1
|
Jori C, Ahmad A, Kumar A, Kumar B, Ali A, Ali N, Tabassum H, Khan R. Bioactive chitosan-BSA Maillard-derived chrysin-loaded nanoparticles: A gastroprotective, biomucoadhesive approach for enhanced oral therapy in ulcerative colitis. Carbohydr Polym 2025; 359:123537. [PMID: 40306769 DOI: 10.1016/j.carbpol.2025.123537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
The current limitations of oral nanomedicines such as aminosalicylates, immunosuppressants, corticosteroids, and antibiotics include the toxic byproducts from nanocarrier synthesis, poor targeting and retention within the inflamed colon, delayed release at inflammation sites, susceptibility to gastric degradation, reduced efficacy under hypoxic conditions, MUC2 homeostasis disruption, and insufficiently addressing the disease's root causes. This research presents an innovative approach of using non-toxic, biodegradable, and biocompatible Maillard reaction-based nanoparticles (MPs) for targeted oral drug delivery in IBD therapy. Through the development of mucoadhevise chitosan-bovine serum albumin Maillard nanoparticles shielded with biocompatible, non-toxic, non-immunogenic, gastroprotective pectin (P@CMPs) encapsulating with chrysin, a flavonoid with anti-inflammatory and hyperoxia properties whose bioavailability is negatively affected by gastric degradation. P@CMPs had a spherical, uniform 300 nm hydrodynamic diameter, confirmed by TEM and FESEM. Chrysin encapsulation efficiency and loading capacity were ∼96 % and 16 %, respectively, demonstrating effective nanoparticle formulation The P@CMPs is designed to withstand the gastrointestinal environment, ensuring targeted delivery and prolonged retention in inflamed colonic regions. In a dextran sodium sulfate-induced colitis mouse model, P@CMPs markedly mitigated inflammation, suppressed proinflammatory cytokine levels, and augmented the expression of MUC2, a crucial factor for maintaining the integrity of the gut barrier. By employing non-toxic, biocompatible and biodegradable materials, our P@CMPs approach offers a promising avenue for advancing IBD treatment, addressing various challenges and precise oral delivery within the gastrointestinal system.
Collapse
Affiliation(s)
- Chandrashekhar Jori
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge city, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge city, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Bhuvnesh Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge city, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Aneesh Ali
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge city, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Government of India, V. Ramalingaswamy Bhawan, New Delhi 110029, India.
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge city, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
2
|
Del Fabbro L, Bortolotto VC, Ferreira LM, Sari MHM, Furian AF. Chrysin's anti-inflammatory action in the central nervous system: A scoping review and an evidence-gap mapping of its mechanisms. Eur J Pharmacol 2025; 997:177602. [PMID: 40187596 DOI: 10.1016/j.ejphar.2025.177602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
Neuroinflammation is a key driver in the progression of neurodegenerative diseases and central nervous system (CNS) injuries. Chrysin, a natural flavonoid, has demonstrated significant neuroprotective effects due to its anti-inflammatory, antioxidant, and anti-apoptotic properties. This scoping review systematically analyzed 29 studies published between 2005 and 2023, identified through a search of PubMed, Scopus, and Web of Science databases (yielding 1919 initial records). Chrysin mitigates neuroinflammation by inhibiting NF-κB signaling, downregulating pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), and suppressing the expression of key inflammatory enzymes, including iNOS and COX-2. It also modulates critical signaling pathways, such as PI3K/Akt/mTOR and JNK, while enhancing antioxidant defenses through increased activity of enzymes like superoxide dismutase and glutathione peroxidase. Importantly, chrysin exhibits anti-apoptotic effects by regulating the expression of apoptotic markers, including the downregulation of Bax and caspase-3 and the upregulation of Bcl-2, thereby preventing neuronal cell death. These mechanisms have been validated in preclinical CNS inflammation models, including spinal cord injury, traumatic brain injury, ischemia/reperfusion injury, Parkinson's disease, and experimental autoimmune encephalomyelitis. Despite its promising therapeutic potential, limitations such as low bioavailability and the lack of comprehensive clinical studies warrant further investigation. Addressing these gaps could enhance chrysin's translational potential as a viable neuroprotective agent for managing neuroinflammatory and neurodegenerative conditions.
Collapse
Affiliation(s)
- Lucian Del Fabbro
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Vandreza Cardoso Bortolotto
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Itaqui, 97650-000, Rio Grande do Sul, Brazil
| | - Luana Mota Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, 80210-170, Paraná, Brazil
| | - Marcel Henrique Marcondes Sari
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, 80210-170, Paraná, Brazil; Departamento de Análises Clínicas, Universidade Federal do Paraná, Curitiba, 80210-170, Paraná, Brazil
| | - Ana Flávia Furian
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil; Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
Zhu C, Wu J, Chen Y, Ma T, Pan H, Zhai C, Tai Z, Chen Z, Zhu Q. The alleviating effect of Bai-Ju essence on atopic dermatitis through anti-inflammatory and skin barrier repair mechanisms. Mol Cell Biochem 2025:10.1007/s11010-025-05270-7. [PMID: 40394445 DOI: 10.1007/s11010-025-05270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/22/2025] [Indexed: 05/22/2025]
Abstract
Bai-Ju essence (BJE) is a bioactive formulation composed of medicinal plant extracts, utilized in skincare products for its therapeutic potential. Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by epidermal barrier dysfunction and immune dysregulation. This study aimed to evaluate BJE anti-inflammatory and skin-protective effects, and its potential mechanisms in treating AD. The ability of BJE to restore the epidermal barrier was assessed in HaCaT cells. In LPS-induced RAW264.7 cells, the anti-inflammatory potential of BJE was evaluated by measuring NO, IL-6, PGE2, and TNF-α. Western blot analysis was used to assess the regulation of the MAPK pathway. An in vivo AD-like mouse model was established using MC903, and measurements of body weight, ear thickness, and AD symptoms were recorded. Histological analysis quantified mast cell infiltration, while western blot determined FLG, LOR, and ELOVL6 expression. ELISA was used to measure TNF-α, IgE, IL-4, and IL-13 levels. Flow cytometry assessed the effect of BJE on Th cell phenotypes. BJE significantly enhanced skin barrier protein expression (CERS2, LOR, HAS-1, HAS-2, FLG) in HaCaT cells. It significantly reduced the levels of NO, IL-6, PGE2, and TNF-α in LPS-treated RAW264.7, demonstrating its anti-inflammatory potential. Mechanistically, BJE inhibited MAPK activation. BJE decreased ear thickness, improved skin lesions, and relieved AD symptoms in AD-like mice. In addition, BJE effectively suppressed mast cell infiltration and hyperkeratosis. BJE also decreased levels of TNF-α, IgE, IL-4, and IL-13 while increasing LOR, ELOVL6, and FLG expressions. Furthermore, BJE modulated Th1, Th2, and Th17 cell proportions. BJE promoted epidermal barrier repair in HaCaT, suppressed the LPS-induced inflammation in RAW264.7, enhanced the skin barrier integrity in AD-like mice, and exhibited immunomodulatory effects by restoring Th cell balance. These findings highlighted the therapeutic potential of BJE in AD through its dual action of anti-inflammation and skin barrier restoration.
Collapse
Affiliation(s)
- Congcong Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Ya Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Tianyou Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Huijun Pan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Chuntao Zhai
- Shanghai Zhina Biotechnology Technology Co.,Ltd, 666 Jinbi Road, Shanghai, 201404, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China.
| |
Collapse
|
4
|
Rębas E. Role of Flavonoids in Protecting Against Neurodegenerative Diseases-Possible Mechanisms of Action. Int J Mol Sci 2025; 26:4763. [PMID: 40429904 DOI: 10.3390/ijms26104763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/10/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Neurodegenerative and mood disorders represent growing medical and social problems, many of which are produced by oxidative stress, neuroinflammation, disruption in the metabolism of various neurotransmitters, and some disturbances in lipid/carbohydrate homeostasis. Biologically active plant compounds, including flavonoids, have been shown to exert a positive impact on central nervous system function. This review assesses the studies of naturally occurring flavonoids belonging to various polyphenol subclasses and their mechanisms of neuroprotective action, especially against neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Most of the studied phytochemicals possess anti-oxidative, anti-inflammatory, and neuroprotective properties. These phytochemicals have been considered as compounds that reduce the risk of developing Alzheimer's and Parkinson's diseases and can be used in the treatment of neurological diseases. The neuroprotective actions of some flavonoids may entail mechanisms that regulate reactive oxygen species generation and modify inflammatory pathways, and they should be considered as therapeutic agents.
Collapse
Affiliation(s)
- Elżbieta Rębas
- Department of Molecular Neurochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
5
|
Abdelmawgood IA, Mohamed AS, Mahana NA, Abdel Wahab AHA, Badr AM, Abdelkader AE. Chrysin-loaded PLGA nanoparticle attenuates ferroptosis in lipopolysaccharide-induced indirect acute lung injury by upregulating Nrf2-dependent antioxidant responses. Respir Physiol Neurobiol 2025; 336:104451. [PMID: 40379234 DOI: 10.1016/j.resp.2025.104451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/03/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Chrysin (CHR) is the principal active compound in honey, propolis and plants. Its pharmacological effects include anti-inflammatory, antiallergic, and antioxidant capabilities. However, its poor solubility and bioavailability constitute a limitation. In this study, Poly-lactic-co-glycolic acid (PLGA) was used as a nanocarrier to enhance the stability, bioavailability, and effectiveness of CHR to protect mice from indirect acute lung injury (ALI) caused by lipopolysaccharide (LPS). CHR-loaded PLGA nanoparticle (CHR-NP) was prepared and characterized using techniques such as FTIR, zeta potential analysis, DLS, in vitro drug release assessment, encapsulation efficiency measurement, and TEM. Prior to the intraperitoneal injection of LPS (10mg/kg), C57BL/6 mice were orally administered CHR (50mg/kg), PLGA (50mg/kg), CHR-NP (50mg/kg), and dexamethasone (Dexa) (5mg/kg) for a duration of six days. Following 24hours of LPS or normal saline (control) injection, the mice were anesthetized. CHR-NP increased catalase, glutathione, and glutathione peroxidase while decreasing malondialdehyde, myeloperoxidase, nitric oxide, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-12, and interferon (IFN)-γ. Moreover, treatment with CHR-NP augmented the gene and protein expression of the Keap1/Nrf2/ARE signaling pathway utilizing quantitative real-time PCR (RT-PCR), western blotting, and immunohistochemistry. Additionally, CHR-NP reduced histological alterations, pulmonary edema, damage, and iron deposition. Our findings indicate that CHR-NP significantly mitigated indirect ALI, primarily through the suppression of inflammation, oxidative stress, and ferroptosis via the activation of the Keap1/Nrf2/ARE signaling pathways.
Collapse
Affiliation(s)
| | - Ayman Saber Mohamed
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Noha A Mahana
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | | | - Abeer Mahmoud Badr
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | | |
Collapse
|
6
|
An J, Zhang Z, Jin A, Tan M, Jiang S, Li Y. Organic Functional Groups and Their Substitution Sites in Natural Flavonoids: A Review on Their Contributions to Antioxidant, Anti-Inflammatory, and Analgesic Capabilities. Food Sci Nutr 2025; 13:e70191. [PMID: 40313799 PMCID: PMC12041660 DOI: 10.1002/fsn3.70191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
Natural flavonoids are regularly consumed orally and are known to possess antioxidant, anti-inflammatory, and analgesic properties. Yet, there is limited understanding of the role of organic functional groups in imparting these properties. This review paper suggests that several organic functional groups, including the hydroxyl, methoxy, glycosyl, prenylated, and flavonoid groups, play crucial roles in determining the antioxidant, anti-inflammatory, and analgesic abilities of flavonoids. Of particular significance is the contribution of the prenylated group, which notably enhances the anti-inflammatory and analgesic abilities of flavonoids. Among isoflavones, the prenylated groups are primarily situated at C6. Despite their importance, prenylated flavonoids have not received sufficient attention from researchers. Another crucial class of organic functional groups is glycosyl groups, with C3 being a key substitution site among anthocyanins because monosaccharides are commonly found at this position. Conversely, the presence of trisaccharides or a combination of disaccharides and monosaccharides within flavonoids appears to impede their anti-inflammatory and analgesic properties. Additionally, the majority of biflavonoids, excluding polymerized flavanols, demonstrate either anti-inflammatory or analgesic abilities. C8 holds paramount importance among flavanols as the main substitution site for flavonoid substitution. Examination of the significance of substitution sites in flavanones, flavonols, flavones, and chalcones, which possess antioxidant, anti-inflammatory, and analgesic abilities, revealed the importance of total substitution with diverse organic functional groups. Insights from this review can provide the guiding light to the discovery of flavonoids with antioxidant, anti-inflammatory, and analgesic abilities in the future.
