1
|
Ni P, Ma Y, Chung S. Mitochondrial dysfunction in psychiatric disorders. Schizophr Res 2024; 273:62-77. [PMID: 36175250 DOI: 10.1016/j.schres.2022.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
Psychiatric disorders are a heterogeneous group of mental disorders with abnormal mental or behavioral patterns, which severely distress or disable affected individuals and can have a grave socioeconomic burden. Growing evidence indicates that mitochondrial function plays an important role in developing psychiatric disorders. This review discusses the neuropsychiatric consequences of mitochondrial abnormalities in both animal models and patients. We also discuss recent studies associated with compromised mitochondrial function in various psychiatric disorders, such as schizophrenia (SCZ), major depressive disorder (MD), and bipolar disorders (BD). These studies employ various approaches including postmortem studies, imaging studies, genetic studies, and induced pluripotent stem cells (iPSCs) studies. We also summarize the evidence from animal models and clinical trials to support mitochondrial function as a potential therapeutic target to treat various psychiatric disorders. This review will contribute to furthering our understanding of the metabolic etiology of various psychiatric disorders, and help guide the development of optimal therapies.
Collapse
Affiliation(s)
- Peiyan Ni
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Yao Ma
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
2
|
Sun J, Wang W, Zhang R, Duan H, Tian X, Xu C, Li X, Zhang D. Multivariate genome-wide association study of depression, cognition, and memory phenotypes and validation analysis identify 12 cross-ethnic variants. Transl Psychiatry 2022; 12:304. [PMID: 35907915 PMCID: PMC9338946 DOI: 10.1038/s41398-022-02074-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
To date, little is known about the pleiotropic genetic variants among depression, cognition, and memory. The current research aimed to identify the potential pleiotropic single nucleotide polymorphisms (SNPs), genes, and pathways of the three phenotypes by conducting a multivariate genome-wide association study and an additional pleiotropy analysis among Chinese individuals and further validate the top variants in the UK Biobank (UKB). In the discovery phase, the participants were 139 pairs of dizygotic twins from the Qingdao Twins Registry. The genome-wide efficient mixed-model analysis identified 164 SNPs reaching suggestive significance (P < 1 × 10-5). Among them, rs3967317 (P = 1.21 × 10-8) exceeded the genome-wide significance level (P < 5 × 10-8) and was also demonstrated to be associated with depression and memory in pleiotropy analysis, followed by rs9863698, rs3967316, and rs9261381 (P = 7.80 × 10-8-5.68 × 10-7), which were associated with all three phenotypes. After imputation, a total of 457 SNPs reached suggestive significance. The top SNP chr6:24597173 was located in the KIAA0319 gene, which had biased expression in brain tissues. Genes and pathways related to metabolism, immunity, and neuronal systems demonstrated nominal significance (P < 0.05) in gene-based and pathway enrichment analyses. In the validation phase, 12 of the abovementioned SNPs reached the nominal significance level (P < 0.05) in the UKB. Among them, three SNPs were located in the KIAA0319 gene, and four SNPs were identified as significant expression quantitative trait loci in brain tissues. These findings may provide evidence for pleiotropic variants among depression, cognition, and memory and clues for further exploring the shared genetic pathogenesis of depression with Alzheimer's disease.
Collapse
Affiliation(s)
- Jing Sun
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, Shandong Province, China
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, Shandong Province, China
| | - Ronghui Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, Shandong Province, China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Shibei District, Qingdao, Shandong Province, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Shibei District, Qingdao, Shandong Province, China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Shibei District, Qingdao, Shandong Province, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
3
|
Zakutansky PM, Feng Y. The Long Non-Coding RNA GOMAFU in Schizophrenia: Function, Disease Risk, and Beyond. Cells 2022; 11:1949. [PMID: 35741078 PMCID: PMC9221589 DOI: 10.3390/cells11121949] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Neuropsychiatric diseases are among the most common brain developmental disorders, represented by schizophrenia (SZ). The complex multifactorial etiology of SZ remains poorly understood, which reflects genetic vulnerabilities and environmental risks that affect numerous genes and biological pathways. Besides the dysregulation of protein-coding genes, recent discoveries demonstrate that abnormalities associated with non-coding RNAs, including microRNAs and long non-coding RNAs (lncRNAs), also contribute to the pathogenesis of SZ. lncRNAs are an actively evolving family of non-coding RNAs that harbor greater than 200 nucleotides but do not encode for proteins. In general, lncRNA genes are poorly conserved. The large number of lncRNAs specifically expressed in the human brain, together with the genetic alterations and dysregulation of lncRNA genes in the SZ brain, suggests a critical role in normal cognitive function and the pathogenesis of neuropsychiatric diseases. A particular lncRNA of interest is GOMAFU, also known as MIAT and RNCR2. Growing evidence suggests the function of GOMAFU in governing neuronal development and its potential roles as a risk factor and biomarker for SZ, which will be reviewed in this article. Moreover, we discuss the potential mechanisms through which GOMAFU regulates molecular pathways, including its subcellular localization and interaction with RNA-binding proteins, and how interruption to GOMAFU pathways may contribute to the pathogenesis of SZ.
Collapse
Affiliation(s)
- Paul M. Zakutansky
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA;
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Garrott SR, Gillies JP, DeSantis ME. Nde1 and Ndel1: Outstanding Mysteries in Dynein-Mediated Transport. Front Cell Dev Biol 2022; 10:871935. [PMID: 35493069 PMCID: PMC9041303 DOI: 10.3389/fcell.2022.871935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cytoplasmic dynein-1 (dynein) is the primary microtubule minus-end directed molecular motor in most eukaryotes. As such, dynein has a broad array of functions that range from driving retrograde-directed cargo trafficking to forming and focusing the mitotic spindle. Dynein does not function in isolation. Instead, a network of regulatory proteins mediate dynein’s interaction with cargo and modulate dynein’s ability to engage with and move on the microtubule track. A flurry of research over the past decade has revealed the function and mechanism of many of dynein’s regulators, including Lis1, dynactin, and a family of proteins called activating adaptors. However, the mechanistic details of two of dynein’s important binding partners, the paralogs Nde1 and Ndel1, have remained elusive. While genetic studies have firmly established Nde1/Ndel1 as players in the dynein transport pathway, the nature of how they regulate dynein activity is unknown. In this review, we will compare Ndel1 and Nde1 with a focus on discerning if the proteins are functionally redundant, outline the data that places Nde1/Ndel1 in the dynein transport pathway, and explore the literature supporting and opposing the predominant hypothesis about Nde1/Ndel1’s molecular effect on dynein activity.
