1
|
Nyasulu PS, Tamuzi JL, Oliveira RKF, Oliveira SD, Petrosillo N, de Jesus Perez V, Dhillon N, Butrous G. COVID-19 and Parasitic Co-Infection: A Hypothetical Link to Pulmonary Vascular Disease. Infect Dis Rep 2025; 17:19. [PMID: 40126325 PMCID: PMC11932205 DOI: 10.3390/idr17020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Background/Objectives: Before the Coronavirus disease 2019 (COVID-19) era, the global prevalence of pulmonary arterial hypertension (PAH) was between 0.4 and 1.4 per 100,000 people. The long-term effects of protracted COVID-19 associated with pulmonary vascular disease (PVD) risk factors may increase this prevalence. According to preliminary data, the exact prevalence of early estimates places the prevalence of PVD in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection at 22%, although its predictive value remains unknown. PVD caused by COVID-19 co-infections is understudied and underreported, and its future impact is unclear. However, due to COVID-19/co-infection pathophysiological effects on pulmonary vascularization, PVD mortality and morbidity may impose a genuine concern-both now and in the near future. Based on reported studies, this literature review focused on the potential link between COVID-19, parasitic co-infection, and PVD. This review article also highlights hypothetical pathophysiological mechanisms between COVID-19 and parasitic co-infection that could trigger PVD. Methods: We conducted a systematic literature review (SLR) searching peer-reviewed articles, including link between COVID-19, parasitic co-infection, and PVD. Results: This review hypothesized that multiple pathways associated with pathogens such as underlying schistosomiasis, human immunodeficiency virus (HIV), pulmonary tuberculosis (PTB), pulmonary aspergillosis, Wuchereria bancrofti, Clonorchis sinensis, paracoccidioidomycosis, human herpesvirus 8, and scrub typhus coupled with acute or long COVID-19, may increase the burden of PVD and worsen its mortality in the future. Conclusions: Further experimental studies are also needed to determine pathophysiological pathways between PVD and a history of COVID-19/co-infections.
Collapse
|
2
|
Imtiaz K, Farooqui N, Ahmed K, Zhamalbekova A, Anwar MF, Nasir A, Ansar Z, Gul K, Hussain A, Sarría-Santamera A, Abidi SH. Analysis of differential expression of matrix metalloproteinases and defensins in the nasopharyngeal milieu of mild and severe COVID-19 cases. PLoS One 2025; 20:e0304311. [PMID: 39965032 PMCID: PMC11835293 DOI: 10.1371/journal.pone.0304311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
INTRODUCTION A subset of COVID-19 disease patients suffers a severe form of the illness; however, underlying early pathophysiological mechanisms associated with the severe form of COVID-19 disease remain to be fully understood. Several studies showed the association of COVID-19 disease severity with the changes in the expression profile of various matrix metalloproteinases (MMPs) and defensins (DA). However, the link between the changes in the expression of MMPs and DA in the nasopharyngeal milieu during early phases of infection and disease severity remains poorly understood. Therefore, we performed differential gene expression analysis of MMPs and DA in the nasopharyngeal swab samples collected from normal (COVID-19 negative), mild, and severe COVID-19 cases and examined the association between MMP and DA expression and disease severity. MATERIAL AND METHOD A total of 118 previously collected nasopharyngeal samples from mild and severe COVID-19 patients (as per the WHO criteria) and 10 healthy individuals (COVID-19 negative, controls) were used in this study. A real-time qPCR assay was used to determine the viral loads and assess the mRNA expression of MMPs and DA. One-way ANOVA was applied to perform multiple comparisons (estimate differences) in MMPs and defensin gene expression in the normal vs mild vs severe groups. In addition, a multivariable logistic regression analysis was carried out with all the variables from the data set using 'severity' as the outcome variable. RESULTS Our results showed that as compared to controls, DA1, DA3, and DA4 expression was significantly (p < 0.05) upregulated in the mild group, whereas the expression of DA6 was significantly downregulated in both mild and severe groups (p-value < 0.05). Similarly, compared to controls, the expression of MMP1 and MMP7 was significantly downregulated in both mild and severe groups, whereas MMP2 expression was upregulated in the mild group (p-value < 0.05). Additionally, the regression analysis showed that the expression of MMP1, MMP2, and MMP9 was significantly associated with the severity of the disease. CONCLUSION The early detection of changes in the expression of MMPs and defensins may act as a useful biomarker/predictor for possible severe COVID-19 disease, which may be useful in the clinical management of patients to reduce COVID-19-associated morbidity and mortality.
Collapse
Affiliation(s)
- Khekashan Imtiaz
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Nida Farooqui
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Khalid Ahmed
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Muhammad Faraz Anwar
- Department of Biochemistry, Bahria University Medical and Dental College, Karachi, Pakistan
| | - Asghar Nasir
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Zeeshan Ansar
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Khitab Gul
- Department of Biosciences, Muhammad Ali Jinnah University, Karachi, Pakistan
| | - Azhar Hussain
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| |
Collapse
|
3
|
Luka N, South K, Jones R, Unsworth AJ, Coutts G, Mosneag I, Younas M, Bradley A, Wong SY, Collins E, Quigley C, Knight SB, McColl BW, McCulloch L, Grainger JR, Smith CJ, Allan SM. The Role of the VWF/ADAMTS13 Axis in the Thromboinflammatory Response in Ischemic Stroke After SARS-CoV2 Infection. Brain Behav 2025; 15:e70348. [PMID: 39972966 PMCID: PMC11839761 DOI: 10.1002/brb3.70348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/22/2024] [Accepted: 02/02/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND SARS-CoV2 infections increase the risk of ischemic stroke (IS), potentially through a thromboinflammatory cascade driven by an imbalance in the ratio of Von Willebrand Factor (VWF) and a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), leading to the formation of ultra-large VWF (UL-VWF). However, the SARS-CoV2 infection's contribution to any VWF/ADAMTS13 axis imbalance and the subsequent thromboinflammatory response post-stroke remain poorly understood. METHODS We performed a detailed thromboinflammatory profile of the plasma samples from three experimental cohorts matched by age, sex, and stroke severity: non-stroke controls (n = 23), SARS-CoV2 negative IS (n = 22), and SARS-CoV2 positive IS (n = 24). SARS-CoV2 positive IS patients presented varying degrees of infection severity. RESULTS We observed an increase in VWF and UL-VWF and a decrease in ADAMTS13 in the SARS-CoV2 positive IS cohort, suggesting a VWF/ADAMTS13 axis imbalance. Interleukin-6 (IL-6) levels were positively correlated with VWF and negatively correlated with ADAMTS13, suggesting that IL-6 may drive this imbalance. Fibrinogen and D-Dimers were elevated in SARS-CoV2 negative IS cohort and SARS-CoV2 positive IS cohort, but D-Dimers were within the normal range, indicating no disseminated intravascular coagulation. Factor IX (FIX) was elevated in the SARS-CoV2 negative IS cohort. Tissue plasminogen activator (tPA) was elevated in the SARS-CoV2 positive IS cohort, suggesting no fibrinolysis defects. Matrix Metalloproteinase-2 (MMP-2) and soluble Intracellular Adhesion Molecule-1 (sICAM-1) were elevated in the SARS-CoV2 negative IS cohort. CONCLUSIONS We show that SARS-CoV2 infections drive a VWF/ADAMTS13 axis imbalance, inducing an increase in tPA while decreasing FIX, MMP-2, and sICAM-1 post-stroke.
Collapse
Affiliation(s)
- Nadim Luka
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of NeuroscienceThe University of ManchesterManchesterUK
| | - Kieron South
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of NeuroscienceThe University of ManchesterManchesterUK
| | - Rachel Jones
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of Cardiovascular SciencesThe University of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthManchester Academic Health Science Centre, The University of ManchesterManchesterUK
| | - Amanda J. Unsworth
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Graham Coutts
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of NeuroscienceThe University of ManchesterManchesterUK
| | - Ioana‐Emilia Mosneag
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of NeuroscienceThe University of ManchesterManchesterUK
| | - Mehwish Younas
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of NeuroscienceThe University of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthManchester Academic Health Science Centre, The University of ManchesterManchesterUK
| | - Amy Bradley
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation TrustUniversity of ManchesterManchesterUK
| | - Siew Yan Wong
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation TrustUniversity of ManchesterManchesterUK
| | - Ellen Collins
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation TrustUniversity of ManchesterManchesterUK
| | - Chloe Quigley
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation TrustUniversity of ManchesterManchesterUK
| | - Sean B. Knight
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
- Division of Immunology, Immunity to Infection and Respiratory MedicineThe University of ManchesterManchesterUK
| | - Barry W. McColl
- UK Dementia Research Institute, Centre for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - Laura McCulloch
- Centre for Inflammation Research, Institute for Regeneration and RepairThe University of EdinburghEdinburghUK
| | - John R. Grainger
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
- Division of Immunology, Immunity to Infection and Respiratory MedicineThe University of ManchesterManchesterUK
| | - Craig J. Smith
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of Cardiovascular SciencesThe University of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthManchester Academic Health Science Centre, The University of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation TrustUniversity of ManchesterManchesterUK
| | - Stuart M. Allan
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of NeuroscienceThe University of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthManchester Academic Health Science Centre, The University of ManchesterManchesterUK
| |
Collapse
|
4
|
Sahin K, Sahin Aktura S, Bahceci I, Mercantepe T, Tumkaya L, Topcu A, Mercantepe F, Duran OF, Uydu HA, Yazici ZA. Is Punica granatum Efficient Against Sepsis? A Comparative Study of Amifostine Versus Pomegranate. Life (Basel) 2025; 15:78. [PMID: 39860018 PMCID: PMC11766669 DOI: 10.3390/life15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Sepsis is a clinical condition causing tissue damage as a result of infection and an exaggerated immune response. Sepsis causes 11 million deaths annually, a third of which are associated with acute lung injury (ALI). Rapid and effective treatment is crucial to improve survival rates. Punica granatum (pomegranate) is rich in polyphenols and demonstrates strong antioxidant activity, while amifostine acts as a free radical scavenger. This study aimed to investigate the antioxidant and anti-inflammatory effects of P. granatum peel extract (PGPE) and amifostine in sepsis-related ALI. Experimental groups included Control, CLP (cecal ligation and puncture-induced sepsis), Amf (200 mg/kg amifostine, intraperitoneally), and PGPE250, and PGPE500 (250 and 500 mg/kg PGPE via oral gavage, respectively). Thiobarbituric acid reactive substances (TBARS), total thiol (TT), tumor necrosis factor-alpha (TNF-α) levels, and metalloproteinases 2 and 9 (MMP-2 and MMP-9) were assessed in the lung tissue. Biochemical analysis demonstrated that TBARS and TNF-α levels significantly decreased in both the PGPE and amifostine treatment groups compared to the CLP group, while TT levels showed notable improvement. Histopathological evaluation revealed reduced MMP-2 and MMP-9 immunopositivity in the PGPE250 and PGPE500 groups. These findings highlight the lung-protective properties of PGPE, underscoring its potential as a therapeutic agent for sepsis-induced acute lung injury.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Sena Sahin Aktura
- Department of Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Ilkay Bahceci
- Department of Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, 55139 Samsun, Turkey
| | - Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey;
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism Diseases, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Omer Faruk Duran
- Department of Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Huseyin Avni Uydu
- Department of Biochemistry, Faculty of Medicine, Samsun University, 55080 Samsun, Turkey
| | - Zihni Acar Yazici
- Department of Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| |
Collapse
|
5
|
Kamdar A, Sykes R, Thomson CR, Mangion K, Ang D, Lee MAW, Van Agtmael T, Berry C. Vascular fibrosis and extracellular matrix remodelling in post-COVID 19 conditions. INFECTIOUS MEDICINE 2024; 3:100147. [PMID: 39649442 PMCID: PMC11621938 DOI: 10.1016/j.imj.2024.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 12/10/2024]
Abstract
Causal associations between viral infections and acute myocardial injury are not fully understood, with mechanisms potentially involving direct cardiovascular involvement or systemic inflammation. This review explores plausible mechanisms of vascular fibrosis in patients with post-COVID-19 syndrome, focusing on extracellular matrix remodelling. Despite global attention, significant mechanistic or translational breakthroughs in the management of post-viral syndromes remain limited. No effective pharmacological or non-pharmacological interventions are currently available for patients experiencing persistent symptoms following COVID-19 infection. The substantial expansion of scientific knowledge resulting from collaborative efforts by medical experts, scientists, and government organisations in undertaking COVID-19 research could inform treatment strategies for other post-viral syndromes and respiratory illnesses. There is a critical need for clinical trials to evaluate potential therapeutic candidates, providing evidence to guide treatment decisions for post-COVID-19 syndromes.
