Zhai
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
| | - Zhuang Zhou
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
| | - Bin Zhou
- Shanghai Institutes for Biological SciencesShanghaiChina
| | - Edward Brown
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
| |
Collapse
|
23
|
Yang Y, Rao J, Liu H, Dong Z, Zhang Z, Bei HP, Wen C, Zhao X. Biomimicking design of artificial periosteum for promoting bone healing. J Orthop Translat 2022; 36:18-32. [PMID: 35891926 PMCID: PMC9283802 DOI: 10.1016/j.jot.2022.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Background Periosteum is a vascularized tissue membrane covering the bone surface and plays a decisive role in bone reconstruction process after fracture. Various artificial periosteum has been developed to assist the allografts or bionic bone scaffolds in accelerating bone healing. Recently, the biomimicking design of artificial periosteum has attracted increasing attention due to the recapitulation of the natural extracellular microenvironment of the periosteum and has presented unique capacity to modulate the cell fates and ultimately enhance the bone formation and improve neovascularization. Methods A systematic literature search is performed and relevant findings in biomimicking design of artificial periosteum have been reviewed and cited. Results We give a systematical overview of current development of biomimicking design of artificial periosteum. We first summarize the universal strategies for designing biomimicking artificial periosteum including biochemical biomimicry and biophysical biomimicry aspects. We then discuss three types of novel versatile biomimicking artificial periosteum including physical-chemical combined artificial periosteum, heterogeneous structured biomimicking periosteum, and healing phase-targeting biomimicking periosteum. Finally, we comment on the potential implications and prospects in the future design of biomimicking artificial periosteum. Conclusion This review summarizes the preparation strategies of biomimicking artificial periosteum in recent years with a discussion of material selection, animal model adoption, biophysical and biochemical cues to regulate the cell fates as well as three types of latest developed versatile biomimicking artificial periosteum. In future, integration of innervation, osteochondral regeneration, and osteoimmunomodulation, should be taken into consideration when fabricating multifunctional artificial periosteum. The Translational Potential of this Article: This study provides a holistic view on the design strategy and the therapeutic potential of biomimicking artificial periosteum to promote bone healing. It is hoped to open a new avenue of artificial periosteum design with biomimicking considerations and reposition of the current strategy for accelerated bone healing.
Collapse
Affiliation(s)
- Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jingdong Rao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Huaqian Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Zhifei Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Zhen Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
24
|
High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials 2022; 288:121741. [PMID: 36031458 DOI: 10.1016/j.biomaterials.2022.121741] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023]
Abstract
Large bone defects that cannot form a callus tissue are often faced with long-time recovery. Developmental engineering-based strategies with mesenchymal stem cell (MSC) aggregates have shown enhanced potential for bone regeneration. However, MSC aggregates are different from the physiological callus tissues, which limited the further endogenous osteogenesis. This study aims to achieve engineering of osteo-callus organoids for rapid bone regeneration in cooperation with bone marrow-derived stem cell (BMSC)-loaded hydrogel microspheres (MSs) by digital light-processing (DLP) printing technology and stepwise-induction. The printed MSC-loaded MSs aggregated into osteo-callus organoids after chondrogenic induction and showed much higher chondrogenic efficiency than that of traditional MSC pellets. Moreover, the osteo-callus organoids exhibited stage-specific gene expression pattern that recapitulated endochondral ossification process, as well as a synchronized state of cell proliferation and differentiation, which highly resembled the diverse cell compositions and behaviors of developmentally endochondral ossification. Lastly, the osteo-callus organoids efficiently led to rapid bone regeneration within only 4 weeks in a large bone defect in rabbits which need 2-3 months in previous tissue engineering studies. The findings suggested that in vitro engineering of osteo-callus organoids with developmentally osteogenic properties is a promising strategy for rapid bone defect regeneration and recovery.
Collapse
|
25
|
Yan X, Yao H, Luo J, Li Z, Wei J. Functionalization of Electrospun Nanofiber for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14142940. [PMID: 35890716 PMCID: PMC9318783 DOI: 10.3390/polym14142940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Bone-tissue engineering is an alternative treatment for bone defects with great potential in which scaffold is a critical factor to determine the effect of bone regeneration. Electrospun nanofibers are widely used as scaffolds in the biomedical field for their similarity with the structure of the extracellular matrix (ECM). Their unique characteristics are: larger surface areas, porosity and processability; these make them ideal candidates for bone-tissue engineering. This review briefly introduces bone-tissue engineering and summarizes the materials and methods for electrospining. More importantly, how to functionalize electrospun nanofibers to make them more conducive for bone regeneration is highlighted. Finally, the existing deficiencies of functionalized electrospun nanofibers for promoting osteogenesis are proposed. Such a summary can lay the foundation for the clinical practice of functionalized electrospun nanofibers.
Collapse
Affiliation(s)
- Xuan Yan
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
| | - Haiyan Yao
- School of Chemistry, Nanchang University, Nanchang 330031, China;
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Jun Luo
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Correspondence: (J.L.); (J.W.)
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
- School of Chemistry, Nanchang University, Nanchang 330031, China;
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Correspondence: (J.L.); (J.W.)
