1
|
Yan Q, Xun Y, Lei D, Zhai H. Tanshinone IIA protects motor neuron-like NSC-34 cells against lipopolysaccharide-induced cell injury by the regulation of the lncRNA TCTN2/miR-125a-5p/DUSP1 axis. Regen Ther 2023; 24:417-425. [PMID: 37727797 PMCID: PMC10506057 DOI: 10.1016/j.reth.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 09/21/2023] Open
Abstract
Background Tanshinone IIA (TSIIA) exerts a protective role in spinal cord injury (SCI). However, the mechanism of TSIIA activity in SCI remains to be elucidated. Methods Cell viability and apoptosis were gauged by CCK-8 assay and flow cytometry, respectively. The expression levels of lncRNA TCTN2, miR-125a-5p and DUSP1 were detected by qRT-PCR and western blot. Direct relationship between miR-125a-5p and TCTN2 or DUSP1 was verified by dual-luciferase reporter assay. Results In mouse NSC-34 cells, LPS reduced the expression of TCTN2. TSIIA alleviated cell injury induced by LPS and increased TCTN2 expression in LPS-exposed NSC-34 cells. TCTN2 was a downstream mediator of TSIIA activity. TCTN2 targeted miR-125a-5p, and TCTN2 over-expression attenuated LPS-induced cell damage in NSC-34 cells by down-regulating miR-125a-5p. TCTN2 functioned as a post-transcriptional regulator of DUSP1 expression through miR-125a-5p. DUSP1 was a functional target of miR-125a-5p in controlling NSC-34 cell injury induced by LPS. TSIIA inhibited miR-125a-5p expression and increased the level of DUSP1 protein in LPS-exposed NSC-34 cells. Conclusion Our study establishes a novel mechanism, the TCTN2/miR-125a-5p/DUSP1 axis, at least in part, for the protective activity of TSIIA in cell injury induced by LPS.
Collapse
Affiliation(s)
| | | | - Debao Lei
- Department of Rehabilitation Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, 441000, Hubei, China
| | - Hongyu Zhai
- Department of Rehabilitation Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, 441000, Hubei, China
| |
Collapse
|
2
|
Wang SC, Hu XM, Xiong K. The regulatory role of Pin1 in neuronal death. Neural Regen Res 2023; 18:74-80. [PMID: 35799512 PMCID: PMC9241412 DOI: 10.4103/1673-5374.341043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Regulated cell death predominantly involves apoptosis, autophagy, and regulated necrosis. It is vital that we understand how key regulatory signals can control the process of cell death. Pin1 is a cis-trans isomerase that catalyzes the isomerization of phosphorylated serine or threonine-proline motifs of a protein, thereby acting as a crucial molecular switch and regulating the protein functionality and the signaling pathways involved. However, we know very little about how Pin1-associated pathways might play a role in regulated cell death. In this paper, we review the role of Pin1 in regulated cell death and related research progress and summarize Pin1-related pathways in regulated cell death. Aside from the involvement of Pin1 in the apoptosis that accompanies neurodegenerative diseases, accumulating evidence suggests that Pin1 also plays a role in regulated necrosis and autophagy, thereby exhibiting distinct effects, including both neurotoxic and neuroprotective effects. Gaining an enhanced understanding of Pin1 in neuronal death may provide us with new options for the development of therapeutic target for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shu-Chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Gao Q, Zhang C, Li J, Xu H, Guo X, Guo Q, Zhao C, Yao H, Jia Y, Zhu H. Melatonin Attenuates H 2O 2-Induced Oxidative Injury by Upregulating LncRNA NEAT1 in HT22 Hippocampal Cells. Int J Mol Sci 2022; 23:12891. [PMID: 36361683 PMCID: PMC9657978 DOI: 10.3390/ijms232112891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 08/16/2023] Open
Abstract
More research is required to understand how melatonin protects neurons. The study aimed to find out if and how long non-coding RNA (lncRNA) contributes to melatonin's ability to defend the hippocampus from H2O2-induced oxidative injury. LncRNAs related to oxidative injury were predicted by bioinformatics methods. Mouse hippocampus-derived neuronal HT22 cells were treated with H2O2 with or without melatonin. Viability and apoptosis were detected by Cell Counting Kit-8 and Hoechst33258. RNA and protein levels were measured by quantitative real-time PCR, Western blot, and immunofluorescence. Bioinformatics predicted that 38 lncRNAs were associated with oxidative injury in mouse neurons. LncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) was related to H2O2-induced oxidative injury and up-regulated by melatonin in HT22 cells. The knockdown of NEAT1 exacerbated H2O2-induced oxidative injury, weakened the moderating effect of melatonin, and abolished the increasing effect of melatonin on the mRNA and protein level of Slc38a2. Taken together, melatonin attenuates H2O2-induced oxidative injury by upregulating lncRNA NEAT1, which is essential for melatonin stabilizing the mRNA and protein level of Slc38a2 for the survival of HT22 cells. The research may assist in the treatment of oxidative injury-induced hippocampal degeneration associated with aging using melatonin and its target lncRNA NEAT1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
4
|
Chen W, Liu Y, Kang S, Lv X, Fu W, Zhang J, Song C. LINC00092 Modulates Oxidative Stress and Glycolysis of Breast Cancer Cells via Pyruvate Carboxylase-Mediated AKT/mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5215748. [PMID: 35799892 PMCID: PMC9256459 DOI: 10.1155/2022/5215748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
Abstract
Background The discovery of noncoding RNAs (ncRNAs) offers new options for cancer-targeted therapy. This study is aimed at exploring the regulatory function of LINC00092 on breast cancer (BC) oxidative stress and glycolysis, along with internal mechanism concerning pyruvate carboxylase (PC). Methods Bioinformatics analysis was used to explore LINC00092 (or friend leukemia virus integration 1 (FLI1)) expression on BC progression, as well as oxidative stress and glycolysis in BC. After LINC00092 overexpression or silence, BC cell viability, proliferation, migration, invasion, oxidative stress, glycolysis, and AKT/mTOR pathway were detected. Following 2-DG, SC79, or MK2206 treatment, effects of LINC00092 on BC cells were measured. Moreover, regulatory activity of LINC00092 in PC expression was analyzed. Whether PC participated in the modulation of LINC00092 on BC cell functions was explored. Results LINC00092 was lowly expressed in BC and negatively related to BC progression. FLI1 bound to LINC00092 promoter to positively modulate LINC00092. LINC00092 overexpression inhibited BC cell proliferation, migration, invasion, oxidative stress, glycolysis, and AKT/mTOR pathway and likewise suppressed BC growth in vivo. Silence of LINC00092 had opposite influences. 2-DG partially reversed the LINC00092 silence-resulted increase of BC cell proliferation. SC79 alleviated the function of LINC00092 overexpression on BC cell functions. MK2206 had the contrary influence of SC79. Besides, LINC00092 bound to PC to modulate ubiquitination degradation of PC protein. PC took part in the influences of LINC00092 on BC cell functions. Conclusions LINC0092 modulates oxidative stress and glycolysis of BC cells via the PC-mediated AKT/mTOR pathway, which is possibly a target for BC diagnosis and therapy.
Collapse
Affiliation(s)
- Wei Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Yushan Liu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Shaohong Kang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Xinying Lv
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Wenfen Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Jie Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| | - Chuangui Song
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| |
Collapse
|
5
|
Chen W, Hu M, Wei T, Liu Y, Tan T, Zhang C, Weng J. IL-1 receptor-associated kinase 1 participates in the modulation of the NLRP3 inflammasome by tumor-associated macrophages in hepatocellular carcinoma. J Gastrointest Oncol 2022; 13:1317-1329. [PMID: 35837195 PMCID: PMC9274051 DOI: 10.21037/jgo-22-471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/16/2022] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Hepatocellular carcinomas (HCCs) occur frequently in the digestive system and are associated with high mortality. This current study examined the regulatory relationship between interleukin (IL)-1 receptor-associated kinase 1 (IRAK1), NLR family pyrin domain-containing 3 (NLRP3) inflammasomes, and tumor-associated macrophages (TAMs) in the growth and metastasis of HCC. METHODS The expression of IRAK1 and NLRP3 was assessed in tissues and cells via quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. Immunohistology was performed to detect the macrophage markers CD68, CD163, and CD168 in tumor tissues. Small interfering (si)RNA targeting IRAK1 (si-IRAK1) was designed to silence IRAK1 expression. Following si-IRAK1 transfection and/or co-culture with TAMs, HCC cell viability, proliferation, migration, and invasion, as well as the expression of NLRP3 and pro-inflammatory cytokines IL-1 β, IL-18, and monocyte chemotactic protein 1 (MCP-1) were assessed. RESULTS HCC tissues showed elevated expression of IRAK1 and NLRP3, as well as increased expression of the macrophage markers CD68, CD163, and CD168, compared to adjacent healthy tissues. Silencing of IRAK1 expression in HepG2 and Huh7 cells resulted in suppression of cell proliferation, migration, and invasion, and also reduced expression of NLRP3 and the pro-inflammatory cytokines IL-1β, IL-18, and MCP-1. Moreover, TAMs promoted HepG2 and Huh7 cell proliferation, migration, and invasion, and elevated the expression of NLRP3, IL-1β, IL-18, and MCP-1. Furthermore, IRAK1 silencing reversed the effects of TAMs on HepG2 and Huh7 cells. CONCLUSIONS The expression of IRAK1 was associated with HCC growth and metastasis, as well as NLRP3 inflammasome activation. The ability of TAMs to promote HCC growth and metastasis may be activated by NLRP3 inflammasomes and regulated by IRAK1.
Collapse
Affiliation(s)
- Wei Chen
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou, China
| | - Mingjuan Hu
- Department of Pathology, People’s Hospital of Huadu District, Guangzhou, China
| | - Tao Wei
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou, China
| | - Ying Liu
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou, China
| | - Tian Tan
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou, China
| | - Chengfang Zhang
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou, China
| | - Jiaxuan Weng
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou, China
| |
Collapse
|
6
|
Liao J, Jiang L, Wang C, Zhao D, He W, Zhou K, Liang Y. FoxM1 Regulates Proliferation and Apoptosis of Human Neuroblastoma Cell through PI3K/AKT Pathway. Fetal Pediatr Pathol 2022; 41:355-370. [PMID: 32901528 DOI: 10.1080/15513815.2020.1814915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aim: This study investigated the effect of FoxM1 on the biological behavior of neuroblastoma (NB) cells in vitro and the association between FoxM1 and PI3K/AKT pathways in NB cell lines. Materials and methods: Recombinant plasmid pcDNA3.1 (+)-FoxM1 and FoxM1-specific small interfering RNA (siRNA) were transfected into IMR-32 cells by liposome transfection. The expression of FoxM1, AKT and PI3K were determined by qRT-PCR and western blotting. The effect of FoxM1 and PI3K/AKT pathways on the cell cycles and apoptosis were analyzed by flow cytometry. Cell viability and proliferation ability were assessed by CCK8 and colony formation assay. Results: Knockdown of FoxM1 promoted NB cell apoptosis and G1-phase cell cycle arrest significantly, increased the expression of apoptosis-related proteins, and suppressed the phospho-activation of PI3K and AKT. Over-expression of FoxM1 had the opposite effects. Conclusion: FoxM1 knockdown inhibited NB cell proliferation and induced apoptosis through inhibiting activation of PI3K and AKT.
Collapse
Affiliation(s)
- Junzuo Liao
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lin Jiang
- The Second Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Cheng Wang
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Dan Zhao
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wenfei He
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Kejun Zhou
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yun Liang
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
7
|
The lncRNA-AK046375 Upregulates Metallothionein-2 by Sequestering miR-491-5p to Relieve the Brain Oxidative Stress Burden after Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8188404. [PMID: 35222805 PMCID: PMC8865981 DOI: 10.1155/2022/8188404] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/08/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
We previously discovered that traumatic brain injury (TBI) induces significant perturbations in long noncoding RNA (lncRNA) levels in the mouse cerebral cortex, and lncRNA-AK046375 is one of the most significantly changed lncRNAs after TBI. lncRNA-AK046375 overexpression and knockdown models were successfully constructed both in vitro and in vivo. In cultured primary cortical neurons and astrocytes, lncRNA-AK046375 sequestered miR-491-5p, thereby enhancing the expression of metallothionein-2 (MT2), which ameliorated oxidative-induced cell injury. In addition, upregulated lncRNA-AK046375 promoted the recovery of motor, learning, and memory functions after TBI in C57BL/6 mice, and the underlying mechanism may be related to ameliorated apoptosis, inhibited oxidative stress, reduced brain edema, and relieved loss of tight junction proteins at the blood-brain barrier in the mouse brain. Therefore, we conclude that lncRNA-AK046375 enhances MT2 expression by sequestering miR-491-5p, ultimately strengthening antioxidant activity, which ameliorates neurological deficits post-TBI.