Collapse
Affiliation(s)
- Jingxian An
- Chemical and Materials EngineeringThe University of AucklandAucklandNew Zealand
| | - Zhipeng Zhang
- Jiangxi Copper Technology Institute Co., Ltd.NanchangChina
| | - Anwen Jin
- Heilongjiang Feihe Dairy Co., LtdBeijingChina
| | - Muqiu Tan
- Heilongjiang Feihe Dairy Co., LtdBeijingChina
| | | | - Yilin Li
- Heilongjiang Feihe Dairy Co., LtdBeijingChina
| |
Collapse
|
7
|
Chen R, Zheng S, Zhao X, Huang H, Xu Y, Qiu C, Li S, Liang X, Mao P, Yan Y, Lin Y, Song S, Cai W, Guan H, Yao Y, Zhu W, Shi X, Ganapathy V, Kou L. Metabolic reprogramming of macrophages by a nano-sized opsonization strategy to restore M1/M2 balance for osteoarthritis therapy. J Control Release 2025; 380:469-489. [PMID: 39921035 DOI: 10.1016/j.jconrel.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Osteoarthritis is a chronic and progressive joint disease accompanied by cartilage degeneration and synovial inflammation. It is associated with an imbalance of synovial macrophage M1/M2 ratio tilting more towards the pro-inflammatory M1 than the anti-inflammatory M2. The M1-macrophages rely on aerobic glycolysis for energy whereas the M2-macrophages derive energy from oxidative phosphorylation. Therefore, inhibiting aerobic glycolysis to induce metabolic reprogramming of macrophages and consequently promote the shift from M1 type to M2 type is a therapeutic strategy for osteoarthritis. Here we developed a macrophage-targeting strategy based on opsonization, using nanoparticles self-assembled to incorporate Chrysin (an anti-inflammatory flavonoid) and V-9302 (an inhibitor of glutamine uptake), and the outer layer modified by immunoglobulin IgG by electrostatic adsorption into IgG/Fe-CV NPs. In vitro studies showed that IgG/Fe-CV NPs effectively target M1 macrophages and inhibit HIF-1α and GLUT-1 essential for aerobic glycolysis and promote polarization from M1 to M2-type macrophages. In vivo, IgG/Fe-CV NPs inhibit inflammation and protect against cartilage damage. The metabolic reprogramming strategy with IgG/Fe-CV NPs to shift macrophage polarization from inflammatory to anti-inflammatory phenotype by inhibiting aerobic glycolysis and glutamine delivery may open up new avenues to treat osteoarthritis.
Collapse
Affiliation(s)
- Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shimin Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinyu Zhao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yitianhe Xu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chenyu Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shengjie Li
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xindan Liang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Pengfei Mao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yuqi Yan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yinhao Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shengnan Song
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenjing Cai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiong Guan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yinsha Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wanling Zhu
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
8
|
Chen W, Zhou W, Liu S. The key role of natural products in the fight against endometrial Cancer. Int Immunopharmacol 2025; 151:114344. [PMID: 40015208 DOI: 10.1016/j.intimp.2025.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Endometrial cancer (EC) is a common malignant disease in women, originating from the endometrial tissue. Over the past few decades, the global incidence rate of EC has gradually increased, and the affected population has become progressively younger. Traditional treatment methods, such as surgery and adjuvant therapy, have considerable toxic side effects. Furthermore, their therapeutic effectiveness is significantly very uncertain. Therefore, the search for a new type of treatment for EC is a top priority. Natural products are a class of compounds found in nature that have a wide range of biological functions; their derivatives have chemical structures that show great potential for developing new drugs. The latest studies have found that certain natural products, such as flavonoids, plant polyphenols, terpenoids and alkaloids, have inhibitory effects on EC cells in non-clinical models and animal studies. Despite challenges, including low extraction and bioavail ability, the potential of natural products for treating EC is still highly regarded by the scientific community. In the future, as research on natural products deepens and is combined with modern drug design and delivery technologies, it is hoped that more efficient and less toxic anti-cancer drugs will be developed, thereby offering EC patients more treatment options and hope. This article summarises the possible molecular mechanisms of various natural products and their bioactive components with regard to EC cells, as well as the latest research, to provide new ideas for further research and drug development.
Collapse
Affiliation(s)
- Wen Chen
- Tongde Hospital of Zhejiang Province Affiliated to Zhejiang Chinese Medical University (College of Integrated Traditional Chinese and Western Medicine Clinical Medicine), Hangzhou 310053, China
| | - Wencheng Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Songjun Liu
- Tongde Hospital of Zhejiang Province Affiliated to Zhejiang Chinese Medical University (College of Integrated Traditional Chinese and Western Medicine Clinical Medicine), Hangzhou 310053, China; Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| |
Collapse
|
9
|
Guerreiro G, Deon M, Becker GS, Dos Reis BG, Wajner M, Vargas CR. Neuroprotective effects of L-carnitine towards oxidative stress and inflammatory processes: a review of its importance as a therapeutic drug in some disorders. Metab Brain Dis 2025; 40:127. [PMID: 39954226 DOI: 10.1007/s11011-025-01545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025]
Abstract
L-carnitine (LC) is a natural compound crucial for transporting long-chain fatty acids into mitochondria for ATP production. It is found mainly in red meat, fish, and dairy products, in addition to being synthesized by the body. LC is supplemented in patients with organic acidemias since it corrects secondary carnitine deficiency and accelerates the removal of the accumulated acyl organic acid derivative groups. Recently, it was also shown to behave as an antioxidant and an anti-inflammatory agent in various pathological conditions like hypertension, diabetes, and neurodegenerative diseases. Inflammation is a complex response to tissue damage or infection associated with oxidative stress. LC has been implicated in reducing inflammatory cytokines and other biomarkers. Recent studies suggest that LC supplementation reduces inflammation in chronic kidney disease, cardiovascular disease, and neuroinflammation. LC supplementation has been effective in reducing inflammatory markers like C-reactive protein (CRP) and interleukins (IL-6, TNF-α) in various pathologies, including septic shock and polycystic ovary syndrome (PCOS). It has also been shown to reduce cardiovascular events in patients with end-stage renal disease. In experimental models, LC revealed neuroprotective effects, improving memory and reducing neuronal death. Additionally, in spinal cord ischemia-reperfusion injury and acute myocardial infarction, LC treatment diminished inflammation and oxidative stress while improving neurological and cardiac functions. In conclusion, LC supplementation demonstrates significant potential properties in reducing inflammation and improving health outcomes in various pathological conditions, making it a subject of increasing interest in medical research. This article aims to review the literature on the anti-inflammatory and antioxidant effects of LC in different pathologies.
Collapse
Affiliation(s)
- Gilian Guerreiro
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, RS, Brazil.
| | - Marion Deon
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Graziela Schmitt Becker
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Bianca Gomes Dos Reis
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, RS, Brazil.
| |
Collapse
|
10
|
Song X, Ji M, Shu X, Zou L. Drug delivery systems loaded with plant-derived natural products for dental caries prevention and treatment. J Mater Chem B 2025; 13:1920-1934. [PMID: 39791142 DOI: 10.1039/d4tb01924e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Dental caries, driven by dysbiosis in oral flora and acid accumulation, pose a significant threat to oral health. Traditional methods of managing dental biofilms using broad-spectrum antimicrobials and fluoride face limitations such as microbial resistance. Natural products, with their antimicrobial properties, present a promising solution for managing dental caries, yet their clinical application faces significant challenges, including low bioavailability, variable efficacy, and patient resistance due to sensory properties. Advanced drug delivery systems (DDSs) are emerging to address these limitations by enhancing the delivery and effectiveness of natural products. These systems, such as nanoparticles and micelles, aim to enhance drug solubility, stability, and targeted release, leading to increased therapeutic efficacy and decreased side effects. Furthermore, innovative approaches like pH-responsive nanoparticles offer controlled release triggered by the acidic environment of carious lesions. Despite these technological advancements, further validation is necessary for the clinical application of these DDSs.
Collapse
Affiliation(s)
- Xiaowen Song
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mengzhen Ji
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xingyue Shu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
11
|
Eker A, Eraslan G. Single and combined effect of chrysin and N-acetylcysteine against deltamethrin exposure in rats. Food Chem Toxicol 2025; 196:115191. [PMID: 39662870 DOI: 10.1016/j.fct.2024.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Effects of chrysin and N-acetylcysteine on deltamethrin exposure in rats were investigated. Eighty male Wistar Albino rats, weighing between 150 and 200 g and aged 2-3 months, were used and evenly allocated into eight groups. The control group of rats received a corn oil vehicle. Chrysin (50 mg/kg.bw), N-acetylcysteine (50 mg/kg.bw), a combination of chrysin and N-acetylcysteine, deltamethrin (10 mg/kg.bw), deltamethrin combined with chrysin, deltamethrin combined with N-acetylcysteine, and a combination of deltamethrin, chrysin, and N-acetylcysteine were administered via oral gavage for a duration of 21 days. Tissue (liver, kidney, brain, testis, heart, lung) and blood of oxidative stress markers (MDA, NO, GSH, SOD, CAT, GSH-Px, GR, GST, G6PD), hepatic caspase 3, 9 and p53 protein levels, biochemical parameters (glucose, triglyceride, cholesterol, BUN, creatinine, uric acid, total protein, albumin, LDH, AST, ALT, ALP, PChE activities/levels), as well as rat body/organ weights and plasma/liver deltamethrin concentrations. The administration of chrysin and N-acetylcysteine independently did not alter the assessed parameters. Significant differences were observed in most parameters assessed in the deltamethrin-alone group compared to the control group, whereas the parameter values in the groups treated with chrysin, NAC, or their combination with deltamethrin were similar to those of the control.
Collapse
Affiliation(s)
- Ahmet Eker
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Science, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
12
|
Jaworska D, Kłósek M, Bronikowska J, Krawczyk-Łebek A, Perz M, Kostrzewa-Susłow E, Czuba ZP. Methyl Derivatives of Flavone as Potential Anti-Inflammatory Compounds. Int J Mol Sci 2025; 26:729. [PMID: 39859444 PMCID: PMC11765865 DOI: 10.3390/ijms26020729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Flavones are natural compounds that are broadly distributed in our diet. Their unique properties provide the possibility to control the immune system and the process of inflammation. A high intake of flavonoids, including flavones, may offer protection against reactive oxygen species, inflammation, and chronic diseases. In this research, we evaluated the anti-inflammatory effect of five methylflavones, 2'-methylflavone (5C), 3'-methylflavone (6C), 4'-methylflavone (7C), 6-methylflavone (8C), and 6-methyl-8-nitroflavone (12C), in lipopolysaccharide (LPS) stimulated RAW 264.7 cells (murine macrophage cell line). We estimated the nitrite concentration and detected reactive oxygen species using the chemiluminescence method. Moreover, we measured the production of pro-inflammatory cytokines using the Bio-Plex Magnetic Luminex Assay. As a result of our findings, we have established that some of the methyl derivatives of flavone inhibit nitric oxide (NO) production and chemiluminescence generated by LPS-stimulated macrophages, but they also have an influence on pro-inflammatory cytokines production. This study showed that 2'-methylflavone (5C) and 3'-methylflavone (6C) possess the strongest anti-inflammatory activity among all tested derivatives of flavone. In conclusion, our study demonstrated that methylflavones may be potentially valuable compounds for the alleviation of inflammatory reactions.
Collapse
Affiliation(s)
- Dagmara Jaworska
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland; (M.K.); (J.B.); (Z.P.C.)
| | - Małgorzata Kłósek
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland; (M.K.); (J.B.); (Z.P.C.)
| | - Joanna Bronikowska
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland; (M.K.); (J.B.); (Z.P.C.)
| | - Agnieszka Krawczyk-Łebek
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.K.-Ł.); (M.P.); (E.K.-S.)
| | - Martyna Perz
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.K.-Ł.); (M.P.); (E.K.-S.)