| |
Collapse
|
26
|
He X, Liu W, Liu Y, Zhang K, Sun Y, Lei P, Hu Y. Nano artificial periosteum PLGA/MgO/Quercetin accelerates repair of bone defects through promoting osteogenic − angiogenic coupling effect via Wnt/ β-catenin pathway. Mater Today Bio 2022; 16:100348. [PMID: 35847378 PMCID: PMC9278078 DOI: 10.1016/j.mtbio.2022.100348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 10/27/2022] Open
|
27
|
Wan QQ, Jiao K, Ma YX, Gao B, Mu Z, Wang YR, Wang YH, Duan L, Xu KH, Gu JT, Yan JF, Li J, Shen MJ, Tay FR, Niu LN. Smart, Biomimetic Periosteum Created from the Cerium(III, IV) Oxide-Mineralized Eggshell Membrane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14103-14119. [PMID: 35306805 DOI: 10.1021/acsami.2c02079] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The periosteum orchestrates the microenvironment of bone regeneration, including facilitating local neuro-vascularization and regulating immune responses. To mimic the role of natural periosteum for bone repair enhancement, we adopted the principle of biomimetic mineralization to delicately inlay amorphous cerium oxide within eggshell membranes (ESMs) for the first time. Cerium from cerium oxide possesses unique ability to switch its oxidation state from cerium III to cerium IV and vice versa, which provides itself promising potential for biomedical applications. ESMs are mineralized with cerium(III, IV) oxide and examined for their biocompatibility. Apart from serving as physical barriers, periosteum-like cerium(III, IV) oxide-mineralized ESMs are biocompatible and can actively regulate immune responses and facilitate local neuro-vascularization along with early-stage bone regeneration in a murine cranial defect model. During the healing process, cerium-inlayed biomimetic periosteum can boost early osteoclastic differentiation of macrophage lineage cells, which may be the dominant mediator of the local repair microenvironment. The present work provides novel insights into expanding the definition and function of a biomimetic periosteum to boost early-stage bone repair and optimize long-term repair with robust neuro-vascularization. This new treatment strategy which employs multifunctional bone-and-periosteum-mimicking systems creates a highly concerted microenvironment to expedite bone regeneration.
Collapse
Affiliation(s)
- Qian-Qian Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bo Gao
- Institute of Orthopaedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Mu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi-Rong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yan-Hao Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research & Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lian Duan
- Southwest University, Chongqing 400715, China
| | - Ke-Hui Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jun-Ting Gu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jian-Fei Yan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Min-Juan Shen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Hena 453003, China
| |
Collapse
|
28
|
Periosteum and development of the tissue-engineered periosteum for guided bone regeneration. J Orthop Translat 2022; 33:41-54. [PMID: 35228996 PMCID: PMC8858911 DOI: 10.1016/j.jot.2022.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Background Periosteum plays a significant role in bone formation and regeneration by storing progenitor cells, and also acts as a source of local growth factors and a scaffold for recruiting cells and other growth factors. Recently, tissue-engineered periosteum has been studied extensively and shown to be important for osteogenesis and chondrogenesis. Using biomimetic methods for artificial periosteum synthesis, membranous tissues with similar function and structure to native periosteum are produced that significantly improve the efficacy of bone grafting and scaffold engineering, and can serve as direct replacements for native periosteum. Many problems involving bone defects can be solved by preparation of idealized periosteum from materials with different properties using various techniques. Methods This review summarizes the significance of periosteum for osteogenesis and chondrogenesis from the aspects of periosteum tissue structure, osteogenesis performance, clinical application, and development of periosteum tissue engineering. The advantages and disadvantages of different tissue engineering methods are also summarized. Results The fast-developing field of periosteum tissue engineering is aimed toward synthesis of bionic periosteum that can ensure or accelerate the repair of bone defects. Artificial periosteum materials can be similar to natural periosteum in both structure and function, and have good therapeutic potential. Induction of periosteum tissue regeneration and bone regeneration by biomimetic periosteum is the ideal process for bone repair. Conclusions Periosteum is essential for bone formation and regeneration, and it is indispensable in bone repair. Achieving personalized structure and composition in the construction of tissue engineering periosteum is in accordance with the design concept of both universality and emphasis on individual differences and ensures the combination of commonness and individuality, which are expected to meet the clinical needs of bone repair more effectively. The translational potential of this article To better understand the role of periosteum in bone repair, clarify the present research situation of periosteum and tissue engineering periosteum, and determine the development and optimization direction of tissue engineering periosteum in the future. It is hoped that periosteum tissue engineering will play a greater role in meeting the clinical needs of bone repair in the future, and makes it possible to achieve optimization of bone tissue therapy.
Collapse
|
29
|
He Y, Wang W, Lin S, Yang Y, Song L, Jing Y, Chen L, He Z, Li W, Xiong A, Yeung KW, Zhao Q, Jiang Y, Li Z, Pei G, Zhang ZY. Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation. Bioact Mater 2022; 9:491-507. [PMID: 34820585 PMCID: PMC8586756 DOI: 10.1016/j.bioactmat.2021.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The potential translation of bio-inert polymer scaffolds as bone substitutes is limited by the lack of neovascularization upon implantation and subsequently diminished ingrowth of host bone, most likely resulted from the inability to replicate appropriate endogenous crosstalk between cells. Human umbilical vein endothelial cell-derived decellularized extracellular matrix (HdECM), which contains a collection of angiocrine biomolecules, has recently been demonstrated to mediate endothelial cells(ECs) - osteoprogenitors(OPs) crosstalk. We employed the HdECM to create a PCL (polycaprolactone)/fibrin/HdECM (PFE) hybrid scaffold. We hypothesized PFE scaffold could reconstitute a bio-instructive microenvironment that reintroduces the crosstalk, resulting in vascularized bone regeneration. Following implantation in a rat femoral bone defect, the PFE scaffold demonstrated early vascular infiltration and enhanced bone regeneration by microangiography (μ-AG) and micro-computational tomography (μ-CT). Based on the immunofluorescence studies, PFE mediated the endogenous angiogenesis and osteogenesis with a substantial number of type H vessels and osteoprogenitors. In addition, superior osseointegration was observed by a direct host bone-PCL interface, which was likely attributed to the formation of type H vessels. The bio-instructive microenvironment created by our innovative PFE scaffold made possible superior osseointegration and type H vessel-related bone regeneration. It could become an alternative solution of improving the osseointegration of bone substitutes with the help of induced type H vessels, which could compensate for the inherent biological inertness of synthetic polymers.