Collapse
|
8
|
Chen J, Wu H, Tang X, Chen L. 4-Phenylbutyrate protects against rifampin-induced liver injury via regulating MRP2 ubiquitination through inhibiting endoplasmic reticulum stress. Bioengineered 2022; 13:2866-2877. [PMID: 35045794 PMCID: PMC8974152 DOI: 10.1080/21655979.2021.2024970] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rifampin (RFP), a first-line anti-tuberculosis drug, often induces cholestatic liver injury and hyperbilirubinemia which limits its clinical use. Multidrug resistance-associated protein 2 (MRP2) localizes to the hepatocyte apical membrane and plays a pivotal role in the biliary excretion of bilirubin glucuronides. RFP is discovered to reduce MRP2 expression in liver cells. 4-Phenylbutyrate (4-PBA), a drug used to treat ornithine transcarbamylase deficiency (DILI), is reported to alleviate RFP-induced liver cell injury. However, the underlying mechanism still remains unclear. In the current study, we discovered that RFP induced HepG2 cell viability reduction, apoptosis and MRP2 ubiquitination degradation. Administration of 4-PBA alleviated the effect of RFP on HepG2 cell viability reduction, apoptosis and MRP2 ubiquitination degradation. In mechanism, 4-PBA suppressed RPF-caused intracellular Ca2+ disorder and endoplasmic reticulum (ER) stress, as well as the increases of Clathrin and adapter protein 2 (AP2). ER stress marker protein C/EBP homologous protein took part in the modulation of AP2 and clathrin. Besides, 4-PBA reduced the serum bilirubin level in RFP-induced cholestasis mouse model, along with raised the MRP2 expression in liver tissues. These findings indicated that 4-PBA could alleviate RFP-induced cholestatic liver injury and thereby decreased serum total bilirubin concentration via inhibiting ER stress and ubiquitination degradation of MRP2, which provides new insights into the mechanism of 4-PBA in the treatment of RFP-induced cholestasis and liver damage.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Hongbo Wu
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Xudong Tang
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Lei Chen
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| |
Collapse
|
9
|
Zhou Y, Yu F. Emerging roles of long non-coding RNAs in spinal cord injury. J Orthop Surg (Hong Kong) 2021; 29:23094990211030698. [PMID: 34323142 DOI: 10.1177/23094990211030698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury (SCI) is the most serious complication of spinal injury and often leads to severe dysfunction of the limb below the injured segment. SCI causes not only serious physical and psychological harm to the patients, but imposes an enormous economic burden on the whole society. Great efforts have been made to improve the functional outcomes of patients with SCI; however, therapeutic advances have far been limited. Long non-coding RNA (lncRNA) is an important regulator of gene expression and has recently been characterized as a key regulator of central nervous system stabilization. Emerging evidence suggested that lncRNAs are significantly dysregulated and play a key role in the development of SCI. Our review summarizes current researches regarding the roles of deregulated lncRNAs in modulating apoptosis, inflammatory response, neuronal behavior in SCI. These studies suggest that specific regulation of lncRNA or its downstream targets may provide a new therapeutic approach for this desperate disease.
Collapse
Affiliation(s)
- Yiguang Zhou
- Queen Mary College of Nanchang University, Nanchang, People's Republic of China
| | - Feng Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
10
|
Tang Y, Li Y, Yu G, Ling Z, Zhong K, Zilundu PLM, Li W, Fu R, Zhou LH. MicroRNA-137-3p Protects PC12 Cells Against Oxidative Stress by Downregulation of Calpain-2 and nNOS. Cell Mol Neurobiol 2021; 41:1373-1387. [PMID: 32594381 PMCID: PMC11448599 DOI: 10.1007/s10571-020-00908-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
The imbalance between excess reactive oxygen species (ROS) generation and insufficient antioxidant defenses contribute to a range of neurodegenerative diseases. High ROS levels damage cellular macromolecules such as DNA, proteins and lipids, leading to neuron vulnerability and eventual death. However, the underlying molecular mechanism of the ROS regulation is not fully elucidated. Recently, an increasing number of studies suggest that microRNAs (miRNAs) emerge as the targets in regulating oxidative stress. We recently reported the neuroprotective effect of miR-137-3p for brachial plexus avulsion-induced motoneuron death. The present study is sought to investigate whether miR-137-3p also could protect PC12 cells against hydrogen peroxide (H2O2) induced neurotoxicity. By using cell viability assay, ROS assay, gene and protein expression assay, we found that PC-12 cells exposed to H2O2 exhibited decreased cell viability, increased expression levels of calpain-2 and neuronal nitric oxide synthase (nNOS), whereas a decreased miR-137-3p expression. Importantly, restoring the miR-137-3p levels in H2O2 exposure robustly inhibited the elevated nNOS, calpain-2 and ROS expression levels, which subsequently improved the cell viability. Furthermore, the suppressive effect of miR-137-3p on the elevated ROS level under oxidative stress was considerably blunted when we mutated the binding site of calpain-2 targted by miR-137-3p, suggesting the critical role of calpain-2 involving the neuroprotective effect of miR-137-3p. Collectively, these findings highlight the neuroprotective role of miR-137-3p through down-regulating calpain and NOS activity, suggesting its potential role for combating oxidative stress insults in the neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying Tang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yingqin Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 51900, Guangdong, China
| | - Guangyin Yu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ke Zhong
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Prince L M Zilundu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Li-Hua Zhou
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
11
|
Song B, Wei D, Yin G, Song X, Wang S, Jia S, Zhang J, Li L, Wu X. Critical role of SIRT1 upregulation on the protective effect of lncRNA ANRIL against hypoxia/reoxygenation injury in H9c2 cardiomyocytes. Mol Med Rep 2021; 24:547. [PMID: 34080028 PMCID: PMC8185511 DOI: 10.3892/mmr.2021.12186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 02/02/2021] [Indexed: 11/05/2022] Open
Abstract
Dysregulation of long non-coding RNA (IncRNA) antisense non-coding RNA in the INK4 locus (ANRIL) is associated with the risk of myocardial infarction (MI). Therefore, the present study aimed to determine the mechanisms underlying this association, which is currently poorly understood, to the best of our knowledge. The current study used an in vitro myocardial ischemia and reperfusion (MI/R) model, in which H9c2 cardiomyocytes were exposed to hypoxia/reoxygenation (H/R), which demonstrated that ANRIL expression was downregulated and that ANRIL positively regulated sirtuin 1 (SIRT1) expression following H/R injury. Subsequently, it was demonstrated that ANRIL upregulated SIRT1 expression by sponging microRNA-181a (miR-181a). In addition, ANRIL overexpression reduced lactate dehydrogenase release and apoptosis of H9c2 cardiomyocytes exposed to H/R, indicating that ANRIL prevented H/R-induced cardiomyocyte injury. Moreover, both miR-181a overexpression and SIRT1 knockdown significantly decreased the protective effects of ANRIL on H/R-induced cardiomyocyte injury, thus demonstrating that SIRT1 upregulation via sponging miR-181a is a critical mechanism that mediates the function of ANRIL. These results provided a novel mechanistic insight into the role of ANRIL in H/R-injured cardiomyocytes and suggested that the ANRIL/miR-181a/SIRT1 axis may be a therapeutic target for reducing MI/R injury.
Collapse
Affiliation(s)
- Binghui Song
- Internal Medicine‑Cardiovascular Department, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Dongmei Wei
- Department of Traditional Chinese Geriatric Medicine, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Gang Yin
- Department of Traditional Chinese Geriatric Medicine, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Xiaoguang Song
- Department of Research Section, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Shuqing Wang
- Internal Medicine‑Cardiovascular Department, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Shanshan Jia
- Department of GI Medicine, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Jidong Zhang
- Department of GI Medicine, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Longhu Li
- Internal Medicine‑Cardiovascular Department, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Xiaofei Wu
- Department of Statistics Section, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| |
Collapse
|
12
|
Liu W, Long Q, Zhang L, Zeng D, Hu B, Zhang W, Liu S, Deng S, Chen L. Long non-coding RNA X-inactive specific transcript promotes osteosarcoma metastasis via modulating microRNA-758/Rab16. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:841. [PMID: 34164475 PMCID: PMC8184472 DOI: 10.21037/atm-21-1032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background As a common malignant bone sarcoma, osteosarcoma (OS) affects the health and lives of many people. Here, we probed the effects of long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) and microRNA-758 (miR-758) on OS metastasis, and examined possible downstream effector. Methods Quantitative reverse transcription PCR (qRT-PCR) was performed to detect the expressions of XIST and miR-758 in OS tissues and cells. Cell transfection was carried out to alter the levels of XIST and miR-758 in OS cells, and cell viability, migration, and invasion were assessed. Subsequently, qRT-PCR and a dual-luciferase reporter assay were conducted to analyze the regulatory effects of XIST on miR-758 and miR-758 on Rab16. Finally, we investigated whether Rab16 was the downstream effector of XIST/miR-758 axis. Results XIST was highly expressed in OS tissues and cells, but the opposite was seen for miR-758. In OS cells, migration, invasion, and epithelial-mesenchymal transformation (EMT) was promoted by overexpression of XIST and miR-758 inhibitor, but were inhibited by XIST knockdown and miR-758 mimics. XIST regulated miR-758 expression, and miR-758 regulated Rab16 expression in OS cells. Overexpression of Rab16 reversed the effects of miR-758 mimics on OS cell migration and invasion. Conclusions XIST contributed to OS cell migration, invasion, and EMT via regulation of miR-758/Rab16.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics Trauma, Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| | - Qiuping Long
- Department of Orthopedics Trauma, Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| | - Li Zhang
- Department of Orthopedics Trauma, Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| | - Dehui Zeng
- Department of Orthopedics Trauma, Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| | - Bingbing Hu
- Department of Orthopedics Trauma, Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| | - Wei Zhang
- Department of Orthopedics Trauma, Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| | - Shengyao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Songyun Deng
- Department of Orthopedics Trauma, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Chen
- Department of Orthopedics Trauma, Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| |
Collapse
|
13
|
Liu H, Xiu Y, Zhang Q, Xu Y, Wan Q, Tao L. Silencing microRNA‑29b‑3p expression protects human trabecular meshwork cells against oxidative injury via upregulation of RNF138 to activate the ERK pathway. Int J Mol Med 2021; 47:101. [PMID: 33907817 PMCID: PMC8054636 DOI: 10.3892/ijmm.2021.4934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
In recent years, the potential involvement of numerous microRNAs (miRNAs) in glaucoma has been widely reported. However, the role of microRNA-29b-3p (miR-29b-3p) in the pathogenesis of glaucoma remains unknown. This study aimed to explore the biological role and regulatory mechanism of miR-29b-3p in the oxidative injury of human trabecular meshwork (HTM) cells induced by H2O2 stimulation. By establishing a glaucoma rat model, the effects of miR-29-3p in glaucoma were detected in vivo. Our findings demonstrated that miR-29b-3p was upregulated in a glaucoma model and antagomiR-29b-3p alleviated the symptoms of glaucoma. In vitro assays revealed that miR-29b-3p expression was significantly upregulated in HTM cells with H2O2 stimulation. Knockdown of miR-29b-3p alleviated H2O2-induced oxidative injury in HTM cells by promoting cell viability, and inhibiting cell apoptosis, reactive oxygen species generation and extracellular matrix production. Subsequently, it was found that E3 ubiquitin-protein ligase RNF138 (RNF138) was a downstream target of miR-29b-3p. RNF138 expression was downregulated in HTM cells with H2O2 stimulation. RNF138 knockdown significantly rescued the protective effect of miR-29b-3p inhibitor on HTM cells under oxidative injury. Additionally, miR-29b-3p silencing activated the ERK pathway via upregulating RNF138. Collectively, silencing of miR-29b-3p protected HTM cells against oxidative injury by upregulation of RNF138 to activate the ERK pathway.