- Department of Biophysics and Neurobiology, Faculty of Medicine, Wrocław Medical University, Chałubińskiego 3A, 50-368 Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.K.-Ł.); (M.P.); (E.K.-S.)
| | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland; (M.K.); (J.B.); (Z.P.C.)
| |
Collapse
|
13
|
Muangsanguan A, Ruksiriwanich W, Arjin C, Jamjod S, Prom-u-Thai C, Jantrawut P, Rachtanapun P, Hnorkaew P, Satsook A, Sainakham M, Castagnini JM, Sringarm K. Comparison of In Vitro Hair Growth Promotion and Anti-Hair Loss Potential of Thai Rice By-Product from Oryza sativa L. cv. Buebang 3 CMU and Sanpatong. PLANTS (BASEL, SWITZERLAND) 2024; 13:3079. [PMID: 39519997 PMCID: PMC11548315 DOI: 10.3390/plants13213079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The bioactive compounds in herbal extracts may provide effective hair loss treatments with fewer side effects compared to synthetic medicines. This study evaluated the effects of Buebang 3 CMU and Sanpatong rice bran extracts, macerated with dichloromethane or 95% ethanol, on hair growth promotion and hair loss prevention. Overall, Buebang 3 CMU extracts contained significantly higher levels of bioactive compounds, including γ-oryzanol, tocopherols, and various polyphenols such as phytic acid, ferulic acid, and chlorogenic acid, compared to Sanpatong extracts. Additionally, ethanolic extracts demonstrated greater bioactive content and antioxidant activities than those extracted with dichloromethane. These compounds enhanced the proliferation of human hair follicle dermal papilla cells (HFDPCs) by 124.28 ± 1.08% (p < 0.05) and modulated anti-inflammatory pathways by reducing nitrite production to 3.20 ± 0.36 µM (p < 0.05). Key hair growth signaling pathways, including Wnt/β-catenin (CTNNB1), Sonic Hedgehog (SHH, SMO, GLI1), and vascular endothelial growth factor (VEGF), were activated by approximately 1.5-fold to 2.5-fold compared to minoxidil. Also, in both human prostate cancer (DU-145) and HFDPC cells, the ethanolic Buebang 3 CMU extract (Et-BB3-CMU) suppressed SRD5A1, SRD5A2, and SRD5A3 expression-key pathways in hair loss-by 2-fold and 1.5-fold more than minoxidil and finasteride, respectively. These findings suggest that Et-BB3-CMU holds promise for promoting hair growth and preventing hair loss.
Collapse
Affiliation(s)
- Anurak Muangsanguan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.J.); (M.S.)
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.J.); (M.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sansanee Jamjod
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (C.P.-u.-T.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanakan Prom-u-Thai
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (C.P.-u.-T.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.J.); (M.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Patipan Hnorkaew
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.H.); (A.S.)
| | - Apinya Satsook
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.H.); (A.S.)
| | - Mathukorn Sainakham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.J.); (M.S.)
| | - Juan Manuel Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| | - Korawan Sringarm
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
14
|
Gang G, Gao R, Zhao H, Xu Y, Xing Y, Jin X, Hong L, Yan S, Shi B. Effects of water extracts of Artemisia annua L. on rumen immune and antioxidative indexes, fermentation parameters and microbials diversity in lambs. Front Microbiol 2024; 15:1485882. [PMID: 39493850 PMCID: PMC11528157 DOI: 10.3389/fmicb.2024.1485882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
The present study investigated the effects of water extracts of Artemisia annua L. (WEAA) on rumen immune and antioxidative indexes, fermentation parameters and microbial diversity in lambs. A total of 32 3-month-old Dorper × Han female lambs having comparable body weights (24±0.09 kg) were selected and were randomly assigned to four treatments, with eight repetitions for each treatment. The basal diet, consisting of 45% concentrate and 55% forage, was solely provided to the control group. For the other treatment groups, the basal diet was supplemented with WEAA at dosages of 500, 1000, and 1500 mg/kg diet, respectively. Rumen tissue samples were collected for the analysis of immune and antioxidative parameters, as well as related gene expression. Rumen fluid samples were collected to assess rumen fermentation parameters on days 30 and 60 and to evaluate the microbiota on day 60. Results showed that WEAA supplementation linearly or quadratically increased the content of sIgA, IL-4, IL-2 and the gene expression level of MyD88, IκB-α, IL-4, COX-2, iNOS in rumen tissue (p < 0.05), as well as the bacteria negatively associated with IL-6 (g_ [Eubacterium] _cellulosolvens_group). Furthermore, the addition of WEAA linearly or quadratically increased rumen T-SOD, GSH-Px (p < 0.05) and the gene expression level of Nrf2, SOD2, GSH-Px, HO-1 (p < 0.05), and decreased the rumen concentration of malondialdehyde (MDA) and gene expression level of Keap1 (p < 0.05), as well as the bacteria positively associated with T-AOC, T-SOD and GSH-Px (g_Lachnospiraceae_NK3A20_group, g_Saccharofermentans, g__Marvinbryantia, g_unclassified_f_Eggerthellaceae). The supplementation of WEAA caused the concentration of microprotein (MCP), total volatile fatty acids (TVFA), propionate to increase either linearly or quadratically, while reducing the concentration of NH3-N and the acetate/propionate ratio (A:P) in rumen fluid (p < 0.05). The addition of WEAA linearly or quadratically increased the abundance of Actinobacteriota, Cyanobacteria and Lachnospiraceae_NK3A20_group (p < 0.10), and g__Lachnospiraceae_NK3A20_group, g_Saccharofermentans, g_Marvinbryantia, g_Bifidobacterium were significantly abundant as specific microflora in the 1000 mg/kg WEAA supplementation group. In conclusion, dietary inclusion of 1000 mg/kg WEAA improved the rumen immune function, antioxidant status, rumen fermentation, and composition of rumen microbes in lambs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
15
|
Ávila-Román J, Quevedo-Tinoco L, Oliveros-Ortiz AJ, García-Gil S, Rodríguez-García G, Motilva V, Gómez-Hurtado MA, Talero E. Synthesis and Bioevaluation of New Stable Derivatives of Chrysin-8- C-Glucoside That Modulate the Antioxidant Keap1/Nrf2/HO-1 Pathway in Human Macrophages. Pharmaceuticals (Basel) 2024; 17:1388. [PMID: 39459027 PMCID: PMC11510274 DOI: 10.3390/ph17101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The beneficial effects of the flavonoid chrysin can be reduced by its poor oral bioavailability. It has been shown that chrysin-8-C-glucoside (1) has a better absorption capability. The aim of this study was to evaluate the antioxidant and anti-inflammatory activity of this glucoside, as well as the respective hexa-acetate derivative 1a and the hexa-ethyl carbonate derivative 1b since the inclusion of moieties in bioactive molecules may increase or modify their biological effects. Methods: THP-1 macrophages were used to determine the viability in the presence of chrysin derivatives, and non-cytotoxic concentrations were selected. Subsequently, lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) production and inflammatory mediators were examined. The involvement of chrysin derivatives with the Keap1 and Nrf2 antioxidant system was determined by docking and Western blotting studies. Results: Our data demonstrated, for the first time, that pretreatment with the three compounds caused a significant reduction in LPS-induced reactive oxygen species (ROS) production and pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 1β (IL-1β) levels, as well as in cyclooxygenase 2 (COX-2) expression. The mechanisms underlying these protective effects were related, at least in part, to the competitive molecular interactions of these phenolic compounds with Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2), which would allow the dissociation of Nrf2 and its translocation into the nucleus and the subsequent up-regulation of hemo-oxygenase 1 (HO-1) expression. Conclusions: Compared to the 8-C-glucoside parent chrysin, compound 1a exhibited the strongest antioxidant and anti-inflammatory activity. We hypothesized that the incorporation of an acetate group (1a) may reduce its polarity and, thus, increase membrane permeability, leading to better pharmacological activity. These findings support the potential use of these phenolic compounds as Nrf2 activators against oxidative-stress-related inflammatory diseases.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| | - Lirenny Quevedo-Tinoco
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Michoacan 58030, Mexico; (L.Q.-T.); (A.J.O.-O.); (G.R.-G.); (M.A.G.-H.)
| | - Antonio J. Oliveros-Ortiz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Michoacan 58030, Mexico; (L.Q.-T.); (A.J.O.-O.); (G.R.-G.); (M.A.G.-H.)
| | - Sara García-Gil
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| | - Gabriela Rodríguez-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Michoacan 58030, Mexico; (L.Q.-T.); (A.J.O.-O.); (G.R.-G.); (M.A.G.-H.)
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| | - Mario A. Gómez-Hurtado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Michoacan 58030, Mexico; (L.Q.-T.); (A.J.O.-O.); (G.R.-G.); (M.A.G.-H.)
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| |
Collapse
|
16
|
Zhang H, Zhang M, Zheng X, Xu X, Zheng J, Hu Y, Mei Y, Liu Y, Liang Y. Solid-State Fermentation of Wheat Bran with Clostridium butyricum: Impact on Microstructure, Nutrient Release, Antioxidant Capacity, and Alleviation of Ulcerative Colitis in Mice. Antioxidants (Basel) 2024; 13:1259. [PMID: 39456512 PMCID: PMC11504992 DOI: 10.3390/antiox13101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigated the effects of solid-state fermentation with Clostridium butyricum on the microstructure of wheat bran, the release of dietary fiber and phenolic compounds, and antioxidant capacity. Compared with unfermented wheat bran, insoluble dietary fiber and phytic acid content decreased, whereas soluble dietary fiber and water-extractable arabinoxylan content increased in C. butyricum culture. Because of the increased release of phenolic compounds, such as ferulic acid and apigenin, and organic acids, such as isobutyric acid, the antioxidant capacity of the culture was considerably improved. Furthermore, the culture of C. butyricum treated with dextran sulfate sodium-induced ulcerative colitis in mice enhanced the expression of intestinal mucus and tight-junction proteins, modulating the gut microbiota structure, increasing the levels of short-chain fatty acids in the intestine, and restoring the essential functions of the gut microbiota. These anti-inflammatory effects stemmed from the combined action of various effective components.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
| | - Min Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
| | - Xin Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
| | - Xiaofang Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
| | - Jiawen Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
| | - Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China;
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
| | - Yangyang Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
| |
Collapse
|
17
|
Durmus E, Ozman Z, Ceyran IH, Pasin O, Kocyigit A. Chrysin Enhances Anti-Cancer Activity of Jurkat T Cell and NK-92 Cells Against Human Breast Cancer Cell Lines. Chem Biodivers 2024; 21:e202400806. [PMID: 38990829 DOI: 10.1002/cbdv.202400806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Chrysin, a naturally occurring flavonoid in plant and bee products, demonstrates notable biological activities, including anti-cancer effects. These properties are partially attributed to its capability to activate immune cells. This study focused on exploring the immunomodulatory potential of chrysin on NK-92 and Jurkat-T cells targeting breast cancer cells (BCC). Chrysin leads to activation of NK-92 and T cells facilitated by the addition of human recombinant IL-2 and PHA-M. The anti-cancer efficacy of chrysin on these immune cells was evaluated in a co-culture setup with EGF-stimulated MCF-7 and MDA-MB-231 cells. Findings revealed that chrysin notably increased the cytotoxicity of NK-92 and T cells towards MCF-7 and MDA-MB-231 cells, with the most significant impact observed on MCF-7 cells (20 %). The activation of NK-92 cells, marked by increased IFN-γ production and CD56 expression, correlated with enhanced secretion of cytokines. Additionally, the activation of these cells against BCC was linked with elevated levels of granzyme-B, TNF-α, and nitric oxide (NO). Similarly, the cytotoxic activation of Jurkat-T cells against BCC was characterized by increased production of granzyme-B, IL-2, and IFN-γ. Consequently, these results support the hypothesis that chrysin significantly contributes to the activation and functional enhancement of NK-92 and T-cells against two distinct BCC lines.