Collapse
Affiliation(s)
- Anna Kamdar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
| | - Robert Sykes
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
| | - Cameron R. Thomson
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
| | - Kenneth Mangion
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
- Department of Cardiology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde Health Board, Glasgow G51 4TF, UK
| | - Daniel Ang
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
| | - Michelle AW Lee
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
| | - Tom Van Agtmael
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
| | - Colin Berry
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
- Department of Cardiology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde Health Board, Glasgow G51 4TF, UK
| |
Collapse
|
6
|
Ferreira J, Fadl S, Cardoso T, Andrade B, Melo T, Silva E, Agarwal A, Turville S, Saksena N, Rabeh W. Boosting immunity: synergistic antiviral effects of luteolin, vitamin C, magnesium and zinc against SARS-CoV-2 3CLpro. Biosci Rep 2024; 44:BSR20240617. [PMID: 39045772 PMCID: PMC11327220 DOI: 10.1042/bsr20240617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024] Open
Abstract
SARS-CoV-2 was first discovered in 2019 and has disseminated throughout the globe to pandemic levels, imposing significant health and economic burdens. Although vaccines against SARS-CoV-2 have been developed, their long-term efficacy and specificity have not been determined, and antiviral drugs remain necessary. Flavonoids, which are commonly found in plants, fruits, and vegetables and are part of the human diet, have attracted considerable attention as potential therapeutic agents due to their antiviral and antimicrobial activities and effects on other biological activities, such as inflammation. The present study uses a combination of biochemical, cellular, molecular dynamics, and molecular docking experiments to provide compelling evidence that the flavonoid luteolin (2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one) has antiviral activity against SARS-CoV-2 3-chymotrypsin-like protease (3CLpro) that is synergistically enhanced by magnesium, zinc, and vitamin C. The IC50 of luteolin against 2 µM 3CLpro is 78 µM and decreases 10-fold to 7.6 µM in the presence of zinc, magnesium, and vitamin C. Thermodynamic stability analyses revealed that luteolin has minimal effects on the structure of 3CLpro, whereas metal ions and vitamin C significantly alter the thermodynamic stability of the protease. Interactome analysis uncovered potential host-virus interactions and functional clusters associated with luteolin activity, supporting the relevance of this flavone for combating SARS-CoV-2 infection. This comprehensive investigation sheds light on luteolin's therapeutic potential and provides insights into its mechanisms of action against SARS-CoV-2. The novel formulation of luteolin, magnesium, zinc, and vitamin C may be an effective avenue for treating COVID-19 patients.
Collapse
Affiliation(s)
- Juliana C. Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Thyago H.S. Cardoso
- G42 Healthcare Omics Excellence Center, Masdar City, Abu Dhabi, United Arabes Emirates
| | - Bruno Silva Andrade
- UESB - Universidade Estatudal Do Sudoeste da Bahia. Deparmento de Ciencias Biologicas
| | - Tarcisio S. Melo
- UESB - Universidade Estatudal Do Sudoeste da Bahia. Deparmento de Ciencias Biologicas
| | | | | | | | - Nitin K. Saksena
- Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
- Aegros Therapeutics Pty Ltd, 5-6 Eden Park Drive, Macquarie Park, NSW 2113, Australia
| | - Wael M. Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Ahmed G, Abdelgadir Y, Abdelghani A, Simpson P, Barbeau J, Basel D, Barrios CS, Smith BA, Schilter KF, Udani R, Reddi HV, Willoughby RE. Reduction in ACE2 expression in peripheral blood mononuclear cells during COVID-19 - implications for post COVID-19 conditions. BMC Infect Dis 2024; 24:663. [PMID: 38956476 PMCID: PMC11221185 DOI: 10.1186/s12879-024-09321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/14/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Severe COVID-19 is uncommon, restricted to 19% of the total population. In response to the first virus wave (alpha variant of SARS-CoV-2), we investigated whether a biomarker indicated severity of disease and, in particular, if variable expression of angiotensin converting enzyme 2 (ACE2) in blood might clarify this difference in risk and of post COVID -19 conditions (PCC). METHODS The IRB-approved study compared patients hospitalized with severe COVID-19 to healthy controls. Severe infection was defined requiring oxygen or increased oxygen need from baseline at admission with positive COVID-19 PCR. A single blood sample was obtained from patients within a day of admission. ACE2 RNA expression in blood cells was measured by an RT-PCR assay. Plasma ACE1 and ACE2 enzyme activities were quantified by fluorescent peptides. Plasma TIMP-1, PIIINP and MMP-9 antigens were quantified by ELISA. Data were entered into REDCap and analyzed using STATA v 14 and GraphPad Prism v 10. RESULTS Forty-eight patients and 72 healthy controls were recruited during the pandemic. ACE2 RNA expression in peripheral blood mononuclear cells (PBMC) was rarely detected acutely during severe COVID-19 but common in controls (OR for undetected ACE2: 12.4 [95% CI: 2.62-76.1]). ACE2 RNA expression in PBMC did not determine plasma ACE1 and ACE2 activity, suggesting alternative cell-signaling pathways. Markers of fibrosis (TIMP-1 and PIIINP) and vasculopathy (MMP-9) were additionally elevated. ACE2 RNA expression during severe COVID-19 often responded within hours to convalescent plasma. Analogous to oncogenesis, we speculate that potent, persistent, cryptic processes following COVID-19 (the renin-angiotensin system (RAS), fibrosis and vasculopathy) initiate or promote post-COVID-19 conditions (PCC) in susceptible individuals. CONCLUSIONS This work elucidates biological and temporal plausibility for ACE2, TIMP1, PIIINP and MMP-9 in the pathogenesis of PCC. Intersection of these independent systems is uncommon and may in part explain the rarity of PCC.
Collapse
Affiliation(s)
- Gulrayz Ahmed
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | - Pippa Simpson
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jody Barbeau
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Donald Basel
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | - Rupa Udani
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Honey V Reddi
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rodney E Willoughby
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
- Pediatric Infectious Diseases, C450, Medical College of Wisconsin, PO Box 1997, Milwaukee, WI 53201-1997, USA.
| |
Collapse
|
8
|
Jahan E, Mazumder T, Hasan T, Ahmed KS, Amanat M, Hossain H, Supty SJ, Liya IJ, Shuvo MSR, Daula AFMSU. Metabolomic Approach to Identify the Potential Metabolites from Alpinia malaccensis for Treating SARS-CoV-2 Infection. Biochem Genet 2024:10.1007/s10528-024-10869-4. [PMID: 38955878 DOI: 10.1007/s10528-024-10869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
The advent of the new coronavirus, leading to the SARS-CoV-2 pandemic, has presented a substantial worldwide health hazard since its inception in the latter part of 2019. The severity of the current pandemic is exacerbated by the occurrence of re-infection or co-infection with SARS-CoV-2. Hence, comprehending the molecular process underlying the pathophysiology of sepsis and discerning possible molecular targets for therapeutic intervention holds significant importance. For the first time, 31 metabolites were tentatively identified by GC-MS analysis from Alpinia malaccensis. On the other hand, five phenolic compounds were identified and quantified from the plant in HPLC-DAD analysis, including (-) epicatechin, rutin hydrate, rosmarinic acid, quercetin, and kaempferol. Nine GC-MS and five HPLC-identified metabolites had shown interactions with 45 and 30 COVID-19-associated human proteins, respectively. Among the proteins, PARP1, FN1, PRKCA, EGFR, ALDH2, AKR1C3, AHR, and IKBKB have been found as potential therapeutic targets to mitigate SARS-CoV-2 infection. KEGG pathway analysis also showed a strong association of FN1, EGFR, and IKBKB genes with SARS-CoV-2 viral replication and cytokine overexpression due to viral infection. Protein-protein interaction (PPI) analysis also showed that TP53, MMP9, FN1, EGFR, and NOS2 proteins are highly related to the genes involved in COVID-19 comorbidity. These proteins showed interaction with the plant phytoconstituents as well. As the study offers a robust network-based procedure for identifying biomolecules relevant to COVID-19 disease, A. malaccensis could be a good source of effective therapeutic agents against COVID-19 and related viral diseases.
Collapse
Affiliation(s)
- Esrat Jahan
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Tanoy Mazumder
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Tarek Hasan
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Khondoker Shahin Ahmed
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Muhammed Amanat
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Hemayet Hossain
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Sumaiya Jannat Supty
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, Bangladesh
| | - Israt Jahan Liya
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Md Sadikur Rahman Shuvo
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh.
| | - A F M Shahid Ud Daula
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh.
| |
Collapse
|
9
|
Bowsher R, Marczylo TH, Gooch K, Bailey A, Wright MD, Marczylo EL. Smoking and vaping alter genes related to mechanisms of SARS-CoV-2 susceptibility and severity: a systematic review and meta-analysis. Eur Respir J 2024; 64:2400133. [PMID: 38991709 PMCID: PMC11269771 DOI: 10.1183/13993003.00133-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Evidence for the impact of smoking on coronavirus disease 2019 (COVID-19) is contradictory, and there is little research on vaping. Here we provide greater clarity on mechanisms perturbed by tobacco cigarette, electronic cigarette and nicotine exposures that may impact the risks of infection and/or disease severity. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the Ovid and Web of Science databases were searched. Study design and exposure-induced gene expression changes were extracted. Each study was quality assessed and higher confidence scores were assigned to genes consistently changed across multiple studies following the same exposure. These genes were used to explore pathways significantly altered following exposure. RESULTS 125 studies provided data on 480 genes altered by exposure to tobacco cigarettes, e-cigarettes, nicotine or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Genes involved in both SARS-CoV-2 viral-entry and inflammation were changed following exposure. Pathway analysis revealed that many of those genes with high confidence scores are involved in common cellular processes relating to hyperinflammatory immune responses. CONCLUSION Exposure to tobacco cigarettes, e-cigarettes or nicotine may therefore impact initial host-pathogen interactions and disease severity. Smokers and vapers of e-cigarettes with nicotine could potentially be at increased risk of SARS-CoV-2 infection, associated cytokine storm, and acute respiratory distress syndrome. However, further research is required, particularly on e-cigarettes, to determine the biological mechanisms involved in perturbation of viral-entry genes and host-pathogen interactions and subsequent responses within the respiratory tract. This will improve our physiological understanding of the impact of smoking and vaping on COVID-19, informing public health advice and providing improved guidance for management of SARS-CoV-2 and other respiratory viruses.
Collapse
Affiliation(s)
- Rachel Bowsher
- Toxicology Department, UK Health Security Agency, Chilton, UK
- Pharmacology Section, St George's University of London, London, UK
| | | | - Karen Gooch
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Salisbury, UK
| | - Alexis Bailey
- Pharmacology Section, St George's University of London, London, UK
| | | | - Emma L Marczylo
- Toxicology Department, UK Health Security Agency, Chilton, UK
| |
Collapse
|
10
|
Lubinski B, Whittaker GR. Host Cell Proteases Involved in Human Respiratory Viral Infections and Their Inhibitors: A Review. Viruses 2024; 16:984. [PMID: 38932275 PMCID: PMC11209347 DOI: 10.3390/v16060984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Viral tropism is most commonly linked to receptor use, but host cell protease use can be a notable factor in susceptibility to infection. Here we review the use of host cell proteases by human viruses, focusing on those with primarily respiratory tropism, particularly SARS-CoV-2. We first describe the various classes of proteases present in the respiratory tract, as well as elsewhere in the body, and incorporate the targeting of these proteases as therapeutic drugs for use in humans. Host cell proteases are also linked to the systemic spread of viruses and play important roles outside of the respiratory tract; therefore, we address how proteases affect viruses across the spectrum of infections that can occur in humans, intending to understand the extrapulmonary spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Bailey Lubinski
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA;
| | - Gary R. Whittaker
- Department of Microbiology & Immunology and Public & Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
11
|
Toczyłowski K, Lewandowski D, Martonik D, Moniuszko-Malinowska A, Kruszewska E, Parfieniuk-Kowerda A, Flisiak R, Sulik A. Differential Inflammatory Responses in Adult and Pediatric COVID-19 Patients: Implications for Long-Term Consequences and Anti-Inflammatory Treatment. Med Sci Monit 2024; 30:e944052. [PMID: 38816982 PMCID: PMC11149468 DOI: 10.12659/msm.944052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/21/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND COVID-19 manifests with varying degrees of severity across different age groups; adults typically experience more severe symptoms than children. Matrix metalloproteinases (MMPs), known for their role in tissue remodeling and immune responses, may contribute to the pathophysiological disparities observed between these groups. We sought to delineate differences in serum MMP profiles between adult and pediatric COVID-19 patients, assess the influence of anti-inflammatory treatment on MMP levels, and examine potential implications for long-term consequences. MATERIAL AND METHODS Serum samples from adult and pediatric COVID-19 patients, alongside controls, were analyzed for MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-12, MMP-13, EMMPRIN, TNF-alpha, TIMP-1, TIMP-2, TIMP-3, and TIMP-4. A subset of adult patients received treatment with glucocorticoids, tocilizumab, and convalescent plasma, and MMP levels were compared with those of untreated patients. RESULTS Elevated levels of MMP-1, MMP-7, TIMP-1, and TIMP-2 were observed in adult and pediatric patients. Adult patients displayed higher concentrations of MMP-3, MMP-8, MMP-9, TNF-alpha, and TIMP-4 than children. Post-treatment reduction in MMP-1, MMP-8, MMP-9 levels was observed, with median decreases from 21% to 70%. MMP-3 and MMP-7 remained largely unchanged, and MMP-2 concentrations increased after treatment. Notably, anti-inflammatory treatment correlated with reduced post-treatment MMP levels, suggesting potential therapeutic benefit. CONCLUSIONS Distinctive inflammatory responses in COVID-19 were evident between adults and children. While certain MMPs exhibited post-treatment reduction, the persistence of elevated levels raises concerns about potential long-term consequences, including lung fibrosis. Our findings emphasize the need for personalized treatment strategies and further investigation into the dynamics of MMP regulation in COVID-19.
