1
|
Salsabila S, Khairinisa MA, Wathoni N, Sufiawati I, Mohd Fuad WE, Khairul Ikram NK, Muchtaridi M. In vivo toxicity of chitosan-based nanoparticles: a systematic review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2025; 53:1-15. [PMID: 39924869 DOI: 10.1080/21691401.2025.2462328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Chitosan nanoparticles have been extensively utilised as polymeric drug carriers in nanoparticles formulations due to their potential to enhance drug delivery, efficacy, and safety. Numerous toxicity studies have been previously conducted to assess the safety profile of chitosan-based nanoparticles. These toxicity studies employed various methodologies, including test animals, interventions, and different routes of administration. This review aims to summarise research on the safety profile of chitosan-based nanoparticles in drug delivery, with a focus on general toxicity tests to determine LD50 and NOAEL values. It can serve as a repository and reference for chitosan-based nanoparticles, facilitating future research and further development of drugs delivery system using chitosan nanoparticles. Publications from 2014 to 2024 were obtained from PubMed, Scopus, Google Scholar, and ScienceDirect, in accordance with the inclusion and exclusion criteria.The ARRIVE 2.0 guidelines were employed to evaluate the quality and risk-of-bias in the in vivo toxicity studies. The results demonstrated favourable toxicity profiles, often exhibiting reduced toxicity compared to free drugs or substances. Acute toxicity studies consistently reported high LD50 values, frequently exceeding 5000 mg/kg body weight, while subacute studies typically revealed no significant adverse effects. Various routes of administration varied, including oral, intravenous, intraperitoneal, inhalation, and topical, each demonstrating promising safety profiles.
Collapse
Affiliation(s)
- Shela Salsabila
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| | - Miski Aghnia Khairinisa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Irna Sufiawati
- Department of Oral Medicine, Faculty of Dentistry, Universitas Padjadjaran, Sumedang, Indonesia
| | - Wan Ezumi Mohd Fuad
- Programme of Biomedicine, School of Health Sciences, USM Health Campus, Kubang Kerian, Kelantan, Malaysia
| | | | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| |
Collapse
|
2
|
Zhao XL, Xu LY, Li KD, Tang F, Liu D, Zhang JN, Cao ZJ, Peng C, Ao H. Exploring dried ginger essential oil as a therapeutic strategy for 5-FU-induced mucositis: Gut microbiota and tryptophan metabolite IAA-AHR/IL-22/STAT3 signaling axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119616. [PMID: 40074099 DOI: 10.1016/j.jep.2025.119616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/01/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 5-Fluorouracil (5-FU) commonly induces severe mucositis, causing pain, inflammation, and gastrointestinal dysfunction, which significantly increases patient morbidity and reduces quality of life. In Ayurveda, Traditional Chinese Medicine, and other ethnopharmacological practices, dried ginger has been widely used to alleviate symptoms such as nausea, vomiting, diarrhea, and inflammation, highlighting its important role in traditional medicine. AIM OF THE STUDY This study explored the potential of dried ginger essential oil (DGEO) in mitigating intestinal epithelial barrier damage in mice with mucositis induced by 5-FU. METHODS The therapeutic effects of DGEO were evaluated by measurements of weight changes, diarrhea scores, ELISA, and H&E. Further investigations included 16S rRNA sequencing, untargeted metabolomics, molecular docking, and HPLC-MS/MS to explore its underlying mechanisms, with validation performed using western blotting and ELISA. RESULTS The results demonstrated that DGEO was effective in alleviating mucositis symptoms. It also improved the gut microbiota, enhanced the biotransformation of tryptophan to indole-3-acetic acid (IAA), and elevated the protein expressions of the AHR, CYP1A1, and p-STAT3, as well as level of IL-22. Moreover, DGEO improved the expressions of tight junction (TJ) proteins and anti-apoptotic proteins, enhancing intestinal barrier integrity. CONCLUSION These findings indicated that DGEO ameliorated 5-FU-induced mucositis by modulating gut microbiota and the tryptophan metabolite IAA-AHR/IL-22/STAT3 signaling axis, providing new insights into its therapeutic applications, particularly its ability to regulate gut microbiota and related signaling pathways.
Collapse
Affiliation(s)
- Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke-Di Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang-Jing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Zhang G, Lian Y, Li Q, Zhou S, Zhang L, Chen L, Tang J, Liu H, Li N, Pan Q, Gu Y, Lin N, Wang H, Wang X, Guo J, Zhang W, Jin Z, Xu B, Su X, Lin M, Han Q, Qin J. Vagal pathway activation links chronic stress to decline in intestinal stem cell function. Cell Stem Cell 2025:S1934-5909(25)00084-0. [PMID: 40120585 DOI: 10.1016/j.stem.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/11/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Chronic stress adversely affects intestinal health, but the specific neural pathways linking the brain to intestinal tissue are not fully understood. Here, we show that chronic stress-induced activation of the central amygdala-dorsal motor nucleus of the vagus (CeA-DMV) pathway accelerates premature aging and impairs the stemness of intestinal stem cells (ISCs). This pathway influences ISC function independently of the microbiota, the hypothalamic-pituitary-adrenal (HPA) axis, the immune response, and the sympathetic nervous system (SNS). Under chronic stress, DMV-mediated vagal activation prompts cholinergic enteric neurons to release acetylcholine (ACh), which engages ISCs via the M3 muscarinic acetylcholine receptor (CHRM3). This interaction activates the p38 mitogen-activated protein kinase (MAPK) pathway, triggering growth arrest and mitochondrial fragmentation, thereby accelerating an aging-like decline in ISCs. Together, our findings provide insights into an alternative neural mechanism that links stress to intestinal dysfunction. Strategies targeting the DMV-associated vagal pathway represent potential therapeutic approaches for stress-induced intestinal diseases.
Collapse
Affiliation(s)
- Guoying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Yannan Lian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Shanghai 200032, China
| | - Shudi Zhou
- Department of Endocrinology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Lili Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Liting Chen
- Department of Emergency and Critical Disease, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junzhe Tang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Shanghai 200032, China
| | - Hailong Liu
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Qiang Pan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Yongqiang Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Naiheng Lin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hanling Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xuege Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wei Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zige Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Beitao Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xiao Su
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Qi Han
- Department of Emergency and Critical Disease, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
4
|
Ghosh R, Bhowmik A, Biswas S, Samanta P, Sarkar R, Pakhira S, Mondal M, Hajra S, Saha P. Natural flavonoid Orientin restricts 5-Fluorouracil induced cancer stem cells mediated angiogenesis by regulating HIF1α and VEGFA in colorectal cancer. Mol Med 2025; 31:85. [PMID: 40045186 PMCID: PMC11881437 DOI: 10.1186/s10020-024-01032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/06/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Cancer stem cells are a small subpopulation of cells which are responsible for tumor metastasis, angiogenesis, drug resistance etc. 5-Fluorouracil (5FU), a common therapeutic drug used in colorectal cancer treatment is reported to enrich CSCs, tumor recurrence and induces severe organ toxicities resulting in poor clinical outcome in patients. Therefore, we introduced a natural flavonoid Orientin in combination with 5FU to mitigate the CSC mediated angiogenesis and induced toxicities. METHODS Tumorosphere generation, flow cytometry, immunofluorescence assay, and western blotting were performed by using 5FU and Orientin individually and both treated colorectal cells and CSCs. In silico study was carried out to check the interaction between HIF1α and Orientin. In ovo chorioallantoic membrane (CAM) assay and tube formation assay using HUVECs were performed to monitor CSC mediated angiogenesis. In vivo CT26 syngeneic mice model was used to validate in silico and ex vivo results. RESULTS We found that 5FU treatment significantly increased the CD44+/CD133+ CSC population. In contrast, this CSC population in CSC enriched spheres (CES) derived from HCT116 cells were decreased by combination of Orientin and 5FU. Decrease of CSC's stemness properties was also noted, as evidenced by the downregulation of NANOG, SOX2 and OCT4. This new therapeutic strategy also inhibited CSC mediated angiogenesis by downregulating 5FU induced ROS, NO and LPO in those tumorospheres. Combination of Orientin and 5FU significantly reduced CSC mediated angiogenesis in HUVEC and CAM. Additionally, in silico study predicted that Orientin can bind to the PAS domain of HIF1α, a crucial factor for promoting angiogenesis. Expression of HIF1α and VEGFA were also decreased when the CESs were exposed to the combinatorial treatment. Additionally, we found that treatment with 5FU alone resulted reduction in tumor volume but it enriched CSCs and produced nephrotoxicity and hepatotoxicity in vivo. Combined treatment also considerably reduced the CD44+/CD133+ CSC population and hindered angiogenesis in a therapeutic in vivo model in BALB/c mice. CONCLUSIONS This novel treatment strategy of "Orientin with 5FU" is likely to improve the efficiency of conventional chemotherapy and may suppress disease recurrence in colorectal cancer by limiting CSC mediated angiogenesis.
Collapse
Affiliation(s)
- Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
5
|
Sun VKT, Lam JWY, Ng MHF, Wong WY, Tai WCS, Chow DHK, Cheung AKK, Lau BWM, Cheng ASK, Yee BK. Early life environmental enrichment yields resilience to selected behavioural and brain responses to 5-fluorouracil in mice. Brain Behav Immun 2025; 125:334-354. [PMID: 39826582 DOI: 10.1016/j.bbi.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Chemotherapy remains the primary treatment modality for multiple cancer types, but the cytotoxicity of chemotherapeutic drugs often leads to persistent psychological disturbances that undermine daily function. Minimizing such unwanted effects is challenging in the rehabilitation/prehabilitation of cancer survivors, hence the impetus to identify modifiable external factors capable of improving the recovery process. The importance of social stimulation has been demonstrated in a mouse model showing that grouped housing lowered the likelihood of developing mood disturbance following exposure to chemotherapeutic drugs compared with isolated housing. Social impoverishment thus constitutes a risk factor, and social enrichment may be protective. However, the potential benefits of conventional environmental enrichment that entails extensive sensory and physical stimulation have remained untested in mice. Using C57BL/6 mice, we investigated this research gap by introducing environmental enrichment from an early age (at weaning) to maximize its resilience potential and delaying exposure to the common chemotherapeutic drug, 5-fluorouracil (5-FU), until adulthood (10 weeks old), which comprised six cycles of injections at 40 mg/kg/day × 5 days per fortnight. Our results showed that enriched housing nullified the elevation in anxiety behaviour and proliferation of hippocampal microglial cells caused by chronic 5-FU exposure. Enriched housing also lowered hippocampal IL-17 expression, effectively buffered against the stimulated release of IL-17 by 5-FU. These data extended the potential benefits of social engagement and an active lifestyle in easing the burdens of chemotherapy. Notwithstanding, the negative impacts of 5-FU on hippocampal neurogenesis and musculoskeletal properties were only notable in the enriched mice, suggesting that while environmental enrichment can buffer against certain psychological side effects, the enhanced adaptive plasticity may also increase the susceptibility to specific antineoplastic effects of chemotherapy.