Collapse
Affiliation(s)
- Ezgi Durmus
- Department of Medical Biochemistry, Institute of Health Sciences, Bezmialem Vakif University, 34093, Istanbul, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Zeynep Ozman
- Department of Medical Biochemistry, Institute of Health Sciences, Bezmialem Vakif University, 34093, Istanbul, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Ibrahim Halil Ceyran
- Department of Molecular Biology and Genetics, Faculty of Science, Yildiz Technical University, Istanbul, Turkey
| | - Ozge Pasin
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
- Traditional and Complementary Medicine Advanced Research Applications and Research Center, Bezmialem Vakif University, 34093, Istanbul, Turkey
| |
Collapse
|
18
|
Arfeen M, Srivastava A, Srivastava N, Khan RA, Almahmoud SA, Mohammed HA. Design, classification, and adverse effects of NSAIDs: A review on recent advancements. Bioorg Med Chem 2024; 112:117899. [PMID: 39217686 DOI: 10.1016/j.bmc.2024.117899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Inflammation is a hallmark of many diseases, including cancer, neurodegenerative diseases like Alzheimer's, type II diabetes, rheumatoid arthritis, and asthma. Nonsteroidal anti-inflammatory drugs (NSAIDs) have been a cornerstone in the management of various inflammatory, pain, and fever-related conditions. As a result, NSAIDs have found their applications in new therapeutic areas. NSAIDs are known to act by inhibiting the cyclooxygenase (COX) pathway. In recent years, new strategies have been proposed to counter inflammation and develop safer COX inhibitors. This review discusses the design of new COX inhibitors, the derivatization of conventional NSAIDs, and their biological applications. The review also presents an integrated classification of NSAIDs incorporating both traditional chemical-based and function-based approaches, including a brief overview of the NSAIDs of natural origins. Additionally, the review addresses adverse effects associated with different NSAIDs, including effects associated with cardiovascular, renal, and hepatic complications emphasizing the need for the development of new and safer COX inhibitors.
Collapse
Affiliation(s)
- Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Ashish Srivastava
- PSIT-Pranveer Singh Institute of Technology, (Pharmacy), Kanpur, UP 209305, India.
| | - Noopur Srivastava
- Six Sigma Institute of Technology and Science, Rudrapur, Uttarkhand 263153, India.
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
| |
Collapse
|
19
|
Cai J, Tan X, Hu Q, Pan H, Zhao M, Guo C, Zeng J, Ma X, Zhao Y. Flavonoids and Gastric Cancer Therapy: From Signaling Pathway to Therapeutic Significance. Drug Des Devel Ther 2024; 18:3233-3253. [PMID: 39081701 PMCID: PMC11287762 DOI: 10.2147/dddt.s466470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gastric cancer (GC) is a prevalent gastrointestinal tumor characterized by high mortality and recurrence rates. Current treatments often have limitations, prompting researchers to explore novel anti-tumor substances and develop new drugs. Flavonoids, natural compounds with diverse biological activities, are gaining increasing attention in this regard. We searched from PubMed, Web of Science, SpringerLink and other databases to find the relevant literature in the last two decades. Using "gastric cancer", "stomach cancers", "flavonoid", "bioflavonoid", "2-Phenyl-Chromene" as keywords, were searched, then analyzed and summarized the mechanism of flavonoids in the treatment of GC. It was revealed that the anti-tumor mechanism of flavonoids involves inhibiting tumor growth, proliferation, invasion, and metastasis, as well as inducing cell death through various processes such as apoptosis, autophagy, ferroptosis, and pyroptosis. Additionally, combining flavonoids with other chemotherapeutic agents like 5-FU and platinum compounds can potentially reduce chemoresistance. Flavonoids have also demonstrated enhanced biological activity when used in combination with other natural products. Consequently, this review proposes innovative perspectives for the development of flavonoids as new anti-GC agents.
Collapse
Affiliation(s)
- Jiaying Cai
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Maoyuan Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Cui Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Jinhao Zeng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
20
|
Xiang T, Liu Y, Guo Y, Zhang J, Liu J, Yao L, Mao Y, Yang X, Liu J, Liu R, Jin X, Shi J, Qu G, Jiang G. Occurrence and Prioritization of Human Androgen Receptor Disruptors in Sewage Sludges Across China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10309-10321. [PMID: 38795035 DOI: 10.1021/acs.est.4c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
The global practice of reusing sewage sludge in agriculture and its landfill disposal reintroduces environmental contaminants, posing risks to human and ecological health. This study screened sewage sludge from 30 Chinese cities for androgen receptor (AR) disruptors, utilizing a disruptor list from the Toxicology in the 21st Century program (Tox21), and identified 25 agonists and 33 antagonists across diverse use categories. Predominantly, natural products 5α-dihydrotestosterone and thymidine emerged as agonists, whereas the industrial intermediate caprolactam was the principal antagonist. In-house bioassays for identified disruptors displayed good alignment with Tox21 potency data, validating employing Tox21 toxicity data for theoretical toxicity estimations. Potency calculations revealed 5α-dihydrotestosterone and two pharmaceuticals (17β-trenbolone and testosterone isocaproate) as the most potent AR agonists and three dyes (rhodamine 6G, Victoria blue BO, and gentian violet) as antagonists. Theoretical effect contribution evaluations prioritized 5α-dihydrotestosterone and testosterone isocaproate as high-risk AR agonists and caprolactam, rhodamine 6G, and 8-hydroxyquinoline (as a biocide and a preservative) as key antagonists. Notably, 16 agonists and 20 antagonists were newly reported in the sludge, many exhibiting significant detection frequencies, concentrations, and/or toxicities, demanding future scrutiny. Our study presents an efficient strategy for estimating environmental sample toxicity and identifying key toxicants, thereby supporting the development of appropriate sludge management strategies.
Collapse
Affiliation(s)
- Tongtong Xiang
- College of Sciences, Northeastern University, Shenyang110004, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Jifu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yuxiang Mao
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoting Jin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- School of Environmental Studies, China University of Geosciences, Wuhan430074, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- College of Sciences, Northeastern University, Shenyang110004, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
21
|
Zhao B, Liu K, Liu X, Li Q, Li Z, Xi J, Xie F, Li X. Plant-derived flavonoids are a potential source of drugs for the treatment of liver fibrosis. Phytother Res 2024; 38:3122-3145. [PMID: 38613172 DOI: 10.1002/ptr.8193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 04/14/2024]
Abstract
Liver fibrosis is a dynamic pathological process that can be triggered by any chronic liver injury. If left unaddressed, it will inevitably progress to the severe outcomes of liver cirrhosis or even hepatocellular carcinoma. In the past few years, the prevalence and fatality of hepatic fibrosis have been steadily rising on a global scale. As a result of its intricate pathogenesis, the quest for pharmacological interventions targeting liver fibrosis has remained a formidable challenge. Currently, no pharmaceuticals are exhibiting substantial clinical efficacy in the management of hepatic fibrosis. Hence, it is of utmost importance to expedite the development of novel therapeutics for the treatment of this condition. Various research studies have revealed the ability of different natural flavonoid compounds to alleviate or reverse hepatic fibrosis through a range of mechanisms, which are related to the regulation of liver inflammation, oxidative stress, synthesis and secretion of fibrosis-related factors, hepatic stellate cells activation, and proliferation, and extracellular matrix synthesis and degradation by these compounds. This review summarizes the progress of research on different sources of natural flavonoids with inhibitory effects on liver fibrosis over the last decades. The anti-fibrotic effects of natural flavonoids have been increasingly studied, making them a potential source of drugs for the treatment of liver fibrosis due to their good efficacy and biosafety.
Collapse
Affiliation(s)
- Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine 610032, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Zhao P, Hou Y, Yan T, Kang J, Tian Y, Li J, Zeng C, Geng F, Liao Q. Synthesis and biological evaluation of chrysin derivatives containing α-lipoic acid for the treatment of inflammatory bowel disease. Front Chem 2024; 12:1406051. [PMID: 38860236 PMCID: PMC11163049 DOI: 10.3389/fchem.2024.1406051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
This study introduces newly discovered chrysin derivatives that show potential as candidate molecules for treating inflammatory bowel disease (IBD). Compound 4b, among the synthesized compounds, displayed significant inhibitory effects on monocyte adhesion to colon epithelium induced by TNF-α, with an IC50 value of 4.71 μM. Further mechanistic studies demonstrated that 4b inhibits the production of reactive oxygen species (ROS) and downregulates the expression of ICAM-1 and MCP-1, key molecules involved in monocyte-epithelial adhesion, as well as the transcriptional activity of NF-κB. In vivo experiments have shown that compound 4b exhibits a dose-dependent inhibition of 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats, thereby validating its effectiveness as a colitis inhibitor in animal models. These results indicate that 4b shows considerable promise as a therapeutic agent for managing IBD.
Collapse
Affiliation(s)
- Pengyu Zhao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yusen Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Yan
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Jie Kang
- Yunnan Shengke Pharmaceutical Co., Ltd., Kunming, China
| | - Ye Tian
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Xingyi, China
| | - Jiaxin Li
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Chenjuan Zeng
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Xingyi, China
| | - Funeng Geng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Qi Liao
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| |
Collapse
|
23
|
Oliveira AMS, de Souza Batista D, de Castro TN, Alves IA, Souto RB, Mota MD, Serafini MR, Rajkumar G, Cazedey ECL. The use of natural extracts with photoprotective activity: a 2015-2023 patent prospection. Photochem Photobiol Sci 2024; 23:853-869. [PMID: 38613600 DOI: 10.1007/s43630-024-00559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/05/2024] [Indexed: 04/15/2024]
Abstract
Synthetic sunscreen offers protection against excessive exposure to ultraviolet (UV) radiation from the sun, and protects the skin from possible damage. However, they have low efficacy against the formation of reactive oxygen species (ROS), which are highly reactive molecules that can be generated in the skin when it is exposed to UV radiation, and are known to play a role in oxidative stress, which can contribute to skin aging and damage. Thus, there is an ongoing search for sunscreens that do not have these negative effects. One promising source for these is natural products. Therefore, the current patent review summarizes topical formulations made from natural compounds that have antioxidant properties and can be used as photoprotective or anti-aging agents, either using a single natural extract or a combination of extracts. The review reports basic patent information (applicant country, type of applicant, and year of filing) and gives details about the invention, including its chemical composition, and the in vitro and in vivo tests performed. These patents describe natural products that can be used to protect the skin and validate their efficacy, and safety, in addition to standardizing their formulations. The compositions described illustrate the consistent innovation in the use of natural products to protect against UV damage and photoaging disorders, a promising field which is receiving growing global recognition.
Collapse
Affiliation(s)
- Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| | - Daniel de Souza Batista
- Postgraduate Program in Pharmaceutical Sciences, Department of Life Sciences, State University of Bahia, Salvador, Bahia, Brazil
| | - Tailaine Nascimento de Castro
- Postgraduate Program in Pharmaceutical Sciences, Department of Life Sciences, State University of Bahia, Salvador, Bahia, Brazil
| | - Izabel Almeida Alves
- Postgraduate Program in Pharmaceutical Sciences, Department of Life Sciences, State University of Bahia, Salvador, Bahia, Brazil
- Department of Medicines, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Ricardo Bizogne Souto
- Department of Medicines, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Milleno Dantas Mota
- Postgraduate Program in Pharmaceutical Sciences, Department of Life Sciences, State University of Bahia, Salvador, Bahia, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Gomathi Rajkumar
- Department of Botany, Sri Sarada College for Women (Autonomous), Periyar University, Salem, India
| | - Edith Cristina Laignier Cazedey
- Postgraduate Program in Pharmaceutical Sciences, Department of Life Sciences, State University of Bahia, Salvador, Bahia, Brazil
- Department of Medicines, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
24
|
Lin Z, Dai W, Hu S, Chen D, Yan H, Zeng L, Lin Z. Stored white tea ameliorates DSS-induced ulcerative colitis in mice by modulating the composition of the gut microbiota and intestinal metabolites. Food Funct 2024; 15:4262-4275. [PMID: 38526548 DOI: 10.1039/d3fo05176e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Changes in the chemical composition of white tea during storage have been studied extensively; however, whether such chemical changes impact the efficacy of white tea in ameliorating colitis remains unclear. In this study, we compared the effects of new (2021 WP) and 10-year-old (2011 WP) white tea on 3% dextrose sodium sulfate (DSS)-induced ulcerative colitis in mice by gavaging mice with the extracts at 200 mg kg-1 day-1. Chemical composition analysis showed that the levels of 50 compounds, such as flavanols, dimeric catechins, and amino acids, were significantly lower in the 2011 WP extract than in the 2021 WP extract, whereas the contents of 21 compounds, such as N-ethyl-2-pyrrolidinone-substituted flavan-3-ols, theobromine, and (-)-epigallocatechin-3-(3''-O-methyl) gallate, were significantly higher. Results of the animal experiments showed that 2011 WP ameliorated the pathological symptoms of colitis, which was superior to the activity of 2021 WP, and this effect was likely enhanced based on the decreasing of the relative abundance of the g_bacteroides and g_Escherichia-Shigella flora in mice with colitis and promoting the conversion of primary bile acids to secondary bile acids in the colon. These results will facilitate the development of novel functional products from white tea.
Collapse
Affiliation(s)
- Zhiyuan Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, West Lake District, Hangzhou, Zhejiang 310008, China.