Collapse
Affiliation(s)
- Yijun He
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Wenhao Wang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Shaozhang Lin
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Yixi Yang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Lizhi Song
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Yihan Jing
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Lihao Chen
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Zaopeng He
- Hand and Foot Surgery & Plastic Surgery, Affiliated Shunde Hospital of Guangzhou Medical University, Foshan, 528315, PR China
| | - Wei Li
- Hand and Foot Surgery & Plastic Surgery, Affiliated Shunde Hospital of Guangzhou Medical University, Foshan, 528315, PR China
| | - Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Kelvin W.K. Yeung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, 999077, PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Qi Zhao
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Yuan Jiang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Zijie Li
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Guoxian Pei
- The Third Affiliated Hospital of Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
- Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| |
Collapse
|
30
|
Zhang D, Li Z, Shi H, Yao Y, Du W, Lu P, Liang K, Hong L, Gao C. Micropatterns and peptide gradient on the inner surface of a guidance conduit synergistically promotes nerve regeneration in vivo. Bioact Mater 2022; 9:134-146. [PMID: 34820561 PMCID: PMC8586031 DOI: 10.1016/j.bioactmat.2021.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/22/2022] Open
Abstract
Both of the surface topographical features and distribution of biochemical cues can influence the cell-substrate interactions and thereby tissue regeneration in vivo. However, they have not been combined simultaneously onto a biodegradable scaffold to demonstrate the synergistic role so far. In this study, a proof-of-concept study is performed to prepare micropatterns and peptide gradient on the inner wall of a poly (D,L-lactide-co-caprolactone) (PLCL) guidance conduit and its advantages in regeneration of peripheral nerve in vivo. After linear ridges/grooves of 20/40 μm in width are created on the PLCL film, its surface is aminolyzed in a kinetically controlled manner to obtain the continuous gradient of amino groups, which are then transferred to CQAASIKVAV peptide density gradient via covalent coupling of glutaraldehyde. The Schwann cells are better aligned along with the stripes, and show a faster migration rate toward the region of higher peptide density. Implantation of the nerve guidance conduit made of the PLCL film having both the micropatterns and peptide gradient can significantly accelerate the regeneration of sciatic nerve in terms of rate, function recovery and microstructures, and reduction of fibrosis in muscle tissues. Moreover, this nerve conduit can also benefit the M2 polarization of macrophages and promote vascularization in vivo.
Collapse
Affiliation(s)
- Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ziming Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haifei Shi
- Department of Hand Surgery, First Affiliated Hospital of Zhejiang University, School of Medicine. Hangzhou, 310009, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pan Lu
- Department of Hand Surgery, First Affiliated Hospital of Zhejiang University, School of Medicine. Hangzhou, 310009, China
| | - Kejiong Liang
- Department of Hand Surgery, First Affiliated Hospital of Zhejiang University, School of Medicine. Hangzhou, 310009, China
| | - Liangjie Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
31
|
Zhang Q, Huang K, Tan J, Lei X, Huang L, Song Y, Li Q, Zou C, Xie H. Metal-phenolic networks modified polyurethane as periosteum for bone regeneration. CHINESE CHEM LETT 2022; 33:1623-1626. [DOI: 10.1016/j.cclet.2021.09.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Madruga LYC, Kipper MJ. Expanding the Repertoire of Electrospinning: New and Emerging Biopolymers, Techniques, and Applications. Adv Healthc Mater 2022; 11:e2101979. [PMID: 34788898 DOI: 10.1002/adhm.202101979] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Indexed: 12/20/2022]
Abstract
Electrospinning has emerged as a versatile and accessible technology for fabricating polymer fibers, particularly for biological applications. Natural polymers or biopolymers (including synthetically derivatized natural polymers) represent a promising alternative to synthetic polymers, as materials for electrospinning. Many biopolymers are obtained from abundant renewable sources, are biodegradable, and possess inherent biological functions. This review surveys recent literature reporting new fibers produced from emerging biopolymers, highlighting recent developments in the use of sulfated polymers (including carrageenans and glycosaminoglycans), tannin derivatives (condensed and hydrolyzed tannins, tannic acid), modified collagen, and extracellular matrix extracts. The proposed advantages of these biopolymer-based fibers, focusing on their biomedical applications, are also discussed to highlight the use of new and emerging biopolymers (or new modifications to well-established ones) to enhance or achieve new properties for electrospun fiber materials.
Collapse
Affiliation(s)
- Liszt Y. C. Madruga
- Department of Chemical and Biological Engineering Colorado State University Fort Collins CO 80526 USA
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering Colorado State University Fort Collins CO 80526 USA
- School of Advanced Materials Discovery Colorado State University Fort Collins CO 80526 USA
- School of Biomedical Engineering Colorado State University Fort Collins CO 80526 USA
| |
Collapse
|
33
|
Dai K, Deng S, Yu Y, Zhu F, Wang J, Liu C. Construction of developmentally inspired periosteum-like tissue for bone regeneration. Bone Res 2022; 10:1. [PMID: 34975148 PMCID: PMC8720863 DOI: 10.1038/s41413-021-00166-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
The periosteum, a highly vascularized thin tissue, has excellent osteogenic and bone regenerative abilities. The generation of periosteum-mimicking tissue has become a novel strategy for bone defect repair and regeneration, especially in critical-sized bone defects caused by trauma and bone tumor resection. Here, we utilized a bone morphogenetic protein-2 (BMP-2)-loaded scaffold to create periosteum-like tissue (PT) in vivo, mimicking the mesenchymal condensation during native long bone development. We found that BMP-2-induced endochondral ossification plays an indispensable role in the construction of PTs. Moreover, we confirmed that BMP-2-induced PTs exhibit a similar architecture to the periosteum and harbor abundant functional periosteum-like tissue-derived cells (PTDCs), blood vessels, and osteochondral progenitor cells. Interestingly, we found that the addition of chondroitin sulfate (CS), an essential component of the extracellular matrix (ECM), could further increase the abundance and enhance the function of recruited PTDCs from the PTs and finally increase the regenerative capacity of the PTs in autologous transplantation assays, even in old mice. This novel biomimetic strategy for generating PT through in vivo endochondral ossification deserves further clinical translation.