Collapse
Affiliation(s)
- Vic K T Sun
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Jimmy W Y Lam
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Marcus H F Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Wing-Yan Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong; The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hong Kong
| | - William C S Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong; The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hong Kong; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong
| | - Dick H K Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong; Department of Health Sciences, Hong Kong Metropolitan University, Hong Kong
| | - Alex K K Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Benson W M Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Andy S K Cheng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Benjamin K Yee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Mental Health Research Centre, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
6
|
Repici A, Capra AP, Hasan A, Basilotta R, Scuderi SA, Campolo M, Paterniti I, Esposito E, Ardizzone A. Ulva pertusa Modulated Colonic Oxidative Stress Markers and Clinical Parameters: A Potential Adjuvant Therapy to Manage Side Effects During 5-FU Regimen. Int J Mol Sci 2024; 25:12988. [PMID: 39684698 DOI: 10.3390/ijms252312988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
One of the most used chemotherapy agents in clinical practice is 5-Fluorouracil (5-FU), a fluorinated pyrimidine in the category of antimetabolite agents. 5-FU is used to treat a variety of cancers, including colon, breast, pancreatic, and stomach cancers, and its efficacy lies in its direct impact on the patient's DNA and RNA. Specifically, its mechanism blocks the enzymes thymidylate synthetase and uracil phosphatase, inhibiting the synthesis of uracil, which cannot be incorporated into nuclear and cytoplasmic RNA. Despite being one of the most used drugs in oncology, it is associated with several significant side effects, including inflammation of the mouth, loss of appetite, and reduction in blood cells. In our study, we examined the reduction of side effects in a 5-FU regimen administered at doses of 15 mg/kg and 6 mg/kg for 14 days in 6-week-old male Sprague-Dawley rats. On the 14th day, the rats were treated orally for 2 weeks with 100 mg/kg of Ulva pertusa, a well-known seaweed from the Ulvaceae family, which has demonstrated powerful biological properties. The administration of this green alga alleviated the side effects of 5-FU, improving several parameters including body weight, food intake, and diarrhea index. It also helped reduce side effects in the blood, kidneys, and liver. Histological and molecular analyses were conducted on serum and colon tissues from the rats, examining changes in colon structure and the release of oxidative stress markers such as iNOS, COX-2, and nitrotyrosine. Several biochemical indicators, including SOD, CAT, GSH, MDA, and ascorbic acid, were also evaluated. Overall, our data indicated Ulva pertusa to be a promising therapeutic against 5-FU's adverse effects, therefore, it could be worthwhile to investigate the possibility of using this alga in safer cancer treatment formulations. Certainly, future preclinical and clinical studies could assess the alga's efficacy in diverse cancer treatment regimens, exploring its role as an adjuvant therapy that may reduce chemotherapy-related toxicity without compromising therapeutic outcomes.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ahmed Hasan
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Center of Neuroscience, School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
7
|
Hashimoto Y, Yoshida Y, Yamada T, Yoshimatsu G, Yoshimura F, Hasegawa S. Association Between Changes in Plasma Capecitabine Concentrations and Adverse Events in the Treatment of Colorectal Cancer. Cureus 2024; 16:e71341. [PMID: 39534818 PMCID: PMC11555300 DOI: 10.7759/cureus.71341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Background Therapeutic drug monitoring (TDM) is an effective approach to improving the efficacy of drugs with a narrow therapeutic index and high toxicity. TDM-guided dosing of 5-fluorouracil (5-FU) has been shown to result in superior efficacy and fewer adverse events compared to body surface area (BSA)-based dosing. Therefore, accurate measurement of plasma 5-FU concentrations after capecitabine administration is necessary. Capecitabine is a prodrug of 5-FU and is metabolized to 5-FU in multiple steps in the gastrointestinal tract, liver, and within tumors. To solve the problem of frequent blood draws for TDM, we reduced the number of blood draws to two and examined whether changes in 5-FU concentration correlated with adverse events. Methods This study investigated the relationship between the changes in plasma 5-FU concentrations after one and two hours of capecitabine administration in 36 patients and adverse events based on drug concentrations determined after adding 5-NU to the plasma samples. Concentration gradients and adverse events were estimated using the Mann-Whitney test. Results The median one- and two-hour plasma 5-FU concentrations were 67.5 (range 5-307) and 85.5 (range 19-246) ng/mL, respectively. The plasma 5-FU concentration gradient, defined as the difference between the one- and two-hour concentrations, was significantly higher in patients with diarrhea and nausea (p = 0.0234 and p = 0.0409, respectively). Conclusion The high plasma 5-FU concentration gradient suggests rapid degradation of 5-FU into its metabolites, which may lead to predict intestinal mucosal damage, diarrhea, and nausea.
Collapse
Affiliation(s)
| | - Yoichiro Yoshida
- Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka, JPN
| | - Teppei Yamada
- Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka, JPN
| | - Gumpei Yoshimatsu
- Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka, JPN
| | | | - Suguru Hasegawa
- Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka, JPN
| |
Collapse
|
8
|
Demir S, Turkmen Alemdar N, Kucuk H, Ayazoglu Demir E, Menteşe A, Aliyazıcıoğlu Y. Therapeutic effect of berberine against 5-fluorouracil induced ovarian toxicity in rats. Biotech Histochem 2024; 99:379-385. [PMID: 39440588 DOI: 10.1080/10520295.2024.2415005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Berberine (BER) is a naturally occurring alkaloid with a multitude of beneficial effects on human health. Although it is one of the most studied phytochemicals, its curative effect against ovarian damage caused by 5-fluorouracil (5-FU) has not been demonstrated to date. The aim of this study was to investigate the possible protective effect of BER against 5-FU-induced ovotoxicity, focusing on its ability to attenuate oxidative stress, inflammation and apoptosis. The 30 female rats were randomly divided into five groups: Control, BER (2 mg/kg), 5-FU (100 mg/kg), 5-FU+BER (1 mg/kg) and 5-FU+BER (2 mg/kg). The levels of malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase (SOD), catalase (CAT), 8-hydroxy-2'-deoxyguanosine (8-OHdG), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and caspase-3 were determined using spectrophotometric methods. In addition, ovarian samples were evaluated histopathologically using hematoxylin&eosin staining method. The MDA, TOS, 8-OHdG, IL-6, TNF-α and caspase-3 levels significantly increased by 5-FU administration. Also, we found that 5-FU significantly decreased TAS, SOD and CAT levels. Treatments with BER significantly attenuated the 5-FU-induced ovarian damage via increasing the antioxidant capacity and reducing the oxidative stress, inflammation and apoptosis in a dose-dependent manner. Moreover, the ovoprotective effect of BER was also confirmed by histopathological evaluation. BER may be evaluated as a potential candidate molecule to reduce 5-FU-induced ovarian toxicity.
Collapse
Affiliation(s)
- Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkiye
| | - Nihal Turkmen Alemdar
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize, Turkiye
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon, Turkiye
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, Trabzon, Turkiye
| | - Ahmet Menteşe
- Department of Medical Services and Techniques, Vocational School of Health Services, Karadeniz Technical University, Trabzon, Turkiye
| | - Yuksel Aliyazıcıoğlu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| |
Collapse
|
9
|
Wang JL, Yeh CH, Huang SH, Wu LSH, Chen MCM. Effects of Resistant-Starch-Encapsulated Probiotic Cocktail on Intestines Damaged by 5-Fluorouracil. Biomedicines 2024; 12:1912. [PMID: 39200376 PMCID: PMC11351836 DOI: 10.3390/biomedicines12081912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Probiotics and prebiotics have gained attention for their potential health benefits. However, their efficacy hinges on probiotic survival through the harsh gastrointestinal environment. Microencapsulation techniques provide a solution, with resistant starch (RS)-based techniques showing promise in maintaining probiotic viability. Specifically, RS-encapsulated probiotics significantly improved probiotic survival in gastric acid, bile salts, and simulated intestinal conditions. This study investigated the effects of a resistant-starch-encapsulated probiotic cocktail (RS-Pro) in the context of 5-fluorouracil (5-FU) chemotherapy, which frequently induces microbiota dysbiosis and intestinal mucositis. Female BALB/c mice were divided into three groups: a 5-FU group, a 5-FU+Pro group receiving free probiotics, and a 5-FU+RS-Pro group receiving RS-encapsulated probiotics. After 28 days of treatment, analyses were conducted on fecal microbiota, intestinal histology, peripheral blood cell counts, and body and organ weights. It was revealed by 16S rRNA MiSeq sequencing that 5-FU treatment disrupted gut microbiota composition, reduced microbial diversity, and caused dysbiosis. RS-Pro treatment restored microbial diversity and increased the population of beneficial bacteria, such as Muribaculaceae, which play roles in carbohydrate and polyphenol metabolism. Furthermore, 5-FU administration induced moderate intestinal mucositis, characterized by reduced cellularity and shortened villi. However, RS-Pro treatment attenuated 5-FU-induced intestinal damage, preserving villus length. Mild leukopenia observed in the 5-FU-treated mice was partially alleviated in 5-FU+Pro and 5-FU+RS-Pro groups. These findings suggest that RS-Pro may serve as an adjunct to chemotherapy, potentially reducing adverse effects and improving therapeutic outcomes in future clinical applications.
Collapse
Affiliation(s)
- Jui-Ling Wang
- Animal Testing Division, National Applied Research Laboratories, National Laboratory Animal Center, Tainan 744, Taiwan;
| | - Chin-Hsing Yeh
- Fecula Biotech Co., Ltd., Tainan 744, Taiwan; (C.-H.Y.); (S.-H.H.)
| | - Shih-Hung Huang
- Fecula Biotech Co., Ltd., Tainan 744, Taiwan; (C.-H.Y.); (S.-H.H.)
| | - Lawrence Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | | |
Collapse
|
10
|
Ding Y, Zhou R, Shi G, Jiang Y, Li Z, Xu X, Ma J, Huang J, Fu C, Zhou H, Wang H, Li J, Dong Z, Yu Q, Jiang K, An Y, Liu Y, Li Y, Yu L, Li Z, Zhang X, Wang J. Cadherin 17 Nanobody-Mediated Near-Infrared-II Fluorescence Imaging-Guided Surgery and Immunotoxin Delivery for Colorectal Cancer. Biomater Res 2024; 28:0041. [PMID: 38911825 PMCID: PMC11192146 DOI: 10.34133/bmr.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Surgery and targeted therapy are of equal importance for colorectal cancer (CRC) treatment. However, complete CRC tumor resection remains challenging, and new targeted agents are also needed for efficient CRC treatment. Cadherin 17 (CDH17) is a membrane protein that is highly expressed in CRC and, therefore, is an ideal target for imaging-guided surgery and therapeutics. This study utilizes CDH17 nanobody (E8-Nb) with the near-infrared (NIR) fluorescent dye IRDye800CW to construct a NIR-II fluorescent probe, E8-Nb-IR800CW, and a Pseudomonas exotoxin (PE)-based immunotoxin, E8-Nb-PE38, to evaluate their performance for CRC imaging, imaging-guided precise tumor excision, and antitumor effects. Our results show that E8-Nb-IR800CW efficiently recognizes CDH17 in CRC cells and tumor tissues, produces high-quality NIR-II images for CRC tumors, and enables precise tumor removal guided by NIR-II imaging. Additionally, fluorescent imaging confirms the targeting ability and specificity of the immunotoxin toward CDH17-positive tumors, providing the direct visible evidence for immunotoxin therapy. E8-Nb-PE38 immunotoxin markedly delays the growth of CRC through the induction of apoptosis and immunogenic cell death (ICD) in multiple CRC tumor models. Furthermore, E8-Nb-PE38 combined with 5-FU exerts synergistically antitumor effects and extends survival. This study highlights CDH17 as a promising target for CRC imaging, imaging-guided surgery, and drug delivery. Nanobodies targeting CDH17 hold great potential to construct NIR-II fluorescent probes for surgery navigation, and PE-based toxins fused with CDH17 nanobodies represent a novel therapeutic strategy for CRC treatment. Further investigation is warranted to validate these findings for potential clinical translation.
Collapse
Affiliation(s)
- Youbin Ding
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Runhua Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
- Department of Pharmacy, Nanfang Hospital,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Guangwei Shi
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
- Department of Neurosurgery and Medical Research Center, Shunde Hospital,
Southern Medical University (The First People’s Hospital of Shunde Foshan), Guangzhou 510515, P. R. China
| | - Yuke Jiang
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Pingcheng District, Datong, Shanxi Province 037009, P. R. China
| | - Xiaolong Xu
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Jingbo Ma
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Jingnan Huang
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Chunjin Fu
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Hongchao Zhou
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Huifang Wang
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Jiexuan Li
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Zhiyu Dong
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Qingling Yu
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
| | - Kexin Jiang
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
| | - Yehai An
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Yawei Liu
- Department of Neurosurgery and Medical Research Center, Shunde Hospital,
Southern Medical University (The First People’s Hospital of Shunde Foshan), Guangzhou 510515, P. R. China
| | - Yilei Li
- Department of Pharmacy, Nanfang Hospital,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Le Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Zhijie Li
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
| | - Jigang Wang
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy,
Henan University, Kaifeng 475004, Henan, P. R. China
- Department of Oncology,
the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| |
Collapse
|
11
|
Yuan W, Ji G, Shi X, Sun Z, Liu C, Yu Y, Li W, Wang X, Hu H. The male reproductive toxicity after 5-Fluorouracil exposure: DNA damage, oxidative stress, and mitochondrial dysfunction in vitro and in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116465. [PMID: 38749198 DOI: 10.1016/j.ecoenv.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/07/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
5-Fluorouracil (5-FU), a chemotherapeutic drug used to treat a variety of cancers, can enter the environment through different routes, causing serious public health and environmental concerns. It has been reported that 5-FU exposure adversely affects male reproductive function, and its effects on this system cannot be avoided. In this study, using western blotting and quantitative polymerase chain reaction studies, we found that 5-FU promoted testicular injury by inducing oxidative stress, which was accompanied by the inhibition of nuclear factor erythroid 2-related factor 2/antioxidant response element signaling. Accumulation of reactive oxygen species (ROS) aggravated 5-FU-mediated mitochondrial dysfunction and apoptosis in murine cell lines and testes, indicating oxidative stress and mitochondrial-dependent apoptotic signaling play crucial roles in the damage of spermatogenic cells caused. N-Acetyl-L-cysteine, an antioxidant that scavenges intracellular ROS, protected spermatogenic cells from 5-FU-induced oxidative damage and mitochondrial dysfunction, revealing the important role of ROS in testicular dysfunction caused by 5-FU. We found that 5-FU exposure induces testicular cell apoptosis through ROS-mediated mitochondria pathway in mice. In summary, our findings revealed the reproductive toxicological effect of 5-FU on mice and its mechanism, provided basic data reference for adverse ecological and human health outcomes associated with 5-FU contamination or poisoning.