Collapse
Affiliation(s)
- Sharon R. Garrott
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - John P. Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Morgan E. DeSantis
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Morgan E. DeSantis,
| |
Collapse
|
5
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
6
|
Kostrzewa-Nowak D, Nowak R, Kubaszewska J, Gos W. Interdisciplinary Approach to Biological and Health Implications in Selected Professional Competences. Brain Sci 2022; 12:brainsci12020236. [PMID: 35203999 PMCID: PMC8870650 DOI: 10.3390/brainsci12020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 01/09/2023] Open
Abstract
Everyday life’s hygiene and professional realities, especially in economically developed countries, indicate the need to modify the standards of pro-health programs as well as modern hygiene and work ergonomics programs. These observations are based on the problem of premature death caused by civilization diseases. The biological mechanisms associated with financial risk susceptibility are well described, but there is little data explaining the biological basis of neuroaccounting. Therefore, the aim of the study was to present relationships between personality traits, cognitive competences and biological factors shaping behavioral conditions in a multidisciplinary aspect. This critical review paper is an attempt to compile biological and psychological factors influencing the development of professional competences, especially decent in the area of accounting and finance. We analyzed existing literature from wide range of scientific disciplines (including economics, psychology, behavioral genetics) to create background to pursuit multidisciplinary research models in the field of neuroaccounting. This would help in pointing the best genetically based behavioral profile of future successful financial and accounting specialists.
Collapse
Affiliation(s)
- Dorota Kostrzewa-Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland; (R.N.); (J.K.)
- Correspondence:
| | - Robert Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland; (R.N.); (J.K.)
| | - Joanna Kubaszewska
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland; (R.N.); (J.K.)
| | - Waldemar Gos
- Institute of Economy and Finance, University of Szczecin, 64 Mickiewicza St., 71-101 Szczecin, Poland;
| |
Collapse
|
7
|
Mifsud KR, Kennedy CLM, Salatino S, Sharma E, Price EM, Haque SN, Gialeli A, Goss HM, Panchenko PE, Broxholme J, Engledow S, Lockstone H, Cordero Llana O, Reul JMHM. Distinct regulation of hippocampal neuroplasticity and ciliary genes by corticosteroid receptors. Nat Commun 2021; 12:4737. [PMID: 34362910 PMCID: PMC8346558 DOI: 10.1038/s41467-021-24967-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoid hormones (GCs) - acting through hippocampal mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) - are critical to physiological regulation and behavioural adaptation. We conducted genome-wide MR and GR ChIP-seq and Ribo-Zero RNA-seq studies on rat hippocampus to elucidate MR- and GR-regulated genes under circadian variation or acute stress. In a subset of genes, these physiological conditions resulted in enhanced MR and/or GR binding to DNA sequences and associated transcriptional changes. Binding of MR at a substantial number of sites however remained unchanged. MR and GR binding occur at overlapping as well as distinct loci. Moreover, although the GC response element (GRE) was the predominant motif, the transcription factor recognition site composition within MR and GR binding peaks show marked differences. Pathway analysis uncovered that MR and GR regulate a substantial number of genes involved in synaptic/neuro-plasticity, cell morphology and development, behavior, and neuropsychiatric disorders. We find that MR, not GR, is the predominant receptor binding to >50 ciliary genes; and that MR function is linked to neuronal differentiation and ciliogenesis in human fetal neuronal progenitor cells. These results show that hippocampal MRs and GRs constitutively and dynamically regulate genomic activities underpinning neuronal plasticity and behavioral adaptation to changing environments.
Collapse
Affiliation(s)
- Karen R Mifsud
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Clare L M Kennedy
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Silvia Salatino
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Emily M Price
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Samantha N Haque
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Andriana Gialeli
- Stem Cell Biology Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Hannah M Goss
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Polina E Panchenko
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - John Broxholme
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Simon Engledow
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Helen Lockstone
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Oscar Cordero Llana
- Stem Cell Biology Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Johannes M H M Reul
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
8
|
Ohnishi T, Kiyama Y, Arima‐Yoshida F, Kadota M, Ichikawa T, Yamada K, Watanabe A, Ohba H, Tanaka K, Nakaya A, Horiuchi Y, Iwayama Y, Toyoshima M, Ogawa I, Shimamoto‐Mitsuyama C, Maekawa M, Balan S, Arai M, Miyashita M, Toriumi K, Nozaki Y, Kurokawa R, Suzuki K, Yoshikawa A, Toyota T, Hosoya T, Okuno H, Bito H, Itokawa M, Kuraku S, Manabe T, Yoshikawa T. Cooperation of LIM domain-binding 2 (LDB2) with EGR in the pathogenesis of schizophrenia. EMBO Mol Med 2021; 13:e12574. [PMID: 33656268 PMCID: PMC8033514 DOI: 10.15252/emmm.202012574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/15/2023] Open
Abstract
Genomic defects with large effect size can help elucidate unknown pathologic architecture of mental disorders. We previously reported on a patient with schizophrenia and a balanced translocation between chromosomes 4 and 13 and found that the breakpoint within chromosome 4 is located near the LDB2 gene. We show here that Ldb2 knockout (KO) mice displayed multiple deficits relevant to mental disorders. In particular, Ldb2 KO mice exhibited deficits in the fear-conditioning paradigm. Analysis of the amygdala suggested that dysregulation of synaptic activities controlled by the immediate early gene Arc is involved in the phenotypes. We show that LDB2 forms protein complexes with known transcription factors. Consistently, ChIP-seq analyses indicated that LDB2 binds to > 10,000 genomic sites in human neurospheres. We found that many of those sites, including the promoter region of ARC, are occupied by EGR transcription factors. Our previous study showed an association of the EGR family genes with schizophrenia. Collectively, the findings suggest that dysregulation in the gene expression controlled by the LDB2-EGR axis underlies a pathogenesis of subset of mental disorders.