Collapse
Affiliation(s)
- Heting Liu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yanghui Xiu
- Eye Institute and Xiamen Eye Center, Affiliated Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Qing Zhang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yuxin Xu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Qianqian Wan
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Liming Tao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
14
|
Gao Q, Guo X, Cao Y, Jia X, Xu S, Lu C, Zhu H. Melatonin Protects HT22 Hippocampal Cells from H 2O 2-induced Injury by Increasing Beclin1 and Atg Protein Levels to Activate Autophagy. Curr Pharm Des 2021; 27:446-454. [PMID: 32838711 DOI: 10.2174/1381612826666200824105835] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aging of hippocampal neurons leads to a substantial decline in memory formation, storage and processing. The neuroprotective effect of melatonin has been confirmed, however, its protective mechanism remains unclear. OBJECTIVE In this study, mouse hippocampus-derived neuronal HT22 cells were used to investigate whether melatonin protects the hippocampus from hydrogen peroxide (H2O2)-induced injury by regulating autophagy. METHODS Rapamycin (an activator of autophagy) and 3-methyladenine (3MA, an inhibitor of autophagy) were used to induce or inhibit autophagy, respectively. HT22 cells were treated with 200 μM H2O2 in the presence or absence of 50 μM melatonin. Cell counting kit 8 (CCK-8), β-galactosidase and Hoechst staining were used to measure the viability, aging and apoptosis of cells, respectively. Western blot analysis was used to detect the levels of autophagy-related proteins. RESULTS The activation of autophagy by rapamycin alleviated H2O2-induced oxidative injury, as evidenced by morphological changes and decreased viability, while the inhibition of autophagy by 3MA exacerbated H2O2- induced injury. The inhibitory effect of melatonin on H2O2-induced injury was similar to that of rapamycin. Melatonin also alleviated H2O2-induced aging and apoptosis. Melatonin activated autophagy in the presence or absence of H2O2, as evidenced by an increased Lc3b 14/16 kd ratio and a decreased P62 level. In addition, H2O2 decreased the levels of Beclin1 and Atg5/12/16, which were reversed by rapamycin or melatonin. The effects of melatonin on H2O2-induced injury, autophagy and protein expressions were effectively reversed by 3MA. CONCLUSION In conclusion, these results demonstrate that melatonin protects HT22 hippocampal neurons from H2O2-induced injury by increasing the levels of the Beclin1 and Atg proteins to activate autophagy.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaocheng Guo
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yang Cao
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaotong Jia
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Shanshan Xu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Chunmei Lu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Meng X, Wang ZF, Lou QY, Rankine AN, Zheng WX, Zhang ZH, Zhang L, Gu H. Long non-coding RNAs in head and neck squamous cell carcinoma: Diagnostic biomarkers, targeted therapies, and prognostic roles. Eur J Pharmacol 2021; 902:174114. [PMID: 33901464 DOI: 10.1016/j.ejphar.2021.174114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
At present, emerging evidence shows that non-coding RNAs (ncRNAs) play crucial roles for development of multiple tumors. Amongst these ncRNAs, long non-coding RNAs (lncRNAs) play prominent roles in physiological and pathological processes. LncRNAs are RNA transcripts larger than 200 nucleotides and have been shown to serve important regulatory roles in different types of cancer via interactions with DNA, RNA and proteins. Head and neck squamous cell carcinoma (HNSCC) is one of the most malignant tumors with low survival rates in advanced stages. Recently, lncRNAs have been demonstrated to be involved in a wide range of biological processes, including proliferation, metastasis, and prognosis of HNSCC. Therefore, this review describes molecular mechanisms of up- or down-regulation of lncRNAs and expounds their functions in pathology and clinical practices in HNSCC. It also highlights their potential clinical applications as biomarkers for the diagnosis, prognosis, and treatment of HNSCC. However, studies on lncRNAs are still not comprehensive, and more investigations are needed in the future.
Collapse
Affiliation(s)
- Xiang Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| | - Zi-Fei Wang
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Qiu-Yue Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Abigail N Rankine
- Clinical Medicine in Chinese (MBBS), Anhui Medical University, Hefei, 230032, China.
| | - Wan-Xin Zheng
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Zi-Hao Zhang
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China; Periodontal Department, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, 230032, China.
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
16
|
Gu Y, Chen D, Zhou L, Zhao X, Lin J, Lin B, Lin T, Chen Z, Chen Z, Wang Z, Liu W. Lysine-specific demethylase 1 inhibition enhances autophagy and attenuates early-stage post-spinal cord injury apoptosis. Cell Death Discov 2021; 7:69. [PMID: 33824301 PMCID: PMC8024310 DOI: 10.1038/s41420-021-00455-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
Neuron death in spinal cords is caused primarily by apoptosis after spinal cord injury (SCI). Autophagy can act as a cellular response to maintain neuron homeostasis that can reduce apoptosis. Although more studies have shown that an epigenetic enzyme called Lysine-specific demethylase 1 (LSD1) can negatively regulate autophagy during cancer research, existing research does not focus on impacts related to LSD1 in nerve injury diseases. This study was designed to determine whether inhibiting LSD1 could enhance autophagy against apoptosis and provide effective neuroprotection in vitro and vivo after SCI. The results showed that LSD1 inhibition treatment significantly reduced spinal cord damage in SCI rat models and was characterized by upregulated autophagy and downregulated apoptosis. Further research demonstrated that using both pharmacological inhibition and gene knockdown could enhance autophagy and reduce apoptosis for in vitro simulation of SCI-caused damage models. Additionally, 3-methyladenine (3-MA) could partially eliminate the effect of autophagy enhancement and apoptosis suppression. These findings demonstrated that LSD1 inhibition could protect against SCI by activating autophagy and hindering apoptosis, suggesting a potential candidate for SCI therapy.
Collapse
Affiliation(s)
- Yang Gu
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Dehui Chen
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Linquan Zhou
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xin Zhao
- School of Health, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Jiemin Lin
- School of Health, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Bin Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Taotao Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Zhi Chen
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Zhaohong Chen
- Wound Repair Department, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Fujian Provincial Key Laboratory of Burn and Trauma, Fuzhou, 350001, Fujian, China
| | - Zhenyu Wang
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| | - Wenge Liu
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
17
|
Bian M, Yu Y, Li Y, Zhou Z, Wu X, Ye X, Yu J. Upregulating the Expression of LncRNA ANRIL Promotes Osteogenesis via the miR-7-5p/IGF-1R Axis in the Inflamed Periodontal Ligament Stem Cells. Front Cell Dev Biol 2021; 9:604400. [PMID: 33692995 PMCID: PMC7937634 DOI: 10.3389/fcell.2021.604400] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) antisense non-coding RNA in the INK4 locus (ANRIL) is a base length of about 3.8 kb lncRNA, which plays an important role in several biological functions including cell proliferation, migration, and senescence. This study ascertained the role of lncRNA ANRIL in the senescence and osteogenic differentiation of inflamed periodontal ligament stem cells (iPDLSCs). Methods Healthy periodontal ligament stem cells (hPDLSCs) and iPDLSCs were isolated from healthy/inflamed periodontal ligament tissues, respectively. The proliferation abilities were determined by CCK-8, EdU assay, and flow cytometry (FCM). The methods of Western blot assay (WB), quantitative real-time polymerase chain reaction (qRT-PCR), alizarin red staining, alkaline phosphatase (ALP) staining, ALP activity detection, and immunofluorescence staining were described to determine the biological influences of lncRNA ANRIL on iPDLSCs. Senescence-associated (SA)-β-galactosidase (gal) staining, Western blot analysis, and qRT-PCR were performed to determine cell senescence. Dual-luciferase reporter assays were conducted to confirm the binding of lncRNA ANRIL and miR-7-5-p, as well as miR-7-5p and insulin-like growth factor receptor (IGF-1R). Results HPDLSCs and iPDLSCs were isolated and cultured successfully. LncRNA ANRIL and IGF-1R were declined, while miR-7-5p was upregulated in iPDLSCs compared with hPDLSCs. Overexpression of ANRIL enhanced the osteogenic protein expressions of OSX, RUNX2, ALP, and knocked down the aging protein expressions of p16, p21, p53. LncRNA ANRIL could promote the committed differentiation of iPDLSCs by sponging miR-7-5p. Upregulating miR-7-5p inhibited the osteogenic differentiation of iPDLSCs. Further analysis identified IGF-1R as a direct target of miR-7-5p. The direct binding of lncRNA ANRIL and miR-7-5p, miR-7-5p and the 3′-UTR of IGF-1R were verified by dual-luciferase reporter assay. Besides, rescue experiments showed that knockdown of miR-7-5p reversed the inhibitory effect of lncRNA ANRIL deficiency on osteogenesis of iPDLSCs. Conclusion This study disclosed that lncRNA ANRIL promotes osteogenic differentiation of iPDLSCs by regulating the miR-7-5p/IGF-1R axis.
Collapse
Affiliation(s)
- Minxia Bian
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Yan Yu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Yuzhi Li
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Zhou Zhou
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Xiao Wu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Xiaying Ye
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Zhou J, Li Z, Zhao Q, Wu T, Zhao Q, Cao Y. Knockdown of SNHG1 alleviates autophagy and apoptosis by regulating miR-362-3p/Jak2/stat3 pathway in LPS-injured PC12 cells. Neurochem Res 2021; 46:945-956. [PMID: 33515352 DOI: 10.1007/s11064-020-03224-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) is a serious neurological disease. Long non-coding RNA (lncRNA) small nucleolar RNA host gene (SNHG1) and microRNA-362-3p (miR-362-3p) were confirmed to be related to neurological disorders. However, it is unclear whether SNHG1 was involved in the development of SCI via regulating miR-362-3p. PC12 cells were treated with lipopolysaccharide (LPS) to imitate the in vitro cell model of SCI. Cell ciability and apoptosis rate were detected by cell counting kit-8 (CCK-8) assay and flow cytometry assay. The levels of SNHG1, miR-362-3p, and Janus kinase-2 (Jak2) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The dual-luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation (RIP) assay were performed to verify the interaction between miR-362-3p and SNHG1 or Jak2. Besides, the levels of apoptosis- and autophagy- related proteins were detected by western blot assay. In present research, LPS suppressed cell viability, and induced apoptosis and autophagy in PC12 cells. SNHG1 knockdown could affect cell viability, and suppress cell apoptosis and autophagy in LPS-treated PC12 cells. Moreover, miR-362-3p was a target of SNHG1, miR-362-3p targeted Jak2 and negatively regulated Jak2/stat3 pathway. Our data also demonstrated that SNHG1 depletion inactivated Jak2/stat3 pathway to affect cell viability and confine apoptosis, autophagy in LPS-treated PC12 cells. Taken together, SNHG1 regulated cell viability, apoptosis and autophagy in LPS-treated PC12 cells by activating Jak2/stat3 pathway via sponging miR-362-3p.