Collapse
Affiliation(s)
- Wenzheng Yuan
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Guojie Ji
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Xiaowei Shi
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Zhibin Sun
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Chenyan Liu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Yangyang Yu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Wenmi Li
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Xiaoyi Wang
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Huanhuan Hu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China.
| |
Collapse
|
12
|
Kuo YR, Lin CH, Lin WS, Pan MH. L-Glutamine Substantially Improves 5-Fluorouracil-Induced Intestinal Mucositis by Modulating Gut Microbiota and Maintaining the Integrity of the Gut Barrier in Mice. Mol Nutr Food Res 2024; 68:e2300704. [PMID: 38656560 DOI: 10.1002/mnfr.202300704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/26/2024] [Indexed: 04/26/2024]
Abstract
SCOPE This study investigates the potential of glutamine to mitigate intestinal mucositis and dysbiosis caused by the chemotherapeutic agent 5-fluorouracil (5-FU). METHODS AND RESULTS Over twelve days, Institute of Cancer Research (ICR) mice are given low (0.5 mg kg-1) or high (2 mg kg-1) doses of L-Glutamine daily, with 5-FU (50 mg kg-1) administered between days six and nine. Mice receiving only 5-FU exhibited weight loss, diarrhea, abnormal cell growth, and colonic inflammation, correlated with decreased mucin proteins, increased endotoxins, reduced fecal short-chain fatty acids, and altered gut microbiota. Glutamine supplementation counteracted these effects by inhibiting the Toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB) pathway, modulating nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) oxidative stress proteins, and increasing mammalian target of rapamycin (mTOR) levels, thereby enhancing microbial diversity and protecting intestinal mucosa. CONCLUSIONS These findings underscore glutamine's potential in preventing 5-FU-induced mucositis by modulating gut microbiota and inflammation pathways.
Collapse
Affiliation(s)
- Ya-Ru Kuo
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Hung Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
- Department of Food Science, National Quemoy University, Quemoy County, 89250, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, 41354, Taiwan
| |
Collapse
|
13
|
Li M, Liu Y, Liu Y, Lin J, Ding L, Wu S, Gong J. Fabrication of targeted and pH responsive lysozyme-hyaluronan nanoparticles for 5-fluorouracil and curcumin co-delivery in colorectal cancer therapy. Int J Biol Macromol 2024; 254:127836. [PMID: 37931859 DOI: 10.1016/j.ijbiomac.2023.127836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Green nanotechnology is considered a promising method to construct functional materials with significant anticancer activity, while overcoming the shortcomings of traditional synthesis process complexity and high organic solvents consumption. Thus, in this study, we report for the first time the rational design and green synthesis of functionalized 5-fluorouracil and curcumin co-loaded lysozyme-hyaluronan composite colloidal nanoparticles (5-Fu/Cur@LHNPs) for better targeted colorectal cancer therapy with minimized side effects. The functionalized 5-Fu/Cur@LHNPs exhibit stabilized particle size (126.1 nm) with excellent homogeneity (PDI = 0.1), favorable colloidal stabilities, and excellent re-dispersibility. In vitro cell experiments illustrate that the cellular uptake of 5-Fu/Cur@LHNPs was significantly improved and further promoted a higher apoptosis ratio of HCT-116 cells. Compared with the control group, the 5-Fu/Cur@LHNPs formulation group achieved effective inhibition (60.1 %) of colorectal tumor growth. The alcohol-free self-assembly method to construct 5-Fu/Cur@LHNPs is simple and safe for a translational chemotherapy drug, also to promote more robust delivery systems for treating colorectal cancer.
Collapse
Affiliation(s)
- Maolin Li
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yin Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Yanbo Liu
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Jiawei Lin
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China.
| | - Songgu Wu
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China
| |
Collapse
|
14
|
Tang D, Qiu R, Qiu X, Sun M, Su M, Tao Z, Zhang L, Tao S. Dietary restriction rescues 5-fluorouracil-induced lethal intestinal toxicity in old mice by blocking translocation of opportunistic pathogens. Gut Microbes 2024; 16:2355693. [PMID: 38780487 PMCID: PMC11123560 DOI: 10.1080/19490976.2024.2355693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Chemotherapy remains a major treatment for malignant tumors, yet the application of standard dose intensity chemotherapy is limited due to the side effects of cytotoxic drugs, especially in old populations. The underlying mechanisms of cytotoxicity and strategies to increase the safety and tolerance of chemotherapy remain to be explored. Using 5-fluorouracil (5-FU), a cornerstone chemotherapeutic drug, we demonstrate that the main cause of death in ad libitum (AL) fed mice after 5-FU chemotherapy was infection caused by translocation of intestinal opportunistic pathogens. We show that these opportunistic pathogens greatly increase in the intestine after chemotherapy, which was closely related to loss of intestinal lysozyme. Of note, two weeks of dietary restriction (DR) prior to chemotherapy significantly protected the loss of lysozyme and increased the content of the beneficial Lactobacillus genera, resulting in a substantial inhibition of intestinal opportunistic pathogens and their translocation. The rescue effect of DR could be mimicked by Lysozyme or Lactobacillus gavage. Our study provides the first evidence that DR achieved a comprehensive protection of the intestinal physical, biological and chemical barriers, which significantly improved the overall survival of 5-FU-treated mice. Importantly, the above findings were more prominent in old mice. Furthermore, we show that patients over 65 years old have enriched opportunistic pathogens in their gut microbiota, especially after 5-FU based chemotherapy. Our study reveals important mechanisms for the poor chemotherapy tolerance of the elderly population, which can be significantly improved by short-term DR. This study generates new insights into methods for improving the chemotherapeutic prognosis by increasing the chemotherapy tolerance and safety of patients with malignant tumors.
Collapse
Affiliation(s)
- Duozhuang Tang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rongrong Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingxing Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Man Sun
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mingyue Su
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhendong Tao
- Department of Medical Laboratory Medicine, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Nanchang, Jiangxi, China
| | - Liu Zhang
- Intensive Care Unit, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Si Tao
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Ayazoglu Demir E, Mentese A, Kucuk H, Turkmen Alemdar N, Demir S. The therapeutic effect of silibinin against 5-fluorouracil-induced ovarian toxicity in rats. J Biochem Mol Toxicol 2023; 37:e23408. [PMID: 37335224 DOI: 10.1002/jbt.23408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
5-Fluorouracil (5-FU) is a fluoropyrimidine group antineoplastic drug with antimetabolite properties and ovotoxicity is one of the most important side effects. Silibinin (SLB) is a natural compound that is used worldwide and stands out with its antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the therapeutic effect of SLB in 5-FU-induced ovototoxicity using biochemical and histological analysis. This study was carried out in five main groups containing six rats in each group: control, SLB (5 mg/kg), 5-FU (100 mg/kg), 5-FU + SLB (2.5 mg/kg), and 5-FU + SLB (5 mg/kg). The levels of ovarian malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase (SOD), catalase (CAT), 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), and caspase-3 were determined using spectrophotometric methods. Hematoxylin and eosin staining method was employed for histopathological examination. MDA, TOS, 8-OHdG, TNF-α, MPO, and caspase-3 levels in 5-FU group were significantly increased compared with the control group, while the levels of TAS, SOD, and CAT were decreased (p < 0.05). SLB treatments statistically significantly restored this damage in a dose-dependent manner (p < 0.05). Although vascular congestion, edema, hemorrhage, follicular degeneration, and leukocyte infiltration were significantly higher in the 5-FU group compared with the control group, SLB treatments also statistically significantly restored these damages (p < 0.05). In conclusion, SLB has a therapeutic effect on the ovarian damage induced by 5-FU via decreasing the levels of oxidative stress, inflammation, and apoptosis. It may be helpful to consider the usefulness of SLB as an adjuvant therapy to counteract the side effects of chemotherapy.
Collapse
Affiliation(s)
- Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, Trabzon, Turkiye
| | - Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon, Turkiye
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon, Turkiye
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize, Turkiye
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkiye
| |
Collapse
|
16
|
Abbasi S, Rivand H, Eshaghi F, Moosavi MA, Amanpour S, McDermott MF, Rahmati M. Inhibition of IRE1 RNase activity modulates tumor cell progression and enhances the response to chemotherapy in colorectal cancer. Med Oncol 2023; 40:247. [PMID: 37480455 DOI: 10.1007/s12032-023-02105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Drug resistance is one of the clinical challenges that limits the effectiveness of chemotherapy. Recent reports suggest that the unfolded protein response (UPR) and endoplasmic reticulum stress-adaptation signalling pathway, along with increased activation of its inositol-requiring enzyme 1α (IRE1α) arm, may be contributors to the pathogenesis of colorectal cancer (CRC). Here, we aimed to target the IRE1α/XBP1 pathway in order to sensitise CRC cells to the effects of chemotherapy. The CT26 colorectal cell line was treated with tunicamycin, and then was exposed to different concentrations of 5-fluorouracil (5-FU), either alone and/or in combination with the IRE1α inhibitor, 4µ8C. An MTT assay, flow cytometry and RT-PCR were performed to determine cell growth, apoptosis and IRE1α activity, respectively. In vivo BALB/c syngeneic colorectal mice received chemotherapeutic drugs. Treatment responses, tumour sizes and cytotoxicity were assessed via a range of pathological tests. 4µ8C was found to inhibit the growth of CRC, at a concentration of 10 µg/ml, without detectable cytotoxic effects and also significantly enhanced the cytotoxic potential of 5-FU, in CRC cells. In vivo experiments revealed that 4µ8C, at a concentration of 50 µM/kg prevented tumour growth without any cytotoxic or metastatic effects. Interestingly, the combination of 4µ8C with 5-FU remarkably enhanced drug responses, up to 40-60% and also lead to significantly greater inhibition of tumour growth, in comparison to monotherapy, in CRC mice. Targeting the IRE1α/XBP1 axis of the UPR could enhance the effectiveness of chemotherapy in both in vitro and in vivo models of CRC.
Collapse
Affiliation(s)
- Sana Abbasi
- Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Rivand
- Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Eshaghi
- Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology (IMB), National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O Box 14965/161, Tehran, Iran
| | - Saeid Amanpour
- Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK.
| | - Marveh Rahmati
- Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
AL-hoshary DM, Zalzala MH. Mucoprotective effect of ellagic acid in 5 fluorouracil-induced intestinal mucositis model. J Med Life 2023; 16:712-718. [PMID: 37520490 PMCID: PMC10375349 DOI: 10.25122/jml-2023-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/23/2023] [Indexed: 08/01/2023] Open
Abstract
Intestinal mucositis (IM) is a common side effect of several anticancer medications, including 5-fluorouracil (5-FU), and can lead to treatment disruptions and compromised outcomes. IM has severe clinical effects such as diarrhea, erythematous mucosal lesions, and the development of ulcers accompanied by excruciating pain. This study aimed to evaluate the mucoprotective effects of ellagic acid on 5-FU-induced IM in mice. Mice were administered normal saline intraperitoneally for six days, followed by intraperitoneal injection of 5-FU for four days at a dose of 50 mg per kilogram. Ellagic acid was orally administered to the mice in groups III and IV in two doses (5 mg and 10 mg), with a one-hour time separation from 5-FU for ten days. At the end of the experiment, small intestine tissue was collected to measure the levels of antioxidant enzymes superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and inflammatory cytokines (IL-6, IL-B, TNF) using ELISA assay. Pre-treatment with ellagic acid led to a significant decrease in pro-inflammatory cytokines and improved antioxidant enzyme levels compared to the 5-FU group. Histopathological analysis demonstrated the mucoprotective effect of ellagic acid against 5-FU-induced intestinal changes, including villi atrophy, damage to stem cells, infiltration of inflammatory cells in the mucosal layer, edema, damage to muscular mucosa, and decreased oxidative stress production, such as MDA. These results suggest that ellagic acid may be a potential candidate for treating IM induced by antineoplastic drugs.
Collapse
Affiliation(s)
- Dareen Mahmood AL-hoshary
- Al-Kut Hospital for Gynecology Obstetrics and Pediatrics, Ministry of Health, Baghdad, Iraq
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Munaf Hashim Zalzala
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
18
|
Elzahhar PA, Nematalla HA, Al-Koussa H, Abrahamian C, El-Yazbi AF, Bodgi L, Bou-Gharios J, Azzi J, Al Choboq J, Labib HF, Kheir WA, Abu-Serie MM, Elrewiny MA, El-Yazbi AF, Belal ASF. Inclusion of Nitrofurantoin into the Realm of Cancer Chemotherapy via Biology-Oriented Synthesis and Drug Repurposing. J Med Chem 2023; 66:4565-4587. [PMID: 36921275 DOI: 10.1021/acs.jmedchem.2c01408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Structural modifications of the antibacterial drug nitrofurantoin were envisioned, employing drug repurposing and biology-oriented drug synthesis, to serve as possible anticancer agents. Eleven compounds showed superior safety in non-cancerous human cells. Their antitumor efficacy was assessed on colorectal, breast, cervical, and liver cancer cells. Three compounds induced oxidative DNA damage in cancer cells with subsequent cellular apoptosis. They also upregulated the expression of Bax while downregulated that of Bcl-2 along with activating caspase 3/7. The DNA damage induced by these compounds, demonstrated by pATM nuclear shuttling, was comparable in both MCF7 and MDA-MB-231 (p53 mutant) cell lines. Mechanistic studies confirmed the dependence of these compounds on p53-mediated pathways as they suppressed the p53-MDM2 interaction. Indeed, exposure of radiosensitive prostatic cancer cells to low non-cytotoxic concentrations of compound 1 enhanced the cytotoxic response to radiation indicating a possible synergistic effect. In vivo antitumor activity was verified in an MCF7-xenograft animal model.