Collapse
|
9
|
Nani JV, Fonseca MC, Engi SA, Perillo MG, Dias CS, Gazarini ML, Korth C, Cruz FC, Hayashi MA. Decreased nuclear distribution nudE-like 1 enzyme activity in an animal model with dysfunctional disrupted-in-schizophrenia 1 signaling featuring aberrant neurodevelopment and amphetamine-supersensitivity. J Psychopharmacol 2020; 34:467-477. [PMID: 31916893 DOI: 10.1177/0269881119897562] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Interaction of nuclear-distribution element-like 1 with disrupted-in-schizophrenia 1 protein is crucial for neurite outgrowth/neuronal migration, and this interaction competitively inhibits nuclear-distribution element-like 1 peptidase activity. Nuclear-distribution element-like 1 activity is reduced in antipsychotic-naïve first-episode psychosis and in medicated chronic schizophrenia, with even lower activity in treatment-resistant schizophrenia. AIMS The purpose of this study was to investigate in a rat model overexpressing human non-mutant disrupted-in-schizophrenia 1, with consequent dysfunctional disrupted-in-schizophrenia 1 signaling, the relation of nuclear-distribution element-like 1 activity with neurodevelopment and dopamine-related phenotypes. METHODS We measured cell distribution in striatum and cortex by histology and microtomography, and quantified the basal and amphetamine-stimulated locomotion and nuclear-distribution element-like 1 activity (in blood and brain) of transgenic disrupted-in-schizophrenia 1 rat vs wild-type littermate controls. RESULTS 3D assessment of neuronal cell body number and spatial organization of mercury-impregnated neurons showed defective neuronal positioning, characteristic of impaired cell migration, in striatum/nucleus accumbens, and prefrontal cortex of transgenic disrupted-in-schizophrenia 1 compared to wild-type brains. Basal nuclear-distribution element-like 1 activity was lower in the blood and also in several brain regions of transgenic disrupted-in-schizophrenia 1 compared to wild-type. Locomotion and nuclear-distribution element-like 1 activity were both significantly increased by amphetamine in transgenic disrupted-in-schizophrenia 1, but not in wild-type. CONCLUSIONS Our findings in the transgenic disrupted-in-schizophrenia 1 rat allow us to state that decreased nuclear-distribution element-like 1 activity reflects both a trait (neurodevelopmental phenotype) and a state (amphetamine-induced dopamine release). We thus define here a role for decreased nuclear-distribution element-like 1 peptidase activity both for the developing brain (the neurodevelopmental phenotype) and for the adult (interaction with dopaminergic responses), and present nuclear-distribution element-like 1 activity in a novel way, as unifying neurodevelopmental with dysfunctional dopamine response phenotypes.
Collapse
Affiliation(s)
- João V Nani
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Matheus C Fonseca
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Sheila A Engi
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mayara G Perillo
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carlos Sb Dias
- Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fábio C Cruz
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mirian Af Hayashi
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Li G, Han D, Wang C, Hu W, Calhoun VD, Wang YP. Application of deep canonically correlated sparse autoencoder for the classification of schizophrenia. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 183:105073. [PMID: 31525548 DOI: 10.1016/j.cmpb.2019.105073] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/27/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Imaging genetics has been widely used to help diagnose and treat mental illness, e.g., schizophrenia, by combining magnetic resonance imaging of the brain and genomic information for comprehensive and systematic analysis. As a result, utilizing the correlation between magnetic resonance imaging of the brain and genomic information is becoming an important challenge. METHODS In this paper, the joint analysis of single nucleotide polymorphisms and functional magnetic resonance imaging is conducted for comprehensive study of schizophrenia. We developed a deep canonically correlated sparse autoencoder to classify schizophrenia patients from healthy controls, which can address the limitation of many existing methods such as canonical correlation analysis, deep canonical correlation analysis and sparse autoencoder. RESULTS The proposed deep canonically correlated sparse autoencoder can not only use complex nonlinear transformation and dimension reduction, but also achieve more accurate classifications. Our experiments showed the proposed method achieved an accuracy of 95.65% for SNP data sets and an accuracy of 80.53% for fMRI data sets. CONCLUSIONS Experiments demonstrated higher accuracy of using the proposed method over other conventional models when classifying schizophrenia patients and healthy controls.
Collapse
Affiliation(s)
- Gang Li
- School of Electronic and Control Engineering, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University, China.
| | - Depeng Han
- School of Electronic and Control Engineering, Chang'an University, Xi'an 710064, Shaanxi, China
| | - Chao Wang
- School of Electronic and Control Engineering, Chang'an University, Xi'an 710064, Shaanxi, China
| | - Wenxing Hu
- Biomedical Engineering Department, Tulane University, New Orleans, LA 70118, USA.
| | - Vince D Calhoun
- Mind Research Network and Department of ECE, University of New Mexico, Albuquerque, NM 87106, USA.