Collapse
Affiliation(s)
- Jiahui Zhou
- Department of Orthopaedic, The Third Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Zhiyue Li
- Department of Orthopaedic, The Third Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Qun Zhao
- Department of Orthopaedic, The Third Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Tianding Wu
- Department of Orthopaedic, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Qiancheng Zhao
- Department of Orthopaedic, The Third Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yong Cao
- Department of Orthopaedic, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
19
|
Wang Y, Lv F, Huang L, Zhang H, Li B, Zhou W, Li X, Du Y, Pan Y, Wang R. Human amnion-derived mesenchymal stem cells promote osteogenic differentiation of lipopolysaccharide-induced human bone marrow mesenchymal stem cells via ANRIL/miR-125a/APC axis. Stem Cell Res Ther 2021; 12:35. [PMID: 33413674 PMCID: PMC7791649 DOI: 10.1186/s13287-020-02105-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIM Periodontitis is a chronic inflammatory disease inducing the absorption of alveolar bone and leading to tooth loss. Human amnion-derived mesenchymal stem cells (HAMSCs) have been used for studying inflammatory processes. This study aimed to explore the role of long noncoding RNA (lncRNA) antisense noncoding RNA in the INK4 locus (ANRIL) in HAMSC-driven osteogenesis in lipopolysaccharide (LPS)-induced human bone marrow mesenchymal stem cells (HBMSCs). METHODS The cells were incubated with a co-culture system. Reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity were used to detect the oxidative stress level. Flow cytometry was performed to determine cell proliferation. The alkaline phosphatase (ALP) activity, Alizarin red assay, cell transfection, and rat mandibular defect model were used to evaluate the osteogenic differentiation. Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis, dual-luciferase reporter assay, and immunofluorescence staining were used to evaluate the molecular mechanisms. RESULTS This study showed that HAMSCs promoted the osteogenesis of LPS-induced HBMSCs, while the ANRIL level in HBMSCs decreased during co-culture. ANRIL had no significant influence on the proliferation of LPS-induced HBMSCs. However, its overexpression inhibited the HAMSC-driven osteogenesis in vivo and in vitro, whereas its knockdown reversed these effects. Mechanistically, this study found that downregulating ANRIL led to the overexpression of microRNA-125a (miR-125a), and further contributed to the competitive binding of miR-125a and adenomatous polyposis coli (APC), thus significantly activating the Wnt/β-catenin pathway. CONCLUSION The study indicated that HAMSCs promoted the osteogenic differentiation of LPS-induced HBMSCs via the ANRIL/miR-125a/APC axis, and offered a novel approach for periodontitis therapy.
Collapse
Affiliation(s)
- Yuli Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fengyi Lv
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Lintong Huang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Bing Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Weina Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Temporomandibular Joint, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xuan Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China. .,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Yongchu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China. .,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China. .,Department of Dental Implant, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
LncRNA SOX2OT Knockdown Alleviates Lipopolysaccharide-Induced Damage of PC12 Cells by Regulating miR-331-3p/Neurod1 Axis. World Neurosurg 2020; 147:e293-e305. [PMID: 33340723 DOI: 10.1016/j.wneu.2020.12.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) serve as crucial regulators in the pathogenesis of spinal cord injury (SCI). However, the role of lncRNA SOX2 overlapping transcript (SOX2OT) in SCI remains to be well revealed. METHODS An SCI rat model was established and assessed by the Basso-Beattie-Bresnahan (BBB) method. An SCI PC12 cell model was established through lipopolysaccharide (LPS) treatment. Quantitative real-time polymerase chain reaction assay was used for SOX2OT, miR-331-3p, and neurogenic differentiation 1 (Neurod1) mRNA levels. Cell counting kit-8 assay and flow cytometry analysis were performed for cell viability and apoptosis, respectively. Enzyme-linked immunosorbent assay was performed for the levels of inflammatory cytokines. The production of superoxide dismutase and malondialdehyde was determined with relevant kits. Dual-luciferase reporter and RNA immunoprecipitation assays were conducted for the relationships among SOX2OT, miR-331-3p, and Neurod1. Western blot assay was employed for protein levels. RESULTS SOX2OT was elevated in SCI rat and cell models. SOX2OT knockdown relieved the injury of SCI in SCI rat model. Moreover, the suppressive role in PC12 cell viability and the promotional roles in apoptosis, inflammation, and oxidative stress mediated by LPS were all restored by silencing SOX2OT. For mechanism analysis, SOX2OT was identified as a sponge of miR-331-3p to positively regulate Neurod1 expression. Inhibition of miR-331-3p reversed the effect of SOX2OT knockdown on LPS-induced PC12 damage. Overexpression of miR-331-3p protected PC12 cells from LPS-induced damage by binding to Neurod1. In addition, SOX2OT knockdown relieved PC12 cell injury by inactivation of Janus kinase-signal transducer and activator of transcription pathway. CONCLUSIONS SOX2OT promoted PC12 cell injury through modulating miR-331-3p/Neurod1 axis and activating Janus kinase-signal transducer and activator of transcription pathway.
Collapse
|
21
|
Liu J, Zhu T, Niu Q, Yang X, Suo H, Zhang H. Dendrobium nobile Alkaloids Protects against H 2O 2-Induced Neuronal Injury by Suppressing JAK-STATs Pathway Activation in N2A Cells. Biol Pharm Bull 2020; 43:716-724. [PMID: 32238714 DOI: 10.1248/bpb.b19-01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the preventive effect and mechanism of Dendrobium alkaloids (DNLA) on oxidative stress-related death in neuronal cells. Our results demonstrated that DNLA has a direct neuroprotective effect through oxidative stress in N2A cells induced by hydrogen peroxide (H2O2). CCK8, lactate dehydrogenase (LDH), intracellular Ca2+, intracellular reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were used to evaluate the mechanism of DNLA neutralization by H2O2-induced injury. Results presented in the paper indicate that treatment with DNLA (35 ng/mL) significantly attenuated decreases in cell viability, release of LDH, and apoptosis after H2O2-induced neuronal injury. Furthermore, DNLA significantly reduced intracellular Ca2+ up-regulation, ROS production, and inhibited mitochondrial depolarization. Moreover, DNLA treatment significantly downregulated expressions of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, nitric oxide synthase, janus kinase-signal transducer and activators of transcription (JAK-STATs) signaling in N2A cells, all of which were H2O2-induced. Taken together, our findings suggested that DNLA may inhibit the expression of pro-inflammatory and pro-apoptotic factors by blocking JAK-STATs signaling after oxidative stress injury. This research provides a potential experimental basis for further application of DNLA to prevent various human nervous system diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science and Bioengineering, Henan University of Urban Construction
| | - Tao Zhu
- School of Life Science and Bioengineering, Henan University of Urban Construction
| | - Qingqing Niu
- School of Life Science and Bioengineering, Henan University of Urban Construction
| | - Xiaoxing Yang
- School of Life Science and Bioengineering, Henan University of Urban Construction
| | - Hao Suo
- School of Life Science and Bioengineering, Henan University of Urban Construction
| | - Hao Zhang
- School of Life Science and Bioengineering, Henan University of Urban Construction.,Institute of Biomedical and Pharmaceutical sciences, Guangdong University of Technology
| |
Collapse
|
22
|
Deng D, Liang H. Silencing MEG3 protects PC12 cells from hypoxic injury by targeting miR-21. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:610-619. [PMID: 32050796 DOI: 10.1080/21691401.2020.1725533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increasing number of literatures highlighted lncRNA maternally expressed gene 3 (MEG3) as an emerging target for hypoxic-ischaemic brain damage (HIBD). This study attempted to assess the role of MEG3 in a cell model of HIBD. Expression of MEG3 in PC12 cells was suppressed by siRNA-mediated transfection, after which the cells were subjected to hypoxia. Cell viability, apoptosis, migration and the expression of related proteins were assessed. Furthermore, the downstream gene of MEG3 and its downstream signalling pathways were explored. We found that, down-regulation of MEG3 prevented hypoxic injury in PC12 cells, as hypoxia induced viability loss, apoptosis and migration repression were attenuated by transfection with MEG3 siRNA. Meanwhile, MEG3 acted as a miR-21 sponge. The neuroprotective functions of MEG3 silence were flattened when miR-21 was suppressed. Moreover, the deactivation of PI3K/AKT pathway and the activation of NF-κB pathway induced by hypoxia were attenuated by MEG3 silence. As expected, the effects of MEG3 silence on these two signalling were via miR-21. In conclusion, the neuroprotective effects of MEG3 silence on PC12 cells injured by hypoxia were observed in this study. Mechanistically, the neuroprotective effects of MEG3 silence on PC12 cells were via sponging miR-21 and thus regulating PI3K/AKT and NF-κB pathways.HIGHLIGHTSMEG3 is highly expressed in PC12 cells following hypoxic injury;Silence of MEG3 prevents hypoxia-induced cell damage in PC12 cells;MEG3 acts as a miR-21 sponge;MEG3 sponges miR-21 to regulate PI3K/AKT and NF-κB pathways.
Collapse
Affiliation(s)
- Dan Deng
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, China
| | - Hui Liang
- Department of Neurology, Hainan General Hospital, Haikou, China
| |
Collapse
|
23
|
Wang N, Yang Y, Pang M, Du C, Chen Y, Li S, Tian Z, Feng F, Wang Y, Chen Z, Liu B, Rong L. MicroRNA-135a-5p Promotes the Functional Recovery of Spinal Cord Injury by Targeting SP1 and ROCK. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1063-1077. [PMID: 33294293 PMCID: PMC7691148 DOI: 10.1016/j.omtn.2020.08.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/28/2020] [Indexed: 01/18/2023]
Abstract
Emerging evidence indicates that microRNAs play a pivotal role in neural remodeling after spinal cord injury (SCI). This study aimed to investigate the mechanisms of miR-135a-5p in regulating the functional recovery of SCI by impacting its target genes and downstream signaling. The gene transfection assay and luciferase reporter assay confirmed the target relationship between miR-135a-5p and its target genes (specificity protein 1 [SP1] and Rho-associated kinase [ROCK]1/2). By establishing the H2O2-induced injury model, miR-135a-5p transfection was found to inhibit the apoptosis of PC12 cells by downregulating the SP1 gene, which subsequently induced downregulation of pro-apoptotic proteins (Bax, cleaved caspase-3) and upregulation of anti-apoptotic protein Bcl-2. By measuring the neurite lengths of PC12 cells, miR-135a-5p transfection was found to promote axon outgrowth by downregulating the ROCK1/2 gene, which subsequently caused upregulation of phosphate protein kinase B (AKT) and phosphate glycogen synthase kinase 3β (GSK3β). Use of the rat SCI models showed that miR-135a-5p could increase the Basso, Beattie, and Bresnahan (BBB) scores, indicating neurological function recovery. In conclusion, the miR-135a-5p-SP1-Bax/Bcl-2/caspase-3 and miR-135a-5p-ROCK-AKT/GSK3β axes are involved in functional recovery of SCI by regulating neural apoptosis and axon regeneration, respectively, and thus can be promising effective therapeutic strategies in SCI.
Collapse
Affiliation(s)
- Nanxiang Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Yang Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Cong Du
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Yuyong Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Simin Li
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstrasse 12, 04103 Leipzig, Germany
| | - Zhenming Tian
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Feng Feng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Yang Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhenxiang Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
24
|
Zeng W, Jin J. The correlation of serum long non-coding RNA ANRIL with risk factors, functional outcome, and prognosis in atrial fibrillation patients with ischemic stroke. J Clin Lab Anal 2020; 34:e23352. [PMID: 32358844 PMCID: PMC7439435 DOI: 10.1002/jcla.23352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the predictive value of long non-coding RNA (lncRNA) antisense non-coding RNA in the INK4 locus (ANRIL) for atrial fibrillation (AF) patients with ischemic stroke and investigate its correlation with risk factors, functional outcome, and prognosis. METHODS A total of 386 consecutive AF patients were recruited. AF patients were followed up for 24-48 months by outpatient follow-up, telephone follow-up, and medical record. The time of ischemic stroke in patients with AF was recorded, and follow-up was continued for 6 months. LncRNA ANRIL expression from serum was detected by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Compared with the AF with ischemic stroke group (14.3 ± 2.3), patients in the AF without ischemic stroke group (11.9 ± 1.8) had significantly lower serum lncRNA ANRIL levels (P < .05). The sensitivity and specificity of lncRNA ANRIL for identifying AF with ischemic stroke were 76.6% and 81.4%, respectively. Spearman correlation analysis results shown that lncRNA ANRIL was significantly correlated with the NIHSS score (rSpearman = .490, P < .001) and the mRS score (rSpearman = .466, P < .001). Compared with the lncRNA ANRIL high-expression group, the recurrence-free survival (RFS) of the lncRNA ANRIL low-expression group was significantly higher (χ2 = 11.009, log-rank P < .001). Cox proportional regression model analysis indicated that the serum lncRNA ANRIL level (P = .004), NIHSS score (P = .001), infarct volume (P = .035), and smoking (P < .001) were the risk factors for AF with ischemic stroke. CONCLUSION Serum lncRNA ANRIL exerts a good predictive value for AF with ischemic stroke, and its increased expression is correlated with worse RFS for patients.