Collapse
Affiliation(s)
- Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Hisham A Nematalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22516, Egypt
| | - Houssam Al-Koussa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut 11072020, Lebanon
| | - Carla Abrahamian
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Amira F El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Larry Bodgi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut 11072020, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11072020, Lebanon
| | - Jolie Bou-Gharios
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut 11072020, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11072020, Lebanon
| | - Joyce Azzi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut 11072020, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11072020, Lebanon
| | - Joelle Al Choboq
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut 11072020, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11072020, Lebanon
| | - Hala F Labib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Arab Academy of Science Technology and Maritime Transport, Alexandria 21913, Egypt
| | - Wassim Abou Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11072020, Lebanon
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Mohamed A Elrewiny
- Faculty of Pharmacy and the Research and Innovation Hub, Alamein International University, Alamein 5060335, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut 11072020, Lebanon.,Faculty of Pharmacy and the Research and Innovation Hub, Alamein International University, Alamein 5060335, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
19
|
Low-Molecular-Weight β-1,3-1,6-Glucan Derived from Aureobasidium pullulans Exhibits Anticancer Activity by Inducing Apoptosis in Colorectal Cancer Cells. Biomedicines 2023; 11:biomedicines11020529. [PMID: 36831065 PMCID: PMC9953391 DOI: 10.3390/biomedicines11020529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
β-glucan, a plant polysaccharide, mainly exists in plant cell walls of oats, barley, and wheat. It is attracting attention due to its high potential for use as functional foods and pharmaceuticals. We have previously reported that low-molecular-weight Aureobasidium pullulans-fermented β-D-glucan (LMW-AP-FBG) could inhibit inflammatory responses by inhibiting mitogen-activated protein kinases and nuclear factor-κB signaling pathways. Bases on previous results, the objective of the present study was to investigate the therapeutic potential of LMW-AP-FBG in BALB/c mice intracutaneously transplanted with CT-26 colon cancer cells onto their backs. Daily intraperitoneal injections of LMW-AP-FBG (5 mg/kg) for two weeks significantly suppressed tumor growth in mice bearing CT-26 tumors by reducing tumor proliferation and inducing apoptosis as compared to phosphate buffer-treated control mice. In addition, LMW-AP-FBG treatment reduced the viability of CT-26 cells in a dose-dependent manner by inducing apoptosis with loss of mitochondrial transmembrane potential and increased activated caspases. Taken together, LMW-AP-FBG exhibits anticancer properties both in vivo and in vitro.
Collapse
|
20
|
Mohammed AI, Celentano A, Paolini R, Low JT, McCullough MJ, O' Reilly LA, Cirillo N. Characterization of a novel dual murine model of chemotherapy-induced oral and intestinal mucositis. Sci Rep 2023; 13:1396. [PMID: 36697446 PMCID: PMC9876945 DOI: 10.1038/s41598-023-28486-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Oral and intestinal mucositis are debilitating inflammatory diseases observed in cancer patients undergoing chemo-radiotherapy. These are devastating clinical conditions which often lead to treatment disruption affecting underlying malignancy management. Although alimentary tract mucositis involves the entire gastrointestinal tract, oral and intestinal mucositis are often studied independently utilizing distinct organ-specific pre-clinical models. This approach has however hindered the development of potentially effective whole-patient treatment strategies. We now characterize a murine model of alimentary tract mucositis using 5-Fluorouracil (5-FU). Mice were given 5-FU intravenously (50 mg/kg) or saline every 48 h for 2 weeks. Post initial injection, mice were monitored clinically for weight loss and diarrhea. The incidence and extent of oral mucositis was assessed macroscopically. Microscopical and histomorphometric analyses of the tongue and intestinal tissues were conducted at 3 interim time points during the experimental period. Repeated 5-FU treatment caused severe oral and intestinal atrophy, including morphological damage, accompanied by body weight loss and mild to moderate diarrhea in up to 77.8% of mice. Oral mucositis was clinically evident throughout the observation period in 88.98% of mice. Toluidine blue staining of the tongue revealed that the ulcer size peaked at day-14. In summary, we have developed a model reproducing the clinical and histologic features of both oral and intestinal mucositis, which may represent a useful in vivo pre-clinical model for the study of chemotherapy-induced alimentary tract mucositis and the development of preventative therapies.
Collapse
Affiliation(s)
- Ali I Mohammed
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia. .,College of Dentistry, The University of Tikrit, Tikrit, Iraq.
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Jun T Low
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Michael J McCullough
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Lorraine A O' Reilly
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3000, Australia
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia.
| |
Collapse
|
21
|
Huang B, Gui M, Ni Z, He Y, Zhao J, Peng J, Lin J. Chemotherapeutic Drugs Induce Different Gut Microbiota Disorder Pattern and NOD/RIP2/NF-κB Signaling Pathway Activation That Lead to Different Degrees of Intestinal Injury. Microbiol Spectr 2022; 10:e0167722. [PMID: 36222691 PMCID: PMC9769542 DOI: 10.1128/spectrum.01677-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023] Open
Abstract
5-Fluorouracil (5-FU), irinotecan (CPT-11), oxaliplatin (L-OHP), and calcium folinate (CF) are widely used chemotherapeutic drugs to treat colorectal cancer. However, chemotherapeutic use is often accompanied by intestinal inflammation and gut microbiota disorder. Changes in gut microbiota may destroy the intestinal barrier, which contributes to the severity of intestinal injury. However, intestinal injury and gut microbiota disorder have yet to be compared among 5-FU, CPT-11, L-OHP, and CF in detail, thereby limiting the development of targeted detoxification therapy after chemotherapy. In this study, a model of chemotherapy-induced intestinal injury in tumor-bearing mice was established by intraperitoneally injecting chemotherapeutic drugs at a clinically equivalent dose. 16S rRNA gene sequencing was used to detect gut microbiota. We found that 5-FU, CPT-11, and l-OHP caused intestinal injury, inflammatory cytokine (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], interleukin-1β [IL-1β], and IL-6) secretion, and gut microbiota disorder. We established a complex but clear network between the pattern of changes in gut microbiota and degree of intestinal damage induced by different chemotherapeutic drugs. L-OHP caused the most severe damage in the intestine and disorder of the gut microbiota and showed a considerable overlap of the pattern of changes in microbiota with 5-FU and CPT-11. Analysis by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt v.1.0) showed that the microbiota disorder pattern induced by 5-FU, CPT-11, and L-OHP was related to the NOD-like signaling pathway. Therefore, we detected the protein expression of the NOD/RIP2/NF-κB signaling pathway and found that L-OHP most activated this pathway. Redundancy analysis/canonical correlation analysis (RDA/CCA) revealed that Bifidobacterium, Akkermansia, Allobaculum, Catenibacterium, Mucispirillum, Turicibacter, Helicobacter, Proteus, Escherichia Shigella, Alloprevotealla, Vagococcus, Streptococcus, and "Candidatus Saccharimonas" were highly correlated with the NOD/RIP2/NF-κB signaling pathway and influenced by chemotherapeutic drugs. IMPORTANCE Chemotherapy-induced intestinal injury limits the clinical use of drugs. Intestinal injury involves multiple signaling pathways and gut microbiota disruption. Our results suggested that the degree of intestinal injury caused by different drugs of the first-line colorectal chemotherapy regimen is related to the pattern of changes in microbiota. The activation of the NOD/RIP2/NF-κB signaling pathway was also related to the pattern of changes in microbiota. l-OHP caused the most severe damage to the intestine and showed a considerable overlap of the pattern of changes in microbiota with 5-FU and CPT-11. Thirteen bacterial genera were related to different levels of intestinal injury and correlated with the NOD/RIP2/NF-κB pathway. Here, we established a network of different chemotherapeutic drugs, gut microbiota, and the NOD/RIP2/NF-κB signaling pathway. This study likely provided a new basis for further elucidating the mechanism and clinical treatment of intestinal injury caused by chemotherapy.
Collapse
Affiliation(s)
- Bin Huang
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Mengxuan Gui
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Zhuona Ni
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Yanbin He
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Jinyan Zhao
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Jun Peng
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Jiumao Lin
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
22
|
Huang J, Hwang AYM, Jia Y, Kim B, Iskandar M, Mohammed AI, Cirillo N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int J Mol Sci 2022; 23:15434. [PMID: 36499758 PMCID: PMC9737148 DOI: 10.3390/ijms232315434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common and most debilitating complication associated with the cytotoxicity of chemotherapy. The condition affects the entire alimentary canal from the mouth to the anus and has a significant clinical and economic impact. Although oral and intestinal mucositis can occur concurrently in the same individual, these conditions are often studied independently using organ-specific models that do not mimic human disease. Hence, the purpose of this scoping review was to provide a comprehensive yet systematic overview of the animal models that are utilised in the study of chemotherapy-induced mucositis. A search of PubMed/MEDLINE and Scopus databases was conducted to identify all relevant studies. Multiple phases of filtering were conducted, including deduplication, title/abstract screening, full-text screening, and data extraction. Studies were reported according to the updated Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. An inter-rater reliability test was conducted using Cohen's Kappa score. After title, abstract, and full-text screening, 251 articles met the inclusion criteria. Seven articles investigated both chemotherapy-induced intestinal and oral mucositis, 198 articles investigated chemotherapy-induced intestinal mucositis, and 46 studies investigated chemotherapy-induced oral mucositis. Among a total of 205 articles on chemotherapy-induced intestinal mucositis, 103 utilised 5-fluorouracil, 34 irinotecan, 16 platinum-based drugs, 33 methotrexate, and 32 other chemotherapeutic agents. Thirteen articles reported the use of a combination of 5-fluorouracil, irinotecan, platinum-based drugs, or methotrexate to induce intestinal mucositis. Among a total of 53 articles on chemotherapy-induced oral mucositis, 50 utilised 5-fluorouracil, 2 irinotecan, 2 methotrexate, 1 topotecan and 1 with other chemotherapeutic drugs. Three articles used a combination of these drugs to induce oral mucositis. Various animal models such as mice, rats, hamsters, piglets, rabbits, and zebrafish were used. The chemotherapeutic agents were introduced at various dosages via three routes of administration. Animals were mainly mice and rats. Unlike intestinal mucositis, most oral mucositis models combined mechanical or chemical irritation with chemotherapy. In conclusion, this extensive assessment of the literature revealed that there was a large variation among studies that reproduce oral and intestinal mucositis in animals. To assist with the design of a suitable preclinical model of chemotherapy-induced alimentary tract mucositis, animal types, routes of administration, dosages, and types of drugs were reported in this study. Further research is required to define an optimal protocol that improves the translatability of findings to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| |
Collapse
|
23
|
Zhang C, Zhou Y, Zheng J, Ning N, Liu H, Jiang W, Yu X, Mu K, Li Y, Guo W, Hu H, Li J, Chen D. Inhibition of GABAA receptors in intestinal stem cells prevents chemoradiotherapy-induced intestinal toxicity. J Exp Med 2022; 219:213480. [PMID: 36125780 PMCID: PMC9499828 DOI: 10.1084/jem.20220541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/07/2022] [Accepted: 08/26/2022] [Indexed: 11/04/2022] Open
Abstract
Lethal intestinal tissue toxicity is a common side effect and a dose-limiting factor in chemoradiotherapy. Chemoradiotherapy can trigger DNA damage and induce P53-dependent apoptosis in LGR5+ intestinal stem cells (ISCs). Gamma-aminobutyric acid (GABA) and its A receptors (GABAAR) are present in the gastrointestinal tract. However, the functioning of the GABAergic system in ISCs is poorly defined. We found that GABAAR α1 (GABRA1) levels increased in the murine intestine after chemoradiotherapy. GABRA1 depletion in LGR5+ ISCs protected the intestine from chemoradiotherapy-induced P53-dependent apoptosis and prolonged animal survival. The administration of bicuculline, a GABAAR antagonist, prevented chemoradiotherapy-induced ISC loss and intestinal damage without reducing the chemoradiosensitivity of tumors. Mechanistically, it was associated with the reduction of reactive oxygen species-induced DNA damage via the L-type voltage-dependent Ca2+ channels. Notably, flumazenil, a GABAAR antagonist approved by the U.S. Food and Drug Administration, rescued human colonic organoids from chemoradiotherapy-induced toxicity. Therefore, flumazenil may be a promising drug for reducing the gastrointestinal side effects of chemoradiotherapy.