Collapse
Affiliation(s)
- Kacper Toczyłowski
- Department of Pediatric Infectious Diseases, Medical University of Białystok, Białystok, Poland
| | - Dawid Lewandowski
- Department of Pediatric Infectious Diseases, Medical University of Białystok, Białystok, Poland
| | - Diana Martonik
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Białystok, Poland
| | - Ewelina Kruszewska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Białystok, Poland
| | - Anna Parfieniuk-Kowerda
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Białystok, Poland
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Białystok, Poland
| | - Artur Sulik
- Department of Pediatric Infectious Diseases, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
12
|
Starshinova A, Borozinets A, Kulpina A, Sereda V, Rubinstein A, Kudryavtsev I, Kudlay D. Bronchial Asthma and COVID-19: Etiology, Pathological Triggers, and Therapeutic Considerations. PATHOPHYSIOLOGY 2024; 31:269-287. [PMID: 38921725 PMCID: PMC11206645 DOI: 10.3390/pathophysiology31020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Bronchial asthma (BA) continues to be a difficult disease to diagnose. Various factors have been described in the development of BA, but to date, there is no clear evidence for the etiology of this chronic disease. The emergence of COVID-19 has contributed to the pandemic course of asthma and immunologic features. However, there are no unambiguous data on asthma on the background and after COVID-19. There is correlation between various trigger factors that provoke the development of bronchial asthma. It is now obvious that the SARS-CoV-2 virus is one of the provoking factors. COVID-19 has affected the course of asthma. Currently, there is no clear understanding of whether asthma progresses during or after COVID-19 infection. According to the results of some studies, a significant difference was identified between the development of asthma in people after COVID-19. Mild asthma and moderate asthma do not increase the severity of COVID-19 infection. Nevertheless, oral steroid treatment and hospitalization for severe BA were associated with higher COVID-19 severity. The influence of SARS-CoV-2 infection is one of the protective factors. It causes the development of severe bronchial asthma. The accumulated experience with omalizumab in patients with severe asthma during COVID-19, who received omalizumab during the pandemic, has strongly suggested that continued treatment with omalizumab is safe and may help prevent the severe course of COVID-19. Targeted therapy for asthma with the use of omalizumab may also help to reduce severe asthma associated with COVID-19. However, further studies are needed to prove the effect of omalizumab. Data analysis should persist, based on the results of the course of asthma after COVID-19 with varying degrees of severity.
Collapse
Affiliation(s)
- Anna Starshinova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia;
| | - Anastasia Borozinets
- Medical Department, I.M. Sechenov First Moscow State Medical University, 197022 Moscow, Russia
| | - Anastasia Kulpina
- Medical Department, Saint Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia;
| | - Vitaliy Sereda
- Medical Department, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Artem Rubinstein
- Department of immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia;
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia;
- Department of immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia;
| | - Dmitry Kudlay
- Institute of Immunology FMBA of Russia, 115478 Moscow, Russia;
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
13
|
Wong M, Gain C, Sharma MB, Fotooh Abadi L, Hugo C, Vassilopoulos H, Daskou M, Fishbein GA, Kelesidis T. Severe Acute Respiratory Syndrome Coronavirus 2 Infection Alters Mediators of Lung Tissue Remodeling In Vitro and In Vivo. J Infect Dis 2024; 229:1372-1381. [PMID: 38109685 DOI: 10.1093/infdis/jiad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Altered mediators of airway tissue remodeling such as matrix metalloproteinases (MMPs) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may contribute to morbidity in coronavirus disease 2019 (COVID-19); however, the differential impact of SARS-CoV-2 variants of concern (VOCs) on MMPs is unknown. METHODS Using both in vitro human airway cell culture model and in vivo transgenic mouse model of SARS-CoV-2 infection, we studied the differential effect of SARS-CoV-2 VOCs on expression of key MMPs and inflammatory mediators in airway cells and tissues. RESULTS The most consistent findings with all SARS-CoV-2 variants in infected compared to uninfected human bronchial epithelial cell air-liquid interface cultures were the SARS-CoV-2-induced increases in MMP-12 and tissue inhibitor of MMPs. Infection with both SARS-CoV-2 wild type and SARS-CoV-2 Delta variant over 3 days postinfection (dpi) and with Beta variant over 7 dpi increased lung tissue levels of MMP-9 compared to uninfected mice. Overall, SARS-CoV-2 variants had differential dose-dependent impact on secretion of MMP-1, MMP-2, MMP-9, and MMP-12 that varied at the protein versus the gene level and in the early noninflammatory compared to late inflammatory phase of infection. CONCLUSIONS We provide novel mechanistic insight that the differential impact of SARS-CoV-2 variants on severity of COVID-19 may partially be attributed to unique changes in MMPs.
Collapse
Affiliation(s)
- Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Madhav B Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Leila Fotooh Abadi
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Division of Infectious Diseases, Department of Medicine, University of Texas Southwestern, Dallas
| | - Cristelle Hugo
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Hariclea Vassilopoulos
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Gregory A Fishbein
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles
| | - Theodoros Kelesidis
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Division of Infectious Diseases, Department of Medicine, University of Texas Southwestern, Dallas
| |
Collapse
|
14
|
Cavalcante GL, Bonifacio LP, Sanches-Lopes JM, Puga FG, de Carvalho FS, Bellissimo-Rodrigues F, Tanus-Santos JE. Matrix metalloproteinases are associated with severity of disease among COVID-19 patients: A possible pharmacological target. Basic Clin Pharmacol Toxicol 2024; 134:727-736. [PMID: 38468413 DOI: 10.1111/bcpt.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024]
Abstract
COVID-19 is a devastating disease and imbalanced matrix metalloproteinase (MMP) activity may contribute to its pathophysiology. This exploratory study examined whether increased circulating concentrations of MMP-2 and MMP-9, and their endogenous inhibitors, the tissue inhibitors of MMP (TIMP)-1, TIMP-2, TIMP-3 and TIMP-4 are persistently found in patients 2 weeks after their recovery from severe or critical COVID-19 as compared with those in healthy controls. Subjects who had severe (n = 26) or critical (n = 25) PCR-confirmed COVID-19 and healthy controls (n = 21) had blood samples drawn 2 weeks after recovery and serum MMP-2, MMP-9, TIMP-1, TIMP-2, TIMP-3 and TIMP-4 were determined using two Human Luminex® Discovery Assays. Circulating MMP activity was also determined by gel zymography. Patients who had severe or critical COVID-19 had increased circulating MMP-9 and MMP-2 concentrations, with increased MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios indicating increased MMP activity, confirmed by gel zymography (all p < 0.05). Higher circulating MMP-9 (but not MMP-2) concentrations were found in critical versus severe COVID-19 (p < 0.05). We found increased circulating MMP-9 and MMP-2 concentrations and activity many days after recovery from the acute disease, with MMP-9 levels associated with disease severity. These biochemical alterations suggest that MMP-2 and MMP-9 may be important pharmacological targets in COVID-19.
Collapse
Affiliation(s)
- Gisele Lopes Cavalcante
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lívia Pimenta Bonifacio
- Department of Social Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jéssica Maria Sanches-Lopes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernanda Guioti Puga
- Department of Social Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | | | - Jose Eduardo Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
15
|
Mestriner F, Francisco DF, Campos LCB, Couto AES, Fraga-Silva TFC, Flora Dugaich V, D Avila-Mesquita C, Zukowski Kovacs H, Vasconcelos JL, Milani ER, Santos Guedes de Sá K, Martins R, Jordani MC, Corsi CAC, Barbosa JM, Vasconcelos T, Gonçalves Menegueti M, Neto J, da Costa RM, Evora PRB, Arruda E, Tostes R, Polonis K, Bonato VLD, Auxiliadora-Martins M, Ribeiro MS, Becari C. Alpha 1-acid glycoprotein is upregulated in severe COVID-19 patients and decreases neutrophil NETs in SARS-CoV-2 infection. Cytokine 2024; 176:156503. [PMID: 38301358 DOI: 10.1016/j.cyto.2024.156503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Orosomucoid, or alpha-1 acid glycoprotein (AGP), is a major acute-phase protein expressed in response to systemic injury and inflammation. AGP has been described as an inhibitor of neutrophil migration on sepsis, particularly its immunomodulation effects. AGP's biological functions in coronavirus disease 2019 (COVID-19) are not understood. We sought to investigate the role of AGP in severe COVID-19 infection patients and neutrophils infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Epidemiological data, AGP levels, and other laboratory parameters were measured in blood samples from 56 subjects hospitalized in the ICU with SARS-CoV-2 infection. To evaluate the role of AGP in NETosis in neutrophils, blood samples from health patients were collected, and neutrophils were separated and infected with SARS-CoV-2. Those neutrophils were treated with AGP or vehicle, and NETosis was analyzed by flow cytometry. AGP was upregulated in severe COVID-19 patients (p<0.05). AGP level was positively correlated with IL-6 and C-reactive protein (respectively, p=0.005, p=0.002) and negatively correlated with lactate (p=0.004). AGP treatment downregulated early and late NETosis (respectively, 35.7% and 43.5%) in neutrophils infected with SARS-CoV-2 and up-regulated IL-6 supernatant culture expression (p<0.0001). Our data showed increased AGP in COVID-19 infection and contributed to NETosis regulation and increased IL-6 production, possibly related to the Cytokine storm in COVID-19.
Collapse
Affiliation(s)
- Fabiola Mestriner
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniely F Francisco
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ligia C B Campos
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ariel E S Couto
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thais F C Fraga-Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, Sao Paulo, Brazil; Universidade Federal de Alagoas - UFAL, Maceió, AL, Brazil
| | - Vinicius Flora Dugaich
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina D Avila-Mesquita
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Henrique Zukowski Kovacs
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jociany L Vasconcelos
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Elizabete R Milani
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Keyla Santos Guedes de Sá
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ronaldo Martins
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria C Jordani
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos A C Corsi
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jessyca M Barbosa
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Tauana Vasconcelos
- Division of Intensive Care Medicine, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Julio Neto
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Rafael M da Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Paulo R B Evora
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eurico Arruda
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rita Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Katarzyna Polonis
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University in St. Louis, Missouri, USA
| | - Vania L D Bonato
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Maria Auxiliadora-Martins
- Division of Intensive Care Medicine, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mauricio S Ribeiro
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Christiane Becari
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Biological Sciences, School of Dentistry of Bauru, University of São Paulo, Bauru, São Paulo, Brazil.
| |
Collapse
|
16
|
Louçano B, Maletti S, Timóteo H, Figueiredo JP, Osório N, Barroca MJ, da Silva AM, Pereira T, Caseiro A. Assessing Sarcocornia as a Salt Substitute: Effects on Lipid Profile and Gelatinase Activity. Nutrients 2024; 16:929. [PMID: 38612961 PMCID: PMC11013238 DOI: 10.3390/nu16070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Sodium, although essential for life, is a key factor in changes in vascular function and cardiovascular disease when consumed in excess. Sarcocornia spp., a halophyte plant with many nutritional benefits, presents itself as a promising substitute for the consumption of purified salt. Matrix metalloproteinases (MMPs) 2 and 9 are widely studied due to their action in physiological processes and as biomarkers at the diagnostic level due to their increased expression in inflammatory processes. This study aimed to evaluate whether replacing salt with Sarcocornia perennis (S. perennis) powder in healthy young people leads to an improvement in biochemical profiles and the attenuation of MMP-2 and MMP-9 activity. In the present study, 30 participants were randomized into a control group that consumed salt and an intervention group that replaced salt with powdered S. perennis. The evaluation of the biochemical parameters was carried out by the spectrophotometry method, and the evaluation of MMP activity was carried out by zymography. A significant decrease was observed in the intervention group in total cholesterol, high-density lipoprotein cholesterol (HDL-c), and creatinine (p-value ≤ 0.05), along with lower but not significantly different mean values of triglycerides. Regarding MMP activity after the intervention, a lower mean value was observed for MMP-9 activity, with there being higher mean values for MMP-2 activity, both with p-values ≥ 0.05. The results confirmed that the consumption of S. perennis is a beneficial choice for health regarding the lipid profile. The evaluation of MMP activity indicated the potential of S. perennis in the regulation of MMP-9 activity in healthy individuals, along with the need for the further study of these proteases in individuals with pathologies.
Collapse
Affiliation(s)
- Beatriz Louçano
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
| | - Sara Maletti
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, Faculty of Medicine and Surgery, University of Modena and Reggio Emilia, Policlinico, via del Pozzo, 7141124 Modena, Italy;
| | - Helena Timóteo
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
| | - João Paulo Figueiredo
- Polytechnic Institute of Coimbra, Coimbra Health School, Medical Sciences, Socials and Humans, Rua 5 de Outubro, 3046-854 Coimbra, Portugal;
| | - Nádia Osório
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
- LABINSAÚDE-Research Laboratory for Applied Health Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Maria João Barroca
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Polytechnic Institute of Coimbra, Agriculture School of Coimbra, Bencanta, 3040-360 Coimbra, Portugal
| | - Aida Moreira da Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Polytechnic Institute of Coimbra, Agriculture School of Coimbra, Bencanta, 3040-360 Coimbra, Portugal
| | - Telmo Pereira
- LABINSAÚDE-Research Laboratory for Applied Health Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
- Polytechnic Institute of Coimbra, Coimbra Health School, Clinical Physiology, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal
- Faculty of Sport Science and Physical Education, University of Coimbra, CIDAF—Research Unit for Sport and Physical Activity, 3000-456 Coimbra, Portugal
| | - Armando Caseiro
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
- LABINSAÚDE-Research Laboratory for Applied Health Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Faculty of Sport Science and Physical Education, University of Coimbra, CIDAF—Research Unit for Sport and Physical Activity, 3000-456 Coimbra, Portugal
| |
Collapse
|
17
|
Leonard S, Guertin H, Odoardi N, Miller MR, Patel MA, Daley M, Cepinskas G, Fraser DD. Pediatric sepsis inflammatory blood biomarkers that correlate with clinical variables and severity of illness scores. J Inflamm (Lond) 2024; 21:7. [PMID: 38454423 PMCID: PMC10921642 DOI: 10.1186/s12950-024-00379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Sepsis is a dysregulated systemic inflammatory response triggered by infection, resulting in organ dysfunction. A major challenge in clinical pediatrics is to identify sepsis early and then quickly intervene to reduce morbidity and mortality. As blood biomarkers hold promise as early sepsis diagnostic tools, we aimed to measure a large number of blood inflammatory biomarkers from pediatric sepsis patients to determine their predictive ability, as well as their correlations with clinical variables and illness severity scores. METHODS Pediatric patients that met sepsis criteria were enrolled, and clinical data and blood samples were collected. Fifty-eight inflammatory plasma biomarker concentrations were determined using immunoassays. The data were analyzed with both conventional statistics and machine learning. RESULTS Twenty sepsis patients were enrolled (median age 13 years), with infectious pathogens identified in 75%. Vasopressors were administered to 85% of patients, while 55% received invasive ventilation and 20% were ventilated non-invasively. A total of 24 inflammatory biomarkers were significantly different between sepsis patients and age/sex-matched healthy controls. Nine biomarkers (IL-6, IL-8, MCP-1, M-CSF, IL-1RA, hyaluronan, HSP70, MMP3, and MMP10) yielded AUC parameters > 0.9 (95% CIs: 0.837-1.000; p < 0.001). Boruta feature reduction yielded 6 critical biomarkers with their relative importance: IL-8 (12.2%), MCP-1 (11.6%), HSP70 (11.6%), hyaluronan (11.5%), M-CSF (11.5%), and IL-6 (11.5%); combinations of 2 biomarkers yielded AUC values of 1.00 (95% CI: 1.00-1.00; p < 0.001). Specific biomarkers strongly correlated with illness severity scoring, as well as other clinical variables. IL-3 specifically distinguished bacterial versus viral infection (p < 0.005). CONCLUSIONS Specific inflammatory biomarkers were identified as markers of pediatric sepsis and strongly correlated to both clinical variables and sepsis severity.