Collapse
Affiliation(s)
- Kai Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China.,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China
| | - Shunshu Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China.,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China
| | - Yuanman Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China.,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China
| | - Fuwei Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China.,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China. .,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China.
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China. .,Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China. .,Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, P. R. China.
| |
Collapse
|
34
|
Schilling K, Brown E, Zhang X. NAD(P)H autofluorescence lifetime imaging enables single cell analyses of cellular metabolism of osteoblasts in vitro and in vivo via two-photon microscopy. Bone 2022; 154:116257. [PMID: 34781049 PMCID: PMC8671374 DOI: 10.1016/j.bone.2021.116257] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023]
Abstract
Two-photon fluorescence lifetime microscopy (2P-FLIM) is a non-invasive optical technique that can obtain cellular metabolism information based on the intrinsic autofluorescence lifetimes of free and enzyme-bound NAD(P)H, which reflect the metabolic state of single cells within the native microenvironment of the living tissue. NAD(P)H 2P-FLIM was initially performed in bone marrow stromal cell (BMSC) cultures established from Col (I) 2.3GFP or OSX-mCherry mouse models, in which osteoblastic lineage cells were labelled with green or red fluorescence protein, respectively. Measurement of the mean NAD(P)H lifetime, τM, demonstrated that osteoblasts in osteogenic media had a progressively increased τM compared to cells in regular media, suggesting that osteoblasts undergoing mineralization had higher NAD+/NAD(P)H ratio and may utilize more oxidative phosphorylation (OxPhos). In vivo NAD(P)H 2P-FLIM was conducted in conjunction with two-photon phosphorescence lifetime microscopy (2P-PLIM) to evaluate cellular metabolism of GFP+ osteoblasts as well as bone tissue oxygen at different locations of the native cranial bone in Col (I) 2.3GFP mice. Our data showed that osteocytes dwelling within lacunae had higher τM than osteoblasts at the bone edge of suture and marrow space. Measurement of pO2 showed poor correlation of pO2 and τM in native bone. However, when NAD(P)H 2P-FLIM was used to examine osteoblast cellular metabolism at the leading edge of the cranial defects during repair in Col (I) 2.3GFP mouse model, a significantly lower τM was recorded, which was associated with lower pO2 at an early stage of healing, indicating an impact of hypoxia on energy metabolism during bone tissue repair. Taken together, our current study demonstrates the feasibility of using non-invasive optical NAD(P)H 2P-FLIM technique to examine cellular energy metabolism at single cell resolution in living animals. Our data further support that both glycolysis and OxPhos are being used in the osteoblasts, with more mature osteoblasts exhibiting higher ratio of NAD+/NAD(P)H, indicating a potential change of energy mode during differentiation. Further experiments utilizing animals with genetic modification of cellular metabolism could enhance our understanding of energy metabolism in various cell types in living bone microenvironment.
Collapse
Affiliation(s)
- Kevin Schilling
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Edward Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
35
|
Zhao T, Zhang J, Gao X, Yuan D, Gu Z, Xu Y. Electrospun Nanofibers for Bone Regeneration: From Biomimetic Composition, Structure to Function. J Mater Chem B 2022; 10:6078-6106. [DOI: 10.1039/d2tb01182d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, a variety of novel materials and processing technologies have been developed to prepare tissue engineering scaffolds for bone defect repair. Among them, nanofibers fabricated via electrospinning technology...
Collapse
|
36
|
Singh B, Kim K, Park MH. On-Demand Drug Delivery Systems Using Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3411. [PMID: 34947758 PMCID: PMC8707398 DOI: 10.3390/nano11123411] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022]
Abstract
On-demand drug-delivery systems using nanofibers are extensively applicable for customized drug release based on target location and timing to achieve the desired therapeutic effects. A nanofiber formulation is typically created for a certain medication and changing the drug may have a significant impact on the release kinetics from the same delivery system. Nanofibers have several distinguishing features and properties, including the ease with which they may be manufactured, the variety of materials appropriate for processing into fibers, a large surface area, and a complex pore structure. Nanofibers with effective drug-loading capabilities, controllable release, and high stability have gained the interest of researchers owing to their potential applications in on-demand drug delivery systems. Based on their composition and drug-release characteristics, we review the numerous types of nanofibers from the most recent accessible studies. Nanofibers are classified based on their mechanism of drug release, as well as their structure and content. To achieve controlled drug release, a suitable polymer, large surface-to-volume ratio, and high porosity of the nanofiber mesh are necessary. The properties of nanofibers for modified drug release are categorized here as protracted, stimulus-activated, and biphasic. Swellable or degradable polymers are commonly utilized to alter drug release. In addition to the polymer used, the process and ambient conditions can have considerable impacts on the release characteristics of the nanofibers. The formulation of nanofibers is highly complicated and depends on many variables; nevertheless, numerous options are available to accomplish the desired nanofiber drug-release characteristics.