| | - Yu-Ping Wang
- Biomedical Engineering Department, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
11
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
12
|
Wilkinson B, Evgrafov O, Zheng D, Hartel N, Knowles JA, Graham NA, Ichida J, Coba MP. Endogenous Cell Type-Specific Disrupted in Schizophrenia 1 Interactomes Reveal Protein Networks Associated With Neurodevelopmental Disorders. Biol Psychiatry 2019; 85:305-316. [PMID: 29961565 PMCID: PMC6251761 DOI: 10.1016/j.biopsych.2018.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 04/03/2018] [Accepted: 05/03/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Disrupted in schizophrenia 1 (DISC1) has been implicated in a number of psychiatric diseases along with neurodevelopmental phenotypes such as the proliferation and differentiation of neural progenitor cells. While there has been significant effort directed toward understanding the function of DISC1 through the determination of its protein-protein interactions within an in vitro setting, endogenous interactions involving DISC1 within a cell type-specific setting relevant to neural development remain unclear. METHODS Using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) genome engineering technology, we inserted an endogenous 3X-FLAG tag at the C-terminus of the canonical DISC1 gene in human induced pluripotent stem cells (iPSCs). We further differentiated these cells and used affinity purification to determine protein-protein interactions involving DISC1 in iPSC-derived neural progenitor cells and astrocytes. RESULTS We were able to determine 151 novel cell type-specific proteins present in DISC1 endogenous interactomes. The DISC1 interactomes can be clustered into several subcomplexes that suggest novel DISC1 cell-specific functions. In addition, the DISC1 interactome in iPSC-derived neural progenitor cells associates in a connected network containing proteins found to harbor de novo mutations in patients affected by schizophrenia and contains a subset of novel interactions that are known to harbor syndromic mutations in neurodevelopmental disorders. CONCLUSIONS Endogenous DISC1 interactomes within iPSC-derived human neural progenitor cells and astrocytes are able to provide context to DISC1 function in a cell type-specific setting relevant to neural development and enables the integration of psychiatric disease risk factors within a set of defined molecular functions.
Collapse
Affiliation(s)
- Brent Wilkinson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Oleg Evgrafov
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - DongQing Zheng
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - Nicolas Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - James A. Knowles
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Nicholas A. Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - Justin Ichida
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC
| | - Marcelo P. Coba
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Corresponding Author: Marcelo P. Coba, Keck School of Medicine, University of Southern California, Zilkha Neurogenetic Institute, 1501 San Pablo St, Los Angeles, CA 90033, USA. Phone: 323-442-4345.
| |
Collapse
|
13
|
Lu JY, Tiwari AK, Zai GC, Rastogi A, Shaikh SA, Müller DJ, Voineskos AN, Potkin SG, Lieberman JA, Meltzer HY, Remington G, Wong AH, Kennedy JL, Zai CC. Association study of Disrupted-In-Schizophrenia-1 gene variants and tardive dyskinesia. Neurosci Lett 2018; 686:17-22. [DOI: 10.1016/j.neulet.2018.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/26/2018] [Accepted: 08/08/2018] [Indexed: 01/19/2023]
|
14
|
Prefrontal mechanisms of comorbidity from a transdiagnostic and ontogenic perspective. Dev Psychopathol 2017; 28:1147-1175. [PMID: 27739395 DOI: 10.1017/s0954579416000742] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Accumulating behavioral and genetic research suggests that most forms of psychopathology share common genetic and neural vulnerabilities and are manifestations of a relatively few core underlying processes. These findings support the view that comorbidity mostly arises, not from true co-occurrence of distinct disorders, but from the behavioral expression of shared vulnerability processes across the life span. The purpose of this review is to examine the role of the prefrontal cortex (PFC) in the shared vulnerability mechanisms underlying the clinical phenomena of comorbidity from a transdiagnostic and ontogenic perspective. In adopting this perspective, we suggest complex transactions between neurobiologically rooted vulnerabilities inherent in PFC circuitry and environmental factors (e.g., parenting, peers, stress, and substance use) across development converge on three key PFC-mediated processes: executive functioning, emotion regulation, and reward processing. We propose that individual differences and impairments in these PFC-mediated functions provide intermediate mechanisms for transdiagnostic symptoms and underlie behavioral tendencies that evoke and interact with environmental risk factors to further potentiate vulnerability.
Collapse
|
15
|
Ndel1 and Reelin Maintain Postnatal CA1 Hippocampus Integrity. J Neurosci 2017; 36:6538-52. [PMID: 27307241 DOI: 10.1523/jneurosci.2869-15.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 05/04/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED How the integrity of laminar structures in the postnatal brain is maintained impacts neuronal functions. Ndel1, the mammalian homolog of NuDE from the filamentous fungus Aspergillus nidulans, is an atypical microtubule (MT)-associated protein that was initially investigated in the contexts of neurogenesis and neuronal migration. Constitutive knock-out mice for Ndel1 are embryonic lethal, thereby necessitating the creation a conditional knock-out to probe the roles of Ndel1 in postnatal brains. Here we report that CA1 pyramidal neurons from mice postnatally lacking Ndel1 (Ndel1 conditional knock-out) exhibit fragmented MTs, dendritic/synaptic pathologies, are intrinsically hyperexcitable and undergo dispersion independently of neuronal migration defect. Secondary to the pyramidal cell changes is the decreased inhibitory drive onto pyramidal cells from interneurons. Levels of the glycoprotein Reelin that regulates MTs, neuronal plasticity, and cell compaction are significantly reduced in hippocampus of mutant mice. Strikingly, a single injection of Reelin into the hippocampus of Ndel1 conditional knock-out mice ameliorates ultrastructural, cellular, morphological, and anatomical CA1 defects. Thus, Ndel1 and Reelin contribute to maintain postnatal CA1 integrity. SIGNIFICANCE STATEMENT The significance of this study rests in the elucidation of a role for Nde1l and Reelin in postnatal CA1 integrity using a new conditional knock-out mouse model for the cytoskeletal protein Ndel1, one that circumvents the defects associated with neuronal migration and embryonic lethality. Our study serves as a basis for understanding the mechanisms underlying postnatal hippocampal maintenance and function, and the significance of decreased levels of Ndel1 and Reelin observed in patients with neurological disorders.