Collapse
Affiliation(s)
- Sean Leonard
- Pediatrics, Western University, London, ON, Canada
| | | | - Natalya Odoardi
- Emergency Medicine, Lakeridge Health, Ajax/Oshawa, ON, Canada
| | | | - Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, Canada
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, London, ON, Canada
- Computer Science, Western University, London, ON, Canada
| | - Gediminas Cepinskas
- Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Douglas D Fraser
- Pediatrics, Western University, London, ON, Canada.
- Lawson Health Research Institute, London, ON, Canada.
- Clinical Neurological Sciences, Western University, London, ON, Canada.
- Physiology & Pharmacology, Western University, London, ON, Canada.
- Room C2-C82, London Health Sciences Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
18
|
Perez-Favila A, Garza-Veloz I, Hernandez-Marquez LDS, Gutierrez-Vela EF, Flores-Morales V, Martinez-Fierro ML. Antifibrotic Drugs against Idiopathic Pulmonary Fibrosis and Pulmonary Fibrosis Induced by COVID-19: Therapeutic Approaches and Potential Diagnostic Biomarkers. Int J Mol Sci 2024; 25:1562. [PMID: 38338840 PMCID: PMC10855955 DOI: 10.3390/ijms25031562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The COVID-19 pandemic has had a significant impact on the health and economy of the global population. Even after recovery from the disease, post-COVID-19 symptoms, such as pulmonary fibrosis, continue to be a concern. This narrative review aims to address pulmonary fibrosis (PF) from various perspectives, including the fibrotic mechanisms involved in idiopathic and COVID-19-induced pulmonary fibrosis. On the other hand, we also discuss the current therapeutic drugs in use, as well as those undergoing clinical or preclinical evaluation. Additionally, this article will address various biomarkers with usefulness for PF prediction, diagnosis, treatment, prognosis, and severity assessment in order to provide better treatment strategies for patients with this disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Margarita L. Martinez-Fierro
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Académica de Medicina Humana y CS, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (A.P.-F.); (I.G.-V.); (L.d.S.H.-M.); (E.F.G.-V.); (V.F.-M.)
| |
Collapse
|
19
|
Cai L, Zuo X, Ma L, Zhang Y, Xu F, Lu B. Associations of MMP9 polymorphism with the risk of severe pneumonia in a Southern Chinese children population. BMC Infect Dis 2024; 24:19. [PMID: 38166679 PMCID: PMC10763005 DOI: 10.1186/s12879-023-08931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Severe pneumonia frequently causes irreversible sequelae and represents a major health burden for children under the age of 5. Matrix Metallopeptidase 9 (MMP9) is a zinc-dependent endopeptidase that is involved in various cellular processes. The correlation between MMP9 and the risk of severe childhood pneumonia remains unclear. METHODS Here we assemble a case-control cohort to study the association of genetic variants in MMP9 gene with severe childhood pneumonia susceptibility in a Southern Chinese population (1034 cases and 8426 controls). RESULTS Our results indicate that the allele G in rs3918262 SNP was significantly associated with an increased risk of severe pneumonia. Bioinformatic analyses by expression quantitative trait loci (eQTL), RegulomeDB and FORGEdb database analysis showed that rs3918262 SNP has potential regulatory effect on translational efficiency and protein level of MMP9 gene. Furthermore, MMP9 concentrations were significantly up-regulated in the bronchoalveolar lavages (BALs) of children with severe pneumonia. CONCLUSION In summary, our findings suggest that MMP9 is a novel predisposing gene for childhood pneumonia.
Collapse
Affiliation(s)
- Li Cai
- Department of Hospital Infection Control, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Xiaoyu Zuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Liuheyi Ma
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Yuxia Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Falin Xu
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China.
| | - Bingtai Lu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
20
|
Ge R, Wang F, Peng Z. Advances in Biomarkers for Diagnosis and Treatment of ARDS. Diagnostics (Basel) 2023; 13:3296. [PMID: 37958192 PMCID: PMC10649435 DOI: 10.3390/diagnostics13213296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 11/15/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common and fatal disease, characterized by lung inflammation, edema, poor oxygenation, and the need for mechanical ventilation, or even extracorporeal membrane oxygenation if the patient is unresponsive to routine treatment. In this review, we aim to explore advances in biomarkers for the diagnosis and treatment of ARDS. In viewing the distinct characteristics of each biomarker, we classified the biomarkers into the following six categories: inflammatory, alveolar epithelial injury, endothelial injury, coagulation/fibrinolysis, extracellular matrix turnover, and oxidative stress biomarkers. In addition, we discussed the potential role of machine learning in identifying and utilizing these biomarkers and reviewed its clinical application. Despite the tremendous progress in biomarker research, there remain nonnegligible gaps between biomarker discovery and clinical utility. The challenges and future directions in ARDS research concern investigators as well as clinicians, underscoring the essentiality of continued investigation to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Ruiqi Ge
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China;
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Fengyun Wang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China;
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China;
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| |
Collapse
|
21
|
Zhang L, Nishi H, Kinoshita K. Single-cell RNA-seq public data reveal the gene regulatory network landscape of respiratory epithelial and peripheral immune cells in COVID-19 patients. Front Immunol 2023; 14:1194614. [PMID: 37936693 PMCID: PMC10627007 DOI: 10.3389/fimmu.2023.1194614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Infection with SARS-CoV-2 leads to coronavirus disease 2019 (COVID-19), which can result in acute respiratory distress syndrome and multiple organ failure. However, its comprehensive influence on pathological immune responses in the respiratory epithelium and peripheral immune cells is not yet fully understood. Methods In this study, we analyzed multiple public scRNA-seq datasets of nasopharyngeal swabs and peripheral blood to investigate the gene regulatory networks (GRNs) of healthy individuals and COVID-19 patients with mild/moderate and severe disease, respectively. Cell-cell communication networks among cell types were also inferred. Finally, validations were conducted using bulk RNA-seq and proteome data. Results Similar and dissimilar regulons were identified within or between epithelial and immune cells during COVID-19 severity progression. The relative transcription factors (TFs) and their targets were used to construct GRNs among different infection sites and conditions. Between respiratory epithelial and peripheral immune cells, different TFs tended to be used to regulate the activity of a cell between healthy individuals and COVID-19 patients, although they had some TFs in common. For example, XBP1, FOS, STAT1, and STAT2 were activated in both the epithelial and immune cells of virus-infected individuals. In contrast, severe COVID-19 cases exhibited activation of CEBPD in peripheral immune cells, while CEBPB was exclusively activated in respiratory epithelial cells. Moreover, in patients with severe COVID-19, although some inflammatory genes, such as S100A8/A9, were found to be upregulated in both respiratory epithelial and peripheral immune cells, their relative regulators can differ in terms of cell types. The cell-cell communication analysis suggested that epidermal growth factor receptor signaling among epithelia contributes to mild/moderate disease, and chemokine signaling among immune cells contributes to severe disease. Conclusion This study identified cell type- and condition-specific regulons in a wide range of cell types from the initial infection site to the peripheral blood, and clarified the diverse mechanisms of maladaptive responses to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lin Zhang
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Hafumi Nishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Faculty of Core Research, Ochanomizu University, Tokyo, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Department of In Silico Analyses, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Dickerson F, Vaidya D, Liu Y, Yolken R. Levels of Matrix Metalloproteinase 9 Are Elevated in Persons With Schizophrenia or Bipolar Disorder: The Role of Modifiable Factors. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:766-772. [PMID: 37881562 PMCID: PMC10593883 DOI: 10.1016/j.bpsgos.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) are a diverse set of enzymes associated with inflammation. MMP-9 is of particular interest because it has been associated with autoimmune and cardiopulmonary disorders, tobacco smoking, and obesity, prevalent in psychiatric populations. Methods Sensitive enzyme immunoassays measured MMP-9 in blood samples from 1121 individuals (mean age = 35.6 [SD = 13.0] years; 47.7% male; 440 with schizophrenia, 399 with bipolar disorder, and 282 without a psychiatric disorder). We estimated the odds of diagnosis associated with MMP-9, demographic variables, tobacco smoking, and obesity, and also the partial explained variance using regression methods. We also determined the association between psychiatric medications and MMP-9 levels. Results Individuals with elevated MMP-9 levels had higher odds of schizophrenia or bipolar disorder compared with the nonpsychiatric group adjusted for demographic variables. Partial correlation analyses indicated the demographic-adjusted variance associated with MMP-9, smoking, obesity, and their interaction explained 59.6% for schizophrenia and 39.9% for bipolar disorder. Levels of MMP-9 were substantially lower in individuals receiving valproate, particularly relatively high doses. Conclusions Individuals with higher levels of MMP-9 have significantly higher odds of schizophrenia or bipolar disorder. Individuals receiving valproate had substantially lower levels of MMP-9, possibly related to its ability to inhibit histone deacetylation. A substantial portion of the variance in clinical disorders associated with MMP-9 can be attributed to smoking or obesity. Interventions to reduce smoking and obesity might reduce the morbidity and mortality associated with elevated MMP-9 levels and improve the health outcomes of individuals with these disorders.
Collapse
Affiliation(s)
- Faith Dickerson
- Stanley Research Program, Sheppard Pratt, Baltimore, Maryland
| | - Dhananjay Vaidya
- Department of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yisi Liu
- Department of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
23
|
Dutsch A, Uhlig C, Bock M, Graesser C, Schuchardt S, Uhlig S, Schunkert H, Joner M, Holdenrieder S, Lechner K. Multi-Omic Candidate Screening for Markers of Severe Clinical Courses of COVID-19. J Clin Med 2023; 12:6225. [PMID: 37834869 PMCID: PMC10573369 DOI: 10.3390/jcm12196225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Severe coronavirus disease 2019 (COVID-19) disease courses are characterized by immuno-inflammatory, thrombotic, and parenchymal alterations. Prediction of individual COVID-19 disease courses to guide targeted prevention remains challenging. We hypothesized that a distinct serologic signature precedes surges of IL-6/D-dimers in severely affected COVID-19 patients. METHODS We performed longitudinal plasma profiling, including proteome, metabolome, and routine biochemistry, on seven seropositive, well-phenotyped patients with severe COVID-19 referred to the Intensive Care Unit at the German Heart Center. Patient characteristics were: 65 ± 8 years, 29% female, median CRP 285 ± 127 mg/dL, IL-6 367 ± 231 ng/L, D-dimers 7 ± 10 mg/L, and NT-proBNP 2616 ± 3465 ng/L. RESULTS Based on time-series analyses of patient sera, a prediction model employing feature selection and dimensionality reduction through least absolute shrinkage and selection operator (LASSO) revealed a number of candidate proteins preceding hyperinflammatory immune response (denoted ΔIL-6) and COVID-19 coagulopathy (denoted ΔD-dimers) by 24-48 h. These candidates are involved in biological pathways such as oxidative stress/inflammation (e.g., IL-1alpha, IL-13, MMP9, C-C motif chemokine 23), coagulation/thrombosis/immunoadhesion (e.g., P- and E-selectin), tissue repair (e.g., hepatocyte growth factor), and growth factor response/regulatory pathways (e.g., tyrosine-protein kinase receptor UFO and low-density lipoprotein receptor (LDLR)). The latter are host- or co-receptors that promote SARS-CoV-2 entry into cells in the absence of ACE2. CONCLUSIONS Our novel prediction model identified biological and regulatory candidate networks preceding hyperinflammation and coagulopathy, with the most promising group being the proteins that explain changes in D-dimers. These biomarkers need validation. If causal, our work may help predict disease courses and guide personalized treatment for COVID-19.