Collapse
Affiliation(s)
- Baljinder Singh
- Department of Convergence Science, Sahmyook University, Seoul 01795, Korea;
| | - Kibeom Kim
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Korea;
| | - Myoung-Hwan Park
- Department of Convergence Science, Sahmyook University, Seoul 01795, Korea;
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Korea
- N to B Co., Ltd., Business Incubator Center, Hwarang-ro, Nowon-gu, Seoul 01795, Korea
| |
Collapse
|
37
|
A bimetallic load-bearing bioceramics of TiO 2 @ ZrO 2 integrated polycaprolactone fibrous tissue construct exhibits anti bactericidal effect and induces osteogenesis in MC3T3-E1 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112501. [PMID: 34857287 DOI: 10.1016/j.msec.2021.112501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
Bioactive mesoporous binary metal oxide nanoparticles allied with polymeric scaffolds can mimic natural extracellular matrix because of their self-mineralized functional matrix. Herein, we developed fibrous scaffolds of polycaprolactone (PCL) integrating well-dispersed TiO2@ZrO2 nanoparticles (NPs) via electrospinning for a tissue engineering approach. The scaffold with 0.1 wt% of bioceramic (TiO2@ZrO2) shows synergistic effects on physicochemical and bioactivity suited to stem cell attachment/proliferation. The bioceramics-based scaffold shows excellent antibacterial activity that can prevent implant-associated infections. In addition, the TiO2@ZrO2 in scaffold serves as a stem cell microenvironment to accelerate cell-to-cell interactions, including cell growth, morphology/orientation, differentiation, and regeneration. The NPs in PCL exert superior biocompatibility on MC3T3-E1 cells inducing osteogenic differentiation. The ALP activity and ARS staining confirm the upregulation of bone-related proteins and minerals suggesting the scaffolds exhibit osteoinductive abilities and contribute to bone cell regeneration. Based on this result, the bimetallic oxide could become a novel bone ceramic tailor TiO2@ZrO2 composite tissue-construct and keep potential nanomaterials-based scaffold for bone tissue engineering strategy.
Collapse
|
38
|
Qin D, Wang N, You XG, Zhang AD, Chen XG, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci 2021; 10:318-353. [PMID: 34783809 DOI: 10.1039/d1bm01294k] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone is a hard-connective tissue composed of matrix, cells and bioactive factors with a hierarchical structure, where the matrix is mainly composed of type I collagen and hydroxyapatite. Collagen fibers assembled by collagen are the template for mineralization and make an important contribution to bone formation and the bone remodeling process. Therefore, collagen has been widely clinically used for bone/cartilage defect regeneration. However, pure collagen implants, such as collagen scaffolds or sponges, have limitations in the bone/cartilage regeneration process due to their poor mechanical properties and osteoinductivity. Different forms of collagen-based composites prepared by incorporating natural/artificial polymers or bioactive inorganic substances are characterized by their interconnected porous structure and promoting cell adhesion, while they improve the mechanical strength, structural stability and osteogenic activities of the collagen matrix. In this review, various forms of collagen-based biocomposites, such as scaffolds, sponges, microspheres/nanoparticles, films and microfibers/nanofibers prepared by natural/synthetic polymers, bioactive ceramics and carbon-based materials compounded with collagen are reviewed. In addition, the application of collagen-based biocomposites as cytokine, cell or drug (genes, proteins, peptides and chemosynthetic) delivery platforms for proangiogenesis and bone/cartilage tissue regeneration is also discussed. Finally, the potential application, research and development direction of collagen-based biocomposites in future bone/cartilage tissue regeneration are discussed.
Collapse
Affiliation(s)
- Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xin-Guo You
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - An-Di Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
39
|
Moe YM, Nuntanaranont T, Khangkhamano M, Meesane J. Mimicked Periosteum Layer Based on Deposited Particle Silk Fibroin Membrane for Osteogenesis and Guided Bone Regeneration in Alveolar Cleft Surgery: Formation and in Vitro Testing. Organogenesis 2021; 17:100-116. [PMID: 34719332 PMCID: PMC9208804 DOI: 10.1080/15476278.2021.1991743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/26/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022] Open
Abstract
An alveolar cleft is a critical tissue defect often treated with surgery. In this research, the mimicked periosteum layer based on deposited silk fibroin membrane was fabricated for guided bone regeneration in alveolar cleft surgery. The deposited silk fibroin particle membranes were fabricated by spray-drying with different concentrations of silk fibroin (v/v): 0.5% silk fibroin (0.5% SFM), 1% silk fibroin (1% SFM), 2% silk fibroin (2% SFM), and 1% silk fibroin film (1% SFF) as the control. The membranes were then characterized and the molecular organization, structure, and morphology were observed with FT-IR, DSC, and SEM. Their physical properties, mechanical properties, swelling, and degradation were tested. The membranes were cultured with osteoblast cells and their biological performance, cell viability and proliferation, total protein, ALP activity, and calcium deposition were evaluated. The results demonstrated that the membranes showed molecular transformation of random coils to beta sheets and stable structures. The membranes had a porous layer. Furthermore, they had more stress and strain, swelling, and degradation than the film. They had more unique cell viability and proliferation, total protein, ALP activity, calcium deposition than the film. The results of the study indicated that 1% SFM is promising for guided bone regeneration for alveolar cleft surgery.
Collapse
Affiliation(s)
- Yadanar Mya Moe
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thongchai Nuntanaranont
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Matthana Khangkhamano
- Department of Mine and Materials Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jirut Meesane
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
40
|
Biomimetic Zirconia with Cactus-Inspired Meso-Scale Spikes and Nano-Trabeculae for Enhanced Bone Integration. Int J Mol Sci 2021; 22:ijms22157969. [PMID: 34360734 PMCID: PMC8347469 DOI: 10.3390/ijms22157969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023] Open
Abstract
Biomimetic design provides novel opportunities for enhancing and functionalizing biomaterials. Here we created a zirconia surface with cactus-inspired meso-scale spikes and bone-inspired nano-scale trabecular architecture and examined its biological activity in bone generation and integration. Crisscrossing laser etching successfully engraved 60 μm wide, cactus-inspired spikes on yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) with 200–300 nm trabecular bone-inspired interwoven structures on the entire surface. The height of the spikes was varied from 20 to 80 μm for optimization. Average roughness (Sa) increased from 0.10 μm (polished smooth surface) to 18.14 μm (80 μm-high spikes), while the surface area increased by up to 4.43 times. The measured dimensions of the spikes almost perfectly correlated with their estimated dimensions (R2 = 0.998). The dimensional error of forming the architecture was 1% as a coefficient of variation. Bone marrow-derived osteoblasts were cultured on a polished surface and on meso- and nano-scale hybrid textured surfaces with different spike heights. The osteoblastic differentiation was significantly promoted on the hybrid-textured surfaces compared with the polished surface, and among them the hybrid-textured surface with 40 μm-high spikes showed unparalleled performance. In vivo bone-implant integration also peaked when the hybrid-textured surface had 40 μm-high spikes. The relationships between the spike height and measures of osteoblast differentiation and the strength of bone and implant integration were non-linear. The controllable creation of meso- and nano-scale hybrid biomimetic surfaces established in this study may provide a novel technological platform and design strategy for future development of biomaterial surfaces to improve bone integration and regeneration.