Collapse
Affiliation(s)
- Weixian Zeng
- Department of Intensive Care UnitShenzhen Hospital of Southern Medical UniversityShenzhenChina
| | - Jun Jin
- Adult Intensive Care UnitThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| |
Collapse
|
25
|
Ma Z, Lu Y, Yang F, Li S, He X, Gao Y, Zhang G, Ren E, Wang Y, Kang X. Rosmarinic acid exerts a neuroprotective effect on spinal cord injury by suppressing oxidative stress and inflammation via modulating the Nrf2/HO-1 and TLR4/NF-κB pathways. Toxicol Appl Pharmacol 2020; 397:115014. [PMID: 32320792 DOI: 10.1016/j.taap.2020.115014] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023]
Abstract
Spinal cord injury (SCI) is a severe central nervous system injury for which few efficacious drugs are available. Rosmarinic acid (RA), a water-soluble polyphenolic phytochemical, has antioxidant, anti-inflammatory, and anti-apoptotic properties. However, the effect of RA on SCI is unclear. We investigated the therapeutic effect and underlying mechanism of RA on SCI. Using a rat model of SCI, we showed that RA improved locomotor recovery after SCI and significantly mitigated neurological deficit, increased neuronal preservation, and reduced apoptosis. Also, RA inhibited activation of microglia and the release of TNF-α, IL-6, and IL-1β and MDA. Moreover, proteomics analyses identified the Nrf2 and NF-κB pathways as targets of RA. Pretreatment with RA increased levels of Nrf2 and HO-1 and reduced those of TLR4 and MyD88 as well as phosphorylation of IκB and subsequent nuclear translocation of NF-κB-p65. Using H2O2- and LPS-induced PC12 cells, we found that RA ameliorated the H2O2-induced decrease in viability and increase in apoptosis and oxidative injury by activating the Nrf2/HO-1 pathway. Also, LPS-induced cytotoxicity and increased apoptosis and inflammatory injury in PC-12 cells were mitigated by RA by inhibiting the TLR4/NF-κB pathway. The Nrf2 inhibitor ML385 weakened the effect of RA on oxidant stress, inflammation and apoptosis in SCI rats, and significantly increased the nuclear translocation of NF-κB. Therefore, the neuroprotective effect on SCI of RA may be due to its antioxidant and anti-inflammatory properties, which are mediated by modulation of the Nrf2/HO-1 and TLR4/NF-κB pathways. Moreover, RA activated Nrf2/HO-1, which amplified its inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Fengguang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Shaoping Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Xuegang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yicheng Gao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Guangzhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Enhui Ren
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yonggang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Gansu 730000, China.
| | - Xuewen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Gansu 730000, China.
| |
Collapse
|
26
|
Chen Z, Liu W, Qin Z, Liang X, Tian G. Geniposide exhibits anticancer activity to medulloblastoma cells by downregulating microRNA-373. J Biochem Mol Toxicol 2020; 34:e22471. [PMID: 32057176 DOI: 10.1002/jbt.22471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/30/2019] [Accepted: 01/31/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Medulloblastoma is a common tumor originates from central nervous system in children with metastatic potential. Geniposide is the major active ingredient separated from the fruit of Gardenia jasminoides Ellis. Herein, we tested the possible anticancer activity of geniposide on human medulloblastoma cells, as well as the potential underlying molecular mechanisms. METHODS Firstly, followed by geniposide incubation, cell viability, proliferation, apoptosis, migration, and invasion of medulloblastoma Daoy cells, along with microRNA-373 (miR-373) expression were tested, respectively. Then, the influences of miR-373 overexpression in the reduction of medulloblastoma cell proliferation, migration, and invasion and the elevation of apoptosis, triggered by geniposide treatment, were re-investigated. Finally, the Ras/Raf/MEK/ERK pathway activity was analyzed. RESULTS Geniposide treatment inhibited medulloblastoma cell viability, proliferation, migration, and invasion, but promoted cell apoptosis. Surprisingly, miR-373 expression in medulloblastoma cells was obviously downregulated by geniposide treatment. miR-373 overexpression reversed the effects of geniposide on Daoy cells. Furthermore, geniposide hindered the Ras/Raf/MEK/ERK pathway by downregulating miR-373 expression. CONCLUSION Geniposide exhibited anticancer activity on human medulloblastoma cells and blocked Ras/Raf/MEK/ERK pathway by downregulating miR-373 expression.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Weiming Liu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhigang Qin
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoting Liang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Gengren Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
27
|
Ye S, Zhu S, Feng L. LncRNA ANRIL/miR-125a axis exhibits potential as a biomarker for disease exacerbation, severity, and inflammation in bronchial asthma. J Clin Lab Anal 2019; 34:e23092. [PMID: 31821602 PMCID: PMC7083478 DOI: 10.1002/jcla.23092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/18/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to explore the correlation of lncRNA ANRIL/miR‐125a axis with disease risk, severity, and inflammatory cytokines of bronchial asthma. Methods Plasma samples from 90 patients with bronchial asthma at exacerbation (BA‐E), 90 with bronchial asthma at remission (BA‐R), and 90 controls (healthy subjects) were collected. The qPCR was used for lncRNA ANRIL and miR‐125a detection, and ELISA was adopted for pro‐inflammatory cytokines detection. Participants’ characteristics, laboratory tests, and the pulmonary ventilation function examinations were recorded. Results LncRNA ANRIL was negatively correlated with miR‐125a in BA‐E patients, BA‐R patients, and controls. LncRNA ANRIL/miR‐125a axis was upregulated in BA‐E patients compared with BA‐R patients and controls. ROC curve analyses illuminated that lncRNA ANRIL/miR‐125a axis was of good value in distinguishing BA‐E patients from BA‐R patients and controls. As to pulmonary ventilation functions, lncRNA ANRIL/miR‐125a axis was negatively associated with FEV1/FVC and FEV1%predicted in bronchial asthma patients, especially in BA‐E patients. Regarding inflammation, lncRNA ANRIL/miR‐125a axis was positively correlated with pro‐inflammatory cytokines in bronchial asthma patients, especially in BA‐E patients. In addition, lncRNA ANRIL/miR‐125a axis was positively correlated with exacerbation severity in BA‐E patients. Conclusion LncRNA ANRIL/miR‐125a is potentially indicative of disease exacerbation, exacerbation severity, and inflammation for bronchial asthma, while these findings are preliminary and need further confirmation.
Collapse
Affiliation(s)
- Shenglan Ye
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Zhu
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijuan Feng
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Liu B, Cao W, Xue J. LncRNA ANRIL protects against oxygen and glucose deprivation (OGD)-induced injury in PC-12 cells: potential role in ischaemic stroke. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1384-1395. [PMID: 31174432 DOI: 10.1080/21691401.2019.1596944] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
lncRNA ANRIL was reported to be closely related to ischaemic stroke (IS). In this study, we used oxygen-glucose deprivation (OGD) to stimulate rat adrenal medulla-derived pheochromocytoma cell line PC-12 to construct an in vitro IS cell model and investigated the role of ANRIL and the underlying mechanism. PC-12 cells were stimulated by OGD and/or transfected with pc-ANRIL, si-ANRIL, miR-127 mimic, miR-127 inhibitor, pEX-Mcl-1, sh-Mcl-1 and their negative controls. Cell viability, apoptosis, mRNA and protein expression was detected using CCK-8 assay, flow cytometry assay, qRT-PCR and western blot, respectively. Results showed that OGD-induced PC-12 cell injury and decreased ANRIL expression. ANRIL overexpression significantly reduced OGD-induced PC-12 cell injury evidenced by increasing cell viability and decreasing apoptosis, while ANRIL silence led to the opposite results. Meanwhile, dysregulation of ANRIL altered the expression of apoptotic proteins. Furthermore, ANRIL negatively regulated miR-127 expression. miR-127 overexpression significantly enhanced OGD-induced PC-12 cell injury. In addition, Mcl-1 expression was negatively regulated by miR-127, besides ANRIL up-regulated Mcl-1 expression by down-regulation of miR-127. Mcl-1 overexpression alleviated cell injury and miR-127 silence up-regulated Mcl-1 expression. In conclusion, lncRNA ANRIL alleviated OGD-induced PC-12 cell injury as evidenced. PI3K/AKT pathway might be involved in this regulating progression.
Collapse
Affiliation(s)
- Bin Liu
- a Department of Neurosurgery, Jining No.1 People's Hospital , Jining , China
| | - Wei Cao
- a Department of Neurosurgery, Jining No.1 People's Hospital , Jining , China
| | - Jian Xue
- a Department of Neurosurgery, Jining No.1 People's Hospital , Jining , China
| |
Collapse
|
29
|
Lv L, Li D, Tian F, Li X, Jing Zhang, Yu X. Silence of lncRNA GAS5 alleviates high glucose toxicity to human renal tubular epithelial HK-2 cells through regulation of miR-27a. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2205-2212. [PMID: 31159592 DOI: 10.1080/21691401.2019.1616552] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Renal tubular damage caused by persistent high glucose environment has been found to contribute to diabetic nephropathy. This study explored the effects of lncRNA growth arrest-specific 5 (GAS5) on high glucose-stimulated human renal tubular epithelial HK-2 damage, as well as the possible internal molecular mechanism. Viability and apoptosis of HK-2 cells were assessed with the help of CCK-8 assay and Annexin V-FITC/PI staining, respectively. Cell transfection was used to change the expression of GAS5, miR-27a and BNIP3. We found that high glucose stimulation suppressed HK-2 cell viability but induced cell apoptosis. The expression of GAS5 was increased in HK-2 cells under high glucose environment. Silence of GAS5 mitigated the high glucose-caused HK-2 cell viability reduction and apoptosis. Overexpression of miR-27a reversed the effects of GAS5 on high glucose-stimulated HK-2 cells. Overexpression of BNIP3 aggravated the high glucose-caused HK-2 cell viability reduction, apoptosis and activation of JNK pathway. Knockdown of BNIP3 had opposite effects. In conclusion, this research further confirmed the pro-apoptotic roles of GAS5 in renal tubular epithelial cells under high glucose environment. Silence of GAS5 alleviated high glucose toxicity to human renal tubular epithelial HK-2 cells might be via down-regulating miR-27a and BNIP3, and then inactivating JNK pathway. Highlights HG suppresses HK-2 cell viability, but promotes cell apoptosis; HG enhances the expression of GAS5 in HK-2 cells; Silence of GAS5 alleviates the HG-caused HK-2 cell toxicity; miR-27a participates in the effects of GAS5 silencing on HG-stimulated HK-2 cells; BNIP3 is regulated by miR-27a and related to the HG toxicity to HK-2 cells.
