1
|
Sun Y, He J, Chen W, Wang Y, Wang K, Zhou M, Zheng Y. Inhalable DNase I@Au hybrid nanoparticles for radiation sensitization and metastasis inhibition by elimination of neutrophil extracellular traps. Biomaterials 2025; 317:123095. [PMID: 39813970 DOI: 10.1016/j.biomaterials.2025.123095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
High-dose radiation therapy is a widely used clinical strategy to inhibit tumor growth. However, the rapid generation of excessive reactive oxygen species (ROS) triggers the formation of neutrophil extracellular traps (NETs), which capture free tumor cells in the bloodstream, promoting metastasis. In this study, we developed a hybrid nanoparticle composed of DNase I and gold (DNase I@Au) to enhance radiotherapy efficacy while mitigating metastasis by precisely eliminating NETs. The DNase I@Au nanoparticles, administered via aerosol inhalation, are efficiently delivered to lung tumor tissue, improving radiosensitization and reducing tumor size. Crucially, the nanoparticles could gradually release DNase I, effectively degrading ROS-induced NETs and preventing the interaction of free malignant cells with tumor sites or vasculature, thereby inhibiting metastasis. Therefore, we provide an enzyme and sensitizer co-loaded strategy that offers a promising approach to improve the therapeutic outcome of radiotherapy and reduce the risk of lung cancer metastasis under ROS stimulation.
Collapse
Affiliation(s)
- Yuchao Sun
- Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jian He
- University-University of Edinburgh Institute (ZJU-UoE Institute), and liangzhu Laboratory, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Yongfang Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Min Zhou
- Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; University-University of Edinburgh Institute (ZJU-UoE Institute), and liangzhu Laboratory, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Key Laboratory of Cancer Prevention and Intervention of China (MOE), Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yichun Zheng
- Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
2
|
Yang Q, Liu S, Liu H, Liu Y, He Z, Zheng Z, Chen Y, Luo E. A new paradigm in bone tissue biomaterials: Enhanced osteogenesis-angiogenic coupling by targeting H-type blood vessels. Biomaterials 2025; 324:123423. [PMID: 40513476 DOI: 10.1016/j.biomaterials.2025.123423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/10/2025] [Accepted: 05/19/2025] [Indexed: 06/16/2025]
Abstract
Bone defects resulting from trauma or osteoporosis remain a significant clinical challenge due to the limited regenerative capacity of affected tissues. Traditional therapeutic approaches are often associated with complications such as donor site morbidity and immune rejection, underscoring the necessity for the development of advanced strategies. This review examines H-type blood vessels, a recently identified subtype that plays a pivotal role in linking osteogenesis and angiogenesis. These vessels are distinguished by specific functional phenotypes and are characterized by high co-expression of CD31 and endomucin (Emcn). While various strategies have been explored to enhance osteogenesis, inadequate vascularization remains a major obstacle in effective bone defect repair. Here, we categorize and critically evaluate biomaterials based on their compositions, which facilitate the formation of H-type vessels in the bone microenvironment by modulating key signaling pathways that promote osteogenic-angiogenic coupling. The integration of findings from diverse animal models provides valuable insights into the design principles of materials that optimize the formation of vascular networks alongside bone regeneration. This review also discusses the persisting challenges and potential future directions for the development of clinically translatable biomaterial therapies aimed at achieving functional restoration of vascularized bone tissue. These advancements not only enhance our understanding of H-type vessels biology but also provide a strategic framework for addressing the critical limitation of vascular insufficiency in bone repair.
Collapse
Affiliation(s)
- Qiheng Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ze He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zizhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanchi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Yang Q, Wu T, Wu X, Ren M, Liu F, Yang S. Inflammatory Microenvironment-Modulated Conductive Hydrogel Promotes Vascularized Bone Regeneration in Infected Bone Defects. ACS Biomater Sci Eng 2025; 11:2353-2366. [PMID: 40073290 DOI: 10.1021/acsbiomaterials.5c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Infected bone defects show a significant reduction in neovascularization during the healing process, primarily due to persistent bacterial infection and immune microenvironmental disorders. Existing treatments are difficult to simultaneously meet the requirements of antibacterial and anti-inflammatory treatments for infected bone defects, which is a key clinical therapeutic challenge that needs to be addressed. In this study, a conductive hydrogel based on copper nanoparticles was developed for controlling bacterial infection and remodeling the immune microenvironment. The hydrogel not only effectively eliminates bacteria that exist in the infected bone defect region but also transmits electrical signals to restore the disordered immune microenvironment. In vitro studies have shown that the hydrogel has excellent biocompatibility and can modulate macrophage polarization by transmitting electrical signals to reduce inflammation and promote neovascularization. In vivo studies further confirmed that the hydrogel scaffold not only rapidly cleared clinical bacterial infections but also significantly induced the formation of vascularized new bone tissue within 4 weeks. This work provides a simple and innovative strategy to fabricate copper-containing conductive hydrogels that show great potential for application in the field of therapeutics for infected bone regeneration.
Collapse
Affiliation(s)
- Qian Yang
- College of Stomatology, Chongqing Medical University, 426 Songshibei Road, Yubei District, Chongqing 401147, China
| | - Tianli Wu
- College of Stomatology, Chongqing Medical University, 426 Songshibei Road, Yubei District, Chongqing 401147, China
| | - Xianghao Wu
- College of Stomatology, Chongqing Medical University, 426 Songshibei Road, Yubei District, Chongqing 401147, China
| | - Mingxing Ren
- College of Stomatology, Chongqing Medical University, 426 Songshibei Road, Yubei District, Chongqing 401147, China
| | - Fengyi Liu
- College of Stomatology, Chongqing Medical University, 426 Songshibei Road, Yubei District, Chongqing 401147, China
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, 426 Songshibei Road, Yubei District, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
4
|
Li Z, Ren K, Chen J, Zhuang Y, Dong S, Wang J, Liu H, Ding J. Bioactive hydrogel formulations for regeneration of pathological bone defects. J Control Release 2025; 380:686-714. [PMID: 39880040 DOI: 10.1016/j.jconrel.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Bone defects caused by osteoporosis, infection, diabetes, post-tumor resection, and nonunion often cause severe pain and markedly increase morbidity and mortality, which remain a significant challenge for orthopedic surgeons. The precise local treatments for these pathological complications are essential to avoid poor or failed bone repair. Hydrogel formulations serve as injectable innovative platforms that overcome microenvironmental obstacles and as delivery systems for controlled release of various bioactive substances to bone defects in a targeted manner. Additionally, hydrogel formulations can be tailored for specific mechanical strengths and degradation profiles by adjusting their physical and chemical properties, which are crucial for prolonged drug retention and effective bone repair. This review summarizes recent advances in bioactive hydrogel formulations as three-dimensional scaffolds that support cell proliferation and differentiation. It also highlights their role as smart drug-delivery systems with capable of continuously releasing antibacterial agents, anti-inflammatory drugs, chemotherapeutic agents, and osteogenesis-related factors to enhance bone regeneration in pathological areas. Furthermore, the limitations of hydrogel formulations in pathological bone repair are discussed, and future development directions are proposed, which is expected to pave the way for the repair of pathological bone defects.
Collapse
Affiliation(s)
- Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - Kaixuan Ren
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiajia Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Yaling Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
5
|
Qi H, Zhang B, Lian F. 3D-printed bioceramic scaffolds for bone defect repair: bone aging and immune regulation. Front Bioeng Biotechnol 2025; 13:1557203. [PMID: 40242352 PMCID: PMC12000889 DOI: 10.3389/fbioe.2025.1557203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
The management of bone defects, particularly in aging populations, remains a major clinical challenge. The immune microenvironment plays an important role in the repair of bone defects and a favorable immune environment can effectively promote the repair of bone defects. However, aging is closely associated with chronic low-grade systemic inflammation, which adversely affects bone healing. Persistent low-grade systemic inflammation critically regulates bone repair through all stages. This review explores the potential of 3D-printed bioceramic scaffolds in bone defect repair, focusing on their capacity to modulate the immune microenvironment and counteract the effects of bone aging. The scaffolds not only provide structural support for bone regeneration but also serve as effective carriers for anti-osteoporosis drugs, offering a novel therapeutic strategy for treating osteoporotic bone defects. By regulating inflammation and improving the immune response, 3D-printed bioceramic scaffolds may significantly enhance bone repair, particularly in the context of age-related bone degeneration. This approach underscores the potential of advanced biomaterials in addressing the dual challenges of bone aging and immune dysregulation, offering promising avenues for the development of effective treatments for bone defects in the elderly. We hope the concepts discussed in this review could offer novel therapeutic strategies for bone defect repair, and suggest promising avenues for the future development and optimization of bioceramic scaffolds.
Collapse
Affiliation(s)
- Haoran Qi
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Zhang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Feng Lian
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| |
Collapse
|
6
|
Jiang C, Miao T, Xing X, Schilling KJ, Lenhard N, Wang L, McDowell S, Nilsson BL, Wang H, Zhang X. Masquelet Inspired in Vivo Engineered Extracellular Matrix as Functional Periosteum for Bone Defect Repair and Reconstruction. Adv Healthc Mater 2025; 14:e2404975. [PMID: 39840608 PMCID: PMC11913577 DOI: 10.1002/adhm.202404975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Indexed: 01/23/2025]
Abstract
The Masquelet technique that combines a foreign body reaction (FBR)-induced vascularized tissue membrane with staged bone grafting for reconstruction of segmental bone defect has gained wide attention in Orthopedic surgery. The success of Masquelet hinges on its ability to promote formation of a "periosteum-like" FBR-induced membrane at the bone defect site. Inspired by Masquelet's technique, here a novel approach is devised to create periosteum mimetics from decellularized extracellular matrix (dECM), engineered in vivo through FBR, for reconstruction of segmental bone defects. The approach involved 3D printing of polylactic acid (PLA) template with desired pattern/architecture, followed by subcutaneous implantation of the template to form tissue, and depolymerization and decellularization to generate dECM with interconnected channels. The dECM matrices produces from the same mice (autologous) or from different mice (allogenic) are used as a functional periosteum for repair of structural bone allograft in a murine segmental bone defect model. This study shows that autologous dECM performed better than allogenic dECM, further permitting local delivery of low dose BMP-2 to enhance allograft incorporation. The success of this current approach can establish a new line of versatile, patient-specific, and periosteum-like autologous dECM for bone regeneration, offering personalized therapeutics to patients with impaired healing.