Collapse
|
41
|
Spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering. Biomaterials 2021; 276:121041. [PMID: 34343857 DOI: 10.1016/j.biomaterials.2021.121041] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
While extensive research has demonstrated an interdependent role of osteogenesis and angiogenesis in bone tissue engineering, little is known about how functional blood vessel networks are organized to initiate and facilitate bone tissue regeneration. Building upon the success of a biomimetic composite nanofibrous construct capable of supporting donor progenitor cell-dependent regeneration, we examined the angiogenic response and spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of cranial bone defect repair utilizing high resolution multiphoton laser scanning microscopy (MPLSM) in conjunction with intravital imaging. We demonstrate here that the regenerative vasculature can be specified as arterial and venous capillary vessels based upon endothelial surface markers of CD31 and Endomucin (EMCN), with CD31+EMCN- vessels exhibiting higher flowrate and higher oxygen tension (pO2) than CD31+EMCN+ vessels. The donor osteoblast clusters are uniquely coupled to the sprouting CD31+EMCN+ vessels connecting to CD31+EMCN- vessels. Further analyses reveal differential vascular response and vessel type distribution in healing and non-healing defects, associated with changes of gene sets that control sprouting and morphogenesis of blood vessels. Collectively, our study highlights the key role of spatiotemporal vessel type distribution in bone tissue engineering, offering new insights for devising more effective vascularization strategies for bone tissue engineering.
Collapse
|
42
|
Gupta S, Teotia AK, Qayoom I, Shiekh PA, Andrabi SM, Kumar A. Periosteum-Mimicking Tissue-Engineered Composite for Treating Periosteum Damage in Critical-Sized Bone Defects. Biomacromolecules 2021; 22:3237-3250. [PMID: 34252271 DOI: 10.1021/acs.biomac.1c00319] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The periosteum is an indispensable part of the bone that nourishes the cortical bone and acts as a repertoire of osteoprogenitor cells. Periosteal damage as a result of traumatic injuries, infections, or surgical assistance in bone surgeries is often associated with a high incidence of delayed bone healing (union or nonunion) compounded with severe pain and a risk of a secondary fracture. Developing bioengineered functional periosteal substitutes is an indispensable approach to augment bone healing. In this study, we have developed a biomimetic periosteum membrane consisting of electrospun oxygen-releasing antioxidant polyurethane on collagen membrane (polyurethane-ascorbic acid-calcium peroxide containing fibers on collagen (PUAOCC)). Further, to assist bone formation, we have developed a bioactive inorganic-organic composite cryogel (bioglass-collagen-gelatin-nanohydroxyapatite (BCGH)) as a bone substitute. In an in vitro simulated oxidative stress model, PUAOCC supported the primary periosteal cell survival. Moreover, in an in vivo, critical-sized (5.9 mm × 3.2 mm × 1.50 mm) unicortical rat tibial bone defect, implantation of PUAOCC along with the functionalized BCGH led to significant improvement in bone formation along with periosteal regeneration. The periosteal regeneration was confirmed by expression of periosteum-specific periostin and neuronal regulation-related protein markers. Our study demonstrates the development of a periosteum-mimicking membrane with promising applications to facilitate periosteal regeneration, thus assisting bone formation when used in combination with bone composites and mimicking the natural bone repair process.
Collapse
Affiliation(s)
- Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Arun Kumar Teotia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Irfan Qayoom
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Parvaiz Ahmad Shiekh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Syed Muntazir Andrabi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.,Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
43
|
Banimohamad-Shotorbani B, Rahmani Del Bakhshayesh A, Mehdipour A, Jarolmasjed S, Shafaei H. The efficiency of PCL/HAp electrospun nanofibers in bone regeneration: a review. J Med Eng Technol 2021; 45:511-531. [PMID: 34251971 DOI: 10.1080/03091902.2021.1893396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electrospinning is a method which produces various nanofiber scaffolds for different tissues was attractive for researchers. Nanofiber scaffolds could be made from several biomaterials and polymers. Quality and virtues of final scaffolds depend on used biomaterials (even about single substance, the origin is effective), additives (such as some molecules, ions, drugs, and inorganic materials), electrospinning parameter (voltage, injection speed, temperature, …), etc. In addition to its benefits, which makes it more attractive is the possibility of modifications. Common biomaterials in bone tissue engineering such as poly-caprolactone (PCL), hydroxyapatite (HAp), and their important features, electrospinning nanofibers were widely studied. Related investigations indicate the critical role of even small parameters (like the concentration of PCL or HAp) in final product properties. These changes also, cause deference in cell proliferation, adhesion, differentiation, and in vivo repair process. In this review was focussed on PCL/HAp based nanofibers and additives that researchers used for scaffold improvement. Then, reviewing properties of gained nanofibers, their effect on cell behaviour, and finally, their valency in bone tissue engineering studies (in vitro and in vivo).