Collapse
|
16
|
Smith AK, Jovanovic T, Kilaru V, Lori A, Gensler L, Lee SS, Norrholm SD, Massa N, Cuthbert B, Bradley B, Ressler KJ, Duncan E. A Gene-Based Analysis of Acoustic Startle Latency. Front Psychiatry 2017; 8:117. [PMID: 28729842 PMCID: PMC5498475 DOI: 10.3389/fpsyt.2017.00117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022] Open
Abstract
Latency of the acoustic startle response is the time required from the presentation of startling auditory stimulus until the startle response is elicited and provides an index of neural processing speed. Latency is prolonged in subjects with schizophrenia compared to controls in some but not all studies and is 68-90% heritable in baseline startle trials. In order to determine the genetic association with latency as a potential inroad into genetically based vulnerability to psychosis, we conducted a gene-based study of latency followed by an independent replication study of significant gene findings with a single-nucleotide polymorphism (SNP)-based analysis of schizophrenia and control subjects. 313 subjects from an urban population of low socioeconomic status with mixed psychiatric diagnoses were included in the gene-based study. Startle testing was conducted using a Biopac M150 system according to our published methods. Genotyping was performed with the Omni-Quad 1M or the Omni Express BeadChip. The replication study was conducted on 154 schizophrenia subjects and 123 psychiatric controls. Genetic analyses were conducted with Illumina Human Omni1-Quad and OmniExpress BeadChips. Twenty-nine SNPs were selected from four genes that were significant in the gene-based analysis and also associated with startle and/or schizophrenia in the literature. Linear regressions on latency were conducted, controlling for age, race, and diagnosis as a dichotomous variable. In the gene-based study, 2,870 genes demonstrated the evidence of association after correction for multiple comparisons (false discovery rate < 0.05). Pathway analysis of these genes revealed enrichment for relevant biological processes including neural transmission (p = 0.0029), synaptic transmission (p = 0.0032), and neuronal development (p = 0.024). The subsequent SNP-based replication analysis revealed a strong association of onset latency with the SNP rs901561 on the neuregulin gene (NRG1) in an additive model (beta = 0.21, p = 0.001), indicating that subjects with the AA and AG genotypes had slower mean latency than subjects with GG genotype. In conclusion, startle latency, a highly heritable measure that is slowed in schizophrenia, may be a useful biological probe for genetic contributions to psychotic disorders. Our analyses in two independent populations point to a significant prediction of startle latency by genetic variation in NRG1.
Collapse
Affiliation(s)
- Alicia K. Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Varun Kilaru
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Lauren Gensler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Samuel S. Lee
- Department of Emergency Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Nicholas Massa
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Bruce Cuthbert
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Erica Duncan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| |
Collapse
|
17
|
Caution When Diagnosing Your Mouse With Schizophrenia: The Use and Misuse of Model Animals for Understanding Psychiatric Disorders. Biol Psychiatry 2016; 79:32-8. [PMID: 26058706 DOI: 10.1016/j.biopsych.2015.04.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/26/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022]
Abstract
Animal models are widely used in biomedical research, but their applicability to psychiatric disorders is less clear. There are several reasons for this, including 1) emergent features of psychiatric illness that are not captured by the sum of individual symptoms, 2) a lack of equivalency between model animal behavior and human psychiatric symptoms, and 3) the possibility that model organisms do not have (and may not be capable of having) the same illnesses as humans. Here, we discuss the effective use, and inherent limitations, of model animals for psychiatric research. As disrupted-in-schizophrenia 1 (DISC1) is a genetic risk factor across a spectrum of psychiatric disorders, we focus on the results of studies using mice with various mutations of DISC1. The data from a broad range of studies show remarkable consistency with the effects of DISC1 mutation on developmental/anatomical endophenotypes. However, when one expands the phenotype to include behavioral correlates of human psychiatric diseases, much of this consistency ends. Despite these challenges, model animals remain valuable for understanding the basic brain processes that underlie psychiatric diseases. We argue that model animals have great potential to help us understand the core neurobiological dysfunction underlying psychiatric disorders and that marrying genetics and brain circuits with behavior is a good way forward.
Collapse
|
18
|
Abstract
Psychiatric manifestation of pachygyria, a neuronal migration disorder is rare in literature; rarer if it is bipolar disorder specifically. Here, we report a case of mania and seizure who subsequently diagnosed as pachygyria. Proper literature about pathophysiology is discussed and recently discovered putative genetic role in bipolar disorder explained. This case also emphasis the importance of detailed history taking and imaging investigation even in a pure psychiatric presentation.
Collapse
Affiliation(s)
| | | | - Rudra Acharya
- Depratment of Psychiatry, Medical College, Kolkata, India
| | - Sujit Sarkhel
- Institute of Psychiatry, IPGMER, Kolkata, West Bengal, India
| |
Collapse
|
19
|
Merelo V, Durand D, Lescallette AR, Vrana KE, Hong LE, Faghihi MA, Bellon A. Associating schizophrenia, long non-coding RNAs and neurostructural dynamics. Front Mol Neurosci 2015; 8:57. [PMID: 26483630 PMCID: PMC4588008 DOI: 10.3389/fnmol.2015.00057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/10/2015] [Indexed: 01/10/2023] Open
Abstract
Several lines of evidence indicate that schizophrenia has a strong genetic component. But the exact nature and functional role of this genetic component in the pathophysiology of this mental illness remains a mystery. Long non-coding RNAs (lncRNAs) are a recently discovered family of molecules that regulate gene transcription through a variety of means. Consequently, lncRNAs could help us bring together apparent unrelated findings in schizophrenia; namely, genomic deficiencies on one side and neuroimaging, as well as postmortem results on the other. In fact, the most consistent finding in schizophrenia is decreased brain size together with enlarged ventricles. This anomaly appears to originate from shorter and less ramified dendrites and axons. But a decrease in neuronal arborizations cannot explain the complex pathophysiology of this psychotic disorder; however, dynamic changes in neuronal structure present throughout life could. It is well recognized that the structure of developing neurons is extremely plastic. This structural plasticity was thought to stop with brain development. However, breakthrough discoveries have shown that neuronal structure retains some degree of plasticity throughout life. What the neuroscientific field is still trying to understand is how these dynamic changes are regulated and lncRNAs represent promising candidates to fill this knowledge gap. Here, we present evidence that associates specific lncRNAs with schizophrenia. We then discuss the potential role of lncRNAs in neurostructural dynamics. Finally, we explain how dynamic neurostructural modifications present throughout life could, in theory, reconcile apparent unrelated findings in schizophrenia.