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China.
| | - Weidong Dai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, West Lake District, Hangzhou, Zhejiang 310008, China.
| | - Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China.
| | - Dan Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, West Lake District, Hangzhou, Zhejiang 310008, China.
| | - Han Yan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, West Lake District, Hangzhou, Zhejiang 310008, China.
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China.
| | - Zhi Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, West Lake District, Hangzhou, Zhejiang 310008, China.
| |
Collapse
|
25
|
Khasteband M, Sharifi Y, Akbari A. Chrysin loaded polycaprolactone-chitosan electrospun nanofibers as potential antimicrobial wound dressing. Int J Biol Macromol 2024; 263:130250. [PMID: 38368985 DOI: 10.1016/j.ijbiomac.2024.130250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
In this study, various concentrations of chrysin (chry) were loaded into polycaprolactone-chitosan (PCL-CTS) nanofibers to develop a potential wound dressing materials using electrospinning method. The structural composition and the morphology of the produced PCL-CTS5, PCL-CTS10 and PCL-CTS15 were analyzed by FE-SEM and FTIR, respectively. By increasing the amount of chry, the average diameter of the nanofibres was also increased to 191 ± 65 nm, 203 ± 72 nm, and 313 ± 69 nm for PCL-CTS5, PCL-CTS10, and PCL-CTS15, respectively. Moreover, the physicochemical characteristics and biological properties of synthesized nanofibers such as tensile testing, in-vitro drug release, porosity, decomposition rate, water absorption rate, water vapor permeability rate, cell viability, antioxidant and antibacterial activity were evaluated. By using Korsmeyer-Peppas and Higuchi kinetic models, the chry release mechanism in all nanofibers was studied in PBS solution, which suggested a Fick's diffusion. In-vitro antioxidant experiments by DPPH assay indicated 24, 43, 61 and 78 % free radical scavenging activity for PCL-CTS, PCL-CTS5, PCL-CTS10 and PCL-CTS15. In-vitro antibacterial examination showed that chry-loaded nanofibers had high antibacterial activity in which were comparable with the standard reagents. In-vitro cytotoxicity results obtained by MTT assay indicated a desired cytocompatibility towards fibroblast cells.
Collapse
Affiliation(s)
- Motahare Khasteband
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaeghob Sharifi
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
26
|
Yue Z, Zhang G, Wang J, Wang J, Luo S, Zhang B, Li Z, Liu Z. Comparative study of the quality indices, antioxidant substances, and mineral elements in different forms of cabbage. BMC PLANT BIOLOGY 2024; 24:187. [PMID: 38481163 PMCID: PMC10938656 DOI: 10.1186/s12870-024-04857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND As the second largest leafy vegetable, cabbage (Brassica oleracea L. var. capitata) is grown globally, and the characteristics of the different varieties, forms, and colors of cabbage may differ. In this study, five analysis methods-variance analysis, correlation analysis, cluster analysis, principal component analysis, and comprehensive ranking-were used to evaluate the quality indices (soluble protein, soluble sugar, and nitrate), antioxidant content (vitamin C, polyphenols, and flavonoids), and mineral (K, Ca, Mg, Cu, Fe, Mn, and Zn) content of 159 varieties of four forms (green spherical, green oblate, purple spherical, and green cow heart) of cabbage. RESULTS The results showed that there are significant differences among different forms and varieties of cabbage. Compared to the other three forms, the purple spherical cabbage had the highest flavonoid, K, Mg, Cu, Mn, and Zn content. A scatter plot of the principal component analysis showed that the purple spherical and green cow heart cabbage varieties were distributed to the same quadrant, indicating that their quality indices and mineral contents were highly consistent, while those of the green spherical and oblate varieties were irregularly distributed. Overall, the green spherical cabbage ranked first, followed by the green cow heart, green oblate, and purple spherical varieties. CONCLUSIONS Our results provide a theoretical basis for the cultivation and high-quality breeding of cabbage.
Collapse
Affiliation(s)
- Zhibin Yue
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Guobin Zhang
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jie Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jue Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Shilei Luo
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Bo Zhang
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Zhaozhuang Li
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Zeci Liu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
27
|
Elhoseny SM, Saleh NM, Meshali MM. Self-Nanoemulsion Intrigues the Gold Phytopharmaceutical Chrysin: In Vitro Assessment and Intrinsic Analgesic Effect. AAPS PharmSciTech 2024; 25:54. [PMID: 38443653 DOI: 10.1208/s12249-024-02767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/10/2024] [Indexed: 03/07/2024] Open
Abstract
Chrysin is a natural flavonoid with a wide range of bioactivities. Only a few investigations have assessed the analgesic activity of chrysin. The lipophilicity of chrysin reduces its aqueous solubility and bioavailability. Hence, self-nanoemulsifying drug delivery systems (SNEDDS) were designed to overcome this problem. Kollisolv GTA, Tween 80, and Transcutol HP were selected as oil, surfactant, and cosurfactant, respectively. SNEDDS A, B, and C were prepared, loaded with chrysin (0.1%w/w), and extensively evaluated. The optimized formula (B) encompasses 25% Kollisolv GTA, 18.75% Tween 80, and 56.25% Transcutol HP was further assessed. TEM, in vitro release, and biocompatibility towards the normal oral epithelial cell line (OEC) were estimated. Brain targeting and acetic acid-induced writhing in a mouse model were studied. After testing several adsorbents, powdered SNEDDS B was formulated and evaluated. The surfactant/cosurfactant (S/CoS) ratio of 1:3 w/w was appropriate for the preparation of SNEDDS. Formula B exhibited instant self-emulsification, spherical nanoscaled droplets of 155.4 ± 32.02 nm, and a zeta potential of - 12.5 ± 3.40 mV. The in vitro release proved the superiority of formula B over chrysin suspension (56.16 ± 10.23 and 9.26 ± 1.67%, respectively). The biocompatibility of formula B towards OEC was duplicated (5.69 ± 0.03 µg/mL). The nociceptive pain was mitigated by formula B more efficiently than chrysin suspension as the writhing numbers reduced from 8.33 ± 0.96 to 0 after 60 min of oral administration. Aerosil R972 was selected as an adsorbent, and its chemical compatibility was confirmed. In conclusion, our findings prove the therapeutic efficacy of chrysin self-nanoemulsion as a potential targeting platform to combat pain.
Collapse
Affiliation(s)
- Samar Mohamed Elhoseny
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
28
|
Shu X, Zhang Y, Zhang X, Zhang Y, Shu Y, Wang Y, Zhang Z, Song C. Therapeutic and immune-regulation effects of Scutellaria baicalensis Georgi polysaccharide on pseudorabies in piglets. Front Vet Sci 2024; 11:1356819. [PMID: 38500605 PMCID: PMC10944897 DOI: 10.3389/fvets.2024.1356819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Pseudorabies virus (PRV) can cause fatal encephalitis in newborn pigs and escape the immune system. While there is currently no effective treatment for PRV, Scutellaria baicalensis Georgi polysaccharides (SGP) and Rodgersia sambucifolia Hemsl flavonoids (RHF) are traditional Chinese herbal medicines with potential preventive and therapeutic effects against PRV infection. In order to explore which one is more effective in the prevention and treatment of PRV infection in piglets. We investigate the therapeutic effects of RHF and SGP in PRV-infected piglets using clinical symptom and pathological injury scoring systems. The immune regulatory effects of RHF and SGP on T lymphocyte transformation rate, cytokines, T cells, and Toll-like receptors were also measured to examine the molecular mechanisms of these effects. The results showed that SGP significantly reduced clinical symptoms and pathological damage in the lungs, liver, spleen, and kidneys in PRV-infected piglets and the T lymphocyte conversion rate in the SGP group was significantly higher than that in the other treatment groups, this potential dose-dependent effect of SGP on T lymphocyte conversation. Serum immunoglobulin and cytokine levels in the SGP group fluctuated during the treatment period, with SGP treatment showing better therapeutic and immunomodulatory effects in PRV-infected piglets than RHF or the combined SGP + RHF treatment. In conclusion, RHF and SGP treatments alleviate the clinical symptoms of PRV infection in piglets, and the immunomodulatory effect of SGP treatment was better than that of the RHF and a combination of both treatments. This study provides evidence for SGP in controlling PRV infection in piglets.
Collapse
Affiliation(s)
- Xianghua Shu
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, China
| | - Ying Zhang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, China
| | - Xue Zhang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, China
| | - Ying Zhang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, China
| | - Yue Shu
- The Faculty of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Yulei Wang
- The Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Zhihui Zhang
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chunlian Song
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, China
| |
Collapse
|
29
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
30
|
Rispo F, De Negri Atanasio G, Demori I, Costa G, Marchese E, Perera-Del-Rosario S, Serrano-Candelas E, Palomino-Schätzlein M, Perata E, Robino F, Ferrari PF, Ferrando S, Letasiova S, Markus J, Zanotti-Russo M, Grasselli E. An extensive review on phenolic compounds and their potential estrogenic properties on skin physiology. Front Cell Dev Biol 2024; 11:1305835. [PMID: 38250328 PMCID: PMC10798251 DOI: 10.3389/fcell.2023.1305835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Polyphenolic compounds constitute a diverse group of natural components commonly occurring in various plant species, known for their potential to exert both beneficial and detrimental effects. Additionally, these polyphenols have also been implicated as endocrine-disrupting (ED) chemicals, raising concerns about their widespread use in the cosmetics industry. In this comprehensive review, we focus on the body of literature pertaining to the estrogenic properties of ED chemicals, with a particular emphasis on the interaction of isoflavones with estrogen receptors. Within this review, we aim to elucidate the multifaceted roles and effects of polyphenols on the skin, exploring their potential benefits as well as their capacity to act as ED agents. By delving into this intricate subject matter, we intend to provoke thoughtful consideration, effectively opening a Pandora's box of questions for the reader to ponder. Ultimately, we invite the reader to contemplate whether polyphenols should be regarded as friends or foes in the realm of skincare and endocrine disruption.
Collapse
Affiliation(s)
- Francesca Rispo
- Department of Earth, Environment and Life Science, University of Genoa, Genova, Italy
| | | | - Ilaria Demori
- Department of Pharmacy, University of Genoa, Genova, Italy
| | - Giosuè Costa
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Emanuela Marchese
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Simón Perera-Del-Rosario
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, Valencia, Spain
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Eva Serrano-Candelas
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, Valencia, Spain
| | | | | | | | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genova, Italy
| | - Sara Ferrando
- Department of Earth, Environment and Life Science, University of Genoa, Genova, Italy
| | | | - Jan Markus
- MatTek In Vitro Life Science Laboratories, Bratislava, Slovakia
| | | | - Elena Grasselli
- Department of Earth, Environment and Life Science, University of Genoa, Genova, Italy
- Interuniversity Center for the Promotion of 3R Principles in Teaching and Research (Centro 3R), Pisa, Italy
- National Center for the Development of New Technologies in Agriculture (Agritech), Napoli, Italy
| |
Collapse
|
31
|
Mu J, Wu J, Duan L, Yang Q, Liu X, Bai H, Xie Y, Li J, Wang S. Exploring the effects and mechanism of peony pollen in treating benign prostatic hyperplasia. Heliyon 2023; 9:e22212. [PMID: 38034660 PMCID: PMC10685364 DOI: 10.1016/j.heliyon.2023.e22212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Paeonia suffruticosa is widely cultivated globally due to its medicinal and ornamental value. Peony pollen (PP) is commonly used in Chinese folk medicine to make tea to treat benign prostatic hyperplasia (BPH), but its molecular mechanism against BPH is yet to be comprehended. The objective of this research was to experimentally verify the effect of PP in the treatment of BPH and to preliminarily reveal its mechanism of action on BPH using network pharmacology methods. The results revealed that PP could decrease prostate volume and prostate index, serum testosterone (T), dihydrotestosterone (DHT), and estradiol (E2) levels. Moreover, it could improve prostate tissue structure in BPH model animals as well. Additionally, database searches and disease target matching revealed 81 compounds in PP. Of these, 3, 7, 8, 2'-tetrahydroxyflavone, Chrysin, Wogonin, Limocitrin, and Sexangularetin were the top five compounds associated with the therapeutic effects of BPH. Furthermore, 177 therapeutic targets for BPH were retrieved from databases of Swiss Target, DisGeNET, Drugbank, Genecards, OMIM, TTD, and Uniprot. In contrast, core targets AKT1, EGFR, IL6, TNF, and VEGFA were obtained by PPI network diagram. Molecular docking also showed that the main efficacy components and potential core targets in PP had good binding capacity. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomics (KEGG) analysis established that the effect of PP in BPH therapy was mainly through regulating the expression levels of protein kinase B on phosphatidylinositol 3-kinase and phosphatidylinositol 3-kinase-protein kinase B pathways. Additionally, Western blot experiments also exhibited a significant elevation in the activated PI3K and AKT proteins in the model (Mod) group relative to the control (Con) group, and the expression of these activated proteins was significantly reduced after PP administration. In summary, this research provides a scientific basis for employing PP to treat BPH, preliminarily reveals its mechanism of action and potential targets, and lays the foundation for further research and development.