Collapse
Affiliation(s)
- Cuiyu Zhang
- Department of Physiology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuping Zhou
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junjie Zheng
- Department of Physiology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nannan Ning
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haining Liu
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenyang Jiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xin Yu
- Department of Biotherapy, State Key laboratory of Biotherapy and cancer center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kun Mu
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yan Li
- Translational Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Wei Guo
- Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huili Hu
- Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Jingxin Li:
| | - Dawei Chen
- Department of Physiology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Laboratory of Medical Chemistry, GIGA-Stem Cells, Faculty of Medicine, University of Liège, CHU, Sart-Tilman, Liège, Belgium
- Correspondence to Dawei Chen:
| |
Collapse
|
24
|
Li G, Liu L, Yin Y, Wang M, Wang L, Dou J, Wu H, Yang Y, He B. Network pharmacology and experimental verification-based strategy to explore the underlying mechanism of Liu Jun An Wei formula in the treatment of gastrointestinal reactions caused by chemotherapy for colorectal cancer. Front Pharmacol 2022; 13:999115. [PMID: 36204230 PMCID: PMC9530632 DOI: 10.3389/fphar.2022.999115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Liu Jun An Wei formula (LJAW), derived from “Liu Jun Zi Decoction”, is a classical prescription of Tradition Chinese Medicine and has been used for the treatment of gastrointestinal reactions caused by chemotherapy for colorectal cancer (CRC) for many years. Its molecular mechanism remains to be further explored.Objective: To clarify the mechanism of LJAW in attenuating gastrointestinal reactions caused by chemotherapy for CRC.Methods: The 5-fluorouracil (5-FU) induced mouse and intestine organoid models were established to observe the effect of LJAW. The ingredients of LJAW were analyzed and identified by UPLC-Q-TOF-MS technology. Targets of LJAW and chemotherapy-induced gastrointestinal reactions were collected from several databases. “Ingredient-target” network and protein-protein interaction network were constructed based on network pharmacology. Then, gene ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Subsequently, molecular docking method was used to verify the interaction between the core ingredients and key targets. The results were validated by both in vivo experiments and organoid experiments. Western Blot was used to analyze the influence of LJAW on key targets including PI3K, AKT1, MAPK1, MAPK14 proteins and their phosphorylated proteins. RT-qPCR and Western Blot were used to detect the mRNA and protein levels of apoptosis-related gene PUMA.Results: Compared with the 5-FU group, the LJAW group had better morphology in mouse small intestine and intestine organoids. In total, 18 core ingredients and 19 key targets were obtained from 97 ingredients and 169 common targets. KEGG analysis showed that the common targets were involved in PI3K/Akt, MAPK, apoptosis and other signal pathways, which are closely related to gastrointestinal injury. Experiments confirmed that LJAW lowered the expressions of phosphorylated proteins including p-PI3K, p-AKT1, p-MAPK1, and p-MAPK14 and reduced the mRNA and protein levels of PUMA.Conclusion: LJAW shows protective effect on 5-FU induced small intestine and intestinal organoids injury. LJAW attenuates gastrointestinal reactions caused by chemotherapy for CRC probably by regulating apoptosis-related genes through PI3K/AKT and MAPK signaling pathways.
Collapse
Affiliation(s)
- Gaobiao Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Liying Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yiran Yin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianwei Dou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufei Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yufei Yang, ; Bin He,
| | - Bin He
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yufei Yang, ; Bin He,
| |
Collapse
|
25
|
A Panax quinquefolius-Based Preparation Prevents the Impact of 5-FU on Activity/Exploration Behaviors and Not on Cognitive Functions Mitigating Gut Microbiota and Inflammation in Mice. Cancers (Basel) 2022; 14:cancers14184403. [PMID: 36139563 PMCID: PMC9496716 DOI: 10.3390/cancers14184403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Chemotherapy-related cognitive impairment (CRCI) and fatigue worsen the quality of life (QoL) of cancer patients. Multicenter studies have shown that Panax quinquefolius and vitamin C, respectively, were effective in reducing the symptoms of fatigue in treated cancer patients. We developed a behavioral C57Bl/6j mouse model to study the impact of 5-Fluorouracil (5-FU) chemotherapy on activity/fatigue, emotional reactivity and cognitive functions. We used this model to evaluate the potentially beneficial role of a Panax quinquefolius-based solution containing vitamin C (Qiseng®) or vitamin C alone in these chemotherapy side effects. We established that Qiseng® prevents the reduction in activity/exploration and symptoms of fatigue induced by 5-FU and dampens chemotherapy-induced intestinal dysbiosis and systemic inflammation. We further showed that Qiseng® decreases macrophage infiltration in the intestinal compartment, thus preventing, at least in part, the systemic elevation of IL-6 and MCP-1 and further reducing the neuroinflammation likely responsible for the fatigue induced by chemotherapy, a major advance toward improving the QoL of patients. Abstract Chemotherapy-related cognitive impairment (CRCI) and fatigue constitute common complaints among cancer patient survivors. Panax quinquefolius has been shown to be effective against fatigue in treated cancer patients. We developed a behavioral C57Bl/6j mouse model to study the role of a Panax quinquefolius-based solution containing vitamin C (Qiseng®) or vitamin C alone in activity/fatigue, emotional reactivity and cognitive functions impacted by 5-Fluorouracil (5-FU) chemotherapy. 5-FU significantly reduces the locomotor/exploration activity potentially associated with fatigue, evokes spatial cognitive impairments and leads to a decreased neurogenesis within the hippocampus (Hp). Qiseng® fully prevents the impact of chemotherapy on activity/fatigue and on neurogenesis, specifically in the ventral Hp. We observed that the chemotherapy treatment induces intestinal damage and inflammation associated with increased levels of Lactobacilli in mouse gut microbiota and increased expression of plasma pro-inflammatory cytokines, notably IL-6 and MCP-1. We demonstrated that Qiseng® prevents the 5-FU-induced increase in Lactobacilli levels and further compensates the 5-FU-induced cytokine release. Concomitantly, in the brains of 5-FU-treated mice, Qiseng® partially attenuates the IL-6 receptor gp130 expression associated with a decreased proliferation of neural stem cells in the Hp. In conclusion, Qiseng® prevents the symptoms of fatigue, reduced chemotherapy-induced neuroinflammation and altered neurogenesis, while regulating the mouse gut microbiota composition, thus protecting against intestinal and systemic inflammation.
Collapse
|
26
|
Santana AB, Souto BS, Santos NCDM, Pereira JA, Tagliati CA, Novaes RD, Corsetti PP, de Almeida LA. Murine response to the opportunistic bacterium Pseudomonas aeruginosa infection in gut dysbiosis caused by 5-fluorouracil chemotherapy-induced mucositis. Life Sci 2022; 307:120890. [PMID: 35988752 DOI: 10.1016/j.lfs.2022.120890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
AIMS This manuscript aims to explain the relationship between mucositis caused by 5-FU over gut bacterial species and susceptibility to opportunistic infection caused by P. aeruginosa. MAIN METHODS BALB/c mice were intraperitoneally treated with PBS or 5-FU. Bodyweight and faecal consistency were checked daily. Mice faecal DNA was extracted, and bacterial phylogenetic groups were analysed using qPCR or high-throughput sequencing. Immunofluorescence was used to evaluate BMDM activation by mice-treated faecal content. Mice were challenged intratracheally with virulent P. aeruginosa, and the CFU and histology were analysed. Faecal microbiota were transplanted to evaluate the gut microbiota and resistance to pulmonary P. aeruginosa recovery. KEY FINDINGS The animals treated with 5-FU presented mucositis with great weight loss, altered faecal consistency, bacterial gut dysbiosis and histological changes in the intestinal mucosa. Mice under 5-FU treatment were more susceptible to lung infection by the bacteria P. aeruginosa and had more extensive tissue damage during their lung infection with greater pro-inflammatory gene expression. It was observed that the mucositis remained in the groups with 5-FU even with the FMT. The results caused by mucositis in animals that received allogeneic FMT were reversed, however, with a decrease in P. aeruginosa susceptibility in animals treated with 5-FU and allogeneic FMT compared to animals treated with 5-FU and autologous FMT. SIGNIFICANCE Treatment with 5-FU in a murine model makes it more susceptible to pulmonary infection by the bacterium P. aeruginosa, FMT offers an opportunity to protect against this susceptibility to infection.
Collapse
Affiliation(s)
- Aleksander Brandão Santana
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Bianca Silva Souto
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Natália Cristina de Melo Santos
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Jéssica Assis Pereira
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Carlos Alberto Tagliati
- Laboratory of Toxicology (LabTox), Department of Clinical and Toxicological Analysis, Pharmacy Faculty, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas, Brazil
| | - Patrícia Paiva Corsetti
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Leonardo Augusto de Almeida
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil.
| |
Collapse
|
27
|
Biliary Drainage Reduces Intestinal Barrier Damage in Obstructive Jaundice by Regulating Autophagy. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3301330. [PMID: 35909583 PMCID: PMC9307405 DOI: 10.1155/2022/3301330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
This study aims to investigate the mechanism by which biliary drainage reduces intestinal barrier damage in obstructive jaundice (OJ). A biliary drainage model was established in rats with OJ to detect changes in inflammatory factors and diamine oxidase (DAO), a marker of intestinal mucosal damage. The expression of autophagy-related genes in the intestinal mucosa after biliary drainage was detected using a reverse transcription-polymerase chain reaction. The rats were separated into two groups that received the autophagy activator rapamycin (RAPA) or the autophagy inhibitor 3-methyladenine (3-MA) to further investigate whether biliary drainage could alleviate the inflammatory response, oxidative stress, mitochondrial complex IV damage, and thus barrier damage in rats with OJ. The expression levels of inflammatory factors and the serum DAO content were increased in rats with OJ (P < 0.05). Biliary drainage further induced autophagy, reduced the expression levels of inflammatory factors, decreased the serum DAO content (P < 0.05), and improved intestinal mucosal damage. Administration of RAPA to OJ rats with biliary drainage increased autophagy (P < 0.05); decreased inflammatory factor secretion (P < 0.05), the serum DAO content (P < 0.05), oxidative stress (P < 0.05), and mitochondrial respiratory chain complex IV damage (P < 0.05); and ameliorated intestinal mucosal injury in OJ rats. When OJ rats were treated with 3-MA, intestinal mucosal injury, intestinal mitochondrial injury, and oxidative stress were all aggravated (P < 0.05). Biliary drainage can reduce the expression of inflammatory factors, oxidative stress, and mitochondrial injury by inducing intestinal mucosal autophagy in OJ rats, thus suggesting its role in the alleviation of intestinal mucosal injury.
Collapse
|
28
|
Zhang Q, Zhou S, Lim PE, Wei B, Xue C, Xue Y, Tang Q. Kappaphycus Alvarezii Compound Powder Prevents Chemotherapy-Induced Intestinal Mucositis in BALB/c Mice. Nutr Cancer 2022; 74:3735-3746. [PMID: 35758096 DOI: 10.1080/01635581.2022.2089699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study aimed to formulate Kappaphycus alvarezii compound powder containing Kappaphycus alvarezii powder (KP), cooked sorghum powder (SP), and longan powder (LP); which was evaluated for its therapeutic effects against chemotherapy-induced intestinal mucosal injury (CIMI). Based on rheological properties, sensory evaluation, and antioxidant activity and using single factor and response surface methodology, the optimal formula to develop the compound powder was determined to be 35% KP, 30% SP, 5% LP, and 30% xylitol. Thereafter, the efficacy of the compound powder was tested by feeding BALB/c mice with diets supplemented with the Kappaphycus alvarezii compound powder (3% and 5%) for 14 consecutive days. The chemotherapeutic drug 5-fluorouracil was intraperitoneally injected (50 mg/kg) in the mice to induce CIMI for the last three consecutive days. Compared to the CIMI mice, those fed 5% Kappaphycus alvarezii compound powder (HC) showed significantly improved the intestinal injury, increased mucin-2 secretion, and reduced TNF-α, IL-1β, IL-6, LT, and COX-2 levels. Furthermore, HC intake significantly reduced the Firmicutes-to-Bacteroidetes ratio, promoted the growth of beneficial bacteria, such as Alloprevotella, and inhibited the growth of harmful bacteria, such as Clostridium. In conclusion, HC has a protective effect against CIMI and provides a novel dietary strategy for patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Qing Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Sainan Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Phaik Eem Lim
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Biqian Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Pilot National Laboratory for Marine Science and Technology, Laboratory for Marine Drugs and Bioproducts, Qingdao, China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
29
|
Shi P, Zhao T, Wang W, Peng F, Wang T, Jia Y, Zou L, Wang P, Yang S, Fan Y, Zong J, Qu X, Wang S. Protective effect of homogeneous polysaccharides of Wuguchong (HPW) on intestinal mucositis induced by 5-fluorouracil in mice. Nutr Metab (Lond) 2022; 19:36. [PMID: 35585561 PMCID: PMC9118848 DOI: 10.1186/s12986-022-00669-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/04/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In hospitalized patients, drug side effects usually trigger intestinal mucositis (IM), which in turn damages intestinal absorption and reduces the efficacy of treatment. It has been discovered that natural polysaccharides can relieve IM. In this study, we extracted and purified homogenous polysaccharides of Wuguchong (HPW), a traditional Chinese medicine, and explored the protective effect of HPW on 5-fluorouracil (5-FU)-induced IM. METHODS AND RESULTS First, we identified the physical and chemical properties of the extracted homogeneous polysaccharides. The molecular weight of HPW was 616 kDa, and it was composed of 14 monosaccharides. Then, a model of small IM induced by 5-FU (50 mg/kg) was established in mice to explore the effect and mechanism of HPW. The results showed that HPW effectively increased histological indicators such as villus height, crypt depth and goblet cell count. Moreover, HPW relieved intestinal barrier indicators such as D-Lac and diamine oxidase (DAO). Subsequently, western blotting was used to measure the expression of Claudin-1, Occludin, proliferating cell nuclear antigen, and inflammatory proteins such as NF-κB (P65), tumour necrosis factor-α (TNF-α), and COX-2. The results also indicated that HPW could reduce inflammation and protect the barrier at the molecular level. Finally, we investigated the influence of HPW on the levels of short-chain fatty acids, a metabolite of intestinal flora, in the faeces of mice. CONCLUSIONS HPW, which is a bioactive polysaccharide derived from insects, has protective effects on the intestinal mucosa, can relieve intestinal inflammation caused by drug side effects, and deserves further development and research.