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hajar Shafaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Abdelkhalek M, El-Alfy BS, Ali AM. Single stage reconstruction of segmental skeletal defects by bone graft in a synthetic membrane. INTERNATIONAL ORTHOPAEDICS 2021; 45:2491-2498. [PMID: 34232361 DOI: 10.1007/s00264-021-05078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Segmental skeletal defects are very difficult to treat. The current options are lengthy procedures, require more than one surgery and plagued with many complications. The aim of this study is to assess the results of bone graft in surgicel as a synthetic membrane for reconstruction of segmental skeletal defects in one stage surgery. METHODS Fourteen patients with segmental skeletal defects were included in the study. The ages ranged from 20 to 54 years with an average of 32 years. The defects were due to high energy trauma in all cases. The size of the defects ranged from 5 to 12 cm with an average of 7 cm. They were located in the distal femur in 11 cases and middle third of the femur in three cases. All cases were treated by the synthetic membrane technique in one stage surgery. Surgicel was used as a synthetic membrane and both the fibular strut autograft and morselized allograft were used to fill the defects in all patients. RESULTS All cases healed without additional procedures after the index surgery except in three cases. The time-to-bone union ranged from six to 13 months with an average of eight months. After physiotherapy all patients regained good range of knee movements except two cases. The complications included deep wound infection in two cases, nonunion of the graft in one case and joint stiffness in two cases. CONCLUSION Primary bone graft in surgicel as a synthetic membrane is a good technique for management of post-traumatic bone defects. It reduces the time and number of surgeries required for reconstruction of this difficult problem.
Collapse
Affiliation(s)
| | | | - Ayman M Ali
- Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| |
Collapse
|
45
|
Xie C, Ye J, Liang R, Yao X, Wu X, Koh Y, Wei W, Zhang X, Ouyang H. Advanced Strategies of Biomimetic Tissue-Engineered Grafts for Bone Regeneration. Adv Healthc Mater 2021; 10:e2100408. [PMID: 33949147 DOI: 10.1002/adhm.202100408] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Indexed: 12/21/2022]
Abstract
The failure to repair critical-sized bone defects often leads to incomplete regeneration or fracture non-union. Tissue-engineered grafts have been recognized as an alternative strategy for bone regeneration due to their potential to repair defects. To design a successful tissue-engineered graft requires the understanding of physicochemical optimization to mimic the composition and structure of native bone, as well as the biological strategies of mimicking the key biological elements during bone regeneration process. This review provides an overview of engineered graft-based strategies focusing on physicochemical properties of materials and graft structure optimization from macroscale to nanoscale to further boost bone regeneration, and it summarizes biological strategies which mainly focus on growth factors following bone regeneration pattern and stem cell-based strategies for more efficient repair. Finally, it discusses the current limitations of existing strategies upon bone repair and highlights a promising strategy for rapid bone regeneration.
Collapse
Affiliation(s)
- Chang Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- Department of Sports Medicine Zhejiang University School of Medicine Hangzhou 310058 China
| | - Jinchun Ye
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Xudong Yao
- The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu 322000 China
| | - Xinyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Yiwen Koh
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Wei Wei
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou 310058 China
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310058 China
- Zhejiang University‐University of Edinburgh Institute Zhejiang University School of Medicine and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province Zhejiang University School of Medicine Hangzhou 314499 China
- Department of Sports Medicine Zhejiang University School of Medicine Hangzhou 310058 China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou 310058 China
| |
Collapse
|
46
|
Lam LRW, Schilling K, Romas S, Misra R, Zhou Z, Caton JG, Zhang X. Electrospun core-shell nanofibers with encapsulated enamel matrix derivative for guided periodontal tissue regeneration. Dent Mater J 2021; 40:1208-1216. [PMID: 34121026 DOI: 10.4012/dmj.2020-412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The osteogenic effect of a composite electrospun core-shell nanofiber membrane encapsulated with Emdogain® (EMD) was evaluated. The membrane was developed through coaxial electrospinning using polycaprolactone as the shell and polyethylene glycol as the core. The effects of the membrane on the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) were examined using Alizarin Red S staining and qRT-PCR. Characterization of the nanofiber membrane demonstrated core-shell morphology with a mean diameter of ~1 µm. Examination of the release of fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA) from core-shell nanofibers over a 22-day period showed improved release profile of encapsulated proteins as compared to solid nanofibers. When cultured on EMD-containing core-shell nanofibers, PDLSCs showed significantly improved osteogenic differentiation with increased Alizarin Red S staining and enhanced osteogenic gene expression, namely OCN, RUNX2, ALP, and OPN. Core-shell nanofiber membranes may improve outcomes in periodontal regenerative therapy through simultaneous mechanical barrier and controlled drug delivery function.
Collapse
Affiliation(s)
- Linda R Wang Lam
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry.,Department of Periodontology, Eastman Institute for Oral Health, University of Rochester, School of Medicine and Dentistry
| | - Kevin Schilling
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry.,Department of Biomedical Engineering, University of Rochester
| | - Stephen Romas
- Department of Pediatrics, University of Rochester, School of Medicine and Dentistry
| | - Ravi Misra
- Department of Pediatrics, University of Rochester, School of Medicine and Dentistry
| | - Zhuang Zhou
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry
| | - Jack G Caton
- Department of Periodontology, Eastman Institute for Oral Health, University of Rochester, School of Medicine and Dentistry
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry
| |
Collapse
|
47
|
Lou Y, Wang H, Ye G, Li Y, Liu C, Yu M, Ying B. Periosteal Tissue Engineering: Current Developments and Perspectives. Adv Healthc Mater 2021; 10:e2100215. [PMID: 33938636 DOI: 10.1002/adhm.202100215] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Periosteum, a highly vascularized bilayer connective tissue membrane plays an indispensable role in the repair and regeneration of bone defects. It is involved in blood supply and delivery of progenitor cells and bioactive molecules in the defect area. However, sources of natural periosteum are limited, therefore, there is a need to develop tissue-engineered periosteum (TEP) mimicking the composition, structure, and function of natural periosteum. This review explores TEP construction strategies from the following perspectives: i) different materials for constructing TEP scaffolds; ii) mechanical properties and surface topography in TEP; iii) cell-based strategies for TEP construction; and iv) TEP combined with growth factors. In addition, current challenges and future perspectives for development of TEP are discussed.