Collapse
Affiliation(s)
- Jun Mu
- Biomedicine Key Laboratory, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Junsheng Wu
- Biomedicine Key Laboratory, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Linrui Duan
- Biomedicine Key Laboratory, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Qian Yang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, 710032, Xi'an, China
| | - Xiaoting Liu
- Biomedicine Key Laboratory, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Huixin Bai
- Biomedicine Key Laboratory, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yanhua Xie
- Biomedicine Key Laboratory, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jie Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, 710032, Xi'an, China
| | - Siwang Wang
- Biomedicine Key Laboratory, College of Life Sciences, Northwest University, Xi'an, 710069, China
| |
Collapse
|
32
|
Vafaeipour Z, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effect of saffron, black seed, and their main constituents on inflammatory cytokine response (mainly TNF-α) and oxidative stress status: an aspect on pharmacological insights. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2241-2259. [PMID: 37103518 DOI: 10.1007/s00210-023-02501-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Tumor necrosis factor-α (TNF-α), an inflammatory cytokine, is produced by monocytes and macrophages. It is known as a 'double-edged sword' because it is responsible for advantageous and disadvantageous events in the body system. The unfavorable incident includes inflammation, which induces some diseases such as rheumatoid arthritis, obesity, cancer, and diabetes. Many medicinal plants have been found to prevent inflammation, such as saffron (Crocus sativus L.) and black seed (Nigella sativa). Therefore, the purpose of this review was to assess the pharmacological effects of saffron and black seed on TNF-α and diseases related to its imbalance. Different databases without time limitations were investigated up to 2022, including PubMed, Scopus, Medline, and Web of Science. All the original articles (in vitro, in vivo, and clinical studies) were collected on the effects of black seed and saffron on TNF-α. Black seed and saffron have therapeutic effects against many disorders, such as hepatotoxicity, cancer, ischemia, and non-alcoholic fatty liver, by decreasing TNF-α levels based on their anti-inflammatory, anticancer, and antioxidant properties. Saffron and black seed can treat a variety of diseases by suppressing TNF-α and exhibiting a variety of activities such as neuroprotective, gastroprotective, immunomodulatory, antimicrobial, analgesic, antitussive, bronchodilator, antidiabetic activity, anticancer, and antioxidant effects. To uncover the beneficial underlying mechanisms of black seed and saffron, more clinical trials and phytochemical research are required. Also, these two plants affect other inflammatory cytokines, hormones, and enzymes, implying that they could be used to treat a variety of diseases.
Collapse
Affiliation(s)
- Zeinab Vafaeipour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Zhang W, Chen H, Xu Z, Zhang X, Tan X, He N, Shen J, Dong J. Liensinine pretreatment reduces inflammation, oxidative stress, apoptosis, and autophagy to alleviate sepsis acute kidney injury. Int Immunopharmacol 2023; 122:110563. [PMID: 37392573 DOI: 10.1016/j.intimp.2023.110563] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Liensinine is mainly derived from alkaloids extracted and isolated from lotus seeds (Nelumbo nucifera Gaertn). It possesses anti-inflammatory, and antioxidant, according to contemporary pharmacological investigations. However, the effects and therapeutic mechanisms of liensinine on acute kidney injury (AKI) models of sepsis are unclear. To gain insight into these mechanisms, we established a sepsis kidney injury model by LPS injection of mice treated with liensinine, and stimulation of HK-2 with LPS in vitro and treated with liensinine and inhibitors of p38 MAPK, JNK MAPK. We first found that liensinine significantly reduced kidney injury in sepsis mice, while suppressing excessive inflammatory responses, restoring renal oxidative stress-related biomarkers, reducing increased apoptosis in TUNEL-positive cells and excessive autophagy, and that this process was accompanied by an increase in JNK/ p38-ATF 2 axis. In vitro experiments further demonstrated that lensinine reduced the expression of KIM-1, NGAL, inhibited pro- and anti-inflammatory secretion disorders, regulated the activation of the JNK/p38-ATF 2 axis, and reduced the accumulation of ROS, as well as the reduction of apoptotic cells detected by flow cytometry, and that this process played the same role as that of p38 MAPK, JNK MAPK inhibitors. We speculate that liensinine and p38 MAPK, JNK MAPK inhibitors may act on the same targets and could be involved in the mechanism of alleviating sepsis kidney injury in part through modulation of the JNK/p38-ATF 2 axis. Our study demonstrates that lensinine is a potential drug and thus provides a potential avenue for the treatment of AKI.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huizhen Chen
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Zhaoyun Xu
- Blood Transfusion Department, Ganyu District People's Hospital of Lianyungang City, Lianyungang 222100, China
| | - Xiao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuelian Tan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jinyang Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
34
|
Cherian A, Vadivel V, Thiruganasambandham S, Madhavankutty S. Phytocompounds and their molecular targets in immunomodulation: a review. J Basic Clin Physiol Pharmacol 2023; 34:577-590. [PMID: 34786892 DOI: 10.1515/jbcpp-2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/24/2021] [Indexed: 11/15/2022]
Abstract
Immune cells are important for the healthy function of every organ. The homeostasis of the immune system is selfregulated by T-cells, B-cells, and natural killer cells. The immunomodulation process of immune cells is part of the immunotherapy. According to therapeutic methods of immune responses are categorized as inducing (immunostimulant), amplification (immune booster), attenuation (immunomodulation), and prevention (immunosuppressive) actions. The prevalence of chronic immunological diseases like viral infections, allergies, and cancer is mainly due to the over-activation of the immune system. Further, immunomodulators are reported to manage the severity of chronic immunological disorders. Moreover, these immunomodulator-acting proteins are identified as potential molecular targets for the regulation of the immune system. Moreover, natural compound like phytocompounds are known to bind these targets and modulates the immune system. The specialized phytocompounds like curcumin, quercetin, stilbenes, flavonoids, and lignans are shown the immunomodulatory actions and ameliorate the immunological disorders. The present scenario of a COVID-19 pandemic situation has taught us the need to focus on strengthening the immune system and the development of the most promising immunotherapeutics. This review is focused on an overview of various phytocompounds and their molecular targets for the management of immunological disorders via immunosuppressants and immunostimulants actions.
Collapse
Affiliation(s)
- Ayda Cherian
- Pharmaceutical Chemistry, SRM College of Pharmacy, Kattankulathur, Tamil Nadu, India
| | - Velmurugan Vadivel
- Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| | | | | |
Collapse
|
35
|
Aghababaei F, Hadidi M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals (Basel) 2023; 16:1020. [PMID: 37513932 PMCID: PMC10384403 DOI: 10.3390/ph16071020] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Quercetin, a flavonoid found in fruits and vegetables, has been a part of human diets for centuries. Its numerous health benefits, including antioxidant, antimicrobial, anti-inflammatory, antiviral, and anticancer properties, have been extensively studied. Its strong antioxidant properties enable it to scavenge free radicals, reduce oxidative stress, and protect against cellular damage. Quercetin's anti-inflammatory properties involve inhibiting the production of inflammatory cytokines and enzymes, making it a potential therapeutic agent for various inflammatory conditions. It also exhibits anticancer effects by inhibiting cancer cell proliferation and inducing apoptosis. Finally, quercetin has cardiovascular benefits such as lowering blood pressure, reducing cholesterol levels, and improving endothelial function, making it a promising candidate for preventing and treating cardiovascular diseases. This review provides an overview of the chemical structure, biological activities, and bioavailability of quercetin, as well as the different delivery systems available for quercetin. Incorporating quercetin-rich foods into the diet or taking quercetin supplements may be beneficial for maintaining good health and preventing chronic diseases. As research progresses, the future perspectives of quercetin appear promising, with potential applications in nutraceuticals, pharmaceuticals, and functional foods to promote overall well-being and disease prevention. However, further studies are needed to elucidate its mechanisms of action, optimize its bioavailability, and assess its long-term safety for widespread utilization.
Collapse
Affiliation(s)
- Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, UAB-Campus, 08193 Bellaterra, Spain
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
36
|
Mittal P, Dhankhar S, Chauhan S, Garg N, Bhattacharya T, Ali M, Chaudhary AA, Rudayni HA, Al-Zharani M, Ahmad W, Khan SUD, Singh TG, Mujwar S. A Review on Natural Antioxidants for Their Role in the Treatment of Parkinson's Disease. Pharmaceuticals (Basel) 2023; 16:908. [PMID: 37513820 PMCID: PMC10385773 DOI: 10.3390/ph16070908] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The neurodegenerative condition known as Parkinson's disease (PD) is brought on by the depletion of dopaminergic neurons in the basal ganglia, which is the brain region that controls body movement. PD occurs due to many factors, from which one of the acknowledged effects of oxidative stress is pathogenic pathways that play a role in the development of Parkinson's disease. Antioxidants, including flavonoids, vitamins E and C, and polyphenolic substances, help to reduce the oxidative stress brought on by free radicals. Consequently, this lowers the risk of neurodegenerative disorders in the long term. Although there is currently no cure for neurodegenerative illnesses, these conditions can be controlled. The treatment of this disease lessens its symptoms, which helps to preserve the patient's quality of life. Therefore, the use of naturally occurring antioxidants, such as polyphenols, which may be obtained through food or nutritional supplements and have a variety of positive effects, has emerged as an appealing alternative management strategy. This article will examine the extent of knowledge about antioxidants in the treatment of neurodegenerative illnesses, as well as future directions for research. Additionally, an evaluation of the value of antioxidants as neuroprotective agents will be provided.
Collapse
Affiliation(s)
- Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (S.D.); (S.C.); (T.G.S.); (S.M.)
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (S.D.); (S.C.); (T.G.S.); (S.M.)
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (S.D.); (S.C.); (T.G.S.); (S.M.)
| | - Nitika Garg
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Tanima Bhattacharya
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 260 Kyunghee-daero, Seoul 02447, Republic of Korea
- Nondestructive Bio-Sensing Laboratory, Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, 99 Daehak-ro, BLDG# E10-2, RM# 2213, Daejeon 34134, Republic of Korea
| | - Maksood Ali
- Department of Pharmacognosy, Orlean College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 42, Knowledge Park—III, Greater Noida 201308, India;
- Department of Pharmacognosy, HIMT College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 8, Institutional Area, Knowledge Park—I, Greater Noida 201301, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (H.A.R.); (M.A.-Z.)
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (H.A.R.); (M.A.-Z.)
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (H.A.R.); (M.A.-Z.)
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia;
| | - Salah Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (S.D.); (S.C.); (T.G.S.); (S.M.)