Collapse
Affiliation(s)
- Chen Jiang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Tianfeng Miao
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Xiaojie Xing
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Kevin J Schilling
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Nicholas Lenhard
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Lichen Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Susan McDowell
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| |
Collapse
|
7
|
Zhai Y, Zhou Z, Xing X, Nuzzle M, Zhang X. Differential bone and vessel type formation at superior and dura periosteum during cranial bone defect repair. Bone Res 2025; 13:8. [PMID: 39805832 PMCID: PMC11729862 DOI: 10.1038/s41413-024-00379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/14/2024] [Accepted: 10/09/2024] [Indexed: 01/16/2025] Open
Abstract
The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide. Our results show that new bone formation along the dura surface is three times greater than that along the superior periosteal surface following injury, regardless of Teriparatide treatment. Targeted deletion of PTH receptor PTH1R via SMA-CreER and Col 1a (2.3)-CreER results in selective reduction of bone formation, suggesting different progenitor cell pools in the adult superior and dura periosteum. Consistently, analyses of microvasculature show higher vessel density and better organized arterial-venous vessel network associated with a 10-fold more osteoblast clusters at dura periosteum as compared to superior periosteum. Intermittent rhPTH treatment further enhances the arterial vessel ratio at dura periosteum and type H vessel formation in cortical bone marrow space. Taken together, our study demonstrates a site-dependent coordinated osteogenic and angiogenic response, which is determined by regional osteogenic progenitor pool as well as the coupling blood vessel network at the site of cranial defect repair.
Collapse
Affiliation(s)
- Yuankun Zhai
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Zhuang Zhou
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Xiaojie Xing
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Mark Nuzzle
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
8
|
Hu Z, Lin H, Wang Z, Yi Y, Zou S, Liu H, Han X, Rong X. 3D Printing Hierarchical Porous Nanofibrous Scaffold for Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405406. [PMID: 39548932 DOI: 10.1002/smll.202405406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/16/2024] [Indexed: 11/18/2024]
Abstract
Current limitations in 3D printing pose significant challenges for the fabrication of hierarchical 3D scaffolds with nanofibrous structures that simulate the natural bone extracellular matrix (ECM) for enhanced bone regeneration. This study presents an innovative approach to 3D printing customized hierarchical porous scaffolds with nanofiber structures using biodegradable nanofibrous microspheres as the bio-ink. In vitro investigations demonstrate that the hierarchical porous architecture substantially enhances cell infiltration and proliferation rates, while the nanofiber topology provides physical cues to guide osteogenic differentiation and ECM deposition. When serving as a cell carrier, the 3D-printed nanofibrous scaffold promotes bone tissue regeneration and integration in vivo. Additionally, the facile and versatile chemical modification facilitates the precise tailoring of the scaffold's functionality. Using nanofibrous microspheres with highly biomimetic and versatile modification properties as the foundational constituent in this universal 3D printing methodology enables comprehensive manipulation of scaffolding biological properties, spanning from macroscopic external morphology to molecular-scale biochemical kinetics, thereby addressing a diverse spectrum of clinical requisites.
Collapse
Affiliation(s)
- Zhiai Hu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hengyi Lin
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yating Yi
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hao Liu
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xin Rong
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Wu M, Zhang Y, Zhao Y, Chu L, Meng X, Ye L, Li X, Wang Z, Wu P. Photoactivated Hydrogel Therapeutic System with MXene-Based Nanoarchitectonics Potentiates Endogenous Bone Repair Through Reshaping the Osteo-Vascularization Network. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403003. [PMID: 39377343 DOI: 10.1002/smll.202403003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/23/2024] [Indexed: 10/09/2024]
Abstract
The repair and reconstruction of large-scale bone defects face enormous challenges because of the failure to reconstruct the osteo-vascularization network. Herein, a near-infrared (NIR) light-responsive hydrogel system is reported to achieve programmed tissue repair and regeneration through the synergetic effects of on-demand drug delivery and mild heat stimulation. The spatiotemporal hydrogel system (HG/MPa) composed of polydopamine-coated Ti3C2Tx MXene (MP) nanosheets decorated with acidic fibroblast growth factor (aFGF, a potent angiogenic drug) and hydroxypropyl chitosan/gelatin (HG) hydrogel is developed to orchestrate the reconstruction of the osteo-vascularization network and boost bone regeneration. Upon exposure to NIR light irradiation, the engineered HG/MPa hydrogel can achieve the initial complete release of aFGF to induce rapid angiogenesis and provide sufficient blood supply, maximizing its biofunction in the defect area. This integrated hydrogel system demonstrated good therapeutic efficacy in promoting cell adhesion, proliferation, migration, angiogenesis, and osteogenic differentiation through periodic NIR irradiation. In vivo, animal experiments further revealed that the spatiotemporalized hydrogel platform synergized with mild photothermal treatment significantly accelerated critical-sized bone defect healing by increasing the osteo-vascularization network density, recruiting endogenous stem cells, and facilitating the production of osteogenesis/angiogenesis-related factors. Overall, smart-responsive hydrogel could enhance the reconstruction of the osteo-vascularization network in bone regeneration.
Collapse
Affiliation(s)
- Minhao Wu
- National Key laboratory of macromolecular drug development and manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, China
| | - Yufeng Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yanfang Zhao
- National Key laboratory of macromolecular drug development and manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liuxi Chu
- National Key laboratory of macromolecular drug development and manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaolei Meng
- National Key laboratory of macromolecular drug development and manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Luyang Ye
- National Key laboratory of macromolecular drug development and manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaokun Li
- National Key laboratory of macromolecular drug development and manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhouguang Wang
- National Key laboratory of macromolecular drug development and manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ping Wu
- National Key laboratory of macromolecular drug development and manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
10
|
Liu Y, Li L, He M, Xu Y, Wu Z, Xu X, Luo K, Lv H. Self-assembled peptide hydrogel loaded with functional peptide Dentonin accelerates vascularized bone tissue regeneration in critical-size bone defects. Regen Biomater 2024; 11:rbae106. [PMID: 39263324 PMCID: PMC11387769 DOI: 10.1093/rb/rbae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 09/13/2024] Open
Abstract
Regeneration of oral craniofacial bone defects is a complex process, and reconstruction of large bone defects without the use of exogenous cells or bioactive substances remains a major challenge. Hydrogels are highly hydrophilic polymer networks with the potential to promote bone tissue regeneration. In this study, functional peptide Dentonin was loaded onto self-assembled peptide hydrogels (RAD) to constitute functionally self-assembling peptide RAD/Dentonin hydrogel scaffolds with a view that RAD/Dentonin hydrogel could facilitate vascularized bone regeneration in critical-size calvarial defects. The functionalized peptide RAD/Dentonin forms highly ordered β-sheet supramolecular structures via non-covalent interactions like hydrogen bonding, ultimately assembling into nano-fiber network. RAD/Dentonin hydrogels exhibited desirable porosity and swelling properties, and appropriate biodegradability. RAD/Dentonin hydrogel supported the adhesion, proliferation and three-dimensional migration of bone marrow mesenchymal stem cells (BMSCs) and has the potential to induce differentiation of BMSCs towards osteogenesis through activation of the Wnt/β-catenin pathway. Moreover, RAD/Dentonin hydrogel modulated paracrine secretion of BMSCs and increased the migration, tube formation and angiogenic gene expression of human umbilical vein endothelial cells (HUVECs), which boosted the angiogenic capacity of HUVECs. In vivo, RAD/Dentonin hydrogel significantly strengthened vascularized bone formation in rat calvarial defect. Taken together, these results indicated that the functionalized self-assembling peptide RAD/Dentonin hydrogel effectively enhance osteogenic differentiation of BMSCs, indirectly induce angiogenic effects in HUVECs, and facilitate vascularized bone regeneration in vivo. Thus, it is a promising bioactive material for oral and maxillofacial regeneration.
Collapse
Affiliation(s)
- Yijuan Liu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Li Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Mengjiao He
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Yanmei Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Zekai Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Hongbing Lv
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| |
Collapse
|
11
|
Wu F, Song C, Zhen G, Jin Q, Li W, Liang X, Xu W, Guo W, Yang Y, Dong W, Jiang A, Kong P, Yan J. Exosomes derived from BMSCs in osteogenic differentiation promote type H blood vessel angiogenesis through miR-150-5p mediated metabolic reprogramming of endothelial cells. Cell Mol Life Sci 2024; 81:344. [PMID: 39133273 PMCID: PMC11335269 DOI: 10.1007/s00018-024-05371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/08/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
Osteogenesis is tightly coupled with angiogenesis spatiotemporally. Previous studies have demonstrated that type H blood vessel formed by endothelial cells with high expression of CD31 and Emcn (CD31hi Emcnhi ECs) play a crucial role in bone regeneration. The mechanism of the molecular communication around CD31hi Emcnhi ECs and bone mesenchymal stem cells (BMSCs) in the osteogenic microenvironment is unclear. This study indicates that exosomes from bone mesenchymal stem cells with 7 days osteogenic differentiation (7D-BMSCs-exo) may promote CD31hi Emcnhi ECs angiogenesis, which was verified by tube formation assay, qRT-PCR, Western blot, immunofluorescence staining and µCT assays etc. in vitro and in vivo. Furthermore, by exosomal miRNA microarray and WGCNA assays, we identified downregulated miR-150-5p as the most relative hub gene coupling osteogenic differentiation and type H blood vessel angiogenesis. With bioinformatics assays, dual luciferase reporter experiments, qRT-PCR and Western blot assays, SOX2(SRY-Box Transcription Factor 2) was confirmed as a novel downstream target gene of miR-150-5p in exosomes, which might be a pivotal mechanism regulating CD31hi Emcnhi ECs formation. Additionally, JC-1 immunofluorescence staining, Western blot and seahorse assay results showed that the overexpression of SOX2 could shift metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis to enhance the CD31hi Emcnhi ECs formation. The PI3k/Akt signaling pathway might play a key role in this process. In summary, BMSCs in osteogenic differentiation might secrete exosomes with low miR-150-5p expression to induce type H blood vessel formation by mediating SOX2 overexpression in ECs. These findings might reveal a molecular mechanism of osteogenesis coupled with type H blood vessel angiogenesis in the osteogenic microenvironment and provide a new therapeutic target or cell-free remedy for osteogenesis impaired diseases.