Collapse
Affiliation(s)
- Lina Lv
- a Department of Nephrology, Jining No.1 People's Hospital , Jining , China.,b Affiliated Jining No.1 People's Hospital of Jining Medical University , Jining , China
| | - Dandan Li
- c Department of Endocrinology, Jining No.1 People's Hospital , Jining , China
| | - Fengqun Tian
- d Department of Nephrology, Jiaxiang County Medicine Hospital , Jiaxiang , China
| | - Xia Li
- a Department of Nephrology, Jining No.1 People's Hospital , Jining , China
| | - Jing Zhang
- c Department of Endocrinology, Jining No.1 People's Hospital , Jining , China
| | - Xiulian Yu
- a Department of Nephrology, Jining No.1 People's Hospital , Jining , China
| |
Collapse
|
30
|
Li B, Zhao Y, Song M, Cui H, Feng X, Yang T, Fan HG. Role of c-Myc/chloride intracellular channel 4 pathway in lipopolysaccharide-induced neurodegenerative diseases. Toxicology 2019; 429:152312. [PMID: 31693917 DOI: 10.1016/j.tox.2019.152312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/21/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Abstract
LPS-induced neuronal apoptosis leads to neurodegenerative diseases (NDs). However, the mechanisms underlying NDs pathogenesis remains unclear. The apoptotic response to activation of the c-Myc/chloride intracellular channel (CLIC4) pathway is directed through a mitochondrial pathway. In this study, we aimed to explore the c-Myc/CLIC4 pathway in the progression of NDs induced by lipopolysaccharide (LPS). In an in vivo experiment, the results of HE staining, transmission electron microscopic, immunofluorescence microscopy of cleaved caspase-3 and Bax and the increasing expression of apoptotic pathway related proteins in mitochondria showed that LPS (10 mg/kg) administration damaged mitochondrial and induced hippocampal neuron apoptosis. The Western blot and RT-PCR indicated that LPS induced the activation of c-Myc/CLIC4 pathway. Furthermore, in an in vitro experiment, PC12 cells were exposed to LPS to induce cell injuries to mimic the model of NDs. To further confirm the role of the c-Myc/CLIC4 pathway in LPS-induced neuronal apoptosis, the gene knockout of c-Myc and CLIC4 were performed by CRISPR/Cas9. The results of the flow cytometry assay and Annexin V-FITC/PI showed that knocking out c-Myc and CLIC4 significantly reduced cell apoptosis. The results of Western blot and dual immunofluorescence with Cyt c and TOM20 showed that knocking out c-Myc and CLIC4 significantly reduced the expression of mitochondrial apoptosis-related proteins. Our data confirmed that LPS-induced apoptosis is regulated by the activation of c-Myc/CLIC4 pathway. These results support further research mechanisms underlying neurodegenerative diseases and can provide effective pharmacodynamic targets for the clinical development of therapeutic drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Bei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Yuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - ManYu Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - HaiLin Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - XiuJing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - TianYuan Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Hong-Gang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
31
|
The Emerging Role of lncRNAs in Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3467121. [PMID: 31737660 PMCID: PMC6815541 DOI: 10.1155/2019/3467121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a highly debilitating disease and is increasingly being recognized as an important global health priority. However, the mechanisms underlying SCI have not yet been fully elucidated, and effective therapies for SCI are lacking. Long noncoding RNAs (lncRNAs), which form a major class of noncoding RNAs, have emerged as novel targets for regulating several physiological functions and mediating numerous neurological diseases. Notably, gene expression profile analyses have demonstrated aberrant changes in lncRNA expression in rats or mice after traumatic or nontraumatic SCI. LncRNAs have been shown to be associated with multiple pathophysiological processes following SCI including inflammation, neural apoptosis, and oxidative stress. They also play a crucial role in the complications associated with SCI, such as neuropathic pain. At the same time, some lncRNAs have been found to be therapeutic targets for neural stem cell transplantation and hydrogen sulfide treatment aimed at alleviating SCI. Therefore, lncRNAs could be promising biomarkers for the diagnosis, treatment, and prognosis of SCI. However, further researches are required to clarify the therapeutic effects of lncRNAs on SCI and the mechanisms underlying these effects. In this study, we reviewed the current progress of the studies on the involvement of lncRNAs in SCI, with the aim of drawing attention towards their roles in this debilitating condition.
Collapse
|
32
|
Liu N, Fan M. Protective functions of salvianolic acid B in PC-12 cells against hydrogen peroxide-triggered damage by mediation of microRNA-26a. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4030-4037. [PMID: 31603005 DOI: 10.1080/21691401.2019.1673766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Niansheng Liu
- Department of Traumatology, North Medical District of Linyi People’s Hospital, Linyi, PR China
| | - Mingfu Fan
- Department of Spinal Surgery, North Medical District of Linyi People’s Hospital, Linyi, PR China
| |
Collapse
|
33
|
Li C, Zhai W, Wan L, Li J, Huang A, Xing S, Fan K. MicroRNA-125a attenuates the chemoresistance against ubenimex in non-small cell lung carcinoma via targeting the aminopeptidase N signaling pathway. J Cell Biochem 2019; 121:1716-1727. [PMID: 31595566 DOI: 10.1002/jcb.29407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/15/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Since several long noncoding RNAs (lncRNAs) have been implicated in the development of chemoresistance in non-small cell lung carcinoma (NSCLC), the aim of this study was to investigate whether antisense noncoding RNA in the INK4 locus (ANRIL) was associated with the chemoresistance of NSCLC. METHOD Real-time polymerase chain reaction was performed to identify potential lncRNAs involved in the chemoresistance of NSCLC, while in-silicon analyses and luciferase assays were carried out to explore the regulatory relationship among ANRIL, miR-125a, and aminopeptidase N (APN). RESULTS Ubenimex resistant cells were associated with a high expression of ANRIL, which directly binds to miR-125a. MiR-125a directly targeted APN expression. In addition, miR-125a and ANRIL small interfering RNA inhibited the expression of APN but promoted the expression of beclin-1 and LC3, whereas ANRIL, by competing with miR-125a, promoted cell proliferation and inhibited cell apoptosis. CONCLUSION The data of this study suggested that, by targeting ANRIL and the APN signaling pathway, miR-125a inhibited the proliferation of NSCLC cells and promoted their apoptosis, thus attenuating the chemoresistance of NSCLC against Ubenimex.
Collapse
Affiliation(s)
- Chaoyi Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhai
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingsong Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijie Xing
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Fan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Qi D, Wang M, Zhang D, Li H. Tanshinone IIA protects lens epithelial cells from H 2 O 2 -induced injury by upregulation of lncRNA ANRIL. J Cell Physiol 2019; 234:15420-15428. [PMID: 30701534 DOI: 10.1002/jcp.28189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Tanshinone IIA is a lipophilic diterpene extracted from the Salvia miltiorrhiza bunge, possessing antiapoptotic and antioxidant activities. The purpose of this study was to explore the effects of Tanshinone IIA on age-related nuclear cataract. Human lens epithelial cell line SRA01/04 was subjected to H 2 O 2 to mimic a cell model of cataract. Cell Counting Kit-8 assay, flow cytometer, and reactive oxygen species (ROS) detection were performed to evaluate the effect of Tanshinone IIA pretreatment on SRA01/04 cells injured by H 2 O 2 . Besides, the real-time quantitative polymerase chain reaction was used to assess the expression of long noncoding RNA (lncRNA) antisense noncoding RNA in the INK4 locus (ANRIL). Western blot analysis was performed to detect the expression of core proteins involved in cell survival and nuclear factor-κB (NF-κB) pathway. H 2 O 2 significantly decreased SRA01/04 cells viability, whereas increased apoptosis and ROS generation. This phenomenon was coupled with the upregulated p53, p21, Bax, cleaved caspase-3, and the downregulated cyclinD1, CDK4, and Bcl-2. Tanshinone IIA pretreatment protected SRA01/04 cells against H 2 O 2 -induced injury. In the meantime, the expression of lncRNA ANRIL was upregulated by Tanshinone IIA. And, the protective effects of Tanshinone IIA on H 2 O 2 -stimulated SRA01/04 cells were abolished when lncRNA ANRIL was silenced. Moreover, the elevated expression of lncRNA ANRIL induced by Tanshinone IIA was abolished by BAY 11-7082 (an inhibitor of NF-κB). To conclude, Tanshinone IIA protects SRA01/04 cells from apoptosis triggered by H 2 O 2 . Tanshinone IIA confers its protective effects possibly via modulation of NF-κB signaling and thereby elevating the expression of lncRNA ANRIL.
Collapse
Affiliation(s)
- Defeng Qi
- Department of Ophthalmology, Linyi Central Hospital, Linyi, China
| | - Mingming Wang
- Department of Ophthalmology, Chengyang People's Hospital, Qingdao, China
| | - Duzhen Zhang
- Department of Ophthalmology, Linyi Central Hospital, Linyi, China
| | - Haihui Li
- Department of Ophthalmology, Yan'an People's Hospital, Yan'an, China
| |
Collapse
|
35
|
Li X, Ma A, Liu K. Geniposide alleviates lipopolysaccharide-caused apoptosis of murine kidney podocytes by activating Ras/Raf/MEK/ERK-mediated cell autophagy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1524-1532. [PMID: 30982359 DOI: 10.1080/21691401.2019.1601630] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteinuria is one of the most important clinical features of nephrotic syndrome (NS). Injury of podocyte has been proved to contribute to the occurrence of proteinuria. This study explored the effects of geniposide (GEN) on lipopolysaccharide (LPS)-caused murine kidney podocyte MPC5 apoptosis and autophagy. Viability and apoptosis of MPC5 cells were respectively detected with the help of CCK-8 assay and Guava Nexin assay. 3-Methyladenine (3-MA) was used as an autophagy inhibitor, while rapamycin as autophagy activator. Si-Beclin-1 was transfected in MPC5 cells to down-regulate the expression of Beclin-1. We found that LPS stimulation significantly caused MPC5 cell viability reduction, apoptosis and autophagy (P < .05 or P < .01). GEN treatment remarkably alleviated the LPS-caused MPC5 cell viability reduction and apoptosis, but promoted cell autophagy (P < .05). Moreover, 3-MA incubation or si-Beclin-1 transfection notably weakened the effects of GEN on LPS-caused MPC5 cell apoptosis and autophagy (P < .05), while rapamycin had opposite effects (P < .05). Furthermore, GEN activated Ras/Raf/MEK/ERK pathway in LPS-treated MPC5 cells (P < .05). In conclusion, this research verified the protective effects of GEN on podocytes damage. GEN alleviates LPS-caused apoptosis of murine kidney podocytes by activating Ras/Raf/MEK/ERK-mediated cell autophagy. Highlights: LPS causes podocyte MPC5 apoptosis and autophagy. GEN alleviates LPS-caused MPC5 cell apoptosis, but promotes cell autophagy. 3-MA or si-Beclin-1 weakens the effects of GEN on LPS-treated MPC5 cells. Rapamycin strengthens the effects of GEN on LPS-treated MPC5 cells. GEN activates Ras/Raf/MEK/ERK pathway in LPS-treated MPC5 cells.
Collapse
Affiliation(s)
- Xia Li
- a Department of Nephrology , Jining No.1 People's Hospital , Jining , China.,b Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University , Jining , China
| | - Aijing Ma
- c Department of Nephrology , The Ninth People's Hospital of Chongqing , Chongqing , China
| | - Kun Liu
- a Department of Nephrology , Jining No.1 People's Hospital , Jining , China
| |
Collapse
|
36
|
Zuo A, Zhao P, Zheng Y, Hua H, Wang X. Tripterine inhibits proliferation, migration and invasion of breast cancer MDA-MB-231 cells by up-regulating microRNA-15a. Biol Chem 2019; 400:1069-1078. [PMID: 30913029 DOI: 10.1515/hsz-2018-0469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/19/2019] [Indexed: 01/17/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer in women worldwide. Tripterine is an important active component isolated from Triperygium wilfordii Hook F. This study investigated the effects of tripterine on breast cancer cell proliferation, migration, invasion and apoptosis, as well as microRNA-15a (miR-15a) expression. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to measure the expression of miR-15a. Cell transfection was conducted to change the expression of miR-15a. Viability, proliferation, migration, invasion and apoptosis of MDA-MB-231 cells were assessed using the cell counting kit-8 (CCK-8) assay, BrdU incorporation assay, Annexin V-FITC/PI apoptosis detection kit and two-chamber Transwell assay, respectively. Expression of key factors involving in cell proliferation, migration, invasion and apoptosis, as well as the PI3K/AKT and JNK pathways, were evaluated using Western blotting. We found that tripterine inhibited MDA-MB-231 cell viability, proliferation, migration and invasion, but induced cell apoptosis. Moreover, tripterine up-regulated the expression of miR-15a in a concentration-dependent manner and miR-15a participated in the effects of tripterine on MDA-MB-231 cell proliferation, migration, invasion and apoptosis. In addition, tripterine inactivated PI3K/AKT and JNK pathways in MDA-MB-231 cells by up-regulating miR-15a. In conclusion, tripterine inhibited proliferation, migration and invasion of breast cancer MDA-MB-231 cells by up-regulating miR-15a and inactivating PI3K/AKT and JNK pathways.