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (S.D.); (S.C.); (T.G.S.); (S.M.)
| |
Collapse
|
37
|
Akter R, Rahman MR, Ahmed ZS, Afrose A. Plausibility of natural immunomodulators in the treatment of COVID-19-A comprehensive analysis and future recommendations. Heliyon 2023; 9:e17478. [PMID: 37366526 PMCID: PMC10284624 DOI: 10.1016/j.heliyon.2023.e17478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
The COVID-19 pandemic has inflicted millions of deaths worldwide. Despite the availability of several vaccines and some special drugs approved for emergency use to prevent or treat this disease still, there is a huge concern regarding their effectiveness, adverse effects, and most importantly, their efficacy against the new variants. A cascade of immune-inflammatory responses is involved with the pathogenesis and severe complications with COVID-19. People with dysfunctional and compromised immune systems display severe complications, including acute respiratory distress syndrome, sepsis, multiple organ failure etc., when they get infected with the SARS-CoV-2 virus. Plant-derived natural immune-suppressant compounds, such as resveratrol, quercetin, curcumin, berberine, luteolin, etc., have been reported to inhibit pro-inflammatory cytokines and chemokines. Therefore, natural products with immunomodulatory and anti-inflammatory potential could be plausible targets to treat this contagious disease. This review aims to delineate the clinical trials status and outcomes of natural compounds with immunomodulatory potential in COVID-19 patients along with the outcomes of their in-vivo studies. In clinical trials several natural immunomodulators resulted in significant improvement of COVID-19 patients by diminishing COVID-19 symptoms such as fever, cough, sore throat, and breathlessness. Most importantly, they reduced the duration of hospitalization and the need for supplemental oxygen therapy, improved clinical outcomes in patients with COVID-19, especially weakness, and eliminated acute lung injury and acute respiratory distress syndrome. This paper also discusses many potent natural immunomodulators yet to undergo clinical trials. In-vivo studies with natural immunomodulators demonstrated reduction of a wide range of proinflammatory cytokines. Natural immunomodulators that were found effective, safe, and well tolerated in small-scale clinical trials are warranted to undergo large-scale trials to be used as drugs to treat COVID-19 infections. Alongside, compounds yet to test clinically must undergo clinical trials to find their effectiveness and safety in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Md. Rashidur Rahman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zainab Syed Ahmed
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Afrina Afrose
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
38
|
Zhao T, Zhang X, Nong XH, Zhou XM, Chai RR, Li XB, Chen GY. Zeylleucapenoids A-D, Highly Oxygenated Diterpenoids with Anti-Inflammatory Activity from Leucas zeylanica (L.) R. Br. Molecules 2023; 28:molecules28114472. [PMID: 37298948 DOI: 10.3390/molecules28114472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Four previously undescribed highly oxygenated diterpenoids (1-4), zeylleucapenoids A-D, characterized by halimane and labdane skeletons, were isolated from the aerial parts of Leucas zeylanica. Their structures were elucidated primarily via NMR experiments. The absolute configuration of 1 was established using theoretical ECD calculations and X-ray crystallographic analysis, whereas those for 2-4 were assigned using theoretical ORD calculations. Zeylleucapenoids A-D were tested for anti-inflammatory activity against nitric oxide (NO) production in RAW264.7 macrophages, of which only 4 showed significant efficacy with an IC50 value of 38.45 μM. Further, active compound 4 was also evaluated for the inhibition of the release of pro-inflammatory cytokines TNF-α and IL-6 and was found to have a dose-dependent inhibitory effect, while it showed nontoxic activity for zebrafish embryos. A subsequent Western blotting experiment revealed that 4 inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, molecular docking analysis indicated that the possible mechanism of action for 4 may be bind to targets via hydrogen and hydrophobic bond interactions.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xuan Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xu-Hua Nong
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xue-Ming Zhou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ru-Ru Chai
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiao-Bao Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
39
|
El-Marasy SA, AbouSamra MM, El-Mosallamy AEMK, Emam AN, Mabrok HB, Galal AF, Ahmed-Farid OA, Abd El-Rahman SS, Moustafa PE. Chrysin loaded nanovesicles ameliorated diabetic peripheral neuropathy. Role of NGF/AKT/GSK-3β pathway. Chem Biol Interact 2023; 375:110402. [PMID: 36804429 DOI: 10.1016/j.cbi.2023.110402] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a common diabetic complication. Chrysin (CHY) has many biological properties but poor oral bioavailability. This study investigates the effect of CHY and CHY-loaded nanovesicles (CHY-NVs) on streptozotocin (STZ)-induced DPN in rats. CHY-NVs were prepared by using film hydration method. The formula with the best entrapment efficiency%, lowest particle size, highest zeta potential, and highest in vitro CHY released profile was selected, characterized by Differential scanning calorimetry, Fourier transformation infrared spectroscopy analysis, and examined by Transmission electron microscope. Acute toxicity test, pharmacokinetic study and experimental model of diabetes mellitus were performed on the selected formulation. Wistar rats were considered diabetic by administration of a single intraperitoneal dose of STZ (50 mg/kg). 48 h after STZ administration, hyperglycemic rats were randomly assigned into four groups, one group of untreated hyperglycemic rats and the other three groups received daily oral doses of unloaded NVs, CHY-NVs (25 mg/kg), and CHY-NVs (50 mg/kg), respectively for 21 days. Moreover, five additional groups of healthy rats received: distilled water (control), free CHY, unloaded NVs, and CHY-NVs respectively for 21 days. CHY and CHY-NVs maintained body weight and reduced STZ-induced behavioral changes in rotarod, hind paw cold allodynia, tail cold allodynia, tail flick, and hot plate tests. CHY and CHY-NVs lowered blood glucose, glycated hemoglobin, elevated serum reduced glutathione (GSH), and reduced plasma malondialdehyde (MDA) levels. CHY-NVs elevated phosphatidylinositol 3-kinase (Pi3k), phosphorylated protein kinase B (p-AKT), and reduced nuclear factor kappa B (NF-κB), interleukin-6 (IL-6) in sciatic nerve homogenate. CHY and CHY-NVs increased nerve growth factor (NGF) and decreased glycogen synthase kinase-3β (GSK-3β) gene expressions in the sciatic nerve. In conclusion, CHY and CHY-NVs ameliorated STZ-induced DPN behavioral and histopathological changes via attenuating hyperglycemia, exerting anti-oxidant, anti-inflammatory effects, activating NGF/p-AKT/GSK-3β pathway, and its anti-apoptotic effect. The best pharmacokinetic profile and therapeutic effect was observed in rats treated with CHY-loaded NVs.
Collapse
Affiliation(s)
- Salma A El-Marasy
- Department of Pharmacology, Medical and clinical studies institute, National Research Centre, Giza, Egypt.
| | - Mona M AbouSamra
- Pharmaceutical Technology Department, Pharmaceutical drug industries research institute, National Research Centre, Giza, Egypt
| | - Aliaa E M K El-Mosallamy
- Department of Pharmacology, Medical and clinical studies institute, National Research Centre, Giza, Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Researches research institute, National Research Centre, Giza, Egypt
| | - Hoda B Mabrok
- Nutrition and food science department, Food industries and nutrition research institute, National Research Centre, Giza, Egypt
| | - Asmaa F Galal
- Narcotics, Ergogenics and Poisons Department, Medical and clinical studies research institute, National Research Centre, Giza, Egypt
| | | | - Sahar S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Passant E Moustafa
- Department of Pharmacology, Medical and clinical studies institute, National Research Centre, Giza, Egypt
| |
Collapse
|
40
|
Faheem MA, Akhtar T, Naseem N, Aftab U, Zafar MS, Hussain S, Shahzad M, Gobe GC. Chrysin Is Immunomodulatory and Anti-Inflammatory against Complete Freund's Adjuvant-Induced Arthritis in a Pre-Clinical Rodent Model. Pharmaceutics 2023; 15:1225. [PMID: 37111711 PMCID: PMC10144384 DOI: 10.3390/pharmaceutics15041225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Chrysin (5,7-dihydroxyflavone) has many pharmacological properties including anti-inflammatory actions. The objective of this study was to evaluate the anti-arthritic activity of chrysin and to compare its effect with the non-steroidal anti-inflammatory agent, piroxicam, against complete Freund's adjuvant (CFA)-induced arthritis in a pre-clinical model in rats. Rheumatoid arthritis was induced by injecting CFA intra-dermally in the sub-plantar region of the left hind paw of rats. Chrysin (50 and 100 mg/kg) and piroxicam (10 mg/kg) were given to rats with established arthritis. The model of arthritis was characterized using an index of arthritis, with hematological, biological, molecular, and histopathological parameters. Treatment with chrysin significantly reduced the arthritis score, inflammatory cells, erythrocyte sedimentation rate, and rheumatoid factor. Chrysin also reduced the mRNA levels of tumor necrosis factor, nuclear factor kappa-B, and toll-like recepter-2 and increased anti-inflammatory cytokines interleukin-4 and -10, as well as the hemoglobin levels. Using histopathology and microscopy, chrysin reduced the severity of arthritis in joints, infiltration of inflammatory cells, subcutaneous inflammation, cartilage erosion, bone erosion, and pannus formation. Chrysin showed comparable effects to piroxicam, which is used for the treatment of rheumatoid arthritis. The results showed that chrysin possesses anti-inflammatory and immunomodulatory effects that make it a potential drug for the treatment of arthritis.
Collapse
Affiliation(s)
- Muhammad Asif Faheem
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Tasleem Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Nadia Naseem
- Department of Morbid Anatomy and Histopathology, University of Health Sciences, Lahore 54600, Pakistan
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | | | - Safdar Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Glenda Carolyn Gobe
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
41
|
Oriquat G, Masoud IM, Kamel MA, Aboudeya HM, Bakir MB, Shaker SA. The Anti-Obesity and Anti-Steatotic Effects of Chrysin in a Rat Model of Obesity Mediated through Modulating the Hepatic AMPK/mTOR/lipogenesis Pathways. Molecules 2023; 28:molecules28041734. [PMID: 36838721 PMCID: PMC9962978 DOI: 10.3390/molecules28041734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Obesity is a complex multifactorial disease characterized by excessive adiposity, and is linked to an increased risk of nonalcoholic fatty liver disease (NAFLD). Flavonoids are natural polyphenolic compounds that exert interesting pharmacological effects as antioxidant, anti-inflammatory, and lipid-lowering agents. In the present study, we investigated the possible therapeutic effects of the flavonoid chrysin on obesity and NAFLD in rats, and the role of AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathways in mediating these effects. METHOD Thirty-two Wistar male rats were divided into two groups: the control group and the obese group. Obesity was induced by feeding with an obesogenic diet for 3 months. The obese rats were subdivided into four subgroups, comprising an untreated group, and three groups treated orally with different doses of chrysin (25, 50, and 75 mg/kg/day for one month). Results revealed that chrysin treatment markedly ameliorated the histological changes and significantly and dose-dependently reduced the weight gain, hyperglycemia, and insulin resistance in the obese rats. Chrysin, besides its antioxidant boosting effects (increased GSH and decreased malondialdehyde), activated the AMPK pathway and suppressed the mTOR and lipogenic pathways, and stimulated expression of the genes controlling mitochondrial biogenesis in the hepatic tissues in a dose-dependent manner. In conclusion, chrysin could be a promising candidate for the treatment of obesity and associated NAFLD, aiding in attenuating weight gain and ameliorating glucose and lipid homeostasis and adipokines, boosting the hepatic mitochondrial biogenesis, and modulating AMPK/mTOR/SREBP-1c signaling pathways.
Collapse
Affiliation(s)
- Ghaleb Oriquat
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Inas M. Masoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21311, Egypt
| | - Maher A. Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
- Correspondence: (M.A.K.); (S.A.S.)
| | | | - Marwa B. Bakir
- Department of Pharmacology and Experimental Therapeutics, Alexandria University, Alexandria 21561, Egypt
| | - Sara A. Shaker
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
- Correspondence: (M.A.K.); (S.A.S.)
| |
Collapse
|
42
|
Anti-inflammatory Effect of a Limonin Derivative In Vivo and Its Mechanisms in RAW264.7 Cells. Inflammation 2023; 46:190-201. [PMID: 35986873 DOI: 10.1007/s10753-022-01722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 07/21/2022] [Indexed: 11/05/2022]
Abstract
A potential new limonoid derivative, (12S,12aS)-6,6,8a,12a-tetramethyl-12-(5-(4-(piperidin-1-yl)butanoyl)furan-3-yl)decahydro-1H,3H-oxireno[2,3-d]pyrano[4',3':3,3a]isobenzofuro[5,4-f]isochromene-3,8,10(6H,9aH)-trione (I-C-1), has been screened for its anti-inflammatory activity. This study aimed to demonstrate the anti-inflammatory activities of I-C-1 and to further explore the underlying mechanisms of these activities in RAW264.7 macrophages. We verified the anti-inflammatory activity of I-C-1 in vivo by a carrageenan-induced paw edema model in rats and cotton pellet-induced granuloma in mice. Further, we found that I-C-1 significantly inhibited levels of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-induced RAW264.7 cells. I-C-1 demonstrated strong inhibition of the NF-κB activation through repression of the IKKα and IKKβ phosphorylations, as well as a significant suppression of the phosphatidylinositol 3-kinase (PI3K)/serine-threonine kinase (Akt) pathway, an upstream of the NF-κB pathway. Additionally, we verified the inhibitory effect of I-C-1 on PI3K phosphorylation by immunofluorescence assay and compared the effects of I-C-1 with the PI3K inhibitor LY294002 in IL-1β, IL-6, and TNF-α levels. The data indicated that I-C-1 likely acts as an inhibitor of PI3K, exerting anti-inflammatory effects by inhibiting the PI3K/AKT/NF-κB signaling pathway. Based on these findings, we believe that I-C-1 has the potential to be further developed as a potential therapeutic agent for inflammatory-related diseases.