Collapse
Affiliation(s)
- Alexander Dutsch
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance, 80336 Munich, Germany
| | - Carsten Uhlig
- Institute for Laboratory Medicine, German Heart Centre Munich, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany
| | - Matthias Bock
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance, 80336 Munich, Germany
| | - Christian Graesser
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance, 80336 Munich, Germany
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany
| | - Steffen Uhlig
- QuoData Gesellschaft für Qualitätsmanagement und Statistik, Fabeckstr. 43, 14195 Berlin, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance, 80336 Munich, Germany
| | - Michael Joner
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance, 80336 Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre Munich, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany
| | - Katharina Lechner
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
24
|
Wang Y, Zhu Q, Sun R, Yi X, Huang L, Hu Y, Ge W, Gao H, Ye X, Song Y, Shao L, Li Y, Li J, Guo T, Shi J. Longitudinal proteomic investigation of COVID-19 vaccination. Protein Cell 2023; 14:668-682. [PMID: 36930526 PMCID: PMC10501184 DOI: 10.1093/procel/pwad004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/28/2022] [Indexed: 02/09/2023] Open
Abstract
Although the development of COVID-19 vaccines has been a remarkable success, the heterogeneous individual antibody generation and decline over time are unknown and still hard to predict. In this study, blood samples were collected from 163 participants who next received two doses of an inactivated COVID-19 vaccine (CoronaVac®) at a 28-day interval. Using TMT-based proteomics, we identified 1,715 serum and 7,342 peripheral blood mononuclear cells (PBMCs) proteins. We proposed two sets of potential biomarkers (seven from serum, five from PBMCs) at baseline using machine learning, and predicted the individual seropositivity 57 days after vaccination (AUC = 0.87). Based on the four PBMC's potential biomarkers, we predicted the antibody persistence until 180 days after vaccination (AUC = 0.79). Our data highlighted characteristic hematological host responses, including altered lymphocyte migration regulation, neutrophil degranulation, and humoral immune response. This study proposed potential blood-derived protein biomarkers before vaccination for predicting heterogeneous antibody generation and decline after COVID-19 vaccination, shedding light on immunization mechanisms and individual booster shot planning.
Collapse
Affiliation(s)
- Yingrui Wang
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Qianru Zhu
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| | - Rui Sun
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Xiao Yi
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Lingling Huang
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Yifan Hu
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Huanhuan Gao
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Xinfu Ye
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Yu Song
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Shao
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
- Medical college of Hangzhou Normal University, Hangzhou 311121, China
| | - Yantao Li
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing 210093, China
| | - Tiannan Guo
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Junping Shi
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
- Department of Infectious and Hepatology Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| |
Collapse
|
25
|
Lin CH, Chen YJ, Lin MW, Chang HJ, Yang XR, Lin CS. ACE2 and a Traditional Chinese Medicine Formula NRICM101 Could Alleviate the Inflammation and Pathogenic Process of Acute Lung Injury. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1554. [PMID: 37763673 PMCID: PMC10533189 DOI: 10.3390/medicina59091554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
COVID-19 is a highly transmittable respiratory illness caused by SARS-CoV-2, and acute lung injury (ALI) is the major complication of COVID-19. The challenge in studying SARS-CoV-2 pathogenicity is the limited availability of animal models. Therefore, it is necessary to establish animal models that can reproduce multiple characteristics of ALI to study therapeutic applications. The present study established a mouse model that has features of ALI that are similar to COVID-19 syndrome to investigate the role of ACE2 and the administration of the Chinese herbal prescription NRICM101 in ALI. Mice with genetic modifications, including overexpression of human ACE2 (K18-hACE2 TG) and absence of ACE2 (mACE2 KO), were intratracheally instillated with hydrochloric acid. The acid intratracheal instillation induced severe immune cell infiltration, cytokine storms, and pulmonary disease in mice. Compared with K18-hACE2 TG mice, mACE2 KO mice exhibited dramatically increased levels of multiple inflammatory cytokines (IL-6 and TNF-α) in bronchoalveolar lavage fluid, histological evidence of lung injury, and dysregulation of MAPK and MMP activation. In mACE2 KO mice, NRICM101 could ameliorate the disease progression of acid-induced ALI. In conclusion, the established mouse model provided an effective platform for researchers to investigate pathological mechanisms and develop therapeutic strategies for ALI, including COVID-19-related ALI.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
| | - Yi-Ju Chen
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
| | - Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
| | - Ho-Ju Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
| | - Xin-Rui Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan
| |
Collapse
|
26
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
27
|
Granato G, Gesmundo I, Pedrolli F, Kasarla R, Begani L, Banfi D, Bruno S, Lopatina T, Brizzi MF, Cai R, Sha W, Ghigo E, Schally AV, Granata R. Growth hormone-releasing hormone antagonist MIA-602 inhibits inflammation induced by SARS-CoV-2 spike protein and bacterial lipopolysaccharide synergism in macrophages and human peripheral blood mononuclear cells. Front Immunol 2023; 14:1231363. [PMID: 37649486 PMCID: PMC10462983 DOI: 10.3389/fimmu.2023.1231363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
COVID-19 is characterized by an excessive inflammatory response and macrophage hyperactivation, leading, in severe cases, to alveolar epithelial injury and acute respiratory distress syndrome. Recent studies have reported that SARS-CoV-2 spike (S) protein interacts with bacterial lipopolysaccharide (LPS) to boost inflammatory responses in vitro, in macrophages and peripheral blood mononuclear cells (PBMCs), and in vivo. The hypothalamic hormone growth hormone-releasing hormone (GHRH), in addition to promoting pituitary GH release, exerts many peripheral functions, acting as a growth factor in both malignant and non-malignant cells. GHRH antagonists, in turn, display potent antitumor effects and antinflammatory activities in different cell types, including lung and endothelial cells. However, to date, the antinflammatory role of GHRH antagonists in COVID-19 remains unexplored. Here, we examined the ability of GHRH antagonist MIA-602 to reduce inflammation in human THP-1-derived macrophages and PBMCs stimulated with S protein and LPS combination. Western blot and immunofluorescence analysis revealed the presence of GHRH receptor and its splice variant SV1 in both THP-1 cells and PBMCs. Exposure of THP-1 cells to S protein and LPS combination increased the mRNA levels and protein secretion of TNF-α and IL-1β, as well as IL-8 and MCP-1 gene expression, an effect hampered by MIA-602. Similarly, MIA-602 hindered TNF-α and IL-1β secretion in PBMCs and reduced MCP-1 mRNA levels. Mechanistically, MIA-602 blunted the S protein and LPS-induced activation of inflammatory pathways in THP-1 cells, such as NF-κB, STAT3, MAPK ERK1/2 and JNK. MIA-602 also attenuated oxidative stress in PBMCs, by decreasing ROS production, iNOS and COX-2 protein levels, and MMP9 activity. Finally, MIA-602 prevented the effect of S protein and LPS synergism on NF-кB nuclear translocation and activity. Overall, these findings demonstrate a novel antinflammatory role for GHRH antagonists of MIA class and suggest their potential development for the treatment of inflammatory diseases, such as COVID-19 and related comorbidities.
Collapse
Affiliation(s)
- Giuseppina Granato
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Iacopo Gesmundo
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesca Pedrolli
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ramesh Kasarla
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Laura Begani
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Dana Banfi
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Tatiana Lopatina
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Renzhi Cai
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States
- South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL, United States
| | - Wei Sha
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States
| | - Ezio Ghigo
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrew V. Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States
- South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL, United States
- Department of Medicine, Divisions of Medical/Oncology and Endocrinology, and the Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Riccarda Granata
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
28
|
Min JS, Jin YH, Kwon S. Auraptene Has Antiviral Activity against Human Coronavirus OC43 in MRC-5 Cells. Nutrients 2023; 15:2960. [PMID: 37447286 DOI: 10.3390/nu15132960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Auraptene (7-geranyloxycoumarin) is the abundant prenyloxycoumarin found in the fruits of Citrus spp. Auraptene has a variety of pharmacological and therapeutic functions, such as anticancer, antioxidant, immunomodulatory, and anti-inflammation activities, with excellent safety profiles. In this study, we evaluated the anticoronaviral activity of auraptene in HCoV-OC43-infected human lung fibroblast MRC-5 cells. We found that auraptene effectively inhibited HCoV-OC43-induced cytopathic effects with 4.3 μM IC50 and 6.1 μM IC90, resulting in a selectivity index (CC50/IC50) of >3.5. Auraptene treatment also decreased viral RNA levels in HCoV-OC43-infected cells, as detected through quantitative real-time PCR, and decreased the expression level of spike proteins and nucleocapsid proteins in virus-infected cells, as detected through the Western blot analysis and immunofluorescence staining. Time-of-addition analysis showed auraptene's inhibitory effects at the post-entry stage of the virus life cycle; however, auraptene did not induce the antiviral interferon families, IFN-α1, IFN-β1, and IFN-λ1. Additionally, auraptene-treated MRC-5 cells during HCoV-OC43 infection decreased the MMP-9 mRNA levels which are usually increased due to the infection, as auraptene is a previously reported MMP-9 inhibitor. Therefore, auraptene showed antiviral activity against HCoV-OC43 infection, and we suggest that auraptene has the potential to serve as a therapeutic agent against human coronavirus.
Collapse
Affiliation(s)
- Jung Sun Min
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Young-Hee Jin
- KM Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Sunoh Kwon
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
29
|
Bai X, Schountz T, Buckle AM, Talbert JL, Sandhaus RA, Chan ED. Alpha-1-antitrypsin antagonizes COVID-19: a review of the epidemiology, molecular mechanisms, and clinical evidence. Biochem Soc Trans 2023; 51:1361-1375. [PMID: 37294003 PMCID: PMC10317171 DOI: 10.1042/bst20230078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Alpha-1-antitrypsin (AAT), a serine protease inhibitor (serpin), is increasingly recognized to inhibit SARS-CoV-2 infection and counter many of the pathogenic mechanisms of COVID-19. Herein, we reviewed the epidemiologic evidence, the molecular mechanisms, and the clinical evidence that support this paradigm. As background to our discussion, we first examined the basic mechanism of SARS-CoV-2 infection and contend that despite the availability of vaccines and anti-viral agents, COVID-19 remains problematic due to viral evolution. We next underscored that measures to prevent severe COVID-19 currently exists but teeters on a balance and that current treatment for severe COVID-19 remains grossly suboptimal. We then reviewed the epidemiologic and clinical evidence that AAT deficiency increases risk of COVID-19 infection and of more severe disease, and the experimental evidence that AAT inhibits cell surface transmembrane protease 2 (TMPRSS2) - a host serine protease required for SARS-CoV-2 entry into cells - and that this inhibition may be augmented by heparin. We also elaborated on the panoply of other activities of AAT (and heparin) that could mitigate severity of COVID-19. Finally, we evaluated the available clinical evidence for AAT treatment of COVID-19.
Collapse
Affiliation(s)
- Xiyuan Bai
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, U.S.A
- Department of Academic Affairs, National Jewish Health, Denver, CO, U.S.A
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, U.S.A
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- PTNG Bio, Melbourne, Australia
| | - Janet L. Talbert
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, U.S.A
| | | | - Edward D. Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, U.S.A
- Department of Academic Affairs, National Jewish Health, Denver, CO, U.S.A
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, U.S.A
| |
Collapse
|
30
|
Zingaropoli MA, Latronico T, Pasculli P, Masci GM, Merz R, Ciccone F, Dominelli F, Del Borgo C, Lichtner M, Iafrate F, Galardo G, Pugliese F, Panebianco V, Ricci P, Catalano C, Ciardi MR, Liuzzi GM, Mastroianni CM. Tissue Inhibitor of Matrix Metalloproteinases-1 (TIMP-1) and Pulmonary Involvement in COVID-19 Pneumonia. Biomolecules 2023; 13:1040. [PMID: 37509076 PMCID: PMC10377146 DOI: 10.3390/biom13071040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Background: The aim of the study was to longitudinally evaluate the association between MMP-2, MMP-9, TIMP-1 and chest radiological findings in COVID-19 patients. Methods: COVID-19 patients were evaluated based on their hospital admission (baseline) and three months after hospital discharge (T post) and were stratified into ARDS and non-ARDS groups. As a control group, healthy donors (HD) were enrolled. Results: At the baseline, compared to HD (n = 53), COVID-19 patients (n = 129) showed higher plasma levels of MMP-9 (p < 0.0001) and TIMP-1 (p < 0.0001) and the higher plasma activity of MMP-2 (p < 0.0001) and MMP-9 (p < 0.0001). In the ARDS group, higher plasma levels of MMP-9 (p = 0.0339) and TIMP-1 (p = 0.0044) and the plasma activity of MMP-2 (p = 0.0258) and MMP-9 (p = 0.0021) compared to non-ARDS was observed. A positive correlation between the plasma levels of TIMP-1 and chest computed tomography (CT) score (ρ = 0.2302, p = 0.0160) was observed. At the T post, a reduction in plasma levels of TIMP-1 (p < 0.0001), whereas an increase in the plasma levels of MMP-9 was observed (p = 0.0088). Conclusions: The positive correlation between TIMP-1 with chest CT scores highlights its potential use as a marker of fibrotic burden. At T post, the increase in plasma levels of MMP-9 and the reduction in plasma levels of TIMP-1 suggested that inflammation and fibrosis resolution were still ongoing.