Collapse
Affiliation(s)
- Feng Wu
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Chengchao Song
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Guanqi Zhen
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Qin Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150081, P. R. China
| | - Wei Li
- School of Humanities and Social Sciences, Harbin Medical University, Harbin, Heilongjiang Province, 150081, P.R. China
| | - Xiongjie Liang
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, 545000, P.R. China
| | - Wenbo Xu
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Wenhui Guo
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Yang Yang
- Department of Respiratory Diseases, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, P.R. China
| | - Wei Dong
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, P. R. China
| | - Anlong Jiang
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Pengyu Kong
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Jinglong Yan
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China.
| |
Collapse
|
12
|
Murali A, Brokesh AM, Cross LM, Kersey AL, Jaiswal MK, Singh I, Gaharwar A. Inorganic Biomaterials Shape the Transcriptome Profile to Induce Endochondral Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402468. [PMID: 38738803 PMCID: PMC11304299 DOI: 10.1002/advs.202402468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Minerals play a vital role, working synergistically with enzymes and other cofactors to regulate physiological functions including tissue healing and regeneration. The bioactive characteristics of mineral-based nanomaterials can be harnessed to facilitate in situ tissue regeneration by attracting endogenous progenitor and stem cells and subsequently directing tissue-specific differentiation. Here, cellular responses of human mesenchymal stem/stromal cells to traditional bioactive mineral-based nanomaterials, such as hydroxyapatite, whitlockite, silicon-dioxide, and the emerging synthetic 2D nanosilicates are investigated. Transcriptome sequencing is utilized to probe the cellular response and determine the significantly affected signaling pathways due to exposure to these inorganic nanomaterials. Transcriptome profiles of stem cells treated with nanosilicates reveals a stabilized skeletal progenitor state suggestive of endochondral differentiation. This observation is bolstered by enhanced deposition of matrix mineralization in nanosilicate treated stem cells compared to control or other treatments. Specifically, use of 2D nanosilicates directs osteogenic differentiation of stem cells via activation of bone morphogenetic proteins and hypoxia-inducible factor 1-alpha signaling pathway. This study provides insight into impact of nanomaterials on cellular gene expression profile and predicts downstream effects of nanomaterial induction of endochondral differentiation.
Collapse
Affiliation(s)
- Aparna Murali
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Anna M. Brokesh
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Lauren M. Cross
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Anna L. Kersey
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Manish K. Jaiswal
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Irtisha Singh
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Department of Cell Biology and GeneticsCollege of MedicineTexas A&M UniversityBryanTX77807‐3260USA
- Interdisciplinary Program in Genetics and GenomicsTexas A&M UniversityCollege StationTX77843USA
| | - Akhilesh Gaharwar
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Interdisciplinary Program in Genetics and GenomicsTexas A&M UniversityCollege StationTX77843USA
- Department of Material Science and EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
13
|
Liu Y, Wang Y, Lin M, Liu H, Pan Y, Wu J, Guo Z, Li J, Yan B, Zhou H, Fan Y, Hu G, Liang H, Zhang S, Siu MFF, Wu Y, Bai J, Liu C. Cellular Scale Curvature in Bioceramic Scaffolds Enhanced Bone Regeneration by Regulating Skeletal Stem Cells and Vascularization. Adv Healthc Mater 2024:e2401667. [PMID: 38923234 DOI: 10.1002/adhm.202401667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Critical-sized segmental bone defects cannot heal spontaneously, leading to disability and significant increase in mortality. However, current treatments utilizing bone grafts face a variety of challenges from donor availability to poor osseointegration. Drugs such as growth factors increase cancer risk and are very costly. Here, a porous bioceramic scaffold that promotes bone regeneration via solely mechanobiological design is reported. Two types of scaffolds with high versus low pore curvatures are created using high-precision 3D printing technology to fabricate pore curvatures radius in the 100s of micrometers. While both are able to support bone formation, the high-curvature pores induce higher ectopic bone formation and increased vessel invasion. Scaffolds with high-curvature pores also promote faster regeneration of critical-sized segmental bone defects by activating mechanosensitive pathways. High-curvature pore recruits skeletal stem cells and type H vessels from both the periosteum and the marrow during the early phase of repair. High-curvature pores have increased survival of transplanted GFP-labeled skeletal stem cells (SSCs) and recruit more host SSCs. Taken together, the bioceramic scaffolds with defined micrometer-scale pore curvatures demonstrate a mechanobiological approach for orthopedic scaffold design.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yue Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Minmin Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hongzhi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yonghao Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jianqun Wu
- College of Medicine, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Ziyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jiawei Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Bingtong Yan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hang Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuanhao Fan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Ganqing Hu
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Haowen Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Shibo Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Ming-Fung Francis Siu
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Yongbo Wu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Jiaming Bai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| |
Collapse
|
14
|
Zhang Y, Jian Y, Jiang X, Li X, Wu X, Zhong J, Jia X, Li Q, Wang X, Zhao K, Yao Y. Stepwise degradable PGA-SF core-shell electrospinning scaffold with superior tenacity in wetting regime for promoting bone regeneration. Mater Today Bio 2024; 26:101023. [PMID: 38525312 PMCID: PMC10959703 DOI: 10.1016/j.mtbio.2024.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024] Open
Abstract
Regenerating bone in the oral and maxillofacial region is clinically challenging due to the complicated osteogenic environment and the limitation of existing bone graft materials. Constructing bone graft materials with controlled degradation and stable mechanical properties in a physiological environment is of utmost importance. In this study, we used silk fibroin (SF) and polyglycolic acid (PGA) to fabricate a coaxial PGA-SF fibrous scaffold (PGA-SF-FS) to meet demands for bone grafts. The SF shell exerted excellent osteogenic activity while protecting PGA from rapid degradation and the PGA core equipped scaffold with excellent tenacity. The experiments related to biocompatibility and osteogenesis (e.g., cell attachment, proliferation, differentiation, and mineralization) demonstrated the superior ability of PGA-SF-FS to improve cell growth and osteogenic differentiation. Furthermore, in vivo testing using Sprague-Dawley rat cranial defect model showed that PGA-SF-FS accelerates bone regeneration as the implantation time increases, and its stepwise degradation helps to match the remodeling kinetics of the host bone tissue. Besides, immunohistochemical staining of CD31 and Col-1 confirmed the ability of PGA-SF-FS to enhance revascularization and osteogenesis response. Our results suggest that PGA-SF-FS fully utilizing the advantages of both components, exhibites stepwise degradation and superior tenacity in wetting regime, making it a promising candidate in the treatment of bone defects.
Collapse
Affiliation(s)
- Yuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yutao Jian
- Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiao Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuerong Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiangnan Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Juan Zhong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoshi Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qiulan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaodong Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ke Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yitong Yao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
15
|
Luo Y, Liu H, Chen M, Zhang Y, Zheng W, Wu L, Liu Y, Liu S, Luo E, Liu X. Immunomodulatory nanomedicine for osteoporosis: Current practices and emerging prospects. Acta Biomater 2024; 179:13-35. [PMID: 38494082 DOI: 10.1016/j.actbio.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Osteoporosis results from the disruption of the balance between bone resorption and bone formation. However, classical anti-osteoporosis drugs exhibit several limitations in clinical applications, such as multiple adverse reactions and poor therapeutic effects. Therefore, there is an urgent need for alternative treatment strategies. With the evolution of immunomodulatory nanomedicine, a variety of nanomaterials have been designed for anti-osteoporosis treatment, offering prospects of minimal adverse reactions, enhanced bone induction, and high osteogenic activity. This review initially provides a brief overview of the fundamental principles of bone reconstruction, current osteogenic clinical methods in osteoporosis treatment, and the significance of osteogenic-angiogenic coupling, laying the groundwork for understanding the pathophysiology and therapeutics of osteoporosis. Subsequently, the article emphasizes the relationship between bone immunity and osteogenesis-angiogenesis coupling and provides a detailed analysis of the application of immunomodulatory nanomedicines in the treatment of osteoporosis, including various types of nanomaterials and their integration with carrier biomaterials. Importantly, we discuss the potential of some emerging strategies in immunomodulatory nanomedicine for osteoporosis treatment. This review introduces the innovative applications of immunomodulatory nanomedicine in the treatment of osteoporosis, aiming to serve as a reference for the application of immunomodulatory nanomedicine strategies in osteoporosis treatment. STATEMENT OF SIGNIFICANCE: Osteoporosis, as one of the most prevalent skeletal disorders, poses a significant threat to public health. To date, conventional anti-osteoporosis strategies have been limited in efficacy and plagued with numerous side effects. Fortunately, with the advancement of research in osteoimmunology and nanomedicine, strategies integrating these two fields show great promise in combating osteoporosis. Nanomedicine with immunomodulatory properties exhibits enhanced efficiency, prolonged effectiveness, and increased safety. However, as of now, there exists no comprehensive review amalgamating immunomodulation with nanomedicine to delineate the progress of immunomodulatory nanomedicine in osteoporosis treatment, as well as the future direction of this strategy.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ming Chen
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Wu
- College of Electronics Information and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
16
|
Jin S, Wen J, Zhang Y, Mou P, Luo Z, Cai Y, Chen A, Fu X, Meng W, Zhou Z, Li J, Zeng W. M2 macrophage-derived exosome-functionalized topological scaffolds regulate the foreign body response and the coupling of angio/osteoclasto/osteogenesis. Acta Biomater 2024; 177:91-106. [PMID: 38311198 DOI: 10.1016/j.actbio.2024.01.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Designing scaffolds that can regulate the innate immune response and promote vascularized bone regeneration holds promise for bone tissue engineering. Herein, electrospun scaffolds that combined physical and biological cues were fabricated by anchoring reparative M2 macrophage-derived exosomes onto topological pore structured nanofibrous scaffolds. The topological pore structure of the fiber and the immobilization of exosomes increased the nanoscale roughness and hydrophilicity of the fibrous scaffold. In vitro cell experiments showed that exosomes could be internalized by target cells to promote cell migration, tube formation, osteogenic differentiation, and anti-inflammatory macrophage polarization. The activation of fibrosis, angiogenesis, and macrophage was elucidated during the exosome-functionalized fibrous scaffold-mediated foreign body response (FBR) in subcutaneous implantation in mice. The exosome-functionalized nanofibrous scaffolds also enhanced vascularized bone formation in a critical-sized rat cranial bone defect model. Importantly, histological analysis revealed that the biofunctional scaffolds regulated the coupling effect of angiogenesis, osteoclastogenesis, and osteogenesis by stimulating type H vessel formation. This study elaborated on the complex processes within the cell microenvironment niche during fibrous scaffold-mediated FBR and vascularized bone regeneration to guide the design of implants or devices used in orthopedics and maxillofacial surgery. STATEMENT OF SIGNIFICANCE: How to design scaffold materials that can regulate the local immune niche and truly achieve functional vascularized bone regeneration still remain an open question. Here, combining physical and biological cues, we proposed new insight to cell-free and growth factor-free therapy, anchoring reparative M2 macrophage-derived exosomes onto topological pore structured nanofibrous scaffolds. The exosomes functionalized-scaffold system mitigated foreign body response, including excessive fibrosis, tumor-like vascularization, and macrophage activation. Importantly, the biofunctional scaffolds regulated the coupling effect of angiogenesis, osteoclastogenesis, and osteogenesis by stimulating type H vessel formation.