Collapse
|
43
|
Salama A, Elgohary R, Kassem AA, Asfour MH. Chrysin-phospholipid complex-based solid dispersion for improved anti-aging and neuroprotective effects in mice. Pharm Dev Technol 2023; 28:109-123. [PMID: 36593750 DOI: 10.1080/10837450.2023.2165102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The present study aimed to improve the neuroprotective effect of chrysin (CHR) by combining two formulation techniques, phospholipid (PL) complexation and solid dispersion (SD). CHR-phospholipid complex (CHR-PLC) was prepared through solvent evaporation. The molar ratio CHR/PL (1:3), which exhibited the highest complexation efficiency, was selected for the preparation of CHR-PLC loaded SD (CHR-PLC-SD) with 2-hydroxypropyl β cyclodextrin (2-HPβCD) and polyvinylpyrrolidone 8000. CHR-PLC/2-HPβCD (1:2, w/w) displayed the highest aqueous solubility of CHR (5.86 times more than that of plain CHR). CHR-SD was also prepared using 2-HPβCD for comparison. The in vitro dissolution of CHR-PLC-SD4 revealed an enhancement in the dissolution rate over CHR-PLC (1:3), CHR-SD, and plain CHR by six times. The optimum formulations and plain CHR were evaluated for their neuroprotective effect on brain aging induced by D-galactose in mice. The results demonstrated a behavioral activity elevation, an increase of AMPK, LKB1, and PGC1α brain contents as well as a reduction of AGEs, GFAP, NT-3, TNF-α, and NF-κβ brain contents when compared with those of the D-galactose control group. Thus, the developed formulations stimulated neurogenesis and mitochondrial biogenesis as well as suppressed neuroinflammation and neurodegeneration. The order of activity was as follows: CHR-PLC-SD4 > CHR-PLC (1:3) > CHR-SD > plain CHR.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
44
|
Potential of Compounds Originating from the Nature to Act in Hepatocellular Carcinoma Therapy by Targeting the Tumor Immunosuppressive Microenvironment: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010195. [PMID: 36615387 PMCID: PMC9822070 DOI: 10.3390/molecules28010195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Hepatocellular carcinoma (HCC), the most prevalent subtype of liver cancer, is the second main reason for cancer-related deaths worldwide. In recent decades, sufficient evidence supported that immunotherapy was a safe and effective treatment option for HCC. However, tolerance and frequent recurrence and metastasis occurred in patients after immunotherapy due to the complicated crosstalk in the tumor immunosuppressive microenvironment (TIME) in HCC. Therefore, elucidating the TIME in HCC and finding novel modulators to target TIME for attenuating immune suppression is critical to optimize immunotherapy. Recently, studies have shown the potentially immunoregulatory activities of natural compounds, characterized by multiple targets and pathways and low toxicity. In this review, we concluded the unique role of TIME in HCC. Moreover, we summarized evidence that supports the hypothesis of natural compounds to target TIME to improve immunotherapy. Furthermore, we discussed the comprehensive mechanisms of these natural compounds in the immunotherapy of HCC. Accordingly, we present a well-grounded review of the naturally occurring compounds in cancer immunotherapy, expecting to shed new light on discovering novel anti-HCC immunomodulatory drugs from natural sources.
Collapse
|
45
|
Chrysin Induces Apoptosis via the MAPK Pathway and Regulates ERK/mTOR-Mediated Autophagy in MC-3 Cells. Int J Mol Sci 2022; 23:ijms232415747. [PMID: 36555388 PMCID: PMC9778784 DOI: 10.3390/ijms232415747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Chrysin is a flavonoid found abundantly in substances, such as honey and phytochemicals, and is known to exhibit anticancer effects against various cancer cells. Nevertheless, the anticancer effect of chrysin against oral cancer has not yet been verified. Furthermore, the mechanism underlying autophagy is yet to be clearly elucidated. Thus, this study investigated chrysin-mediated apoptosis and autophagy in human mucoepidermoid carcinoma (MC-3) cells. The change in MC-3 cell viability was examined using a 3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide cell viability assay, as well as 40,6-diamidino-2-phenylindole, annexin V, and propidium iodide staining. Western blotting was used to analyze the proteins related to apoptosis and the mitogen-activated protein kinase (MAPK) pathway. In addition, the presence or absence of autophagy and changes in the expression of related proteins were investigated using acridine orange staining and Western blot. The results suggested that chrysin induced apoptosis and autophagy in MC-3 oral cancer cells via the MAPK/extracellular signal-regulated kinase pathway. Moreover, the induced autophagy exerted a cytoprotective effect against apoptosis. Thus, the further reduced cell viability due to autophagy as well as apoptosis induction highlight therapeutic potential of chrysin for oral cancer.
Collapse
|
46
|
Stereoselective effects of chiral epoxiconazole on the metabolomic and lipidomic profiling of leek. Food Chem 2022; 405:134962. [DOI: 10.1016/j.foodchem.2022.134962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
47
|
Potential protective effects of chrysin against immunotoxicity induced by diazinon. Sci Rep 2022; 12:15578. [PMID: 36114367 PMCID: PMC9481545 DOI: 10.1038/s41598-022-20010-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Acute intoxication with diazinon (DZN) as a pesticide causes mortality and morbidity annually. This study shows the impact of sub-acute toxicity of DZN 20 mg/kg and the protective activities of chrysin (CH) as a flavone under the flavonoids family (12.5, 25 and 50 mg/kg) were assessed on BALB/c mouse immune system. The changes in morphological and functional properties of the immune system on thymus, spleen and liver histopathology, sub-populations of T lymphocytes, cytokines levels, transcription factors, complement function, phagocytosis, specific and total antibody productions were considered. The histopathological effects of DZN on the spleen and thymus were not significant, but the liver was damaged remarkably. In the presence of CH, the toxic effect of DZN is suppressed. DZN significantly decreased the number of whole blood TCD4+, TCD8+ and NK cells and suppressed the phagocytosis, delayed-type hypersensitivity (DTH) responses to sheep red blood cell (SRBC). Furthermore, it suppressed specific anti-SRBC-Ab, total IgG and IgM production, T-bet expression, and IFN-γ production. In contrast, DZN did not significantly affect complement function and the number of NK cells, TCD4+ and TCD8+ splenocytes. However, it potentiated the expression of GATA-3, ROR-γt and FOXP3 gene expression and consequently produced IL-4, IL-10, IL-17 and TGF-β in whole blood. CH not only significantly increased the variables mentioned above at 12.5, 25 and 50 mg/kg but also could overcome the toxic effects of DZN on whole blood lymphocyte sub-populations and specific and total Ab production in 25 and 50 mg/kg concentrations, phagocytosis and DTH responses in 50 mg/kg, and modulation of the transcription factors and cytokine production, mainly in 25 and 50 mg/kg. In conclusion, DZN in sub-acute doses could remarkably deteriorate immune responses. However, CH can overcome the toxic effects of DZN on the immune components and functions of the immune system.
Collapse
|
48
|
Optimization of Extraction of Compound Flavonoids from Chinese Herbal Medicines Based on Quantification Theory and Evaluation of Their Antioxidant Activity. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9955690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plant-derived flavonoids have been attracting increasing research interest because of their multiple health promoting effects, where numerous investigations were carried out on the optimization of extraction and bioactivities. This study aims to optimize the extraction process of compound flavonoids (CFs) from Chinese herbal medicines and detect their antioxidant activity in vitro. CFs were extracted from the raw materials named “medicine food homology,” composed of hawthorn, lotus leaf, tartary buckwheat, cassia seed, Lycium barbarum, and Poria cocos in a mass ratio of 4 : 2 : 2 : 1.5 : 1 : 1. L9 (34) orthogonal design, level effect and engineering average estimation, and quantification theory were utilized to improve the extraction method of CFs, and the predictive model for CFs yield was constructed. The 2,2ʹ-diphenyl-1-picrylhydrazyl (DPPH), 2,2ʹ-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), hydroxyl radical scavenging rate, and reducing power of CFs were measured. The highest CFs yield was obtained under the following extraction condition: liquid-solid ratio of 35 : 1 mL/g, extraction temperature of 75°C, extraction duration of 75 min, and extraction mode enzyme-assisted extraction. The forecasted yield was 37.62%. The result was accurate and the established prediction equation was reliable (R = 0.95). The antioxidant activity of CFs was significantly positively correlated with the concentration from 0.05 to 0.4 mg/mL. The DPPH, ABTS, hydroxyl radical scavenging abilities, and the reducing power of CFs were 81.82 ± 1.75%, 49.35 ± 0.09%, 89.78 ± 0.66%, and 0.232 ± 0.001 at the concentration of 0.4 mg/mL, respectively. CFs could be exploited as natural antioxidants in pharmaceuticals and functional foods.
Collapse
|
49
|
Flavonoids regulate tumor-associated macrophages - From structure-activity relationship to clinical potential (Review). Pharmacol Res 2022; 184:106419. [PMID: 36041653 DOI: 10.1016/j.phrs.2022.106419] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/13/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
In recent years, the strategy for tumor therapy has changed from focusing on the direct killing effect of different types of therapeutic agents on cancer cells to the new mainstream of multi-mode and -pathway combined interventions in the microenvironment of the developing tumor. Flavonoids, with unique tricyclic structures, have diverse and extensive immunomodulatory and anti-cancer activities in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the most abundant immunosuppressive cells in the TME. The regulation of macrophages to fight cancer is a promising immunotherapeutic strategy. This study covers the most comprehensive cognition of flavonoids in regulating TAMs so far. Far more than a simple list of studies, we try to dig out evidence of crosstalk at the molecular level between flavonoids and TAMs from literature, in order to discuss the most relevant chemical structure and its possible relationship with the multimodal pharmacological activity, as well as systematically build a structure-activity relationship between flavonoids and TAMs. Additionally, we point out the advantages of the macro-control of flavonoids in the TME and discuss the potential clinical implications as well as areas for future research of flavonoids in regulating TAMs. These results will provide hopeful directions for the research of antitumor drugs, while providing new ideas for the pharmaceutical industry to develop more effective forms of flavonoids.
Collapse
|
50
|
Liu M, Peng Y, Che Y, Zhou M, Bai Y, Tang W, Huang S, Zhang B, Deng S, Wang C, Yu Z. MiR-146b-5p/TRAF6 axis is essential for Ginkgo biloba L. extract GBE to attenuate LPS-induced neuroinflammation. Front Pharmacol 2022; 13:978587. [PMID: 36091773 PMCID: PMC9449131 DOI: 10.3389/fphar.2022.978587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Neuroinflammation plays a crucial role in the pathogenesis and progression of various neurodegenerative diseases, including Alzheimer’s disease. The Ginkgo biloba leaf extract (GBE) has been widely used to treat cerebral and peripheral blood circulation disorders. However, its potential targets and underlying mechanisms regarding neuroinflammation have not yet been characterized. Aims: The purpose of this study was to investigate and validate the anti-neuroinflammatory properties of GBE against lipopolysaccharide (LPS)-mediated inflammation and to determine the underlying molecular mechanisms. Methods: The effect of GBE on LPS-induced release of inflammatory cytokines was examined using ELISA and western blot assay. The effects of GBE on NF-κB binding activity and translocation were determined via luciferase, streptavidin-agarose pulldown, and immunofluorescence assays. The potential targets of GBE were screened from the GEO and microRNA databases and further identified via qPCR, luciferase, gene mutation, and western blot assays. Results: GBE significantly inhibited LPS-induced pro-inflammatory responses in BV-2 and U87 cells, with no obvious cytotoxicity. GBE significantly induced miR-146b-5p expression, which negatively regulated TRAF6 expression by targeting its 3′-UTR. Thus, due to TRAF6 suppression, GBE decreases the transcriptional activity of NF-κB and the expression of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2, and finally reverses LPS-induced neuroinflammation. Conclusion: Our study revealed the anti-neuroinflammatory mechanism of GBE through the miR-146b-5p/TRAF6 axis and provided a theoretical basis for its rational clinical application.
Collapse
Affiliation(s)
- Min Liu
- Neurology Department, Dalian University Affiliated Xinhua Hospital, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yulin Peng
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yilin Che
- The 1st Department of Thoracic Medical Oncology, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meirong Zhou
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Ying Bai
- Neurology Department, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Wei Tang
- Neurology Department, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Shanshan Huang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Baojing Zhang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Sa Deng
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
- *Correspondence: Zhenlong Yu, ; Chao Wang,
| | - Zhenlong Yu
- College of Pharmacy, Dalian Medical University, Dalian, China
- *Correspondence: Zhenlong Yu, ; Chao Wang,
| |
Collapse
|