Collapse
Affiliation(s)
- Peng Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Tianqi Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Wendong Wang
- Department of Orthopaedics, The Second People's Hospital of Dalian, 29 Hongji Street, Dalian, China
| | - Fangli Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Ting Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Yong Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Linxuan Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,Dalian Runxi Technology Development Co., Ltd, 3 Jinxia Street, Dalian, China
| | - Peng Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Simengge Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China
| | - Yue Fan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China
| | - Junwei Zong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China. .,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China.
| | - Xueling Qu
- Pelvic Floor Repair Centre, The Affiliated Dalian Maternity Hospital of Dalian Medical University, 1 Dunhuang Road, Dalian, China. .,Pelvic Floor Repair Centre, Dalian Women and Children Medical Centre (Group), No. 1 Road of Sports New Town, Dalian, China.
| | - Shouyu Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China. .,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China.
| |
Collapse
|
30
|
How CW, Teoh SL, Loh JS, Tan SLK, Foo JB, Ng HS, Wong SYW, Ong YS. Emerging Nanotheranostics for 5-Fluorouracil in Cancer Therapy: A Systematic Review on Efficacy, Safety, and Diagnostic Capability. Front Pharmacol 2022; 13:882704. [PMID: 35662688 PMCID: PMC9158334 DOI: 10.3389/fphar.2022.882704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
The conventional concept of using nanocarriers to deliver chemotherapeutic drugs has advanced to accommodate additional diagnostic capability. Nanotheranostic agents (NTA), combining both treatment and diagnostic tools, are an ideal example of engineering-health integration for cancer management. Owing to the diverse materials used to construct NTAs, their safety, effectiveness, and diagnostic accuracy could vary substantially. This systematic review consolidated current NTAs incorporating 5-fluorouracil and elucidated their toxicity, anticancer efficacy, and imaging capability. Medline and Embase databases were searched up to March 18, 2022. The search, selection, and extraction were performed by the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines to ensure completeness and reproducibility. Original research papers involving 5-fluorouracil in the preparation of nanoparticles which reported their efficacy, toxicity, and diagnostic capability in animal cancer models were recruited. The quality of included studies was assessed using the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) checklist. Nine studies were eligible for the systematic review. There was no significant toxicity reported based on animal weight and organ histology. Complete tumor remission was observed in several animal models using chemo-thermal ablation with NTAs, proving the enhancement of 5-fluorouracil efficacy. In terms of imaging performance, the time to achieve maximum tumor image intensity correlates with the presence of targeting ligand on NTAs. The NTAs, which are composed of tumor-targeting ligands, hold promises for further development. Based on the input of current NTA research on cancer, this review proposed a checklist of parameters to recommend researchers for their future NTA testing, especially in animal cancer studies. Systematic Review Registration: website, identifier registration number.
Collapse
Affiliation(s)
- Chee Wun How
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Siew Li Teoh
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Stella Li Kar Tan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Hui Suan Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | | | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
31
|
Lotfi M, Kazemi S, Shirafkan F, Hosseinzadeh R, Ebrahimpour A, Barary M, Sio TT, Hosseini SM, Moghadamnia AA. The protective effects of quercetin nano-emulsion on intestinal mucositis induced by 5-fluorouracil in mice. Biochem Biophys Res Commun 2021; 585:75-81. [PMID: 34800883 DOI: 10.1016/j.bbrc.2021.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Intestinal mucositis is one of chemotherapeutics' most common adverse effects, such as 5-fluorouracil (5-FU). Quercetin (QRC), a naturally occurring flavonoid, has approved antioxidant and anti-inflammatory properties. Thus, in this article, the preventive and curative effects of emulsion and nano-emulsion formulations of QRC were investigated in a model of 5-FU-induced intestinal mucositis using biochemical, histopathological, and molecular approaches. METHOD Thirty-six mice were divided into six different groups: Control (normal saline), 5-FU (a single dose of 5-FU 300 mg/kg), pre-treatment groups (pre-QRC, and pre-QRC-nano, receiving QRC 5 mg/kg emulsion and nano-emulsion before the induction of mucositis, respectively), and post-treatment groups (post-QRC, and post-QRC-nano, receiving QRC 5 mg/kg emulsion and nano-emulsion after the induction of mucositis, respectively). FINDING The administration of quercetin emulsion and nano-emulsion could significantly alleviate the oxidant-antioxidant balance of mice serum samples and reverse the destructive histopathologic changes induced by 5-FU in the intestine tissue. Nevertheless, although the expression of both pro-inflammatory genes, NF-κB and HIF-1α, was decreased when quercetin was administered to mice, this reduction was not statistically significant. CONCLUSION The administration of quercetin emulsion and nano-emulsion formulations could ameliorate the oxidative damage induced by chemotherapeutics, such as the 5-FU. Therefore, if confirmed in further studies, it could be used in clinical settings as a preventive and curative agent to decrease such catastrophic adverse events in chemotherapy patients.
Collapse
Affiliation(s)
- Mandana Lotfi
- Student Research Committee, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Shirafkan
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Rezvan Hosseinzadeh
- Student Research Committee, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Anahita Ebrahimpour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Barary
- Student Research Committee, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
32
|
Wei LY, Zhang JK, Zheng L, Chen Y. The functional role of sulforaphane in intestinal inflammation: a review. Food Funct 2021; 13:514-529. [PMID: 34935814 DOI: 10.1039/d1fo03398k] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intestinal inflammation represented by inflammatory bowel disease (IBD) has become a global epidemic disease and the number of patients with IBD continues to increase. This digestive tract disease not only affects the absorption of food components by destroying the intestinal epithelial structure, but also can induce diseases in remote organs via the gut-organ axis, seriously harming human health. Nowadays, increasing attention is being paid to the nutritional and medicinal value of food components with increasing awareness among the general public regarding health. As an important member of the isothiocyanates, sulforaphane (SFN) is abundant in cruciferous plants and is famous for its excellent anti-cancer effects. With the development of clinical research, more physiological activities of SFN, such as antidepressant, hypoglycemic and anti-inflammatory activities, have been discovered, supporting the fact that SFN and SFN-rich sources have great potential to be dietary supplements that are beneficial to health. This review summarizes the characteristics of intestinal inflammation, the anti-inflammatory mechanism of SFN and its various protective effects on intestinal inflammation, and the possible future applications of SFN for promoting intestinal health have also been discussed.
Collapse
Affiliation(s)
- Li-Yang Wei
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, People's Republic of China. .,School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jiu-Kai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, People's Republic of China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, People's Republic of China.
| |
Collapse
|
33
|
El-Sherbiny M, Fahmy EK, Eisa NH, Said E, Elkattawy HA, Ebrahim HA, Elsherbiny NM, Ghoneim FM. Nanogold Particles Suppresses 5-Flurouracil-Induced Renal Injury: An Insight into the Modulation of Nrf-2 and Its Downstream Targets, HO-1 and γ-GCS. Molecules 2021; 26:molecules26247684. [PMID: 34946766 PMCID: PMC8707269 DOI: 10.3390/molecules26247684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
The development of the field of nanotechnology has revolutionized various aspects in the fields of modern sciences. Nano-medicine is one of the primary fields for the application of nanotechnology techniques. The current study sheds light on the reno-protective impacts of gold nano-particles; nanogold (AuNPs) against 5-flurouracil (5-FU)-induced renal toxicity. Indeed, the use of 5-FU has been associated with kidney injury which greatly curbs its therapeutic application. In the current study, 5-FU injection was associated with a significant escalation in the indices of renal injury, i.e., creatinine and urea. Alongside this, histopathological and ultra-histopathological changes confirmed the onset of renal injury. Both gene and/or protein expression of nuclear factor erythroid 2-related factor 2 (Nrf-2) and downstream antioxidant enzymes revealed consistent paralleled anomalies. AuNPs administration induced a significant renal protection on functional, biochemical, and structural levels. Renal expression of the major sensor of the cellular oxidative status Nrf-2 escalated with a paralleled reduction in the renal expression of the other contributor to this axis, known as Kelch-like ECH-associated protein 1 (Keap-1). On the level of the effector downstream targets, heme oxygenase 1 (HO-1) and gamma-glutamylcysteine synthetase (γ-GCS) AuNPs significantly restored their gene and protein expression. Additionally, combination of AuNPs with 5-FU showed better cytotoxic effect on MCF-7 cells compared to monotreatments. Thus, it can be inferred that AuNPs conferred reno-protective impact against 5-FU with an evident modulatory impact on Nrf-2/Keap-1 and its downstream effectors, HO-1 and γ-GCS, suggesting its potential use in 5-FU regimens to improve its therapeutic outcomes and minimize its underlying nephrotoxicity.
Collapse
Affiliation(s)
- Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; (M.E.-S.); (H.A.E.)
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Eslam K. Fahmy
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig 44519, Egypt;
- Medical Physiology Department, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
| | - Nada H. Eisa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
- Faculty of Pharmacy, New Mansoura University, New Mansoura 7723730, Egypt
| | - Hany A. Elkattawy
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; (M.E.-S.); (H.A.E.)
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig 44519, Egypt;
- Zagazig Obesity Management & Research Unit, College of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Nehal M. Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Correspondence:
| | - Fatma M. Ghoneim
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
34
|
Zhang Q, Yang R, Lim PE, Chin Y, Zhou S, Gao Y, Tang Q. Sun-Dried and Air-Dried Kappaphycus alvarezii Attenuates 5-Fluorouracil-Induced Intestinal Mucositis in Mice. Nutr Cancer 2021; 74:2113-2121. [PMID: 34555987 DOI: 10.1080/01635581.2021.1981403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
5-fluorouracil (5-FU)-induced intestinal mucositis (IM) often makes chemotherapy patients suffer from physical and psychological suffering. Kappaphycus alvarezii (KA) is known for its potent multiple biological activities from decades. In the current study, we explored the effect of sun-dried and air-dried Kappaphycus alvarezii as a whole food supplement on 5-FU-induced IM. Diets supplemented with sun-dried Kappaphycus alvarezii (SKA, 3%), air-dried Kappaphycus alvarezii (AKA, 3%), and 5-aminosalicylic acid (0.005%) for consecutive14 days. While intraperitoneal injection of 5-FU (50 mg/kg) induced IM for last three consecutive days, and IM was assessed by the disease activity index (DAI) and inflammatory cytokine levels. Pretreatment of KA could alleviate phenotypic index, inhibit the increase of DAI, and reverse villus/crypt ratio. On the 14th day, AKA significantly increased the weight growth rate of the mice. The intervention of SKA significantly reduced the level of TNF-α and IL-1β (P < 0.01, P < 0.01), while the intervention of AKA significantly inhibited the level of TNF-α, IL-1β, and LT (P < 0.01, P < 0.01, P < 0.001). Therefore, these results showed that KA as a whole food supplement might be prevent the 5-FU-induced IM. For the first time suggest that the use of AKA might be more effective than SKA despite exact mechanism still needs further study.
Collapse
Affiliation(s)
- Qing Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ruzhen Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Phaik Eem Lim
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Yaoxian Chin
- College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
| | - Sainan Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuan Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
35
|
Zeeshan M, Atiq A, Ain QU, Ali J, Khan S, Ali H. Evaluating the mucoprotective effects of glycyrrhizic acid-loaded polymeric nanoparticles in a murine model of 5-fluorouracil-induced intestinal mucositis via suppression of inflammatory mediators and oxidative stress. Inflammopharmacology 2021; 29:1539-1553. [PMID: 34420176 DOI: 10.1007/s10787-021-00866-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/13/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES 5-Fluorouracil (5-FU), a chemotherapeutic drug, has severe deteriorating effects on the intestine, leading to mucositis. Glycyrrhizic acid is a compound derived from a common herbal plant Glycyrrhiza glabra, with mucoprotective, antioxidant and anti-inflammatory actions, however, associated with poor pharmacokinetics. Owing to the remarkable therapeutic action of glycyrrhizic acid-loaded polymeric nanocarriers in inflammatory bowel disease, we explored their activity against 5-FU-induced intestinal mucositis in mice. Polymeric nanocarriers have proven to be efficient drug delivery vehicles for the long-term treatment of inflammatory diseases, but have not yet been explored for 5-FU-induced mucositis. Therefore, this study aimed to produce glycyrrhizic acid-loaded polylactic-co-glycolic acid (GA-PLGA) nanoparticles to evaluate their protective and therapeutic effects in a 5-FU-induced mucositis model. METHODS GA-PLGA nanoparticles were prepared using a modified double emulsion method, physicochemically characterized, and tested for in vitro drug release. Thereafter, mucositis was induced by 5-FU (50 mg/kg; IP) administration to the mice for the first 3 days (day 0, 1, 2), and mice were treated orally with GA-PLGA nanoparticles for 7 days (day 0-6). RESULTS GA-PLGA nanoparticles significantly reduced mucositis severity measured by body weight, diarrhea score, distress, and anorexia. Further, 5-FU induced intestinal histopathological damage, altered villi-crypt length, reduced goblet cell count, elevated pro-inflammatory mediators, and suppressed antioxidant enzymes, all of which were reversed by GA-PLGA nanoparticles. CONCLUSION Morphological, behavioral, histological, and biochemical results suggested that GA-PLGA nanoparticles were efficient, biocompatible, targeted, and sustained release drug delivery nano-vehicle for enhanced mucoprotective, anti-inflammatory, and antioxidant effects in 5-FU-induced intestinal mucositis.