Collapse
Affiliation(s)
- Veronica Merelo
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miller School of Medicine Miami, FL, USA
| | - Dante Durand
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miller School of Medicine Miami, FL, USA
| | - Adam R Lescallette
- Penn State Hershey Medical Center, Department of Pharmacology Hershey, PA, USA ; Penn State Hershey Medical Center, Department of Psychiatry Hershey, PA, USA
| | - Kent E Vrana
- Penn State Hershey Medical Center, Department of Pharmacology Hershey, PA, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine Baltimore, MD, USA
| | - Mohammad Ali Faghihi
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences University of Miami, Miller School of Medicine Miami, FL, USA
| | - Alfredo Bellon
- Penn State Hershey Medical Center, Department of Pharmacology Hershey, PA, USA ; Penn State Hershey Medical Center, Department of Psychiatry Hershey, PA, USA
| |
Collapse
|
20
|
Whalley HC, Dimitrova R, Sprooten E, Dauvermann MR, Romaniuk L, Duff B, Watson AR, Moorhead B, Bastin M, Semple SI, Giles S, Hall J, Thomson P, Roberts N, Hughes ZA, Brandon NJ, Dunlop J, Whitcher B, Blackwood DHR, McIntosh AM, Lawrie SM. Effects of a Balanced Translocation between Chromosomes 1 and 11 Disrupting the DISC1 Locus on White Matter Integrity. PLoS One 2015; 10:e0130900. [PMID: 26102360 PMCID: PMC4477898 DOI: 10.1371/journal.pone.0130900] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/25/2015] [Indexed: 11/18/2022] Open
Abstract
Objective Individuals carrying rare, but biologically informative genetic variants provide a unique opportunity to model major mental illness and inform understanding of disease mechanisms. The rarity of such variations means that their study involves small group numbers, however they are amongst the strongest known genetic risk factors for major mental illness and are likely to have large neural effects. DISC1 (Disrupted in Schizophrenia 1) is a gene containing one such risk variant, identified in a single Scottish family through its disruption by a balanced translocation of chromosomes 1 and 11; t(1;11) (q42.1;q14.3). Method Within the original pedigree, we examined the effects of the t(1;11) translocation on white matter integrity, measured by fractional anisotropy (FA). This included family members with (n = 7) and without (n = 13) the translocation, along with a clinical control sample of patients with psychosis (n = 34), and a group of healthy controls (n = 33). Results We report decreased white matter integrity in five clusters in the genu of the corpus callosum, the right inferior fronto-occipital fasciculus, acoustic radiation and fornix. Analysis of the mixed psychosis group also demonstrated decreased white matter integrity in the above regions. FA values within the corpus callosum correlated significantly with positive psychotic symptom severity. Conclusions We demonstrate that the t(1;11) translocation is associated with reduced white matter integrity in frontal commissural and association fibre tracts. These findings overlap with those shown in affected patients with psychosis and in DISC1 animal models and highlight the value of rare but biologically informative mutations in modeling psychosis.
Collapse
MESH Headings
- Adolescent
- Adult
- Bipolar Disorder/genetics
- Bipolar Disorder/pathology
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 1/ultrastructure
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/ultrastructure
- Corpus Callosum/pathology
- Cyclothymic Disorder/genetics
- Cyclothymic Disorder/pathology
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/pathology
- Diffusion Tensor Imaging
- Exons/genetics
- Female
- Humans
- Male
- Middle Aged
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Schizophrenia/genetics
- Schizophrenia/pathology
- Severity of Illness Index
- Translocation, Genetic
- White Matter/pathology
- Young Adult
Collapse
Affiliation(s)
- Heather C. Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Rali Dimitrova
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
- Centre for the Developing Brain, St Thomas’ Hospital, King’s College London, London, United Kingdom
| | - Emma Sprooten
- Department of Psychiatry, Yale University, New Haven, CT, United States of America
| | - Maria R. Dauvermann
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
- McGovern Institute for Brain Research, Cambridge, MA, United States of America
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Barbara Duff
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew R. Watson
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Bill Moorhead
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Bastin
- Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Scott I. Semple
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, United Kingdom
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen Giles
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeremy Hall
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Pippa Thomson
- Department of Medical Genetics, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil Roberts
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Zoe A. Hughes
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, United States of America
| | - Nick J. Brandon
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, United States of America
- Current affiliation: AstraZeneca Neuroscience IMED, Cambridge, MA, United States of America
| | - John Dunlop
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, United States of America
- Current affiliation: AstraZeneca Neuroscience IMED, Cambridge, MA, United States of America
| | - Brandon Whitcher
- Clinical and Translational Imaging, Pfizer Inc, Cambridge, MA, United States of America
| | | | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen M. Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Reinhart V, Bove SE, Volfson D, Lewis DA, Kleiman RJ, Lanz TA. Evaluation of TrkB and BDNF transcripts in prefrontal cortex, hippocampus, and striatum from subjects with schizophrenia, bipolar disorder, and major depressive disorder. Neurobiol Dis 2015; 77:220-7. [PMID: 25796564 DOI: 10.1016/j.nbd.2015.03.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/12/2015] [Accepted: 03/12/2015] [Indexed: 02/08/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) signaling is integral to a range of neural functions, including synaptic plasticity and exhibits activity-dependent regulation of expression. As altered BDNF signaling has been implicated in multiple psychiatric diseases, here we report a quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis of mRNAs encoding TrkB, total BDNF, and the four most abundant BDNF transcripts (I, IIc, IV, and VI) in postmortem tissue from matched tetrads of subjects with schizophrenia, bipolar disorder, or major depressive disorder (MDD) and healthy comparison subjects. In all three regions examined, dorsolateral prefrontal cortex (DLPFC), associative striatum and hippocampus, total BDNF mRNA levels did not differ in any disease state. In DLPFC, BDNF IIc was significantly lower in schizophrenia relative to healthy comparison subjects. In hippocampus, BDNF I, IIc, and VI were lower in subjects with both schizophrenia and bipolar disorder relative to comparison subjects. In striatum, TrkB mRNA was lower in bipolar disorder and MDD, while BDNF IIc was elevated in MDD, relative to comparison subjects. These data highlight potential alterations in BDNF signaling in the corticohippocampal circuit in schizophrenia, and within the striatum in mood disorders. Novel therapies aimed at improving BDNF-TrkB signaling may therefore have potential to impact on a range of psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robin J Kleiman
- Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA
| | | |
Collapse
|
22
|
Zhang X, Li X, Li M, Ren J, Yun K, An Y, Lin L, Zhang H. Venlafaxine increases cell proliferation and regulates DISC1, PDE4B and NMDA receptor 2B expression in the hippocampus in chronic mild stress mice. Eur J Pharmacol 2015; 755:58-65. [PMID: 25769842 DOI: 10.1016/j.ejphar.2015.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
Recent evidence has identified disrupted in schizophrenia-1 (DISC1) as an important genetic risk factor for the development of many psychiatric disorders, including major depressive disorders. In addition, studies using animal models have demonstrated that chronic stress affects hippocampal structure and function. However, the functional effects of chronic stress on DISC1 remain unknown. Using a chronic mild stress (CMS) paradigm, we investigated the effects of CMS on depressive-like behaviors, hippocampal cell proliferation, and hippocampal protein expression of DISC1, phosphodiesterase 4B (PDE4B) and N-methyl-d-aspartate receptor 2B subunit (NMDA receptor 2B), which may be involved in the regulation of DISC1 and neurogenesis. We also examined the effects and possible mechanisms of the antidepressant venlafaxine in CMS mice. CMS increased the expression of DISC1 and PDE4B. Chronic treatment with venlafaxine blocked the increases in these proteins, and also reversed the CMS-induced decrease in neurogenesis and NMDA receptor 2B protein in the hippocampus. These results suggest that DISC1 may play an important role in the etiology of depression and in the action of antidepressants.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaobai Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Min Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jintao Ren
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ke Yun
- Department of Clinical Laboratory, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yan An
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lei Lin
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Hailong Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
23
|
Opmeer EM, van Tol MJ, Kortekaas R, van der Wee NJA, Woudstra S, van Buchem MA, Penninx BW, Veltman DJ, Aleman A. DISC1 gene and affective psychopathology: a combined structural and functional MRI study. J Psychiatr Res 2015; 61:150-7. [PMID: 25533973 DOI: 10.1016/j.jpsychires.2014.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 12/01/2022]
Abstract
The gene Disrupted-In-Schizophrenia-1 (DISC1) has been indicated as a determinant of psychopathology, including affective disorders, and shown to influence prefrontal cortex (PFC) and hippocampus functioning, regions of major interest for affective disorders. We aimed to investigate whether DISC1 differentially modulates brain function during executive and memory processing, and morphology in regions relevant for depression and anxiety disorders (affective disorders). 128 participants, with (n = 103) and without (controls; n = 25) affective disorders underwent genotyping for Ser704Cys (with Cys-allele considered as risk-allele) and structural and functional (f) Magnetic Resonance Imaging (MRI) during visuospatial planning and emotional episodic memory tasks. For both voxel-based morphometry and fMRI analyses, we investigated the effect of genotype in controls and explored genotypeXdiagnosis interactions. Results are reported at p < 0.05 FWE small volume corrected. In controls, Cys-carriers showed smaller bilateral (para)hippocampal volumes compared with Ser-homozygotes, and lower activation in the anterior cingulate cortex (ACC) and dorsolateral PFC during visuospatial planning. In anxiety patients, Cys-carriers showed larger (para)hippocampal volumes and more ACC activation during visuospatial planning. In depressive patients, no effect of genotype was observed and overall, no effect of genotype on episodic memory processing was detected. We demonstrated that Ser704Cys-genotype influences (para)hippocampal structure and functioning the dorsal PFC during executive planning, most prominently in unaffected controls. Results suggest that presence of psychopathology moderates Ser704Cys effects.
Collapse
Affiliation(s)
- Esther M Opmeer
- Neuroimaging Center, Department of Neuroscience, University Medical Center Groningen and University of Groningen, 9713 AW Groningen, The Netherlands.
| | - Marie-José van Tol
- Neuroimaging Center, Department of Neuroscience, University Medical Center Groningen and University of Groningen, 9713 AW Groningen, The Netherlands.
| | - Rudie Kortekaas
- Neuroimaging Center, Department of Neuroscience, University Medical Center Groningen and University of Groningen, 9713 AW Groningen, The Netherlands.
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, 2300 RC Leiden, The Netherlands.
| | - Saskia Woudstra
- Department of Psychiatry, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, 2300 RC Leiden, The Netherlands; Department of Psychiatry, VU University Medical Center Amsterdam, 1081 HL Amsterdam, The Netherlands; Department of Medical Genomics, VU University Medical Center, 1081 HV Amsterdam, The Netherlands; Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
| | - Mark A van Buchem
- Leiden Institute for Brain and Cognition, Leiden University, 2300 RC Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, 2333 ZW Leiden, The Netherlands.
| | - Brenda W Penninx
- Department of Psychiatry, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Department of Psychiatry, VU University Medical Center Amsterdam, 1081 HL Amsterdam, The Netherlands; Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
| | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center Amsterdam, 1081 HL Amsterdam, The Netherlands; Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
| | - André Aleman
- Neuroimaging Center, Department of Neuroscience, University Medical Center Groningen and University of Groningen, 9713 AW Groningen, The Netherlands; Department of Psychology, University of Groningen, 9712 TS Groningen, The Netherlands.