Collapse
Affiliation(s)
- Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giorgio Maria Masci
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberta Merz
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Federica Ciccone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Federica Dominelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cosmo Del Borgo
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza, University of Rome, 04100 Latina, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza, University of Rome, 04100 Latina, Italy
- Department of Neurosciences Mental Health and Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Franco Iafrate
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Gioacchino Galardo
- Medical Emergency Unit, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Francesco Pugliese
- Department of Specialist Surgery and Organ Transplantation "Paride Stefanini", Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Valeria Panebianco
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Paolo Ricci
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Unit of Emergency Radiology, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
31
|
Deng X, Luo Y, Guan T, Guo X. Identification of the Genetic Influence of SARS-CoV-2 Infections on IgA Nephropathy Based on Bioinformatics Method. Kidney Blood Press Res 2023; 48:367-384. [PMID: 37040729 PMCID: PMC10308545 DOI: 10.1159/000529687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/09/2023] [Indexed: 04/13/2023] Open
Abstract
INTRODUCTION Coronavirus disease-2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. It was initially detected in Wuhan, China, in December 2019. In March 2020, the World Health Organization (WHO) declared COVID-19 a global pandemic. Compared to healthy individuals, patients with IgA nephropathy (IgAN) are at a higher risk of SARS-CoV-2 infection. However, the potential mechanisms remain unclear. This study explores the underlying molecular mechanisms and therapeutic agents for the management of IgAN and COVID-19 using the bioinformatics and system biology way. METHODS We first downloaded GSE73953 and GSE164805 from the Gene Expression Omnibus (GEO) database to obtain common differentially expressed genes (DEGs). Then, we performed the functional enrichment analysis, pathway analysis, protein-protein interaction (PPI) analysis, gene regulatory networks analysis, and potential drug analysis on these common DEGs. RESULTS We acquired 312 common DEGs from the IgAN and COVID-19 datasets and used various bioinformatics tools and statistical analyses to construct the PPI network to extract hub genes. Besides, we performed gene ontology (GO) and pathway analyses to reveal the common correlation between IgAN and COVID-19. Finally, on the basis of common DEGs, we determined the interactions between DEGs-miRNAs, the transcription factor-genes (TFs-genes), protein-drug, and gene-disease networks. CONCLUSION We successfully identified hub genes that may act as biomarkers of COVID-19 and IgAN and also screened out some potential drugs to provide new ideas for COVID-19 and IgAN treatment.
Collapse
Affiliation(s)
- Xiaoqi Deng
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yu Luo
- School of Medicine, Xiamen University, Xiamen, China
| | - Tianjun Guan
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaodan Guo
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
32
|
Volchkova EV, Titova ON, Kuzubova NA, Lebedeva ES. Potential predictors of severe course and outcome of community-acquired pneumonia. PULMONOLOGIYA 2023; 33:225-232. [DOI: 10.18093/0869-0189-2023-33-2-225-232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Severe pneumonia is a condition with a high risk of death and mandatory hospitalization in the intensive care unit. The incidence of severe pneumonia has increased dramatically during the pandemic of new coronavirus infection. Timely diagnosis and early initiation of adequate treatment of severe pneumonia are crucial for improving survival of critically ill patients.The aim of this review was to analyze published scientific research on molecular markers that allow to objectively assess the severity of pneumonia and to determine treatment tactics based on the predicted outcome upon admission to the hospital. A systematic search was conducted in the electronic databases PubMed, Medline, Web of Science for the period 2019 - 2022.Conclusion. The review focuses on the prognostic role of a number of markers of immune response, vascular transformation, as well as angiotensin II and angiotensin converting enzyme-2. Further prospective studies of potential predictors of severe pneumonia will enable using marker molecules in a comprehensive clinical and laboratory diagnosis for early prediction of the hospitalized patient’s condition and expected outcome.
Collapse
Affiliation(s)
- E. V. Volchkova
- Pediatrics and Child Health Research Institute of the “Central Clinical Hospital of the Russian Academy of Sciences”, Ministry of Education and Science of Russia
| | - O. N. Titova
- Federal State Budgetary Educational Institution of Higher Education “Academician I.P.Pavlov First St. Petersburg State Medical University”, Ministry of Healthcare of Russian Federation
| | - N. A. Kuzubova
- Federal State Budgetary Educational Institution of Higher Education “Academician I.P.Pavlov First St. Petersburg State Medical University”, Ministry of Healthcare of Russian Federation
| | - E. S. Lebedeva
- Federal State Budgetary Educational Institution of Higher Education “Academician I.P.Pavlov First St. Petersburg State Medical University”, Ministry of Healthcare of Russian Federation
| |
Collapse
|
33
|
Leal VNC, Andrade MMS, Teixeira FME, Cambui RAG, Roa MEGV, Marra LG, Yamada SM, Alberca RW, Gozzi-Silva SC, Yendo TM, Netto LC, Duarte AJS, Sato MN, Pontillo A. Severe COVID-19 patients show a dysregulation of the NLRP3 inflammasome in circulating neutrophils. Scand J Immunol 2023; 97:e13247. [PMID: 36541819 DOI: 10.1111/sji.13247] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 triggers inflammasome-dependent release of pro-inflammatory cytokine IL-1β and pyroptosis, therefore, contributes to the huge inflammatory response observed in severe COVID-19 patients. Less is known about the engagement of inflammasome in neutrophils, main players in tissue injury and severe infection. We studied the activation of the inflammasome in neutrophils from severe COVID-19 patients and assessed its consequence in term of cells contribution to disease pathogenesis. We demonstrated that NLRP3 inflammasome is dramatically activated in neutrophils from severe COVID-19 patients and that the specific inhibition of NLRP3 reverts neutrophils' activation. Next, the stimulation of severe patients' neutrophils with common NLRP3 stimuli was not able to further activate the inflammasome, possibly due to exhaustion or increased percentage of circulating immature neutrophils. Collectively, our results demonstrate that the NLRP3 inflammasome is hyperactivated in severe COVID-19 neutrophils and its exhaustion may be responsible for the increased susceptibility to subsequent (and possibly lethal) infections. Our findings thus include a novel piece in the complex puzzle of COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Vinicius N C Leal
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Milena M S Andrade
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Hospital das Clínicas e Faculdade de Medicina/HCFMUSP, São Paulo, Brazil
| | - Franciane M E Teixeira
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Hospital das Clínicas e Faculdade de Medicina/HCFMUSP, São Paulo, Brazil
| | - Raylane A G Cambui
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Mariela E G V Roa
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Letícia G Marra
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Suemy M Yamada
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Ricardo W Alberca
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Hospital das Clínicas e Faculdade de Medicina/HCFMUSP, São Paulo, Brazil
| | - Sarah C Gozzi-Silva
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Hospital das Clínicas e Faculdade de Medicina/HCFMUSP, São Paulo, Brazil
| | - Tatiana M Yendo
- Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas C Netto
- Unidade Terapia Intensiva, Hospital das Clínicas/FMUSP, São Paulo, Brazil
| | - Alberto J S Duarte
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Hospital das Clínicas e Faculdade de Medicina/HCFMUSP, São Paulo, Brazil
| | - Maria N Sato
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Hospital das Clínicas e Faculdade de Medicina/HCFMUSP, São Paulo, Brazil
| | - Alessandra Pontillo
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| |
Collapse
|
34
|
Suhad Jumaa Abd-Alkareem, Saad Hikmat Abdullah, Noor Dhia Hasan. Serum Matrix Metalloproteinase-2: A Possible Link between COVID-19 and Periodontitis. AL MUSTANSIRIYAH JOURNAL OF PHARMACEUTICAL SCIENCES 2023; 23:33-44. [DOI: 10.32947/ajps.v23i1.985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Background: Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is a severe infection primarily targeting the respiratory system. However, many other extrapulmonary body organs are also
affected with a varying degree of severity. Some evidence indicated the development of periodontist in patients, although the pathogenesis is not well-defined.
Aims: This study aimed to investigate the association of COVID-19 severity and role of matrix metalloproteinase 2 in development of periodontitis.
Patients and Methods: This is a cross sectional study which included a total of 160 patients with COVID-19. Patients were categorized into severe and mild-moderated according to World Health Organization criteria. Periodontitis was diagnosed in those patients according to clinical criteria. Serum level of matrix metalloproteinase 2 was estimated in all patients using enzyme linked immunosorbent assay (ELISA). Demographic and laboratory data were obtained from the patients’ records.
Results: Forty-two patients (26.25%) had severe COVID-19. Demographically, older ages and the presence of comorbidities were significantly associated with COVID-19 severity. Besides the inflammatory markers, the median serum level of MMP-2 was higher in severe than mild-moderate COVID-19 cases (208.12 ng/ml vs. 196.33 ng/ml) with a significant difference. The PO rate in severe and mild-moderate COVID-19 was 23.81% and 10.17%, respectively, with a significant difference. The median serum MMP-2 in patients with PO was 228.5 ng/ml which was significantly higher than those without PO 193.81 ng/ml.
Conclusions: These data indicate the significant association between COVID-19 severity and development of PO. Matrix metalloproteinase-2 could be the possible link between severe COVID-19 and PO.
Collapse
|
35
|
Petrella C, Zingaropoli MA, Ceci FM, Pasculli P, Latronico T, Liuzzi GM, Ciardi MR, Angeloni A, Ettorre E, Menghi M, Barbato C, Ferraguti G, Minni A, Fiore M. COVID-19 Affects Serum Brain-Derived Neurotrophic Factor and Neurofilament Light Chain in Aged Men: Implications for Morbidity and Mortality. Cells 2023; 12:cells12040655. [PMID: 36831321 PMCID: PMC9954454 DOI: 10.3390/cells12040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND AND METHODS Severe COVID-19 is known to induce neurological damage (NeuroCOVID), mostly in aged individuals, by affecting brain-derived neurotrophic factor (BDNF), matrix metalloproteinases (MMP) 2 and 9 and the neurofilament light chain (NFL) pathways. Thus, the aim of this pilot study was to investigate BDNF, MMP-2, MMP-9, and NFL in the serum of aged men affected by COVID-19 at the beginning of the hospitalization period and characterized by different outcomes, i.e., attending a hospital ward or an intensive care unit (ICU) or with a fatal outcome. As a control group, we used a novelty of the study, unexposed age-matched men. We also correlated these findings with the routine blood parameters of the recruited individuals. RESULTS We found in COVID-19 individuals with severe or lethal outcomes disrupted serum BDNF, NFL, and MMP-2 presence and gross changes in ALT, GGT, LDH, IL-6, ferritin, and CRP. We also confirmed and extended previous data, using ROC analyses, showing that the ratio MMPs (2 and 9) versus BDNF and NFL might be a useful tool to predict a fatal COVID-19 outcome. CONCLUSIONS Serum BDNF and NFL and/or their ratios with MMP-2 and MMP-9 could represent early predictors of NeuroCOVID in aged men.
Collapse
Affiliation(s)
- Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (C.P.); (M.F.)
| | - Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Evaristo Ettorre
- Department of Clinical, Internal Medicine, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Michela Menghi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
- Division of Otolaryngology-Head and Neck Surgery, ASL Rieti-Sapienza University, Ospedale San Camillo de Lellis, Viale Kennedy, 02100 Rieti, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (C.P.); (M.F.)
| |
Collapse
|
36
|
Plasma N-Cleaved Galectin-9 Is a Surrogate Marker for Determining the Severity of COVID-19 and Monitoring the Therapeutic Effects of Tocilizumab. Int J Mol Sci 2023; 24:ijms24043591. [PMID: 36835000 PMCID: PMC9964849 DOI: 10.3390/ijms24043591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Galectin-9 (Gal-9) is known to contribute to antiviral responses in coronavirus disease 2019 (COVID-19). Increased circulating Gal-9 in COVID-19 is associated with COVID-19 severity. In a while, the linker-peptide of Gal-9 is susceptible to proteolysis that can cause the change or loss of Gal-9 activity. Here, we measured plasma levels of N-cleaved-Gal9, which is Gal9 carbohydrate-recognition domain at the N-terminus (NCRD) with attached truncated linker peptide that differs in length depending on the type of proteases, in COVID-19. We also investigated the time course of plasma N-cleaved-Gal9 levels in severe COVID-19 treated with tocilizumab (TCZ). As a result, we observed an increase in plasma N-cleaved-Gal9 levels in COVID-19 and its higher levels in COVID-19 with pneumonia compared to the mild cases (healthy: 326.1 pg/mL, mild: 698.0 pg/mL, and with pneumonia: 1570 pg/mL). N-cleaved-Gal9 levels were associated with lymphocyte counts, C-reactive protein (CRP), soluble interleukin-2 receptor (sIL-2R), D-dimer, and ferritin levels, and ratio of percutaneous oxygen saturation to fraction of inspiratory oxygen (S/F ratio) in COVID-19 with pneumonia and discriminated different severity groups with high accuracy (area under the curve (AUC): 0.9076). Both N-cleaved-Gal9 and sIL-2R levels were associated with plasma matrix metalloprotease (MMP)-9 levels in COVID-19 with pneumonia. Furthermore, a decrease in N-cleaved-Gal9 levels was associated with a decrease of sIL-2R levels during TCZ treatment. N-cleaved-Gal9 levels showed a moderate accuracy (AUC: 0.8438) for discriminating the period before TCZ from the recovery phase. These data illustrate that plasma N-cleaved-Gal9 is a potential surrogate marker for assessing COVID-19 severity and the therapeutic effects of TCZ.
Collapse
|
37
|
Huang JJ, Wang CW, Liu Y, Zhang YY, Yang NB, Yu YC, Jiang Q, Song QF, Qian GQ. Role of the extracellular matrix in COVID-19. World J Clin Cases 2023; 11:73-83. [PMID: 36687194 PMCID: PMC9846981 DOI: 10.12998/wjcc.v11.i1.73] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
An outbreak of coronavirus disease 2019 (COVID-19) has spread globally, with over 500 million cases and 6 million deaths to date. COVID-19 is associated with a systemic inflammatory response and abnormalities of the extracellular matrix (ECM), which is also involved in inflammatory storms. Upon viral infection, ECM proteins are involved in the recruitment of inflammatory cells and interference with target organ metabolism, including in the lungs. Additionally, serum biomarkers of ECM turnover are associated with the severity of COVID-19 and may serve as potential targets. Consequently, understanding the expression and function of ECM, particularly of the lung, during severe acute respiratory syndrome of the coronavirus 2 infection would provide valuable insights into the mechanisms of COVID-19 progression. In this review, we summarize the current findings on ECM, such as hyaluronic acid, matrix metalloproteinases, and collagen, which are linked to the severity and inflammation of COVID-19. Some drugs targeting the extracellular surface have been effective. In the future, these ECM findings could provide novel perspectives on the pathogenesis and treatment of COVID-19.