Collapse
Affiliation(s)
- Mahira Zeeshan
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Ayesha Atiq
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Qurat Ul Ain
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Jawad Ali
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
36
|
RNA-seq and In Vitro Experiments Reveal the Protective Effect of Curcumin against 5-Fluorouracil-Induced Intestinal Mucositis via IL-6/STAT3 Signaling Pathway. J Immunol Res 2021; 2021:8286189. [PMID: 34337082 PMCID: PMC8318760 DOI: 10.1155/2021/8286189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/10/2021] [Indexed: 11/18/2022] Open
Abstract
Although first-line chemotherapy drugs, including 5-fluorouracil (5-FU), remain one of the major choice for cancer treatment, the clinical use is also accompanied with dose-depending toxicities, such as intestinal mucositis (IM), in cancer patients undergoing treatment. IM-induced gastrointestinal adverse reactions become frequent reason to postpone chemotherapy and have negative impacts on therapeutic outcomes and prognosis. Various studies have evidenced the anticancer role of curcumin in many cancers; except for this effect, studies also indicated a protective role of curcumin in intestinal diseases. Therefore, in this study, we investigated the effect of curcumin on inflammation, intestinal epithelial cell damage in an IM model. 5-FU was used to induce the model of IM in intestinal epithelial cells, and curcumin at different concentrations was administrated. The results showed that curcumin efficiently attenuated 5-FU-induced damage to IEC-6 cells, inhibited the levels of inflammatory cytokines, attenuated the 5-FU-induced inhibition on cell viability, and displayed antiapoptosis effect on IEC-6 cells. Further RNA-sequencing analysis and experiment validation found that curcumin displays its protective effect against 5-FU-induced IM in intestinal epithelial cells by the inhibition of IL-6/STAT3 signaling pathway. Taken together, these findings suggested that curcumin may be provided as a therapeutic agent in prevention and treatment of chemotherapy-induced IM.
Collapse
|
37
|
What the Cardiologist Needs to Consider in the Management of Oncologic Patients with STEMI-Like Syndrome: A Case Report and Literature Review. Pharmaceuticals (Basel) 2021; 14:ph14060563. [PMID: 34204714 PMCID: PMC8231635 DOI: 10.3390/ph14060563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
In pre-hospital care, an accurate and quick diagnosis of ST-segment elevation myocardial infarction (STEMI) is imperative to promptly kick-off the STEMI network with a direct transfer to the cardiac catheterization laboratory (cath lab) in order to reduce myocardial infarction size and mortality. Aa atherosclerotic plaque rupture is the main mechanism responsible for STEMI. However, in a small percentage of patients, emergency coronarography does not reveal any significant coronary stenosis. The fluoropyrimidine agents such as 5-Fluorouracil (5-FU) and capecitabine, widely used to treat gastrointestinal, breast, head and neck cancers, either as a single agent or in combination with other chemotherapies, can cause potentially lethal cardiac side effects. Here, we present the case of a patient with 5-FU cardiotoxicity resulting in an acute coronary syndrome (ACS) with recurrent episodes of chest pain and ST-segment elevation.. Our case report highlights the importance of widening the knowledge among cardiologists of the side effects of chemotherapeutic drugs, especially considering the rising number of cancer patients around the world and that fluoropyrimidines are the main treatment for many types of cancer, both in adjuvant and advanced settings.
Collapse
|
38
|
Chen KJ, Chen YL, Ueng SH, Hwang TL, Kuo LM, Hsieh PW. Neutrophil elastase inhibitor (MPH-966) improves intestinal mucosal damage and gut microbiota in a mouse model of 5-fluorouracil-induced intestinal mucositis. Biomed Pharmacother 2021; 134:111152. [PMID: 33373916 DOI: 10.1016/j.biopha.2020.111152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU)-based chemotherapy is first-line chemotherapy for colorectal cancer. However, 5-FU-induced intestinal mucositis (FUIIM) is a common adverse effect that severely impairs drug tolerance and results in poor patient health. METHODS Male C57BL/6 mice were given 5-FU (50 mg/kg/day, i.p.) and treated with MPH-966 (5 and 7.5 mg/kg/day, p.o.) for five days. The body weight loss and the amount of food intake, and histopathological findings were recorded and analyzed. In addition, the neutrophil infiltration, levels of neutrophil serine proteases and pro-inflammatory cytokines, and tight junction proteins expression in intestinal tissues were determined. The ecology of gut microbiota was performed through next-generation sequencing technologies. RESULTS Neutrophil elastase (NE) overexpression is a key feature in FUIIM. This study showed that treatment with the specific NE inhibitor MPH-966 (7.5 mg/kg/day, p.o.) significantly reversed 5-FU-induced loss in body weight and food intake; reversed villous atrophy; significantly suppressed myeloperoxidase, NE, and proteinase 3 activity; and reduced pro-inflammatory cytokine expression in an FUIIM mouse model. In addition, MPH-966 prevented 5-FU-induced intestinal barrier dysfunction, as indicated by the modulated expression of the tight junction proteins zonula occludin-1 and occludin. MPH-966 also reversed 5-FU-induced changes in gut microbiota diversity and abundances, specifically the Firmicutes-to-Bacteroidetes ratio; Muribaculaceae, Ruminococcaceae, and Eggerthellaceae abundances at the family level; and Candidatus Arthromitus abundance at the genus level. CONCLUSION These data indicate that NE inhibitor is a key treatment candidate to alleviate FUIIM by regulating abnormal inflammatory responses, intestinal barrier dysfunction, and gut microbiota imbalance.
Collapse
Affiliation(s)
- Kung-Ju Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Li Chen
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shir-Hwa Ueng
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Liang-Mou Kuo
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan.
| | - Pei-Wen Hsieh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
39
|
Gao P, Du X, Liu L, Xu H, Liu M, Guan X, Zhang C. Astragaloside IV Alleviates Tacrolimus-Induced Chronic Nephrotoxicity via p62-Keap1-Nrf2 Pathway. Front Pharmacol 2021; 11:610102. [PMID: 33536919 PMCID: PMC7848072 DOI: 10.3389/fphar.2020.610102] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Tacrolimus-induced chronic nephrotoxicity (TIN) hinders its long-term use in patients. However, there are no drugs available in the clinic to relieve it at present. Astragaloside IV (AS-IV) is a saponin extract of the Astragalus which is widely used in the treatment of kidney disease. This study aimed to investigate the effect of AS-IV on TIN and its underlying mechanism. Herein, C57BL/6 mice were treated with tacrolimus and/or AS-IV for 4 weeks, and then the renal function, fibrosis, oxidative stress and p62-Keap1-Nrf2 pathway were evaluated to ascertain the contribution of AS-IV and p62-Keap1-Nrf2 pathway to TIN. Our results demonstrated that AS-IV significantly improved renal function and alleviated tubulointerstitial fibrosis compared with the model group. The expression of fibrosis-related proteins, including TGF-β1, Collagen I and α-SMA, were also decreased by AS-IV. Furthermore, AS-IV relieved the inhibition of tacrolimus on antioxidant enzymes. The data in HK-2 cells also proved that AS-IV reduced tacrolimus-induced cell death and oxidative stress. Mechanistically, AS-IV markedly promoted the nuclear translocation of Nrf2 and the renal protective effects of AS-IV were abolished by Nrf2 inhibitor. Further researches showed that phosphorylated p62 was significantly increased after AS-IV pretreatment. Moreover, AS-IV failed to increase nuclear translocation of Nrf2 and subsequent anti-oxidative stress in HK-2 cells transfected with p62 siRNA. Collectively, these findings indicate that AS-IV relieve TIN by enhancing p62 phosphorylation, thereby increasing Nrf2 nuclear translocation, and then alleviating ROS accumulation and renal fibrosis.
Collapse
Affiliation(s)
- Ping Gao
- Department of Clinical Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyi Du
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pediatrics, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Liu
- Department of Pathology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Xu
- Department of Clinical Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maochang Liu
- Department of Clinical Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinlei Guan
- Department of Pharmacy, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Carvalho PLA, Andrade MER, Trindade LM, Leocádio PCL, Alvarez-Leite JI, Dos Reis DC, Cassali GD, Souza E Melo ÉLDS, Dos Santos Martins F, Fernandes SOA, Gouveia Peluzio MDC, Generoso SDV, Cardoso VN. Prophylactic and therapeutic supplementation using fructo-oligosaccharide improves the intestinal homeostasis after mucositis induced by 5- fluorouracil. Biomed Pharmacother 2021; 133:111012. [PMID: 33254017 DOI: 10.1016/j.biopha.2020.111012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
The beneficial effects of prebiotic, such as fructo-oligosaccharides (FOS), in intestinal inflammation have been demonstrated in several studies. Herein, we evaluate whether joint treatment with FOS, both before and during mucositis, had additional beneficial effects and investigated the mechanisms underlying in the action of FOS on the intestinal barrier. BALB/c mice were randomly divided into five groups: CTR (without mucositis + saline solution), FOS (without mucositis + 6 % FOS), MUC (mucositis + saline solution), PT (mucositis + 6 % FOS supplementation before disease induction), and TT (mucositis + 6 % FOS supplementation before and during disease induction). Mucositis was induced by intraperitoneal injection (300 mg/kg) of 5-fluorouracil (5-FU). After 72 h, the animals were euthanized and intestinal permeability (IP), tight junction, bacterial translocation (BT), histology and morphometry, and immunoglobulin A secretory (sIgA), inflammatory infiltrate, and production of short-chain fatty acids (acetate, butyrate and propionate) were evaluated. The MUC group showed an increase in the IP, BT, and inflammatory infiltrate but a decrease in the tight junction expression and butyrate and propionate levels (P < 0.05). In the PT and TT groups, FOS supplementation maintained the IP, tight junction expression, and propionate concentration within physiologic levels, increased butyrate levels, and reduced BT and inflammatory infiltrate (P < 0.05). Total treatment with FOS (TT group) was more effective in maintaining histological score, morphometric parameters, and sIgA production. Thus, total treatment (prophylactic and therapeutic supplementation) with FOS was more effective than pretreatment alone, in reducing 5-FU-induced damage to the intestinal barrier.
Collapse
Affiliation(s)
- Paula Lopes Armond Carvalho
- Departamento de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Emília Rabelo Andrade
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luísa Martins Trindade
- Departamento de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paola Caroline Lacerda Leocádio
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacqueline Isaura Alvarez-Leite
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Diego Carlos Dos Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Geovanni Dantas Cassali
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Flaviano Dos Santos Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone Odília Antunes Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
41
|
Osaki A, Sanematsu K, Yamazoe J, Hirose F, Watanabe Y, Kawabata Y, Oike A, Hirayama A, Yamada Y, Iwata S, Takai S, Wada N, Shigemura N. Drinking Ice-Cold Water Reduces the Severity of Anticancer Drug-Induced Taste Dysfunction in Mice. Int J Mol Sci 2020; 21:E8958. [PMID: 33255773 PMCID: PMC7728361 DOI: 10.3390/ijms21238958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022] Open
Abstract
Taste disorders are common adverse effects of cancer chemotherapy that can reduce quality of life and impair nutritional status. However, the molecular mechanisms underlying chemotherapy-induced taste disorders remain largely unknown. Furthermore, there are no effective preventive measures for chemotherapy-induced taste disorders. We investigated the effects of a combination of three anticancer drugs (TPF: docetaxel, cisplatin and 5-fluorouracil) on the structure and function of mouse taste tissues and examined whether the drinking of ice-cold water after TPF administration would attenuate these effects. TPF administration significantly increased the number of cells expressing apoptotic and proliferative markers. Furthermore, TPF administration significantly reduced the number of cells expressing taste cell markers and the magnitudes of the responses of taste nerves to tastants. The above results suggest that anticancer drug-induced taste dysfunction may be due to a reduction in the number of taste cells expressing taste-related molecules. The suppressive effects of TPF on taste cell marker expression and taste perception were reduced by the drinking of ice-cold water. We speculate that oral cryotherapy with an ice cube might be useful for prophylaxis against anticancer drug-induced taste disorders in humans.