Collapse
Affiliation(s)
- Shue Jin
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Wen
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Yao Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Mou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zeyu Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongrui Cai
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Anjin Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoxue Fu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weikun Meng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zongke Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jidong Li
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Weinan Zeng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Ren Y, Chu X, Senarathna J, Bhargava A, Grayson WL, Pathak AP. Multimodality imaging reveals angiogenic evolution in vivo during calvarial bone defect healing. Angiogenesis 2024; 27:105-119. [PMID: 38032405 PMCID: PMC10964991 DOI: 10.1007/s10456-023-09899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
The healing of calvarial bone defects is a pressing clinical problem that involves the dynamic interplay between angiogenesis and osteogenesis within the osteogenic niche. Although structural and functional vascular remodeling (i.e., angiogenic evolution) in the osteogenic niche is a crucial modulator of oxygenation, inflammatory and bone precursor cells, most clinical and pre-clinical investigations have been limited to characterizing structural changes in the vasculature and bone. Therefore, we developed a new multimodality imaging approach that for the first time enabled the longitudinal (i.e., over four weeks) and dynamic characterization of multiple in vivo functional parameters in the remodeled vasculature and its effects on de novo osteogenesis, in a preclinical calvarial defect model. We employed multi-wavelength intrinsic optical signal (IOS) imaging to assess microvascular remodeling, intravascular oxygenation (SO2), and osteogenesis; laser speckle contrast (LSC) imaging to assess concomitant changes in blood flow and vascular maturity; and micro-computed tomography (μCT) to validate volumetric changes in calvarial bone. We found that angiogenic evolution was tightly coupled with calvarial bone regeneration and corresponded to distinct phases of bone healing, such as injury, hematoma formation, revascularization, and remodeling. The first three phases occurred during the initial two weeks of bone healing and were characterized by significant in vivo changes in vascular morphology, blood flow, oxygenation, and maturity. Overall, angiogenic evolution preceded osteogenesis, which only plateaued toward the end of bone healing (i.e., four weeks). Collectively, these data indicate the crucial role of angiogenic evolution in osteogenesis. We believe that such multimodality imaging approaches have the potential to inform the design of more efficacious tissue-engineering calvarial defect treatments.
Collapse
Affiliation(s)
- Yunke Ren
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinying Chu
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Ave, 217 Traylor Bldg, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akanksha Bhargava
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Ave, 217 Traylor Bldg, Baltimore, MD, 21205, USA
| | - Warren L Grayson
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Arvind P Pathak
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Ave, 217 Traylor Bldg, Baltimore, MD, 21205, USA.
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Electrical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
18
|
Hussain Z, Ullah I, Liu X, Mehmood S, Wang L, Ma F, Ullah S, Lu Z, Wang Z, Pei R. GelMA-catechol coated FeHAp nanorods functionalized nanofibrous reinforced bio-instructive and mechanically robust composite hydrogel scaffold for bone tissue engineering. BIOMATERIALS ADVANCES 2023; 155:213696. [PMID: 37952462 DOI: 10.1016/j.bioadv.2023.213696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Critical bone defects complicate tissue graft-based surgeries, raising healthcare expenditures and underscoring scaffold-based tissue-engineering strategies to support bone reconstruction. Our study highlighted that the phase-compatible combination of inorganic nanorods, nanofibers, and hydrogels is promising for developing biomimetic and cell-instructive scaffolds since the bone matrix is a porous organic/inorganic composite. In brief, methacrylated gelatin (GelMA) was reacted with dopamine to form catechol-modified GeLMA (GelMA-C). The GelMA-C was nanocoated onto an iron-doped hydroxyapatite (FeHAp) nanorod via metal-catechol network coordination. The modified nanorod (FeHAp@GelMA-C) was loaded onto GelMA-based nanofibers. The nanorods loaded pre-fibers were electrospun onto GelMA solution and photochemically crosslinked to fabricate a fiber-reinforced hydrogel. The structural, mechanical, physicochemical, biocompatibility, swelling properties, osteogenic potential, and bone remodelling potential (using rat femoral defect model) of modified nanorods, simple hydrogel, and nanorod-loaded fiber-reinforced hydrogel were studied. The results supported that the interface interaction between GelMA-C/nanorods, nanorods/nanofibers, nanorods/hydrogels, and nanofiber/hydrogels significantly improved the microstructural and mechanical properties of the scaffold. Compared to pristine hydrogel, the nanorod-loaded fiber-reinforced scaffold better supported cellular responses, osteogenic differentiation, matrix mineralization, and accelerated bone regeneration. The nanorod-loaded fiber-reinforced hydrogel proved more biomimetic and cell-instructive for guided bone reconstruction.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Ismat Ullah
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Xingzhu Liu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Shah Mehmood
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Li Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Fanshu Ma
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Zixun Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China.
| |
Collapse
|
19
|
Liu H, Chen H, Han Q, Sun B, Liu Y, Zhang A, Fan D, Xia P, Wang J. Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Mater Today Bio 2023; 23:100858. [PMID: 38024843 PMCID: PMC10679779 DOI: 10.1016/j.mtbio.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bone is one of the most vascular network-rich tissues in the body and the vascular system is essential for the development, homeostasis, and regeneration of bone. When segmental irreversible damage occurs to the bone, restoring its vascular system by means other than autogenous bone grafts with vascular pedicles is a therapeutic challenge. By pre-generating the vascular network of the scaffold in vivo or in vitro, the pre-vascularization technique enables an abundant blood supply in the scaffold after implantation. However, pre-vascularization techniques are time-consuming, and in vivo pre-vascularization techniques can be damaging to the body. Critical bone deficiencies may be filled quickly with immediate implantation of a supporting bone tissue engineered scaffold. However, bone tissue engineered scaffolds generally lack vascularization, which requires modification of the scaffold to aid in enhancing internal vascularization. In this review, we summarize the relationship between the vascular system and osteogenesis and use it as a basis to further discuss surgical and cytotechnology-based pre-vascularization strategies and to describe the preparation of vascularized bone tissue engineered scaffolds that can be implanted immediately. We anticipate that this study will serve as inspiration for future vascularized bone tissue engineered scaffold construction and will aid in the achievement of clinical vascularized bone.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Qin Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Bin Sun
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Danyang Fan
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
20
|
Zhang M, Xu W, Gao Y, Zhou N, Wang W. Manganese-Iron Dual Single-Atom Catalyst with Enhanced Nanozyme Activity for Wound and Pustule Disinfection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42227-42240. [PMID: 37658037 DOI: 10.1021/acsami.3c08018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Even though great progress has been achieved in mimicking natural enzyme engineering, few artificial enzymes with efficient catalytic performance and multifunction have been reported. In this study, novel manganese-iron dual single-atom catalysts (Mn/Fe SACs) were synthesized via a hydrothermal/pyrolysis recipe. Iron atoms inside the Mn/Fe SACs adequately exerted the peroxidase (POD)-like activity, its Michaelis-Menten constant, and maximum initial velocity superior to the horseradish peroxidase. Manganese atoms sufficiently catalyzed the H2O2 to generate oxygen (O2), which alleviated the challenge of the continued lack of O2 in the infected wound. In addition, Mn/Fe SACs possess a glutathione oxidase-like activity that further enhanced POD-like activity in the therapeutic process. The antibacterial rates of Mn/Fe SACs were 95 and 94.5% for Escherichia coli and Staphylococcus aureus, respectively. In vitro anti-inflammatory experiments demonstrated that Mn/Fe SACs could regulate the polarization of macrophages into the anti-inflammatory M2 subtype. In vivo wound healing experiments suggested that the combination therapy of Mn/Fe SACs and chemodynamic therapy presented a great promotion of the recovery rate. Moreover, the O2 generated by the catalase-like process contributed to the catalysts permeating the interior of the infected wounds and achieved preferable abscess elimination ability. This work revealed the potential of Mn/Fe SACs as broad-spectrum antimicrobial materials, which provided a novel strategy for treating infected and abscess wounds.
Collapse
Affiliation(s)
- Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, School of Stomatology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Wang Xu
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yumeng Gao
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
21
|
Chen J, Zhou H, Fan Y, Gao G, Ying Y, Li J. 3D printing for bone repair: Coupling infection therapy and defect regeneration. CHEMICAL ENGINEERING JOURNAL 2023; 471:144537. [DOI: 10.1016/j.cej.2023.144537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
|
22
|
Wang L, Wan F, Xu Y, Xie S, Zhao T, Zhang F, Yang H, Zhu J, Gao J, Shi X, Wang C, Lu L, Yang Y, Yu X, Chen S, Sun X, Ding J, Chen P, Ding C, Xu F, Yu H, Peng H. Hierarchical helical carbon nanotube fibre as a bone-integrating anterior cruciate ligament replacement. NATURE NANOTECHNOLOGY 2023; 18:1085-1093. [PMID: 37142709 DOI: 10.1038/s41565-023-01394-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023]
Abstract
High rates of ligament damage require replacements; however, current synthetic materials have issues with bone integration leading to implant failure. Here we introduce an artificial ligament that has the required mechanical properties and can integrate with the host bone and restore movement in animals. The ligament is assembled from aligned carbon nanotubes formed into hierarchical helical fibres bearing nanometre and micrometre channels. Osseointegration of the artificial ligament is observed in an anterior cruciate ligament replacement model where clinical polymer controls showed bone resorption. A higher pull-out force is found after a 13-week implantation in rabbit and ovine models, and animals can run and jump normally. The long-term safety of the artificial ligament is demonstrated, and the pathways involved in integration are studied.