Collapse
Affiliation(s)
- Anjun Zuo
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Peng Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yu Zheng
- Department of General Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hui Hua
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xingang Wang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266000, China
| |
Collapse
|
37
|
Shu L, Zhang W, Huang C, Huang G, Su G, Xu J. lncRNA ANRIL protects H9c2 cells against hypoxia-induced injury through targeting the miR-7-5p/SIRT1 axis. J Cell Physiol 2019; 235:1175-1183. [PMID: 31264206 DOI: 10.1002/jcp.29031] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Acute myocardial infarction (AMI) occurred in the heart, which underwent long-term ischemia, and was mainly caused by hypoxia. Recently, studies have uncovered the participation of long noncoding RNAs (lncRNAs) in the pathogenesis of heart disease. Here, we planned to probe the role and molecular basis of ANRIL in hypoxia-induced H9c2 cell injury. METHODS Trypan blue exclusion assay and Transwell and flow cytometry assays were conducted to assess hypoxia-induced injury by determining the viability, migration, invasion, and apoptosis of H9c2 cells in different conditions, respectively. Gene expressions were evaluated by quantitative real-time polymerase chain reaction or western blot analysis as needed. RNA immunoprecipitation and luciferase reporter assays were applied to confirm the associations among genes. RESULTS ANRIL expression was dramatically enhanced in hypoxia-injured H9c2 cells, and silencing ANRIL aggravated hypoxia-induced H9c2 cell injury. ANRIL positively regulated sirtuin 1 (SIRT1) expression via competitively binding with miR-7-5p. Moreover, inhibition of miR-7-5p counteracted ANRIL depletion-exacerbated injury in hypoxic H9c2 cells, meanwhile, forced SIRT1 expression attenuated the injury-promoting effect of miR-7-5p upregulation on hypoxic H9c2 cells. CONCLUSION Our findings disclosed that ANRIL plays a protective part in hypoxia-induced H9c2 cell injury via modulating the miR-7-5p/SIRT1 axis, suggesting the great potential of ANRIL as a protective target for AMI.
Collapse
Affiliation(s)
- Liliang Shu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wanzhe Zhang
- Department of Nephrology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gongcheng Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Su
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Zhang Z, Li H, Liu M, He J, Zhang X, Chen Y. Skullcapflavone I protects cardiomyocytes from hypoxia-caused injury through up-regulation of lincRNA-ROR. Int J Immunopathol Pharmacol 2019; 33:2058738419857537. [PMID: 31220954 PMCID: PMC6589964 DOI: 10.1177/2058738419857537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Myocardial infarction (MI) is a serious heart disease in which cardiomyocytes are damaged, caused by hypoxia. This study explored the possible protective activity of Skullcapflavone I (SF I), a flavonoid isolated from the root of Scutellaria baicalensis Georgi, on hypoxia-stimulated cardiomyocytes cell injury in vitro. Viability and apoptosis of H9c2 cells and primary cardiomyocytes were tested using cell counting kit–8 (CCK-8) assay and Guava Nexin Reagent, respectively. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to measure the long non-coding RNA regulator of reprogramming (lincRNA-ROR) expression. si-ROR was transfected to knockdown lincRNA-ROR. Western blotting was conducted to assess the protein levels of key molecules related to cell proliferation, apoptosis, and mitogen-activated protein kinase/extracellular signal–regulated kinase (MEK/ERK) pathway. We discovered that hypoxia stimulation obviously reduced H9c2 cell and primary cardiomyocytes’ viability and proliferation, but promoted cell apoptosis. SF I treatment mitigated the cell viability and proliferation inhibition, as well as cell apoptosis caused by hypoxia. Moreover, SF I promoted the hypoxia-caused up-regulation of lincRNA-ROR in H9c2 cells and primary cardiomyocytes. Knockdown of lincRNA-ROR reversed the influence of SF I on hypoxia-stimulated H9c2 cells and primary cardiomyocytes. Besides, SF I activated MEK/ERK pathway in H9c2 cells and primary cardiomyocytes via up-regulating lincRNA-ROR. To sum up, our research verified the beneficial activity of SF I on hypoxia-caused cardiomyocytes injury. SF I protected cardiomyocytes from hypoxia-caused injury through up-regulation of lincRNA-ROR and activation of MEK/ERK pathway.
Collapse
Affiliation(s)
- Zhenxiao Zhang
- 1 Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Li
- 1 Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingyang Liu
- 1 Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianshuai He
- 2 Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotian Zhang
- 2 Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuehua Chen
- 3 Department of Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Gui F, Peng H, Liu Y. Elevated circulating lnc-ANRIL/miR-125a axis level predicts higher risk, more severe disease condition, and worse prognosis of sepsis. J Clin Lab Anal 2019; 33:e22917. [PMID: 31115097 DOI: 10.1002/jcla.22917] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 12/24/2022] Open
Abstract
AIM This study aimed to investigate the correlation of lnc-ANRIL/miR-125a axis with risk, severity, inflammation, and prognosis of sepsis. METHODS A hundred and twenty-six sepsis patients and 125 healthy controls were recruited, and then, blood samples were collected, and plasma was separated for lnc-ANRIL, miR-125a, lnc-ANRIL/miR-125a axis, and inflammatory cytokine level detections. In addition, basic characteristics, 28-day mortality, and accumulating survival of sepsis patients were recorded. RESULTS Plasma lnc-ANRIL expression was increased, miR-125a expression was decreased, and lnc-ANRIL/miR-125a axis level was elevated in sepsis patients compared with healthy controls, and all of them had good value for predicting sepsis risk with AUCs of 0.800, 0.817, and 0.843, respectively. Lnc-ANRIL and lnc-ANRIL/miR-125a axis were positively correlated with biochemical index levels including CRP and PCT levels, disease severity scale scores, and pro-inflammatory cytokine levels in sepsis patients, while miR-125a displayed the opposite trend. Lnc-ANRIL and lnc-ANRIL/miR-125a axis expressions were elevated, while miR-125a expression was declined in deaths compared with survivors, and all of them predicted 28-day mortality in sepsis patients with AUCs of 0.765, 0.745, and 0.785, respectively. Subsequently, the Kaplan-Meier analysis revealed that patients with high lnc-ANRIL, low miR-125a, and high lnc-ANRIL/miR-125a axis levels presented with worse accumulating survival. In addition, multivariate regression model analyses revealed that high plasma lnc-ANRIL/miR-125a axis was an independent predictive factor for both increased 28-day mortality and worse accumulating survival. CONCLUSION Circulating lnc-ANRIL/miR-125a axis was upregulated and could serve as a biomarker for severity, inflammation, and prognosis in sepsis patients.
Collapse
Affiliation(s)
- Feng Gui
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Peng
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijue Liu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Xie R, Liu M, Li S. Emodin weakens liver inflammatory injury triggered by lipopolysaccharide through elevating microRNA-145 in vitro and in vivo. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1877-1887. [PMID: 31079494 DOI: 10.1080/21691401.2019.1614015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- RuiJin Xie
- Department of Gastroenterology, Jining No.1 People’s Hospital, Jining, China
| | - Mei Liu
- Department of Gastroenterology, Jining No.1 People’s Hospital, Jining, China
| | - ShuJie Li
- Department of Rheumatology and Immunology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
41
|
Rui QH, Ma JB, Liao YF, Dai JH, Cai ZY. Effect of lncRNA HULC knockdown on rat secreting pituitary adenoma GH3 cells. ACTA ACUST UNITED AC 2019; 52:e7728. [PMID: 30994730 PMCID: PMC6472935 DOI: 10.1590/1414-431x20197728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Pituitary adenoma is one of the most common tumors in the neuroendocrine system. This study investigated the effects of long non-coding RNAs (lncRNAs) highly up-regulated in liver cancer (HULC) on rat secreting pituitary adenoma GH3 cell viability, migration, invasion, apoptosis, and hormone secretion, as well as the underlying potential mechanisms. Cell transfection and qRT-PCR were used to change and measure the expression levels of HULC, miR-130b, and FOXM1. Cell viability, migration, invasion, and apoptosis were assessed using trypan blue staining assay, MTT assay, two-chamber transwell assay, Guava Nexin assay, and western blotting. The concentrations of prolactin (PRL) and growth hormone (GH) in culture supernatant of GH3 cells were assessed using ELISA. The targeting relationship between miR-130b and FOXM1 was verified using dual luciferase activity. Finally, the expression levels of key factors involved in PI3K/AKT/mTOR and JAK1/STAT3 pathways were evaluated using western blotting. We found that HULC was highly expressed in GH3 cells. Overexpression of HULC promoted GH3 cell viability, migration, invasion, PRL and GH secretion, as well as activated PI3K/AKT/mTOR and JAK1/STAT3 pathways. Knockdown of HULC had opposite effects and induced cell apoptosis. HULC negatively regulated the expression of miR-130b, and miR-130b participated in the effects of HULC on GH3 cells. FOXM1 was a target gene of miR-130b, which was involved in the regulation of GH3 cell viability, migration, invasion, and apoptosis, as well as PI3K/AKT/mTOR and JAK1/STAT3 pathways. In conclusion, HULC tumor-promoting roles in secreting pituitary adenoma might be via down-regulating miR-130b, up-regulating FOXM1, and activating PI3K/AKT/mTOR and JAK1/STAT3 pathways.
Collapse
Affiliation(s)
- Qiu Hong Rui
- Department of Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, Zhejiang, China
| | - Jian Bo Ma
- Department of Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, Zhejiang, China
| | - Yu Feng Liao
- Department of Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, Zhejiang, China
| | - Jin Hua Dai
- Department of Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, Zhejiang, China
| | - Zhen Yu Cai
- Department of Pain Clinic, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Xiamen, Fujian, China
| |
Collapse
|
42
|
Liu H, Chen B, Zhu Q. RETRACTED ARTICLE: Long non-coding RNA SNHG16 reduces hydrogen peroxide-induced cell injury in PC-12 cells by up-regulating microRNA-423-5p. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1444-1451. [PMID: 30977409 DOI: 10.1080/21691401.2019.1600530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haochuan Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bing Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qingsan Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Chen F, Li M, Zhu X. RETRACTED: Propofol suppresses proliferation and migration of papillary thyroid cancer cells by down-regulation of lncRNA ANRIL. Exp Mol Pathol 2019; 107:68-76. [PMID: 30703346 DOI: 10.1016/j.yexmp.2019.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/13/2018] [Accepted: 01/26/2019] [Indexed: 12/18/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief as there are concerns about the reliability of the results included in the article. The journal was initially contacted by the corresponding author to request the retraction of the article. Given the comments of Dr Elisabeth Bik https://scienceintegritydigest.com/2020/02/21/the-tadpole-paper-mill/ regarding this article, the journal requested the author to provide the raw data. However, the author was not able to fulfil this request.
Collapse
Affiliation(s)
- Fumei Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Mengyuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xiaoping Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
44
|
Tan P, Guo YH, Zhan JK, Long LM, Xu ML, Ye L, Ma XY, Cui XJ, Wang HQ. LncRNA-ANRIL inhibits cell senescence of vascular smooth muscle cells by regulating miR-181a/Sirt1. Biochem Cell Biol 2019; 97:571-580. [PMID: 30789795 DOI: 10.1139/bcb-2018-0126] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cardiovascular disease is one of the major threats to human life and health, and vascular aging is an important cause of its occurrence. Antisense non-coding RNA in the INK4 locus (ANRIL) is a kind of long non-coding RNA (lncRNA) that plays important roles in cell senescence. However, the role and mechanism of ANRIL in senescence of vascular smooth muscle cells (VSMCs) are unclear. METHODS Cell viability and cell cycle were evaluated using an MTT assay and flow cytometry analysis, respectively. Senescence-associated (SA)-β-galactosidase (gal) staining was used to determine cell senescence. Dual luciferase reporter assays were conducted to confirm the binding of ANRIL and miR-181a, as well as miR-181a and Sirt1. The expression of ANRIL, miR-181a, and Sirt1 was determined using qRT-PCR and protein levels of SA-β-gal and p53-p21 pathway-related proteins were evaluated by Western blotting. RESULTS ANRIL and Sirt1 were down-regulated, whereas miR-181a was up-regulated in aging VSMCs. In young and aging VSMCs, over-expression of ANRIL could down-regulate miR-181a and up-regulate Sirt1. MTT and SA-β-gal staining assays showed that over-expression of ANRIL and inhibition of miR-181a promoted cell viability and inhibited VSMC senescence. The dual-luciferase reporter assay determined that miR-181a directly targets ANRIL and the 3'-UTR of Sirt1. Furthermore, over-expression of ANRIL inhibited cell cycle arrest and the p53-p21 pathway. CONCLUSION ANRIL promotes cell viability and inhibits senescence in VSMCs, possibly by regulating miR-181a/Sirt1, and alleviating cell cycle arrest by inhibiting the p53-p21 pathway. This study provides novel insights for the role of ANRIL in the development of cell senescence.