Collapse
Affiliation(s)
- Ayana Osaki
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Keisuke Sanematsu
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
- Oral Health/Brain Health/Total Health Research Center, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Junichi Yamazoe
- Section of Oral Healthcare and Dentistry Cooperation, Division of Maxillofacial Diagnostic and Surgical Science, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Fumie Hirose
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
| | - Yu Watanabe
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
| | - Yuko Kawabata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
| | - Asami Oike
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
| | - Ayaka Hirayama
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
| | - Yu Yamada
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
| | - Shusuke Iwata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shingo Takai
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
| | - Naohisa Wada
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
42
|
Qu L, Tan W, Yang J, Lai L, Liu S, Wu J, Zou W. Combination Compositions Composed of l-Glutamine and Si-Jun-Zi-Tang Might Be a Preferable Choice for 5-Fluorouracil-Induced Intestinal Mucositis: An Exploration in a Mouse Model. Front Pharmacol 2020; 11:918. [PMID: 32625099 PMCID: PMC7313676 DOI: 10.3389/fphar.2020.00918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/05/2020] [Indexed: 12/30/2022] Open
Abstract
Intestinal mucositis is a common toxicity of many anti-neoplastic therapies that negatively influences health, the quality of life, economic outcomes, and even the success of cancer treatment. Unfortunately, there is presently no optimal medicine that is able to effectively manage this condition. l-glutamine is one of the most frequently used agent in practice among the limited treatment choices due to its safety and inexpensiveness despite there being a lack of evidence. Previous studies indicated that l-glutamine may alleviate mucositis and mucosal atrophy but failed to improve patients' macroscopic conditions, such as the occurrence of diarrhea. A compound glutamine capsule (G-SJZ), composed of l-glutamine and the traditional Chinese herbal formula Si-Jun-Zi-Tang, has been used in China for 23 years to treat many types of gastrointestinal diseases, including gastrointestinal reactions induced by radiotherapy and chemotherapy. However, the exact effect of G-SJZ on intestinal mucositis is unclear, and moreover, whether l-glutamine combined with Si-Jun-Zi-Tang is more effective than l-glutamine alone have not been studied. In the current study, we explored the effects of G-SJZ and l-glutamine in a mouse model of intestinal mucositis induced by 5-fluorouracil (5-Fu). The results revealed that pretreatment with G-SJZ ameliorated the physical manifestations of weight loss and the severity of diarrhea following continuous 5-Fu injections in mice. Likewise, the histopathological damage and the destruction of villus and crypt structures in the intestinal mucosa as well as the increase in circulating intestinal injury markers caused by 5-Fu were reversed with G-SJZ pretreatment. Furthermore, the protective effect of G-SJZ was accompanied by modulations in the immunohistochemical expression of tight junction proteins. Interestingly, although treatment with a dose of l-glutamine alone that was equivalent to the dose in G-SJZ also showed a protective effect, it did not appear to be as strong as treatment with G-SJZ. Si-Jun-Zi-Tang in G-SJZ may compensate for the deficiencies of l-glutamine in this model which seems not to be related to the regulation of tight junction proteins. Our study is the first to suggest that the combined use of l-glutamine and Si-Jun-Zi-Tang might be more effective than l-glutamine alone despite exact mechanism still needs further study. Because of the limited number of therapeutic agents, G-SJZ is likely to be a preferable choice for intestinal mucositis.
Collapse
Affiliation(s)
- Liping Qu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanxian Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Limin Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sili Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
43
|
|
44
|
Animal models of mucositis: critical tools for advancing pathobiological understanding and identifying therapeutic targets. Curr Opin Support Palliat Care 2020; 13:119-133. [PMID: 30925531 DOI: 10.1097/spc.0000000000000421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Mucositis remains a prevalent, yet poorly managed side effect of anticancer therapies. Mucositis affecting both the oral cavity and gastrointestinal tract predispose to infection and require extensive supportive management, contributing to the growing economic burden associated with cancer care. Animal models remain a critical aspect of mucositis research, providing novel insights into its pathogenesis and revealing therapeutic targets. The current review aims to provide a comprehensive overview of the current animal models used in mucositis research. RECENT FINDINGS A wide variety of animal models of mucositis exist highlighting the highly heterogenous landscape of supportive oncology and the unique cytotoxic mechanisms of different anticancer agents. Golden Syrian hamsters remain the gold-standard species for investigation of oral mucositis induced by single dose and fractionated radiation as well as chemoradiation. There is no universally accepted gold-standard model for the study of gastrointestinal mucositis, with rats, mice, pigs and dogs all offering unique perspectives on its pathobiology. SUMMARY Animal models are a critical aspect of mucositis research, providing unprecedent insight into the pathobiology of mucositis. Introduction of tumour-bearing models, cyclic dosing scheduled, concomitant agents and genetically modified animals have been integral in refining our understanding of mucositis.
Collapse
|
45
|
Xiang DC, Yang JY, Xu YJ, Zhang S, Li M, Zhu C, Zhang CL, Liu D. Protective effect of Andrographolide on 5-Fu induced intestinal mucositis by regulating p38 MAPK signaling pathway. Life Sci 2020; 252:117612. [PMID: 32247004 DOI: 10.1016/j.lfs.2020.117612] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/28/2022]
Abstract
AIMS Intestinal mucositis is the most common side effect of 5-fluorouracil (5-Fu) treatment in cancer patients. Previous research suggested that andrographolide (Andro) attenuated the intestinal injury in colitis or diarrhea in mice. The present study was aimed at investigating the protective effect of Andro against 5-Fu induced intestinal mucositis and the underlying mechanism. MAIN METHODS BALB/C mice were injected 5-Fu at a dose of 100 mg/kg for 5 days to induce intestinal mucositis. Andro at different doses (25, 50, 100 mg/kg/day) was administered. Weight loss, diarrhea score, cellular apoptosis and proliferation were evaluated. Apoptosis related proteins were detected by Western blotting. Then, NCM460 cells were used to explore the possible mechanism in vitro. The effect of Andro on the anti-tumor efficacy of 5-Fu was investigated in H22 tumor-bearing mice. KEY FINDINGS Andro significantly ameliorated the 5-Fu induced weight loss and diarrhea. The apoptosis of intestinal cells was also attenuated by Andro treatment both in vivo and in vitro. Besides, Andro markedly down-regulated the 5-Fu-induced protein expression of caspase8/3, Bax and the phosphorylation of p38. Moreover, 5-Fu significantly reduced the viability of NCM460 cells, which was restored by the Andro pretreatment. Furthermore, asiatic acid, an agonist of p38 MAPK, reversed the anti-apoptotic effect of Andro in NCM460 cells. Andro did not weaken the anti-H22 tumor effect of 5-Fu in vivo. SIGNIFICANCE We have demonstrated that p38 MAPK inhibition mediates anti-apoptotic effects of Andro against 5-Fu induced intestinal mucositis, suggesting that Andro may benefit the patients undergoing 5-Fu based chemotherapy.
Collapse
Affiliation(s)
- Dao-Chun Xiang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Pharmacy, The Central Hospital of Wuhan,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Jin-Yu Yang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan-Jiao Xu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Si Zhang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Li
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Zhu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng-Liang Zhang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
46
|
Tada K, Iwashita Y, Shiraiwa K, Uchida H, Oshima Y, Sato Y, Nakanuma H, Hirashita T, Masuda T, Endo Y, Takeuchi Y, Ohta M, Itoh H, Inomata M. Pharmacokinetic and toxicodynamic evaluation of 5-fluorouracil administration after major hepatectomy in a rat model. Cancer Chemother Pharmacol 2019; 85:345-352. [PMID: 31605153 DOI: 10.1007/s00280-019-03969-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chemotherapy after hepatectomy for colorectal liver metastasis has not been established, due to the toxic side effects, which are likely related to impaired drug clearance during liver regeneration. We investigated the pharmacokinetic and toxicodynamic evaluation of 5-fluorouracil (5-FU) during liver regeneration after major hepatectomy in a rat model. METHODS Thirty-six male Wistar rats were divided into control (C), control with chemotherapy (CC), hepatectomy (H), and hepatectomy with chemotherapy (HC) groups. The CC and HC groups were administered 5-FU for 4 days. Plasma 5-FU, liver weight, and liver dihydropyrimidine dehydrogenase (DPD) were measured. The ileal villous height was measured to determine adverse effects. RESULTS The area under the curve and maximum plasma concentration of 5-FU increased by up to 51% and 32%, respectively, in the HC group compared to the CC group. The liver regeneration rate was significantly lower in the HC group than in the H group (67.3 ± 7.4 vs 33.0 ± 5.7%, p < 0.001). The HC group had a significantly lower liver DPD than the CC group (4.4 ± 1.1 mg vs 6.9 ± 1.1 mg, p < 0.01). The HC group had a significantly lower ileal villous height than the CC group (253 ± 40 μm vs. 318 ± 36 μm, p < 0.05). CONCLUSIONS Reduction of the total liver DPD following major hepatectomy caused increased plasma 5-FU levels and 5-FU-associated toxicity.
Collapse
Affiliation(s)
- Kazuhiro Tada
- Faculty of Medicine, Department of Gastroenterological and Pediatric Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan.
| | - Yukio Iwashita
- Faculty of Medicine, Department of Gastroenterological and Pediatric Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| | - Ken Shiraiwa
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Hiroki Uchida
- Faculty of Medicine, Department of Gastroenterological and Pediatric Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| | - Yusuke Oshima
- Faculty of Medicine, Department of Gastroenterological and Pediatric Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan.,Biomedical Optics Laboratory, Graduate School of Biomedical Engineering Tohoku University, Miyagi, Japan.,Oral-Maxillofacial Surgery and Orthodontics, University of Tokyo Hospital, Tokyo, Japan
| | - Yuhki Sato
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Hiroaki Nakanuma
- Faculty of Medicine, Department of Gastroenterological and Pediatric Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| | - Teijiro Hirashita
- Faculty of Medicine, Department of Gastroenterological and Pediatric Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| | - Takashi Masuda
- Faculty of Medicine, Department of Gastroenterological and Pediatric Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| | - Yuichi Endo
- Faculty of Medicine, Department of Gastroenterological and Pediatric Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| | - Yu Takeuchi
- Faculty of Medicine, Department of Gastroenterological and Pediatric Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| | - Masayuki Ohta
- Faculty of Medicine, Department of Gastroenterological and Pediatric Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan.,Global Oita Medical Advanced Research Center for Health, Oita University, Oita, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Masafumi Inomata
- Faculty of Medicine, Department of Gastroenterological and Pediatric Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| |
Collapse
|
47
|
Zhang L, Jin Y, Peng J, Chen W, Lisha L, Lin J. Qingjie Fuzheng Granule attenuates 5-fluorouracil-induced intestinal mucosal damage. Biomed Pharmacother 2019; 118:109223. [PMID: 31325706 DOI: 10.1016/j.biopha.2019.109223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE 5-Fluorouracil (5-FU)-based chemotherapy often causes several drawbacks including weight loss, diarrhea, myelosuppression, and the intestinal mucositis. This study aimed to evaluate the protective effect of Qingjie Fuzheng Granule (QFG) on 5-FU-induced intestinal mucositis in CT-26 tumor-bearing xenograft mice and investigated the possible molecular mechanism. METHODS Tumor xenograft models of CT-26 cells were generated in BALB/c nude mice, the mice were randomly divided into 4 groups including control, QFG, 5-FU and 5-FU combined QFG groups. The body weight, volume of tumor and diarrhea score of each group were recorded daily. On the fifth day, the blood of mice was collected, the mice were subsequently euthanized and their thymus, spleen, intestine and tumor were removed for the following analysis. RESULTS QFG alleviated severe diarrhea and reversed the decrease in the number of white blood cell including granulocyte and lymphocyte induced by 5-FU. QFG could also significantly improve 5-FU-induced several intestinal mucosal damages, and characterized by integrity villus and crypts, the reduction of necrotic cells. QFG decreased the serum levels of TNF-α, IL-1β, and IL-6 and increased the levels of IL-10. Furthermore, QFG inhibited the cellular apoptosis in the jejunum tissue caused by 5-FU via the increasing Bcl-2 expression and decreasing Bax expression. In addition, QFG promoted the cell proliferation via elevating the expression of Cyclin D1 and CDK4 and reducing p21 expression. Meanwhile, QFG could not further impact on the cell apoptosis and proliferation of tumors caused by 5-FU. CONCLUSION QFG attenuated the intestinal mucositis and diarrhea induced by 5-FU via preventive effect on inflammation and its improvement of the intestinal barrier function, inhibiting cell apoptosis and promoting cell proliferation, and without affecting the 5-FU treatment efficiency. The results suggest that QFG may act as a potential agent against chemotherapy-induced intestinal mucositis.
Collapse
Affiliation(s)
- Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Yiyi Jin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Wujin Chen
- Oncology Department, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350004, China.
| | - Lu Lisha
- Oncology Department, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350004, China.
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
48
|
Protective Effect of Cashew Gum (Anacardium occidentale L.) on 5-Fluorouracil-Induced Intestinal Mucositis. Pharmaceuticals (Basel) 2019; 12:ph12020051. [PMID: 30987265 PMCID: PMC6630449 DOI: 10.3390/ph12020051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/27/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Intestinal mucositis is a common complication associated with 5-fluorouracil (5-FU), a chemotherapeutic agent used for cancer treatment. Cashew gum (CG) has been reported as a potent anti-inflammatory agent. In the present study, we aimed to evaluate the effect of CG extracted from the exudate of Anacardium occidentale L. on experimental intestinal mucositis induced by 5-FU. Swiss mice were randomly divided into seven groups: Saline, 5-FU, CG 30, CG 60, CG 90, Celecoxib (CLX), and CLX + CG 90 groups. The weight of mice was measured daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis), levels of malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH), and immunohistochemical analysis of interleukin 1 beta (IL-1β) and cyclooxygenase-2 (COX-2). 5-FU induced intense weight loss and reduction in villus height compared to the saline group. CG 90 prevented 5-FU-induced histopathological changes and decreased oxidative stress through decrease of MDA levels and increase of GSH concentration. CG attenuated inflammatory process by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. Our findings suggest that CG at a concentration of 90 mg/kg reverses the effects of 5-FU-induced intestinal mucositis.
Collapse
|