Collapse
Affiliation(s)
- Liyuan Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Fang Wan
- Department of Orthopedic Sports Medicine, Huashan Hospital, The Sports Medicine Institute, Fudan University, Shanghai, China
| | - Yifan Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Songlin Xie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Tiancheng Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Fan Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Jiajun Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Chuang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, The Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Yifan Yang
- Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
| | - Xiaoye Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Shiyi Chen
- Department of Orthopedic Sports Medicine, Huashan Hospital, The Sports Medicine Institute, Fudan University, Shanghai, China.
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Fan Xu
- Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
| | - Hongbo Yu
- Vision Research Laboratory, School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Centre for Brain Science, Fudan University, Shanghai, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Roldan L, Isaza C, Ospina J, Montoya C, Domínguez J, Orrego S, Correa S. A Comparative Study of HA/DBM Compounds Derived from Bovine and Porcine for Bone Regeneration. J Funct Biomater 2023; 14:439. [PMID: 37754853 PMCID: PMC10532284 DOI: 10.3390/jfb14090439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
This comparative study investigated the tissue regeneration and inflammatory response induced by xenografts comprised of hydroxyapatite (HA) and demineralized bone matrix (DBM) extracted from porcine (P) and bovine (B) sources. First, extraction of HA and DBM was independently conducted, followed by chemical and morphological characterization. Second, mixtures of HA/DBM were prepared in 50/50 and 60/40 concentrations, and the chemical, morphological, and mechanical properties were evaluated. A rat calvarial defect model was used to evaluate the tissue regeneration and inflammatory responses at 3 and 6 months. The commercial allograft DBM Puros® was used as a clinical reference. Different variables related to tissue regeneration were evaluated, including tissue thickness regeneration (%), amount of regenerated bone area (%), and amount of regenerated collagen area (%). The inflammatory response was evaluated by quantifying the blood vessel area. Overall, tissue regeneration from porcine grafts was superior to bovine. After 3 months of implantation, the tissue thickness regeneration in the 50/50P compound and the commercial DBM was significantly higher (~99%) than in the bovine materials (~23%). The 50/50P and DBM produced higher tissue regeneration than the naturally healed controls. Similar trends were observed for the regenerated bone and collagen areas. The blood vessel area was correlated with tissue regeneration in the first 3 months of evaluation. After 6 months of implantation, HA/DBM compounds showed less regenerated collagen than the DBM-only xenografts. In addition, all animal-derived xenografts improved tissue regeneration compared with the naturally healed defects. No clinical complications associated with any implanted compound were noted.
Collapse
Affiliation(s)
- Lina Roldan
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19122, USA; (C.M.); (S.O.)
| | - Catalina Isaza
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
| | - Juan Ospina
- Centro de Investigación y Desarrollo Cárnico, Industrias de Alimentos Zenú S.A.S., Grupo Nutresa, Medellín 050044, Colombia;
| | - Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19122, USA; (C.M.); (S.O.)
| | - José Domínguez
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19122, USA; (C.M.); (S.O.)
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 191122, USA
| | - Santiago Correa
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
- Escuela de Ciencias Aplicadas e Ingeniería, Universidad EAFIT, Medellín 050022, Colombia
| |
Collapse
|
24
|
Luo F, Li D, Huang Y, Mao R, Wang L, Lu J, Ge X, Fan Y, Zhang X, Chen Y, Wang K. Efficient Osteogenic Activity of PEEK Surfaces Achieved by Femtosecond Laser-Hydroxylation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37232-37246. [PMID: 37486779 DOI: 10.1021/acsami.3c06430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Poly(etheretherketone) (PEEK) is regarded as an attractive orthopedic material because of its good biocompatibility and mechanical properties similar to natural bone. The efficient activation methods for the surfaces of PEEK matrix materials have become a hot research topic. In this study, a method using a femtosecond laser (FSL) followed by hydroxylation was developed to achieve efficient bioactivity. It produces microstructures, amorphous carbon, and grafted -OH groups on the PEEK surface to enhance hydrophilicity and surface energy. Both experimental and simulation results show that our modification leads to a superior ability to induce apatite deposition on the PEEK surface. The results also demonstrate that efficient grafting of C-OH through FSL-hydroxylation can effectively enhance cell proliferation and osteogenic differentiation compared to other modifications, thus improving osteogenic activity. Overall, FSL hydroxylation treatment is proved to be a simple, efficient, and environmentally friendly modification method for PEEK activation. It could expand the applications of PEEK in orthopedics, as well as promote the surface modification and structural design of other polymeric biomaterials to enhance bioactivity.
Collapse
Affiliation(s)
- Fengxiong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Dongxuan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yawen Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ruiqi Mao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Ling Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jian Lu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610064, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Yafang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610064, China
| |
Collapse
|
25
|
Jiang T, Su W, Li Y, Jiang M, Zhang Y, Xian CJ, Zhai Y. Research Progress on Nanomaterials for Tissue Engineering in Oral Diseases. J Funct Biomater 2023; 14:404. [PMID: 37623649 PMCID: PMC10455101 DOI: 10.3390/jfb14080404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Due to their superior antibacterial properties, biocompatibility and high conductivity, nanomaterials have shown a broad prospect in the biomedical field and have been widely used in the prevention and treatment of oral diseases. Also due to their small particle sizes and biodegradability, nanomaterials can provide solutions for tissue engineering, especially for oral tissue rehabilitation and regeneration. At present, research on nanomaterials in the field of dentistry focuses on the biological effects of various types of nanomaterials on different oral diseases and tissue engineering applications. In the current review, we have summarized the biological effects of nanoparticles on oral diseases, their potential action mechanisms and influencing factors. We have focused on the opportunities and challenges to various nanomaterial therapy strategies, with specific emphasis on overcoming the challenges through the development of biocompatible and smart nanomaterials. This review will provide references for potential clinical applications of novel nanomaterials in the field of oral medicine for the prevention, diagnosis and treatment of oral diseases.
Collapse
Affiliation(s)
- Tong Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Wen Su
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yan Li
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Mingyuan Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yonghong Zhang
- Department of Orthopaedics, The 2nd Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Cory J. Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| |
Collapse
|
26
|
Xu Z, Kusumbe AP, Cai H, Wan Q, Chen J. Type H blood vessels in coupling angiogenesis-osteogenesis and its application in bone tissue engineering. J Biomed Mater Res B Appl Biomater 2023; 111:1434-1446. [PMID: 36880538 DOI: 10.1002/jbm.b.35243] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
One specific capillary subtype, termed type H vessel, has been found with unique functional characteristics in coupling angiogenesis with osteogenesis. Researchers have fabricated a variety of tissue engineering scaffolds to enhance bone healing and regeneration through the accumulation of type H vessels. However, only a limited number of reviews discussed the tissue engineering strategies for type H vessel regulation. The object of this review is to summary the current utilizes of bone tissue engineering to regulate type H vessels through various signal pathways including Notch, PDGF-BB, Slit3, HIF-1α, and VEGF signaling. Moreover, we give an insightful overview of recent research progress about the morphological, spatial and age-dependent characteristics of type H blood vessels. Their unique role in tying angiogenesis and osteogenesis together via blood flow, cellular microenvironment, immune system and nervous system are also summarized. This review article would provide an insight into the combination of tissue engineering scaffolds with type H vessels and identify future perspectives for vasculized tissue engineering research.
Collapse
Affiliation(s)
- Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Anjali P Kusumbe
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford, UK
| | - He Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Lu W, Zeng M, Liu W, Ma T, Fan X, Li H, Wang Y, Wang H, Hu Y, Xie J. Human urine-derived stem cell exosomes delivered via injectable GelMA templated hydrogel accelerate bone regeneration. Mater Today Bio 2023; 19:100569. [PMID: 36846309 PMCID: PMC9945756 DOI: 10.1016/j.mtbio.2023.100569] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
The key to critical bone regeneration in tissue engineering relies on an ideal bio-scaffold coated with a controlled release of growth factors. Gelatin methacrylate (GelMA) and Hyaluronic acid methacrylate (HAMA) have been a novel topic of interest in bone regeneration while introducing appropriate nano-hydroxyapatite (nHAP) to improve its mechanical properties. And the exosomes derived from human urine-derived stem cells (human USCEXOs) have also been reported to promote osteogenesis in tissue engineering. The present study aimed to design a new GelMA-HAMA/nHAP composite hydrogel as a drug delivery system. The USCEXOs were encapsulated and slow-released in the hydrogel for better osteogenesis. The characterization of the GelMA-based hydrogel showed excellent controlled release performance and appropriate mechanical properties. The in vitro studies showed that the USCEXOs/GelMA-HAMA/nHAP composite hydrogel could promote the osteogenesis of bone marrow mesenchymal stem cells (BMSCs) and the angiogenesis of endothelial progenitor cells (EPCs), respectively. Meanwhile, the in vivo results confirmed that this composite hydrogel could significantly promote the defect repair of cranial bone in the rat model. In addition, we also found that USCEXOs/GelMA-HAMA/nHAP composite hydrogel can promote the formation of H-type vessels in the bone regeneration area, enhancing the therapeutic effect. In conclusion, our findings suggested that this controllable and biocompatible USCEXOs/GelMA-HAMA/nHAP composite hydrogel may effectively promote bone regeneration by coupling osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Wei Lu
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Min Zeng
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Wenbin Liu
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Tianliang Ma
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Xiaolei Fan
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hui Li
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Yinan Wang
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Haoyi Wang
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Yihe Hu
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Jie Xie
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Jin S, Yang R, Hu C, Xiao S, Zuo Y, Man Y, Li Y, Li J. Plant-Derived Polyphenol and LL-37 Peptide-Modified Nanofibrous Scaffolds for Promotion of Antibacterial Activity, Anti-Inflammation, and Type-H Vascularized Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7804-7820. [PMID: 36725088 DOI: 10.1021/acsami.2c20776] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The regeneration of oral tissues is a challenging clinical problem because of the complex microbial and biological stress environments. Electrospun fibrous scaffolds have attracted significant interest as effective barrier membranes for guided bone regeneration (GBR); however, no mature strategy yet exists for the surface modification of fibers to provide versatility to satisfy clinical requirements. This study demonstrated a practical biosafety strategy: the combined use of plant polyphenols and LL-37 peptides to modify the fiber surface to endow the fibrous scaffold with antimicrobial activity, immunoregulation, and vascularized bone regeneration. We confirmed that the LL-37 peptides interacted with tannic acid (TA) through noncovalent bonds through experiments and molecular docking simulation analysis. In vitro experiments showed that the TA coating imparted strong antibacterial properties to the fibrous scaffold, but it also caused cytotoxicity. The grafting of LL-37 peptide promoted the spreading, migration, and osteogenic differentiation of mesenchymal stem cells and was also conducive to the M2 polarization of RAW264.7 cells. In vivo experiments further verified that the LL-37 peptide-grafted fibrous scaffold significantly enhanced angiogenesis, anti-inflammatory effects, and type-H vascularized bone regeneration. Overall, the fibrous scaffold modified by the LL-37 peptide through TA grafting has significant potential for GBR applications.