Collapse
Affiliation(s)
- Jia-Jia Huang
- School of Medicine, Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Chu-Wen Wang
- School of Medicine, Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Ying Liu
- School of Medicine, Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Ying-Ying Zhang
- School of Medicine, Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Nai-Bin Yang
- Department of Infectious Diseases, Ningbo First Hospital, Ningbo 315000, Zhejiang Province, China
| | - Yu-Chun Yu
- Department of Endocrinology, Ningbo Ninth Hospital, Ningbo 315000, Zhejiang Province, China
| | - Qi Jiang
- Department of Digestive, Ningbo First Hospital, Ningbo 315000, Zhejiang Province, China
| | - Qi-Fa Song
- Medical Data Center, Ningbo First Hospital, Ningbo 315000, Zhejiang Province, China
| | - Guo-Qing Qian
- Department of Infectious Diseases, Ningbo First Hospital, Ningbo 315000, Zhejiang Province, China
| |
Collapse
|
38
|
Krygier A, Szmajda-Krygier D, Świechowski R, Pietrzak J, Wosiak A, Wodziński D, Balcerczak E. Molecular Pathogenesis of Fibrosis, Thrombosis and Surfactant Dysfunction in the Lungs of Severe COVID-19 Patients. Biomolecules 2022; 12:1845. [PMID: 36551272 PMCID: PMC9776352 DOI: 10.3390/biom12121845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The global scope and scale of the SARS-CoV-2 pandemic led to huge amounts of important data from clinical observations and experimental analyses being collected, in particular, regarding the long-term impact of COVID-19 on lung tissue. Visible changes in lung tissue mainly relate to the destruction of the alveolar architecture, dense cellularity, and pulmonary fibrosis with myofibroblast proliferation and collagen deposition. These changes are the result of infection, mainly with virus variants from the first pandemic waves (Alpha to Delta). In addition, proper regulation of immune responses to pathogenic viral stimuli is critical for the control of and recovery from tissue/organ damage, including in the lungs. We can distinguish three main processes in the lungs during SARS-CoV-2 infection: damage or deficiency of the pulmonary surfactant, coagulation processes, and fibrosis. Understanding the molecular basis of these processes is extremely important in the context of elucidating all pathologies occurring after virus entry. In the present review, data on the abovementioned three biochemical processes that lead to pathological changes are gathered together and discussed. Systematization of the knowledge is necessary to explore the three key pathways in lung tissue after SARS-CoV-2 virus infection as a result of a prolonged and intense inflammatory process in the context of pulmonary fibrosis, hemostatic disorders, and disturbances in the structure and/or metabolism of the surfactant. Despite the fact that the new Omicron variant does not affect the lungs as much as the previous variants, we cannot ignore the fact that other new mutations and emerging variants will not cause serious damage to the lung tissue. In the future, this review will be helpful to stratify the risk of serious complications in patients, to improve COVID-19 treatment outcomes, and to select those who may develop complications before clinical manifestation.
Collapse
Affiliation(s)
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | | | | | | | | | | |
Collapse
|
39
|
Almuntashiri S, Jones TW, Wang X, Sikora A, Zhang D. Plasma TIMP-1 as a sex-specific biomarker for acute lung injury. Biol Sex Differ 2022; 13:70. [PMID: 36482481 PMCID: PMC9733313 DOI: 10.1186/s13293-022-00481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) confers high morbidity and mortality, with a death rate reaching 40%. Pre-clinical and clinical studies have cited sex-specific sex hormones as a critical contributor to divergent immunologic responses. Therefore, exploration of sex and sex hormone roles following lung injury and ARDS development is needed. Tissue inhibitor of metalloproteinase-1 (TIMP-1) was the first-discovered natural collagenase inhibitor and is located exclusively on the X chromosome. This study aimed to evaluate the prognostic role of circulating TIMP-1, and if concentration differences between males and females correlate with the mortality of ARDS patients. METHODS Human plasma samples from 100 ARDS patients enrolled in Albuterol to Treat Acute Lung Injury (ALTA) trial on the day of randomization were evaluated. The amount of TIMP-1 was measured using an enzyme-linked immunoassay (ELISA). Area under the receiver operating characteristic (AUROC) was computed to assess the predictive power of TIMP-1 for 30 and 90-day mortality. Chi-squared tests and Kaplan-Meier curves were computed to assess different variables and survival. RESULTS AUROC analysis of TIMP-1 and 30-day mortality among females showed that TIMP-1 exhibited an AUC of 0.87 (95% confidence interval [CI] 0.78 to 0.97; P = 0.0014) with an optimal cut-off value of 159.7 ng/mL producing a 100% sensitivity and 74% specificity. For 90-day mortality, AUROC analysis showed an AUC of 0.82 (95% confidence interval [CI] 0.67 to 0.97; P = 0.0016) with a similar cut-off value producing a 90% sensitivity and 76.47% specificity. Stratifying subjects by TIMP-1 concentration as high (≥ 159.7 ng/mL) or low (< 159.7 ng/mL) indicated that high TIMP-1 was associated with increased 30 and 90-day mortality rates (all P < 0.0001). Lastly, high TIMP-1 group was associated with worse other outcomes including ventilator-free days (VFDs) and ICU-free days (all P < 0.05). CONCLUSION Circulating TIMP-1 appeared to be a promising biomarker for mortality among females with ARDS. The high TIMP-1 group showed worse VFDs and ICU-free days. Circulating TIMP-1 may be a sex-specific biomarker in the setting of ARDS and could improve ARDS phenotyping as well as provide a novel therapeutic target in females.
Collapse
Affiliation(s)
- Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.,Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail, 55473, Saudi Arabia
| | - Timothy W Jones
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Andrea Sikora
- Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA, 30901, USA.,Department of Pharmacy, Augusta University Medical Center, Augusta, GA, 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA. .,Department of Medicine, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
40
|
Benlarbi M, Laroche G, Fink C, Fu K, Mulloy RP, Phan A, Ariana A, Stewart CM, Prévost J, Beaudoin-Bussières G, Daniel R, Bo Y, El Ferri O, Yockell-Lelièvre J, Stanford WL, Giguère PM, Mubareka S, Finzi A, Dekaban GA, Dikeakos JD, Côté M. Identification and differential usage of a host metalloproteinase entry pathway by SARS-CoV-2 Delta and Omicron. iScience 2022; 25:105316. [PMID: 36254158 PMCID: PMC9549715 DOI: 10.1016/j.isci.2022.105316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/05/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike glycoprotein (S) binds to angiotensin-converting enzyme 2 (ACE2) to mediate membrane fusion via two distinct pathways: 1) a surface, serine protease-dependent or 2) an endosomal, cysteine protease-dependent pathway. In this study, we found that SARS-CoV-2 S has a wider protease usage and can also be activated by TMPRSS13 and matrix metalloproteinases (MMPs). We found that MMP-2 and MMP-9 played roles in SARS-CoV-2 S cell-cell fusion and TMPRSS2- and cathepsin-independent viral entry in cells expressing high MMP levels. MMP-dependent viral entry required cleavage at the S1/S2 junction in viral producer cells, and differential processing of variants of concern S dictated its usage; the efficiently processed Delta S preferred metalloproteinase-dependent entry when available, and less processed Omicron S was unable to us metalloproteinases for entry. As MMP-2/9 are released during inflammation, they may play roles in S-mediated cytopathic effects, tropism, and disease outcome.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Corby Fink
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Kathy Fu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rory P. Mulloy
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alexandra Phan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ardeshir Ariana
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Corina M. Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Redaet Daniel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Omar El Ferri
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julien Yockell-Lelièvre
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - William L. Stanford
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patrick M. Giguère
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gregory A. Dekaban
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
41
|
Saifi MA, Bansod S, Godugu C. COVID-19 and fibrosis: Mechanisms, clinical relevance, and future perspectives. Drug Discov Today 2022; 27:103345. [PMID: 36075378 PMCID: PMC9444298 DOI: 10.1016/j.drudis.2022.103345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/19/2022] [Accepted: 09/01/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has had significant impacts worldwide since its emergence in December, 2019. Despite a high recovery rate, there is a growing concern over its residual, long-term effects. However, because of a lack of long-term data, we are still far from establishing a consensus on post-COVID-19 complications. The deposition of excessive extracellular matrix (ECM), known as fibrosis, has been observed in numerous survivors of COVID-19. Given the exceptionally high number of individuals affected, there is an urgent need to address the emergence of fibrosis post-COVID-19. In this review, we discuss the clinical relevance of COVID-19-associated fibrosis, the current status of antifibrotic agents, novel antifibrotic targets, and challenges to its management.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500 037, India
| | - Sapana Bansod
- Department of Internal Medicine, Oncology Division, Washington University, School of Medicine, St Louis, MO 63110, USA
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500 037, India.
| |
Collapse
|
42
|
Anatolou D, Dovrolis N, Ragia G, Kolios G, Manolopoulos VG. Unpacking COVID-19 Systems Biology in Lung and Whole Blood with Transcriptomics and miRNA Regulators. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:608-621. [PMID: 36269619 DOI: 10.1089/omi.2022.0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
COVID-19 is a systemic disease affecting tissues and organs, including and beyond the lung. Apart from the current pandemic context, we also have vastly inadequate knowledge of consequences of repeated exposures to SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus causing COVID-19, in multiple organ systems and the whole organism scales when the disease evolves from a pandemic to an endemic state. This calls for a systems biology and systems medicine approach and unpacking the effects of COVID-19 in lung as well as other tissues. We report here original findings from transcriptomics analyses and differentially expressed genes (DEGs) in lung samples from 60 patients and 27 healthy controls, and in whole blood samples from 255 patients and 103 healthy individuals. A total of 11 datasets with RNA-seq transcriptomic data were obtained from the Gene Expression Omnibus and the European Nucleotide Archive. The identified DEGs were used to construct protein interaction and functional networks and to identify related pathways and miRNAs. We found 35 DEGs common between lung and the whole blood, and importantly, 2 novel genes, namely CYP1B1 and TNFAIP6, which have not been previously implicated with COVID-19. We also identified four novel miRNA potential regulators, hsa-mir-192-5p, hsa-mir-221-3p, hsa-mir-4756-3p, and hsa-mir-10a-5p, implicated in lung or other diseases induced by coronaviruses. In summary, these findings offer new molecular leads and insights to unpack COVID-19 systems biology in a whole organism context and might inform future antiviral drug, diagnostics, and vaccine discovery efforts.
Collapse
Affiliation(s)
- Dimitra Anatolou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Georgia Ragia
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Vangelis G Manolopoulos
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
- Clinical Pharmacology Unit, Academic General Hospital of Alexandroupolis, Alexandroupolis, Greece
| |
Collapse
|
43
|
Savic G, Stevanovic I, Mihajlovic D, Jurisevic M, Gajovic N, Jovanovic I, Ninkovic M. MMP-9/BDNF ratio predicts more severe COVID-19 outcomes. Int J Med Sci 2022; 19:1903-1911. [PMID: 36438922 PMCID: PMC9682503 DOI: 10.7150/ijms.75337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/16/2022] [Indexed: 01/24/2023] Open
Abstract
COVID-19 clinically manifests from asymptomatic to the critical range. Immune response provokes the pro-inflammatory interactions, which lead to the cytokines, reactive oxygen/nitrogen species, peptidases, and arachidonic acid metabolites enlargement and activation of coagulation components. Matrix metalloproteinases (MMPs) contribute to tissue destruction in the development of COVID-19. Due to the endothelial, systemic course of the disease, VEGF A participates actively in COVID-19 development, while neurotrophic and metabolic effects of BDNF recommends for the prediction of complications in COVID-19 patients. Searching for a marker that would improve and simplify the ranking in COVID-19, the study intended to evaluate the relationship of MMP-9 with VEGF A, BDNF, and MMP-8 with the COVID-19 severity. Upon admission to the hospital and before the therapy administration, 77 patients were classified into a mild, moderate, severe, or critical group. Due to the inflammatory stage in COVID-19, a comparison between groups showed related differences in leukocytes, neutrophils, lymphocytes, and platelets counts as anticipated. Only in seriously ill patients, there is a significant increase in the serum concentration of MMP-9, MMP-8, and VEGF A, while BDNF values did not show significant variations between groups. However, all those parameters positively correlated with each other. The ratio of MMP-9/BDNF markedly decreased in the severe and critically patients compared to the mild group. Testing the capability of this ratio to predict the COVID-19 stage by ROC curves, we found the MMP-9/BDNF could be a suitable marker for differentiating stages I/II (AUC 0.7597), stage I/III (AUC 0.9011), and stage I/IV (AUC 0.7727). Presented data describe for the first time the high-level systemic MMP-9/BDNF ratio in patients with COVID-19. This parameter could contribute to a more precise determination of the phase of the disease.