Collapse
Affiliation(s)
- Pan Tan
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Yong-Hong Guo
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Jun-Kun Zhan
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Li-Min Long
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Mei-Li Xu
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Ling Ye
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Xin-Yu Ma
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Xing-Jun Cui
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Hai-Qin Wang
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| |
Collapse
|
45
|
Hu X, Wu X, Zhao B, Wang Y. Scutellarin protects human retinal pigment epithelial cells against hydrogen peroxide (H 2O 2)-induced oxidative damage. Cell Biosci 2019; 9:12. [PMID: 30680088 PMCID: PMC6341765 DOI: 10.1186/s13578-019-0276-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background Proliferative vitreoretinopathy (PVR) is a severe blinding complication of retinal detachment surgery. Increasing evidence demonstrate that PVR is associated with oxidative stress. Scutellarin is a natural flavone compound that has been reported to have anti-oxidative activity. However, the effect of scutellarin on PVR remains unknown. In the current study, we assessed the effect of scutellarin on hydrogen peroxide (H2O2)-induced oxidative injury in human retinal pigment epithelium cells (ARPE-19). Methods ARPE-19 cells were pretreated with different concentrations of scutellarin for 2 h, and then challenged with H2O2 (1 mM) for 24 h. The levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) and glutathione (GSH) activity were measured to assess the level of oxidative stress. Flow cytometry was performed to detect the apoptosis rate of ARPE-19 cells. Expression levels of bcl-2, bax, cleaved-caspase-3, p-JAK2, JAK2, p-STAT3, and STAT3 were measured using western blot. Results Our results revealed that scutellarin improved the cell viability of H2O2-induced ARPE-19 cells. Scutellarin alleviated the H2O2-induced oxidative stress in ARPE-19 cells, which was illustrated by reduced levels of ROS and MDA, accompanied by increased SOD activity and GSH level. The increased apoptosis rate of ARPE-19 cells caused by H2O2 induction was significantly decreased after scutellarin treatment. H2O2 treatment resulted in significant increase in bax expression and decrease in bcl-2 expression, while the changes in the expressions of bax and bcl-2 were reversed by scutellarin treatment. In addition, scutellarin promoted the activation of JAK2/STAT3 signaling pathway in H2O2-induced ARPE-19 cells. Suppression of JAK2/STAT3 signaling pathway abolished the protective effects of scutellarin on H2O2-induced ARPE-19 cells. Conclusion These findings suggested that scutellarin was capable for alleviating H2O2-induced oxidative damage in ARPE-19 cells, which might be ascribed to the activation of JAK2/STAT3 signaling pathway. Electronic supplementary material The online version of this article (10.1186/s13578-019-0276-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Hu
- Department of Ophthalmology, Huaihe Hospital, Henan University, No.8 of Baobei Road, Kaifeng, 475000 People's Republic of China
| | - Xiaofang Wu
- Department of Ophthalmology, Huaihe Hospital, Henan University, No.8 of Baobei Road, Kaifeng, 475000 People's Republic of China
| | - Bo Zhao
- Department of Ophthalmology, Huaihe Hospital, Henan University, No.8 of Baobei Road, Kaifeng, 475000 People's Republic of China
| | - Yongyi Wang
- Department of Ophthalmology, Huaihe Hospital, Henan University, No.8 of Baobei Road, Kaifeng, 475000 People's Republic of China
| |
Collapse
|
46
|
Russo A, Potenza N. Antiproliferative Activity of microRNA-125a and its Molecular Targets. Microrna 2018; 8:173-179. [PMID: 30394225 DOI: 10.2174/2211536608666181105114739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND MicroRNA-125a is present in all animals with bilateral symmetry and displays a conserved nucleotide sequence with a section of 11 bases including the seed region that is identical in all considered species. It primarily downregulates the expression of LIN28, thereby promoting cell differentiation and larval phase transitions in nematodes, mammals and insects. OBJECTIVE In this review, we focus on the cellular control of miR-125a expression and its antiproliferative activity. RESULTS In mammalians, microRNA-125a is present in most adult organs and tissues in which it targets proteins involved in the mitogenic response, such as membrane receptors, intracellular signal transducers, or transcription factors, with the overall effect of inhibiting cell proliferation. Tissue levels of miR-125a generally raise during differentiation but it is often downregulated in cancers, e.g. colon, cervical, gastric, ovarian, lung, and breast cancers, osteosarcoma, neuroblastoma, glioblastoma, medulloblastoma, retinoblastoma and hepatocellular carcinoma. CONCLUSION The antiproliferative activity of miR-125a, demonstrated in many cell types, together with the notion that this miRNA is downregulated in several kinds of cancers, give a substantial support to the concept that miR-125a plays an oncosuppressive role.
Collapse
Affiliation(s)
- Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
47
|
Chen B, Li Y, He Y, Xue C, Xu F. The emerging roles of long non-coding RNA in gallbladder cancer tumorigenesis. Cancer Biomark 2018; 22:359-366. [PMID: 29758925 DOI: 10.3233/cbm-170979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Accumulating evidence suggests that long non-coding RNAs (lncRNAs) have important regulatory functions in gallbladder cancer (GBC) tumorigenesis and can serve as potential novel markers and/or targets for GBC. In this review, we critically discuss the emerging alteration of lncRNAs in GBC, the lncRNAs induced epigenetic regulation, the interaction of lncRNAs with microRNAs and lncRNAs effects on tumor-related signaling pathways. Additionally, contributions of lncRNAs in epithelial-mesenchymal transition process and energy metabolism reprogramming in GBC are also addressed. This may pave new ways towards the determination of GBC pathogenesis and lead to the development of new preventive and therapeutic strategies for GBC.
Collapse
Affiliation(s)
- Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yuting He
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
48
|
Kong Y, Hsieh CH, Alonso LC. ANRIL: A lncRNA at the CDKN2A/B Locus With Roles in Cancer and Metabolic Disease. Front Endocrinol (Lausanne) 2018; 9:405. [PMID: 30087655 PMCID: PMC6066557 DOI: 10.3389/fendo.2018.00405] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
The CDKN2A/B genomic locus is associated with risk of human cancers and metabolic disease. Although the locus contains several important protein-coding genes, studies suggest disease roles for a lesser-known antisense lncRNA encoded at this locus, called ANRIL. ANRIL is a complex gene containing at least 21 exons in simians, with many reported linear and circular isoforms. Like other genes, abundance of ANRIL is regulated by epigenetics, classic transcription regulation, splicing, and post-transcriptional influences such as RNA stability and microRNAs. Known molecular functions of ANRIL include in cis and in trans gene regulation through chromatin modification complexes, and influence over microRNA signaling networks. Polymorphisms at the ANRIL gene are linked to risk for many different cancers, as well as risk of atherosclerotic cardiovascular disease, bone mass, obesity and type 2 diabetes. A broad array of variable reported impacts of polymorphisms on ANRIL abundance, splicing and function suggests that ANRIL has cell-type and context-dependent regulation and actions. In cancer cells, ANRIL gain of function increases proliferation, metastasis, cell survival and epithelial-mesenchymal transformation, whereas ANRIL loss of function decreases tumor size and growth, invasion and metastasis, and increases apoptosis and senescence. In metabolic disease, polymorphisms at the ANRIL gene are linked to risk of type 2 diabetes, coronary artery disease, coronary artery calcium score, myocardial infarction, and stroke. Intriguingly, with the exception of one polymorphism in exon 2 of ANRIL, the single nucleotide polymorphisms (SNPs) associated with atherosclerosis and diabetes are non-overlapping. Evidence suggests that ANRIL gain of function increases atherosclerosis; in diabetes, a risk-SNP reduced the pancreatic beta cell proliferation index. Studies are limited by the uncertain relevance of rodent models to ANRIL studies, since most ANRIL exons do not exist in mouse. Diverse cell-type-dependent results suggest it is necessary to perform studies in the relevant primary human tissue for each disease. Much remains to be learned about the biology of ANRIL in human health and disease; this research area may lead to insight into disease mechanisms and therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Laura C. Alonso
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
49
|
ALUminating the Path of Atherosclerosis Progression: Chaos Theory Suggests a Role for Alu Repeats in the Development of Atherosclerotic Vascular Disease. Int J Mol Sci 2018; 19:ijms19061734. [PMID: 29895733 PMCID: PMC6032270 DOI: 10.3390/ijms19061734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (ATH) and coronary artery disease (CAD) are chronic inflammatory diseases with an important genetic background; they derive from the cumulative effect of multiple common risk alleles, most of which are located in genomic noncoding regions. These complex diseases behave as nonlinear dynamical systems that show a high dependence on their initial conditions; thus, long-term predictions of disease progression are unreliable. One likely possibility is that the nonlinear nature of ATH could be dependent on nonlinear correlations in the structure of the human genome. In this review, we show how chaos theory analysis has highlighted genomic regions that have shared specific structural constraints, which could have a role in ATH progression. These regions were shown to be enriched with repetitive sequences of the Alu family, genomic parasites that have colonized the human genome, which show a particular secondary structure and are involved in the regulation of gene expression. Here, we show the impact of Alu elements on the mechanisms that regulate gene expression, especially highlighting the molecular mechanisms via which the Alu elements alter the inflammatory response. We devote special attention to their relationship with the long noncoding RNA (lncRNA); antisense noncoding RNA in the INK4 locus (ANRIL), a risk factor for ATH; their role as microRNA (miRNA) sponges; and their ability to interfere with the regulatory circuitry of the (nuclear factor kappa B) NF-κB response. We aim to characterize ATH as a nonlinear dynamic system, in which small initial alterations in the expression of a number of repetitive elements are somehow amplified to reach phenotypic significance.
Collapse
|
50
|
Zhao J, Zhang C, Gao Z, Wu H, Gu R, Jiang R. Long non-coding RNA ASBEL promotes osteosarcoma cell proliferation, migration, and invasion by regulating microRNA-21. J Cell Biochem 2018; 119:6461-6469. [PMID: 29323740 DOI: 10.1002/jcb.26671] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
Osteosarcoma is the most common malignant bone tumor in children and adolescents with high rate of incidence, high frequency of recurrence, and high degree of metastasis. This study aimed to investigate the effects of long noncoding RNA antisense ncRNA in the abundant in neuroepithelium area (ANA)/B-cell translocation gene 3 (BTG3) locus (lncRNA ASBEL) on the pathogenesis of osteosarcoma. The expression levels of ASBEL in human osteoblast cells and human osteosarcoma cells were evaluated using qRT-PCR. Effects of ASBEL knockdown on cell viability, migration, and invasion were detected using trypan blue exclusion assay, cell migration, and cell invasion assay, respectively. The regulatory effects of ASBEL on microRNA-21 (miR-21) were analyzed using qRT-PCR. The roles of miR-21 and protein phosphatase 2A (PP2A), the possible downstream factor of miR-21, in osteosarcoma cell proliferation, migration, and invasion were also explored. The results showed that ASBEL was highly expressed in osteosarcoma cells. Knockdown of ASBEL inhibited osteosarcoma cell viability, migration, and invasion, as well as the expression level of miR-21. PP2A was a direct target of miR-21, which participated in the effects of ASBEL and miR-21 on the activation of phosphatidylinositol 3-kinase/protein kinase 3/glycogen synthase kinase-3β (PI3K/AKT/GSK3β) and mitogen-activated protein kinase/extracellular regulated protein kinase (MEK/ERK) signaling pathways as well as the enhancement of osteosarcoma cell proliferation, migration, and invasion. In conclusion, we verified that ASBEL-miR-21-PP2A pathway might play critical regulatory effects on the pathogenesis of osteosarcoma and could be as the potential therapeutic target and biomarker for osteosarcoma treatment.
Collapse
Affiliation(s)
- Jianhui Zhao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chao Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongli Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Han Wu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Gu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Jiang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|