Collapse
Affiliation(s)
- Shue Jin
- Analytical & Testing Center, Orthopedic Research Institute, Department of Orthopedic, West China Hospital, Sichuan University, Chengdu610065, P. R. China
| | - Renli Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, P. R. China
| | - Chen Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, P. R. China
| | - Shiqi Xiao
- Analytical & Testing Center, Orthopedic Research Institute, Department of Orthopedic, West China Hospital, Sichuan University, Chengdu610065, P. R. China
| | - Yi Zuo
- Analytical & Testing Center, Orthopedic Research Institute, Department of Orthopedic, West China Hospital, Sichuan University, Chengdu610065, P. R. China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, P. R. China
| | - Yubao Li
- Analytical & Testing Center, Orthopedic Research Institute, Department of Orthopedic, West China Hospital, Sichuan University, Chengdu610065, P. R. China
| | - Jidong Li
- Analytical & Testing Center, Orthopedic Research Institute, Department of Orthopedic, West China Hospital, Sichuan University, Chengdu610065, P. R. China
| |
Collapse
|
29
|
Chen Q, Wang Z, Yang C, Li B, Ren X, Liu C, Xi L. High resolution intravital photoacoustic microscopy reveals VEGF-induced bone regeneration in mouse tibia. Bone 2023; 167:116631. [PMID: 36435450 DOI: 10.1016/j.bone.2022.116631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Osteogenesis and angiogenesis are essential for bone homeostasis and repair. Newly formed vessels convey osteogenic progenitors during bone regeneration. However, the lack of continuous and label-free visualization of the bone microvasculature has resulted in little understanding of the neovascular dynamics. Here, we take advantage of optical-resolution photoacoustic microscopy (ORPAM) for label-free, intravital, long-term observation of the bone vascular dynamics, including angiogenesis, remodeling and quantified angiogenic effect of locally-applied vascular endothelial growth factor (VEGF) in the murine tibial defect model. We employed ex vivo confocal microscopy and micro-computed tomography (micro-CT) imaging to verify the positive role of VEGF treatment. VEGF treatment increased the concentration of total hemoglobin, vascular branching, and vascular density, which correlated with more osteoprogenitors and increased bone formation within the defect. These data demonstrated ORPAM as a useful imaging tool that detected functional capillaries to understand hemodynamics, and revealed the effectiveness of locally delivered therapeutic agents with sufficient sensitivity, contributing to the understanding of spatiotemporal regulatory mechanisms on blood vessels during bone regeneration.
Collapse
Affiliation(s)
- Qian Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ziyan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chengyu Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Baochen Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xingxing Ren
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China.
| |
Collapse
|
30
|
Marcucio R, Miclau T, Bahney C. A Shifting Paradigm: Transformation of Cartilage to Bone during Bone Repair. J Dent Res 2023; 102:13-20. [PMID: 36303415 PMCID: PMC9791286 DOI: 10.1177/00220345221125401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
While formation and regeneration of the skeleton have been studied for a long period of time, significant scientific advances in this field continue to emerge based on an unmet clinical need to improve options to promote bone repair. In this review, we discuss the relationship between mechanisms of bone formation and bone regeneration. Data clearly show that regeneration is not simply a reinduction of the molecular and cellular programs that were used for development. Instead, the mechanical environment exerts a strong influence on the mode of repair, while during development, cell-intrinsic processes drive the mode of skeletal formation. A major advance in the field has shown that cell fate is flexible, rather than terminal, and that chondrocytes are able to differentiate into osteoblasts and other cell types during development and regeneration. This is discussed in a larger context of regeneration in vertebrates as well as the clinical implication that this shift in understanding presents.
Collapse
Affiliation(s)
- R.S. Marcucio
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - T. Miclau
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - C.S. Bahney
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
- Steadman Philippon Research Institute, Vail, CO, USA
| |
Collapse
|
31
|
Schilling K, Zhai Y, Zhou Z, Zhou B, Brown E, Zhang X. High-resolution imaging of the osteogenic and angiogenic interface at the site of murine cranial bone defect repair via multiphoton microscopy. eLife 2022; 11:e83146. [PMID: 36326085 PMCID: PMC9678361 DOI: 10.7554/elife.83146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
Abstract
The spatiotemporal blood vessel formation and specification at the osteogenic and angiogenic interface of murine cranial bone defect repair were examined utilizing a high-resolution multiphoton-based imaging platform in conjunction with advanced optical techniques that allow interrogation of the oxygen microenvironment and cellular energy metabolism in living animals. Our study demonstrates the dynamic changes of vessel types, that is, arterial, venous, and capillary vessel networks at the superior and dura periosteum of cranial bone defect, suggesting a differential coupling of the vessel type with osteoblast expansion and bone tissue deposition/remodeling during repair. Employing transgenic reporter mouse models that label distinct types of vessels at the site of repair, we further show that oxygen distributions in capillary vessels at the healing site are heterogeneous as well as time- and location-dependent. The endothelial cells coupling to osteoblasts prefer glycolysis and are less sensitive to microenvironmental oxygen changes than osteoblasts. In comparison, osteoblasts utilize relatively more OxPhos and potentially consume more oxygen at the site of repair. Taken together, our study highlights the dynamics and functional significance of blood vessel types at the site of defect repair, opening up opportunities for further delineating the oxygen and metabolic microenvironment at the interface of bone tissue regeneration.
Collapse
Affiliation(s)
- Kevin Schilling
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Yuankun Zhai
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
| | - Zhuang Zhou
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
| | - Bin Zhou
- Shanghai Institutes for Biological SciencesShanghaiChina
| | - Edward Brown
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
| |
Collapse
|
32
|
Hua Y, Huo Y, Bai B, Hao J, Hu G, Ci Z, Wu X, Yu M, Wang X, Chen H, Ren W, Zhang Y, Wang X, Zhou G. Fabrication of biphasic cartilage-bone integrated scaffolds based on tissue-specific photo-crosslinkable acellular matrix hydrogels. Mater Today Bio 2022; 17:100489. [PMID: 36388453 PMCID: PMC9663535 DOI: 10.1016/j.mtbio.2022.100489] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
The fabrication of biphasic cartilage-bone integrated scaffolds is an attractive alternative for osteochondral repair but has proven to be extremely challenging. Existing three-dimensional (3D) scaffolds are insufficient to accurately biomimic the biphasic cartilage-bone integrated microenvironment. Currently, photo-crosslinkable hydrogels based on tissue-specific decellularized extracellular matrix (dECM) have been considered as an important technique to fabricate biomimetic scaffolds, but so far there has been no breakthrough in the photo-crosslinkable hydrogel scaffolds with biphasic cartilage-bone biomimetic microenvironment. Here, we report a novel strategy for the preparation of biomimetic cartilage-bone integrated scaffolds based on photo-crosslinkable cartilage/bone-derived dECM hydrogels, which are able to reconstruct biphasic cartilage-bone biomimetic microenvironment. The biphasic cartilage-bone integrated scaffolds provided a 3D microenvironment for osteochondral regeneration. The cartilage biomimetic scaffolds, consisting of cartilage-derived dECM hydrogels, efficiently regulated chondrogenesis of bone marrow mesenchymal stem cells (BMSCs). The bone biomimetic scaffolds, composed of cartilage/bone-derived dECM hydrogels, first regulated chondrogenesis of BMSCs, followed by endochondral ossification over time. Taken together, the biphasic cartilage-bone integrated tissue could be successfully reconstructed by subcutaneous culture based on cartilage-bone bilayered structural design. Furthermore, the biphasic cartilage-bone biomimetic scaffolds (cell-free) achieved satisfactory cartilage-bone integrated regeneration in the osteochondral defects of rabbits’ knee joints.
Collapse
Affiliation(s)
- Yujie Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
- Institute of Regenerative Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Yingying Huo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Baoshuai Bai
- Department of Orthopaedics, Qilu Hospital of Shangdong University Centre for Orthopaedics, Advanced Medical Research Institute, Shangdong University, Shangdong, PR China
| | - Junxiang Hao
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Guanhuai Hu
- Institute of Regenerative Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Zheng Ci
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Xiaodi Wu
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Mengyuan Yu
- Institute of Regenerative Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Xin Wang
- Department of Hand Surgery, Ningbo Sixth Hospital, Zhejiang, PR China
| | - Hong Chen
- Department of Hand Surgery, Ningbo Sixth Hospital, Zhejiang, PR China
| | - Wenjie Ren
- Institute of Regenerative Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan, PR China
- Corresponding author.
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Xiaoyun Wang
- Department of Plastic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
- Corresponding author.