Collapse
Affiliation(s)
- Goran Savic
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Institute of Medical Research, Military Medical Academy, Crnotravska 17, Belgrade, Serbia
| | - Dusan Mihajlovic
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Milena Jurisevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Nevena Gajovic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Milica Ninkovic
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Institute of Medical Research, Military Medical Academy, Crnotravska 17, Belgrade, Serbia
| |
Collapse
|
44
|
Huang P, Zhang J, Duan W, Jiao J, Leng A, Qu J. Plant polysaccharides with anti-lung injury effects as a potential therapeutic strategy for COVID-19. Front Pharmacol 2022; 13:982893. [DOI: 10.3389/fphar.2022.982893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
When coronavirus disease 2019 (COVID-19) develops into the severe phase, lung injury, acute respiratory distress syndrome, and/or respiratory failure could develop within a few days. As a result of pulmonary tissue injury, pathomorphological changes usually present endothelial dysfunction, inflammatory cell infiltration of the lung interstitium, defective gas exchange, and wall leakage. Consequently, COVID-19 may progress to tremendous lung injury, ongoing lung failure, and death. Exploring the treatment drugs has important implications. Recently, the application of traditional Chinese medicine had better performance in reducing fatalities, relieving symptoms, and curtailing hospitalization. Through constant research and study, plant polysaccharides may emerge as a crucial resource against lung injury with high potency and low side effects. However, the absence of a comprehensive understanding of lung-protective mechanisms impedes further investigation of polysaccharides. In the present article, a comprehensive review of research into plant polysaccharides in the past 5 years was performed. In total, 30 types of polysaccharides from 19 kinds of plants have shown lung-protective effects through the pathological processes of inflammation, oxidative stress, apoptosis, autophagy, epithelial–mesenchymal transition, and immunomodulation by mediating mucin and aquaporins, macrophage, endoplasmic reticulum stress, neutrophil, TGF-β1 pathways, Nrf2 pathway, and other mechanisms. Moreover, the deficiencies of the current studies and the future research direction are also tentatively discussed. This research provides a comprehensive perspective for better understanding the mechanism and development of polysaccharides against lung injury for the treatment of COVID-19.
Collapse
|
45
|
Pietrobon AJ, Andrejew R, Custódio RWA, Oliveira LDM, Scholl JN, Teixeira FME, de Brito CA, Glaser T, Kazmierski J, Goffinet C, Turdo AC, Yendo T, Aoki V, Figueiró F, Battastini AM, Ulrich H, Benard G, Duarte AJDS, Sato MN. Dysfunctional purinergic signaling correlates with disease severity in COVID-19 patients. Front Immunol 2022; 13:1012027. [PMID: 36248842 PMCID: PMC9562777 DOI: 10.3389/fimmu.2022.1012027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Ectonucleotidases modulate inflammatory responses by balancing extracellular ATP and adenosine (ADO) and might be involved in COVID-19 immunopathogenesis. Here, we explored the contribution of extracellular nucleotide metabolism to COVID-19 severity in mild and severe cases of the disease. We verified that the gene expression of ectonucleotidases is reduced in the whole blood of patients with COVID-19 and is negatively correlated to levels of CRP, an inflammatory marker of disease severity. In line with these findings, COVID-19 patients present higher ATP levels in plasma and reduced levels of ADO when compared to healthy controls. Cell type-specific analysis revealed higher frequencies of CD39+ T cells in severely ill patients, while CD4+ and CD8+ expressing CD73 are reduced in this same group. The frequency of B cells CD39+CD73+ is also decreased during acute COVID-19. Interestingly, B cells from COVID-19 patients showed a reduced capacity to hydrolyze ATP into ADP and ADO. Furthermore, impaired expression of ADO receptors and a compromised activation of its signaling pathway is observed in COVID-19 patients. The presence of ADO in vitro, however, suppressed inflammatory responses triggered in patients’ cells. In summary, our findings support the idea that alterations in the metabolism of extracellular purines contribute to immune dysregulation during COVID-19, possibly favoring disease severity, and suggest that ADO may be a therapeutic approach for the disease.
Collapse
Affiliation(s)
- Anna Julia Pietrobon
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ricardo Wesley Alberca Custódio
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Luana de Mendonça Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliete Nathali Scholl
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Franciane Mouradian Emidio Teixeira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cyro Alves de Brito
- Technical Division of Medical Biology, Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Julia Kazmierski
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department and Division of Infectious and Parasitic Diseases, Berlin Institute of Health, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department and Division of Infectious and Parasitic Diseases, Berlin Institute of Health, Berlin, Germany
| | - Anna Claudia Turdo
- Department and Division of Infectious and Parasitic Diseases, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Tatiana Yendo
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Valeria Aoki
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Fabricio Figueiró
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Maria Battastini
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Gill Benard
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Alberto Jose da Silva Duarte
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- *Correspondence: Maria Notomi Sato,
| |
Collapse
|
46
|
Harte JV, Wakerlin SL, Lindsay AJ, McCarthy JV, Coleman-Vaughan C. Metalloprotease-Dependent S2′-Activation Promotes Cell–Cell Fusion and Syncytiation of SARS-CoV-2. Viruses 2022; 14:v14102094. [PMID: 36298651 PMCID: PMC9608990 DOI: 10.3390/v14102094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 cell–cell fusion and syncytiation is an emerging pathomechanism in COVID-19, but the precise factors contributing to the process remain ill-defined. In this study, we show that metalloproteases promote SARS-CoV-2 spike protein-induced syncytiation in the absence of established serine proteases using in vitro cell–cell fusion assays. We also show that metalloproteases promote S2′-activation of the SARS-CoV-2 spike protein, and that metalloprotease inhibition significantly reduces the syncytiation of SARS-CoV-2 variants of concern. In the presence of serine proteases, however, metalloprotease inhibition does not reduce spike protein-induced syncytiation and a combination of metalloprotease and serine protease inhibition is necessitated. Moreover, we show that the spike protein induces metalloprotease-dependent ectodomain shedding of the ACE2 receptor and that ACE2 shedding contributes to spike protein-induced syncytiation. These observations suggest a benefit to the incorporation of pharmacological inhibitors of metalloproteases into treatment strategies for patients with COVID-19.
Collapse
Affiliation(s)
- James V. Harte
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
| | - Samantha L. Wakerlin
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
| | - Andrew J. Lindsay
- Membrane Trafficking & Disease Laboratory, Biosciences Institute, School of Biochemistry & Cell Biology, University College Cork, T12 YT20 Cork, Ireland
| | - Justin V. McCarthy
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
- Correspondence: (J.V.M.); (C.C.-V.)
| | - Caroline Coleman-Vaughan
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
- Correspondence: (J.V.M.); (C.C.-V.)
| |
Collapse
|
47
|
The Role of Matrix Metalloproteinase in Inflammation with a Focus on Infectious Diseases. Int J Mol Sci 2022; 23:ijms231810546. [PMID: 36142454 PMCID: PMC9500641 DOI: 10.3390/ijms231810546] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in extracellular matrix remodeling through the degradation of extracellular matrix components and are also involved in the inflammatory response by regulating the pro-inflammatory cytokines TNF-α and IL-1β. Dysregulation in the inflammatory response and changes in the extracellular matrix by MMPs are related to the development of various diseases including lung and cardiovascular diseases. Therefore, numerous studies have been conducted to understand the role of MMPs in disease pathogenesis. MMPs are involved in the pathogenesis of infectious diseases through a dysregulation of the activity and expression of MMPs. In this review, we discuss the role of MMPs in infectious diseases and inflammatory responses. Furthermore, we present the potential of MMPs as therapeutic targets in infectious diseases.
Collapse
|
48
|
Wybranowski T, Pyskir J, Bosek M, Napiórkowska M, Cyrankiewicz M, Ziomkowska B, Pilaczyńska-Cemel M, Pyskir M, Rogańska M, Kruszewski S, Przybylski G. The Mortality Risk and Pulmonary Fibrosis Investigated by Time-Resolved Fluorescence Spectroscopy from Plasma in COVID-19 Patients. J Clin Med 2022; 11:jcm11175081. [PMID: 36079011 PMCID: PMC9457233 DOI: 10.3390/jcm11175081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
A method of rapidly pointing out the risk of developing persistent pulmonary fibrosis from a sample of blood is extraordinarily needed for diagnosis, prediction of death, and post-infection prognosis assessment. Collagen scar formation has been found to play an important role in the lung remodeling following SARS-CoV-2 infection. For this reason, the concentration of collagen degradation products in plasma may reflect the process of lung remodeling and determine the extent of fibrosis. According to our previously published results of an in vitro study, an increase in the concentration of type III collagen degradation products in plasma resulted in a decrease in the fluorescence lifetime of plasma at a wavelength of 450 nm. The aim of this study was to use time-resolved fluorescence spectroscopy to assess pulmonary fibrosis, and to find out if the lifetime of plasma fluorescence is shortened in patients with COVID-19. The presented study is thus far the only one to explore the fluorescence lifetime of plasma in patients with COVID-19 and pulmonary fibrosis. The time-resolved spectrometer Life Spec II with the sub-nanosecond pulsed 360 nm EPLED® diode was used in order to measure the fluorescence lifetime of plasma. The survival analysis showed that COVID-19 mortality was associated with a decreased mean fluorescence lifetime of plasma. The AUC of mean fluorescence lifetime in predicting death was 0.853 (95% CI 0.735−0.972, p < 0.001) with a cut-off value of 7 ns, and with 62% sensitivity and 100% specificity. We observed a significant decrease in the mean fluorescence lifetime in COVID-19 non-survivors (p < 0.001), in bacterial pneumonia patients without COVID-19 (p < 0.001), and in patients diagnosed with idiopathic pulmonary fibrosis (p < 0.001), relative to healthy subjects. Furthermore, these results suggest that the development of pulmonary fibrosis may be a real and serious problem in former COVID-19 patients in the future. A reduction in the mean fluorescence lifetime of plasma was observed in many patients 6 months after discharge. On the basis of these data, it can be concluded that a decrease in the mean fluorescence lifetime of plasma at 450 nm may be a risk factor for mortality, and probably also for pulmonary fibrosis in hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Tomasz Wybranowski
- Biophysics Department, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Jerzy Pyskir
- Biophysics Department, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Maciej Bosek
- Biophysics Department, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Marta Napiórkowska
- Biophysics Department, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Michał Cyrankiewicz
- Biophysics Department, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Blanka Ziomkowska
- Biophysics Department, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Marta Pilaczyńska-Cemel
- Department of Lung Diseases, Neoplasms and Tuberculosis, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Małgorzata Pyskir
- Department of Rehabilitation, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Milena Rogańska
- Department of Lung Diseases, Neoplasms and Tuberculosis, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Stefan Kruszewski
- Biophysics Department, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Grzegorz Przybylski
- Department of Lung Diseases, Neoplasms and Tuberculosis, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| |
Collapse
|
49
|
Resveratrol Downmodulates Neutrophil Extracellular Trap (NET) Generation by Neutrophils in Patients with Severe COVID-19. Antioxidants (Basel) 2022; 11:antiox11091690. [PMID: 36139764 PMCID: PMC9495554 DOI: 10.3390/antiox11091690] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
The formation of microthrombi in lung autopsies indicates the involvement of NETs in the immunopathogenesis of severe COVID-19. Therefore, supplements inhibiting NET formation, in association with drugs with fewer adverse effects, should be a relevant strategy to attenuate the disease. Resveratrol (RESV) is a natural polyphenol with an important antiviral and antioxidant role. To modulate neutrophils from patients infected with SARS-CoV-2, we evaluated the in vitro effect of RESV on NET formation. Herein, we investigated 190 patients hospitalized with moderate, severe, and critical symptoms at Hospital das Clínicas, Brazil. We observed that neutrophilia in patients with severe COVID-19 infection is composed of neutrophils with activated profile able to release NET spontaneously. Notably, RESV decreased the neutrophil-activated status and the release of free DNA, inhibiting NET formation even under the specific PMA stimulus. At present, there is no evidence of the role of RESV in neutrophils from patients with COVID-19 infection. These findings suggest that adjunctive therapies with RESV may help decrease the inflammation of viral or bacterial infection, improving patient outcomes.
Collapse
|
50
|
Elevated Levels of Soluble CD147 are Associated with Hyperinflammation and Disease Severity in COVID-19: A Proof-of-Concept Clinical Study. Arch Immunol Ther Exp (Warsz) 2022; 70:18. [PMID: 35920943 PMCID: PMC9362089 DOI: 10.1007/s00005-022-00657-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022]
Abstract
To evaluate soluble CD147 levels in COVID-19 and identify whether these are associated with hyperinflammation and disease severity. One-hundred and nine COVID-19 patients and 72 healthy blood donors were studied. Levels of CD147, matrix metalloproteases (MMP) and inflammatory markers were measured on hospital arrival, while the need for mechanical ventilation and the occurrence of death during hospitalization were recorded. CD147 levels were higher in COVID-19 (1.6, 1.0–2.3 vs 1.3, 1.0–1.6 ng/ml; P = 0.003) than controls. MMP-2 (9.2, 4.5–12.9 vs 4.2, 3.7–4.6 ng/ml; P < 0.001), MMP-3 (1.1, 0.9–1.3 vs 0.9, 0.7–1.0 ng/ml; P < 0.001) and MMP-9 (0.9, 0.5–1.2 vs 0.4, 0.2–0.6 ng/ml; P < 0.001) were also higher in COVID-19, while MMP-1 (0.6, 0–1.4 vs 0.6, 0.3–0.7 ng/ml; P = 0.711) was not different. Significant correlations were found between CD147 and MMP-2 (ρ = 0.34), MMP-3 (ρ = 0.21), interleukin 6 (ρ = 0.21), and the neutrophil/lymphocyte ratio (ρ = 0.26). Furthermore, CD147 levels were higher in patients who required mechanical ventilation (1.8, 1.4–2.4 vs 1.2, 0.8–1.9 ng/ml; P < 0.001) and in those who ultimately died (1.9, 1.4–2.7 vs 1.4, 0.9–1.9 ng/ml; P = 0.009). CD147 is elevated in COVID-19 and appears to contribute to hyperinflammation and disease severity.
Collapse
|