Collapse
Affiliation(s)
- Yiting Lou
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Guanchen Ye
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Yongzheng Li
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Chao Liu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Binbin Ying
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
48
|
Oral Bone Tissue Regeneration: Mesenchymal Stem Cells, Secretome, and Biomaterials. Int J Mol Sci 2021; 22:ijms22105236. [PMID: 34063438 PMCID: PMC8156243 DOI: 10.3390/ijms22105236] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, tissue engineering has become one of the most studied medical fields. Even if bone shows self-remodeling properties, in some cases, due to injuries or anomalies, bone regeneration can be required. In particular, oral bone regeneration is needed in the dentistry field, where the functional restoration of tissues near the tooth represents a limit for many dental implants. In this context, the application of biomaterials and mesenchymal stem cells (MSCs) appears promising for bone regeneration. This review focused on in vivo studies that evaluated bone regeneration using biomaterials with MSCs. Different biocompatible biomaterials were enriched with MSCs from different sources. These constructs showed an enhanced bone regenerative power in in vivo models. However, we discussed also a future perspective in tissue engineering using the MSC secretome, namely the conditioned medium and extracellular vesicles. This new approach has already shown promising results for bone tissue regeneration in experimental models.
Collapse
|
49
|
Li Y, Hoffman MD, Benoit DSW. Matrix metalloproteinase (MMP)-degradable tissue engineered periosteum coordinates allograft healing via early stage recruitment and support of host neurovasculature. Biomaterials 2021; 268:120535. [PMID: 33271450 PMCID: PMC8110201 DOI: 10.1016/j.biomaterials.2020.120535] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/17/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Despite serving as the clinical "gold standard" treatment for critical size bone defects, decellularized allografts suffer from long-term failure rates of ~60% due to the absence of the periosteum. Stem and osteoprogenitor cells within the periosteum orchestrate autograft healing through host cell recruitment, which initiates the regenerative process. To emulate periosteum-mediated healing, tissue engineering approaches have been utilized with mixed outcomes. While vascularization has been widely established as critical for bone regeneration, innervation was recently identified to be spatiotemporally regulated together with vascularization and similarly indispensable to bone healing. Notwithstanding, there are no known approaches that have focused on periosteal matrix cues to coordinate host vessel and/or axon recruitment. Here, we investigated the influence of hydrogel degradation mechanism, i.e. hydrolytic or enzymatic (cell-dictated), on tissue engineered periosteum (TEP)-modified allograft healing, especially host vessel/nerve recruitment and integration. Matrix metalloproteinase (MMP)-degradable hydrogels supported endothelial cell migration from encapsulated spheroids whereas no migration was observed in hydrolytically degradable hydrogels in vitro, which correlated with increased neurovascularization in vivo. Specifically, ~2.45 and 1.84-fold, and ~3.48 and 2.58-fold greater vessel and nerve densities with high levels of vessel and nerve co-localization was observed using MMP degradable TEP (MMP-TEP) -modified allografts versus unmodified and hydrolytically degradable TEP (Hydro-TEP)-modified allografts, respectively, at 3 weeks post-surgery. MMP-TEP-modified allografts exhibited greater longitudinal graft-localized vascularization and endochondral ossification, along with 4-fold and 2-fold greater maximum torques versus unmodified and Hydro-TEP-modified allografts after 9 weeks, respectively, which was comparable to that of autografts. In summary, our results demonstrated that the MMP-TEP coordinated allograft healing via early stage recruitment and support of host neurovasculature.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Michael D Hoffman
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Materials Science Program, University of Rochester, Rochester, NY, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY, USA; Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
50
|
Pandey A, Nikam AN, Fernandes G, Kulkarni S, Padya BS, Prassl R, Das S, Joseph A, Deshmukh PK, Patil PO, Mutalik S. Black Phosphorus as Multifaceted Advanced Material Nanoplatforms for Potential Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E13. [PMID: 33374716 PMCID: PMC7822462 DOI: 10.3390/nano11010013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Black phosphorus is one of the emerging members of two-dimensional (2D) materials which has recently entered the biomedical field. Its anisotropic properties and infrared bandgap have enabled researchers to discover its applicability in several fields including optoelectronics, 3D printing, bioimaging, and others. Characterization techniques such as Raman spectroscopy have revealed the structural information of Black phosphorus (BP) along with its fundamental properties, such as the behavior of its photons and electrons. The present review provides an overview of synthetic approaches and properties of BP, in addition to a detailed discussion about various types of surface modifications available for overcoming the stability-related drawbacks and for imparting targeting ability to synthesized nanoplatforms. The review further gives an overview of multiple characterization techniques such as spectroscopic, thermal, optical, and electron microscopic techniques for providing an insight into its fundamental properties. These characterization techniques are not only important for the analysis of the synthesized BP but also play a vital role in assessing the doping as well as the structural integrity of BP-based nanocomposites. The potential role of BP and BP-based nanocomposites for biomedical applications specifically, in the fields of drug delivery, 3D printing, and wound dressing, have been discussed in detail to provide an insight into the multifunctional role of BP-based nanoplatforms for the management of various diseases, including cancer therapy. The review further sheds light on the role of BP-based 2D platforms such as BP nanosheets along with BP-based 0D platforms-i.e., BP quantum dots in the field of therapy and bioimaging of cancer using techniques such as photoacoustic imaging and fluorescence imaging. Although the review inculcates the multimodal therapeutic as well as imaging role of BP, there is still research going on in this field which will help in the development of BP-based theranostic platforms not only for cancer therapy, but various other diseases.
Collapse
Affiliation(s)
- Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Ajinkya N. Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Bharath Singh Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Ruth Prassl
- Gottfried Schatz Research Centre for Cell Signalling, Metabolism and Aging, Medical University of Graz, 8036 Graz, Austria;
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (S.D.); (A.J.)
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (S.D.); (A.J.)
| | - Prashant K. Deshmukh
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Buldhana 443101, Maharashtra, India;
| | - Pravin O. Patil
- Department of Pharmaceutical Chemistry, H R Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist Dhule 425405, Maharashtra, India;
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| |
Collapse
|