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
- Institute of Regenerative Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan, PR China
- Corresponding author. Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China.
| |
Collapse
|
33
|
Ren Y, Senarathna J, Grayson WL, Pathak AP. State-of-the-art techniques for imaging the vascular microenvironment in craniofacial bone tissue engineering applications. Am J Physiol Cell Physiol 2022; 323:C1524-C1538. [PMID: 36189973 PMCID: PMC9829486 DOI: 10.1152/ajpcell.00195.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 01/21/2023]
Abstract
Vascularization is a crucial step during musculoskeletal tissue regeneration via bioengineered constructs or grafts. Functional vasculature provides oxygen and nutrients to the graft microenvironment, facilitates wound healing, enhances graft integration with host tissue, and ensures the long-term survival of regenerating tissue. Therefore, imaging de novo vascularization (i.e., angiogenesis), changes in microvascular morphology, and the establishment and maintenance of perfusion within the graft site (i.e., vascular microenvironment or VME) can provide essential insights into engraftment, wound healing, as well as inform the design of tissue engineering (TE) constructs. In this review, we focus on state-of-the-art imaging approaches for monitoring the VME in craniofacial TE applications, as well as future advances in this field. We describe how cutting-edge in vivo and ex vivo imaging methods can yield invaluable information regarding VME parameters that can help characterize the effectiveness of different TE constructs and iteratively inform their design for enhanced craniofacial bone regeneration. Finally, we explicate how the integration of novel TE constructs, preclinical model systems, imaging techniques, and systems biology approaches could usher in an era of "image-based tissue engineering."
Collapse
Affiliation(s)
- Yunke Ren
- Department of Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological Sciences, the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Warren L Grayson
- Department of Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, Maryland
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland
| | - Arvind P Pathak
- Russell H. Morgan Department of Radiology and Radiological Sciences, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Electrical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
34
|
Wu M, Chen F, Liu H, Wu P, Yang Z, Zhang Z, Su J, Cai L, Zhang Y. Bioinspired sandwich-like hybrid surface functionalized scaffold capable of regulating osteogenesis, angiogenesis, and osteoclastogenesis for robust bone regeneration. Mater Today Bio 2022; 17:100458. [PMID: 36278143 PMCID: PMC9583582 DOI: 10.1016/j.mtbio.2022.100458] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
Recently, strategies that focus on biofunctionalized implant surfaces to enhance bone defect healing through the synergistic regulation of osteogenesis, angiogenesis, and osteoclastogenesis have attracted increasing attention in the bone tissue engineering field. Studies have shown that the Wnt/β-catenin signaling pathway has an imperative effect of promoting osteogenesis and angiogenesis while reducing osteoclastogenesis. However, how to prepare biofunctionalized bone implants with balanced osteogenesis, angiogenesis, and osteoclastogenesis by activating the Wnt/β-catenin pathway has seldom been investigated. Herein, through a bioinspired dopamine chemistry and self-assembly method, BML-284 (BML), a potent and highly selective Wnt signaling activator, was loaded on a mussel-inspired polydopamine (PDA) layer that had been immobilized on the porous beta-tricalcium calcium phosphate (β-TCP) scaffold surface and subsequently modified by a biocompatible carboxymethyl chitosan hydrogel to form a sandwich-like hybrid surface. β-TCP provides a biomimetic three-dimensional porous microenvironment similar to that of natural cancellous bone, and the BML-loaded sandwich-like hybrid surface endows the scaffold with multifunctional properties for potential application in bone regeneration. The results show that the sustained release of BML from the sandwich-like hybrid surface significantly facilitates the adhesion, migration, proliferation, spreading, and osteogenic differentiation of MC3T3-E1 cells as well as the angiogenic activity of human umbilical vein endothelial cells. In addition to osteogenesis and angiogenesis, the hybrid surface also exerts critical roles in suppressing osteoclastic activity. Remarkably, in a critical-sized cranial defect model, the biofunctionalized β-TCP scaffold could potentially trigger a chain of biological events: stimulating the polarization of M2 macrophages, recruiting endogenous stem cells and endothelial cells at the injury site to enable a favorable microenvironment for greatly accelerating bone ingrowth and angiogenesis while compromising osteoclastogenesis, thereby promoting bone healing. Therefore, these surface-biofunctionalized β-TCP implants, which regulate the synergies of osteogenesis, angiogenesis, and anti-osteoclastogenesis, indicate strong potential for clinical application as advanced orthopedic implants.
Collapse
Affiliation(s)
- Minhao Wu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, Hubei, China
| | - Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Huifan Liu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, Hubei, China
| | - Ping Wu
- College of Life Science and Technology Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiqiang Yang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, Hubei, China
| | - Zhe Zhang
- National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, China
| | - Jiajia Su
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Corresponding author.
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, Hubei, China,Corresponding author.
| | - Yufeng Zhang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, Hubei, China,Corresponding author.
| |
Collapse
|
35
|
Mamidi N, García RG, Martínez JDH, Briones CM, Martínez Ramos AM, Tamez MFL, Del Valle BG, Segura FJM. Recent Advances in Designing Fibrous Biomaterials for the Domain of Biomedical, Clinical, and Environmental Applications. ACS Biomater Sci Eng 2022; 8:3690-3716. [PMID: 36037103 DOI: 10.1021/acsbiomaterials.2c00786] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Unique properties and potential applications of nanofibers have emerged as innovative approaches and opportunities in the biomedical, healthcare, environmental, and biosensor fields. Electrospinning and centrifugal spinning strategies have gained considerable attention among all kinds of strategies to produce nanofibers. These techniques produce nanofibers with high porosity and surface area, adequate pore architecture, and diverse chemical compositions. The extraordinary characteristics of nanofibers have unveiled new gates in nanomedicine to establish innovative fiber-based formulations for biomedical use, healthcare, and a wide range of other applications. The present review aims to provide a comprehensive overview of nanofibers and their broad range of applications, including drug delivery, biomedical scaffolds, tissue/bone-tissue engineering, dental applications, and environmental remediation in a single place. The review begins with a brief introduction followed by potential applications of nanofibers. Finally, the future perspectives and current challenges of nanofibers are demonstrated. This review will help researchers to engineer more efficient multifunctional nanofibers with improved characteristics for their effective use in broad areas. We strongly believe this review is a reader's delight and will help in dealing with the fundamental principles and applications of nanofiber-based scaffolds. This review will assist students and a broad range of scientific communities to understand the significance of nanofibers in several domains of nanotechnology, nanomedicine, biotechnology, and environmental remediation, which will set a benchmark for further research.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Rubén Gutiérrez García
- Department of Chemical Engineering, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64988, Mexico
| | - José Daniel Hernández Martínez
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Camila Martínez Briones
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Andrea Michelle Martínez Ramos
- Department of Biotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64988, Mexico
| | - María Fernanda Leal Tamez
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Braulio González Del Valle
- Department of Chemical Engineering, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64988, Mexico
| | - Francisco Javier Macias Segura
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| |
Collapse
|
36
|
Huang X, Wang Q, Mao R, Wang Z, Shen SGF, Mou J, Dai J. Two-dimensional nanovermiculite and polycaprolactone electrospun fibers composite scaffolds promoting diabetic wound healing. J Nanobiotechnology 2022; 20:343. [PMID: 35883146 PMCID: PMC9327406 DOI: 10.1186/s12951-022-01556-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a natural clay material that is very easy to obtain and exhibits excellent properties of releasing bioactive ions, buffering pH, adsorption, and heat insulation. However, there are still many unsolved difficulties in obtaining two-dimensional vermiculite and using it in the biomedical field in a suitable form. RESULTS In this study, we present a versatile organic-inorganic composite scaffold, which was constructed by embedding two-dimensional vermiculite nanosheets in polycaprolactone electrospun fibers, for enhancing angiogenesis through activation of the HIF-1α signaling pathway and promoting diabetic wound healing both in vitro and in vivo. CONCLUSIONS Together, the rational-designed polycaprolactone electrospun fibers-based composite scaffolds integrated with two-dimensional vermiculite nanosheets could significantly improve neo-vascularization, re-epithelialization, and collagen formation in the diabetic wound bed, thus promoting diabetic wound healing. This study provides a new strategy for constructing bioactive materials for highly efficient diabetic wound healing.
Collapse
Affiliation(s)
- Xingtai Huang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China
| | - Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Runyi Mao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China
| | - Zeying Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China
| | - Steve G F Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China. .,Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Juan Mou
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Jiewen Dai
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China.
| |
Collapse
|
37
|
Yan X, Yao H, Luo J, Li Z, Wei J. Functionalization of Electrospun Nanofiber for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14142940. [PMID: 35890716 PMCID: PMC9318783 DOI: 10.3390/polym14142940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Bone-tissue engineering is an alternative treatment for bone defects with great potential in which scaffold is a critical factor to determine the effect of bone regeneration. Electrospun nanofibers are widely used as scaffolds in the biomedical field for their similarity with the structure of the extracellular matrix (ECM). Their unique characteristics are: larger surface areas, porosity and processability; these make them ideal candidates for bone-tissue engineering. This review briefly introduces bone-tissue engineering and summarizes the materials and methods for electrospining. More importantly, how to functionalize electrospun nanofibers to make them more conducive for bone regeneration is highlighted. Finally, the existing deficiencies of functionalized electrospun nanofibers for promoting osteogenesis are proposed. Such a summary can lay the foundation for the clinical practice of functionalized electrospun nanofibers.
Collapse
Affiliation(s)
- Xuan Yan
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
| | - Haiyan Yao
- School of Chemistry, Nanchang University, Nanchang 330031, China;
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Jun Luo
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Correspondence: (J.L.); (J.W.)
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China; (X.Y.); (Z.L.)
- School of Chemistry, Nanchang University, Nanchang 330031, China;
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Correspondence: (J.L.); (J.W.)
| |
Collapse
|
38
|
Identification of Type-H-like Blood Vessels in a Dynamic and Controlled Model of Osteogenesis in Rabbit Calvarium. MATERIALS 2022; 15:ma15134703. [PMID: 35806828 PMCID: PMC9267487 DOI: 10.3390/ma15134703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Angiogenesis and bone regeneration are closely interconnected processes. Whereas type-H blood vessels are abundantly found in the osteogenic zones during endochondral long bone development, their presence in flat bones’ development involving intramembranous mechanisms remains unclear. Here, we hypothesized that type-H-like capillaries that highly express CD31 and Endomucin (EMCN), may be present at sites of intramembranous bone development and participate in the control of osteogenesis. A rabbit model of calvarial bone augmentation was used in which bone growth was controlled over time (2–4 weeks) using a particulate bone scaffold. The model allowed the visualization of the entire spectrum of stages throughout bone growth in the same sample, i.e., active ossification, osteogenic activity, and controlled inflammation. Using systematic mRNA hybridization, the formation of capillaries subpopulations (CD31–EMCN staining) over time was studied and correlated with the presence of osteogenic precursors (Osterix staining). Type-H-like capillaries strongly expressing CD31 and EMCN were identified and described. Their presence increased gradually from the regenerative zone up to the osteogenic zone, at 2 and 4 weeks. Type-H-like capillaries may thus represent the initial vascular support encountered in flat bones’ development and which organize osteogenic niches.
Collapse
|
39
|
Liu T, Li Z, Zhao L, Chen Z, Lin Z, Li B, Feng Z, Jin P, Zhang J, Wu Z, Wu H, Xu X, Ye X, Zhang Y. Customized Design 3D Printed PLGA/Calcium Sulfate Scaffold Enhances Mechanical and Biological Properties for Bone Regeneration. Front Bioeng Biotechnol 2022; 10:874931. [PMID: 35814012 PMCID: PMC9260230 DOI: 10.3389/fbioe.2022.874931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022] Open
Abstract
Polylactic glycolic acid copolymer (PLGA) has been widely used in tissue engineering due to its good biocompatibility and degradation properties. However, the mismatched mechanical and unsatisfactory biological properties of PLGA limit further application in bone tissue engineering. Calcium sulfate (CaSO4) is one of the most promising bone repair materials due to its non-immunogenicity, well biocompatibility, and excellent bone conductivity. In this study, aiming at the shortcomings of activity-lack and low mechanical of PLGA in bone tissue engineering, customized-designed 3D porous PLGA/CaSO4 scaffolds were prepared by 3D printing. We first studied the physical properties of PLGA/CaSO4 scaffolds and the results showed that CaSO4 improved the mechanical properties of PLGA scaffolds. In vitro experiments showed that PLGA/CaSO4 scaffold exhibited good biocompatibility. Moreover, the addition of CaSO4 could significantly improve the migration and osteogenic differentiation of MC3T3-E1 cells in the PLGA/CaSO4 scaffolds, and the PLGA/CaSO4 scaffolds made with 20 wt.% CaSO4 exhibited the best osteogenesis properties. Therefore, calcium sulfate was added to PLGA could lead to customized 3D printed scaffolds for enhanced mechanical properties and biological properties. The customized 3D-printed PLGA/CaSO4 scaffold shows great potential for precisely repairing irregular load-bearing bone defects.
Collapse
Affiliation(s)
- Tao Liu
- General Hospital of Southern Theatre Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhan Li
- General Hospital of Southern Theatre Command of PLA, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhao
- Department of Trauma Orthopedics, Hospital of Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Zehua Chen
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Binglin Li
- Department of Trauma Orthopedics, Hospital of Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Zhibin Feng
- General Hospital of Southern Theatre Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Panshi Jin
- General Hospital of Southern Theatre Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jinwei Zhang
- General Hospital of Southern Theatre Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zugui Wu
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huai Wu
- Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Xuemeng Xu
- Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
- *Correspondence: Xuemeng Xu, ; Xiangling Ye, ; Ying Zhang,
| | - Xiangling Ye
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xuemeng Xu, ; Xiangling Ye, ; Ying Zhang,
| | - Ying Zhang
- General Hospital of Southern Theatre Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Trauma Orthopedics, Hospital of Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
- *Correspondence: Xuemeng Xu, ; Xiangling Ye, ; Ying Zhang,
| |
Collapse
|
40
|
Effects of Cadmium Exposure on Leydig Cells and Blood Vessels in Mouse Testis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042416. [PMID: 35206604 PMCID: PMC8878469 DOI: 10.3390/ijerph19042416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
Environmental exposure to cadmium (Cd) contributes to a decline in the quality of human semen. Although the testis is sensitive to Cd exposure, the mechanism underlying how cadmium affects the testis remains to be defined. In this study, male mice were treated with intraperitoneal injections of 0, 0.5, 1.5 and 2.5 mg CdCl2/kg/day for 10 days, respectively. Both the testicular weight and the 3β-HSD activity of Leydig cells were significantly reduced with the administration of 2.5 mg CdCl2/kg/day. The height of endothelial cells in the interstitial blood vessels significantly increased with the use of 2.5 mg CdCl2/kg/day compared with the control. Western blot data showed that the protein levels of CD31, αSMA, caveolin and Ng2 increased with cadmium exposure, and this increase was particularly significant with the administration of 2.5 mg CdCl2/kg/day. CD31, αSMA, caveolin and Ng2 are related to angiogenesis. Based on our data, cadmium exposure may stimulate the proliferation of the mural cells and endothelial cells of blood vessels, which may lead to abnormal function of the testis.
Collapse
|
41
|
Huang B, Chen M, Tian J, Zhang Y, Dai Z, Li J, Zhang W. Oxygen-Carrying and Antibacterial Fluorinated Nano-Hydroxyapatite Incorporated Hydrogels for Enhanced Bone Regeneration. Adv Healthc Mater 2022; 11:e2102540. [PMID: 35166460 DOI: 10.1002/adhm.202102540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Indexed: 12/27/2022]
Abstract
Insufficient oxygen availability in tissue engineering is one of the major factors for the failure of clinical transplantation. One potential strategy to conquer this limitation is the fabrication of spontaneous and continuous oxygen supplying scaffolds for in situ tissue regeneration. In this work, a versatile fluorine-incorporating hydrogel is designed which can not only timely and continuously supply oxygen for mesenchymal stem cells (MSCs) to overcome deficient oxygen before vascularization in scaffolds, but can present a higher antibacterial capability to avoid bacterial infections. The HAp@PDA-F nanoparticles are first prepared and then incorporated with the quaternized and methacrylated chitosan forming CS/HAp@PDA-F by photo-crosslinking. In vitro results indicate that CS/HAp@PDA-F hydrogel has outstanding mechanical performance, moreover, it also has the oxygen-carrying ability to prolong survival ability, enhance proliferation activity, and preserve osteogenic differentiation potency and promote osteogenic-related genes expression of rat bone mesenchymal stem cells (rBMSCs) under hypoxic environment. Furthermore, the CS/HAp@PDA-F hydrogel can inhibit the growth of Staphylococcus aureus and Escherichia coli, providing a good antibacterial activity. Additionally, in vivo experiments demonstrate higher bone volume and bone mineral density, and more new bone tissue generation in CS/HAp@PDA-F group than in CS/HAp@PDA group. These results indicate that the rational design of fluorinated hydrogel possesses a good clinical application prospect for bone regeneration.
Collapse
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Mingjiao Chen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Department of Ophthalmology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Zhizaoju Road No. 639 Shanghai 200011 P. R. China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Zhaobo Dai
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Jin Li
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Department of Ophthalmology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Zhizaoju Road No. 639 Shanghai 200011 P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| |
Collapse
|
42
|
Rindone AN, Grayson WL. Illuminating the Regenerative Microenvironment: Emerging Quantitative Imaging Technologies for Craniofacial Bone Tissue Engineering. ACS Biomater Sci Eng 2022; 8:4610-4612. [PMID: 35157425 DOI: 10.1021/acsbiomaterials.1c01373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tissue engineering has the potential to revolutionize treatments for patients suffering from critical-sized craniofacial bone defects, but it has yet to make a substantial impact in clinical practice. One of the barriers to improving the design of tissue-engineered bone grafts (TEBGs) is the lack of adequate techniques to study how transplanted cells, host cells, and biomaterials interact to facilitate the dynamic healing process. In this perspective, we discuss recent advances in quantitative imaging that may be adapted to provide high spatiotemporal resolution of the 3D tissue microenvironment during cranial bone regeneration. The adoption and application of these imaging technologies will provide a more rigorous framework for evaluating TEBG performance and enable the development of next-generation TEBGs for craniofacial repair.
Collapse
Affiliation(s)
- Alexandra N Rindone
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21205 United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
43
|
Chen W, Xie G, Lu Y, Wang J, Feng B, Wang Q, Xu K, Bao J. An improved osseointegration of metal implants by pitavastatin loaded multilayer films with osteogenic and angiogenic properties. Biomaterials 2021; 280:121260. [PMID: 34823885 DOI: 10.1016/j.biomaterials.2021.121260] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
An increasing number of works have highlighted the importance of metal implants surface modification in enhancing bone defect healing through the synergistic osteogenesis-angiogenesis regulation. Studies have shown that pitavastatin has the effect of promoting osteogenesis and angiogenesis. However, how to prepare pitavastatin functionalized implants and how pitavastatin regulates the synergies of osteogenesis and angiogenesis around implants as well as the related mechanisms remain unclear. In the present study, multilayer films with osteogenic and angiogenic properties were constructed on pure titanium substrates via the layer-by-layer assembly of pitavastatin-loaded β-cyclodextrin grafted chitosan and gelatin. In vitro experiments demonstrated that locally applied pitavastatin could dramatically enhance osteogenic potential of mesenchymal stem cells (MSCs) and angiogenic potential of endothelial cells (ECs). Moreover, pitavastatin loaded multilayer films could regulate the paracrine signaling mediated crosstalk between MSCs and ECs, and indirectly increase the angiogenic potential of MSCs and osteogenic potential of ECs via multiple paracrine signaling. The results of subcutaneous and femur implantation confirmed that locally released pitavastatin had potentially triggered a chain of biological events: mobilizing endogenous stem cells and ECs to the implant-bone interface, in turn facilitating coupled osteogenesis and angiogenesis, and eventually enhancing peri-implant osseointegration. This study enlarges the application scope of pitavastatin and provides an optional choice for developing a multifunctional bioactive coating on the surfaces of mental implants.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China.
| | - Guoliang Xie
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Yang Lu
- Department of Orthopedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China
| | - Jiayuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Baihuan Feng
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Qi Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Kui Xu
- Institute of Biomedical Engineering, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, PR China; The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, PR China.
| | - Jiaqi Bao
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| |
Collapse
|