| |
Collapse
|
24
|
Norlelawati AT, Kartini A, Norsidah K, Ramli M, Tariq AR, Wan Rohani WT. Disrupted-in-Schizophrenia-1 SNPs and Susceptibility to Schizophrenia: Evidence from Malaysia. Psychiatry Investig 2015; 12:103-11. [PMID: 25670952 PMCID: PMC4310907 DOI: 10.4306/pi.2015.12.1.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/28/2014] [Accepted: 02/20/2014] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Even though the role of the DICS1 gene as a risk factor for schizophrenia is still unclear, there is substantial evidence from functional and cell biology studies that supports the connection of the gene with schizophrenia. The studies associating the DISC1 gene with schizophrenia in Asian populations are limited to East-Asian populations. Our study examined several DISC1 markers of schizophrenia that were identified in the Caucasian and East-Asian populations in Malaysia and assessed the role of rs2509382, which is located at 11q14.3, the mutual translocation region of the famous DISC1 translocation [t (1; 11) (p42.1; q14.3)]. METHODS We genotyped eleven single-neucleotide polymorphism (SNPs) within or related to DISC1 (rs821597, rs821616, rs4658971, rs1538979, rs843979, rs2812385, rs1407599, rs4658890, and rs2509382) using the PCR-RFLP methods. RESULTS In all, there were 575 participants (225 schizophrenic patients and 350 healthy controls) of either Malay or Chinese ethnicity. The case-control analyses found two SNPs that were associated with schizophrenia [rs4658971 (p=0.030; OR=1.43 (1.35-1.99) and rs1538979-(p=0.036; OR=1.35 (1.02-1.80)] and rs2509382-susceptibility among the males schizophrenics [p=0.0082; OR=2.16 (1.22-3.81)]. This is similar to the meta-analysis findings for the Caucasian populations. CONCLUSION The study supports the notion that the DISC1 gene is a marker of schizophrenia susceptibility and that rs2509382 in the mutual DISC1 translocation region is a susceptibility marker for schizophrenia among males in Malaysia. However, the finding of the study is limited due to possible genetic stratification and the small sample size.
Collapse
Affiliation(s)
- A. Talib Norlelawati
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Abdullah Kartini
- Department of Psychiatry, Kulliyyah of Medicine, International Islamic University Malaysia, Pahang, Malaysia
| | - Kuzaifah Norsidah
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Musa Ramli
- Department of Psychiatry, Kulliyyah of Medicine, International Islamic University Malaysia, Pahang, Malaysia
| | - Abdul Razak Tariq
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Wan Taib Wan Rohani
- Faculty of Medicine, University of Sultan Zainal Abidin, Terengganu, Malaysia
| |
Collapse
|
25
|
Tollenaere MAX, Mailand N, Bekker-Jensen S. Centriolar satellites: key mediators of centrosome functions. Cell Mol Life Sci 2015; 72:11-23. [PMID: 25173771 PMCID: PMC11114028 DOI: 10.1007/s00018-014-1711-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/01/2014] [Accepted: 08/25/2014] [Indexed: 01/18/2023]
Abstract
Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking towards the centrosome. However, the recent identification of several new centriolar satellite components suggests that this model offers only an incomplete picture of their cellular functions. While the mechanisms controlling centriolar satellite status and function are not yet understood in detail, emerging evidence points to these structures as important hubs for dynamic, multi-faceted regulation in response to a variety of cues. In this review, we summarize the current knowledge of the roles of centriolar satellites in regulating centrosome functions, ciliogenesis, and neurogenesis. We also highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Maxim A. X. Tollenaere
- Faculty of Health Sciences, Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Niels Mailand
- Faculty of Health Sciences, Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Simon Bekker-Jensen
- Faculty of Health Sciences, Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
26
|
Mighdoll MI, Tao R, Kleinman JE, Hyde TM. Myelin, myelin-related disorders, and psychosis. Schizophr Res 2015; 161:85-93. [PMID: 25449713 DOI: 10.1016/j.schres.2014.09.040] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/18/2014] [Accepted: 09/21/2014] [Indexed: 12/14/2022]
Abstract
The neuropathological basis of schizophrenia and related psychoses remains elusive despite intensive scientific investigation. Symptoms of psychosis have been reported in a number of conditions where normal myelin development is interrupted. The nature, location, and timing of white matter pathology seem to be key factors in the development of psychosis, especially during the critical adolescent period of association area myelination. Numerous lines of evidence implicate myelin and oligodendrocyte function as critical processes that could affect neuronal connectivity, which has been implicated as a central abnormality in schizophrenia. Phenocopies of schizophrenia with a known pathological basis involving demyelination or dysmyelination may offer insights into the biology of schizophrenia itself. This article reviews the pathological changes in white matter of patients with schizophrenia, as well as demyelinating diseases associated with psychosis. In an attempt to understand the potential role of dysmyelination in schizophrenia, we outline the evidence from a number of both clinically-based and post-mortem studies that provide evidence that OMR genes are genetically associated with increased risk for schizophrenia. To further understand the implication of white matter dysfunction and dysmyelination in schizophrenia, we examine diffusion tensor imaging (DTI), which has shown volumetric and microstructural white matter differences in patients with schizophrenia. While classical clinical-neuropathological correlations have established that disruption in myelination can produce a high fidelity phenocopy of psychosis similar to schizophrenia, the role of dysmyelination in schizophrenia remains controversial.
Collapse
Affiliation(s)
- Michelle I Mighdoll
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA.
| | - Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA.
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA.
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA; Department of Psychiatry & Behavioral Sciences, Johns Hopkins Medical School, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins Medical School, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Lin D, Calhoun VD, Wang YP. Correspondence between fMRI and SNP data by group sparse canonical correlation analysis. Med Image Anal 2014; 18:891-902. [PMID: 24247004 PMCID: PMC4007390 DOI: 10.1016/j.media.2013.10.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/27/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
Both genetic variants and brain region abnormalities are recognized as important factors for complex diseases (e.g., schizophrenia). In this paper, we investigated the correspondence between single nucleotide polymorphism (SNP) and brain activity measured by functional magnetic resonance imaging (fMRI) to understand how genetic variation influences the brain activity. A group sparse canonical correlation analysis method (group sparse CCA) was developed to explore the correlation between these two datasets which are high dimensional-the number of SNPs/voxels is far greater than the number of samples. Different from the existing sparse CCA methods (sCCA), our approach can exploit structural information in the correlation analysis by introducing group constraints. A simulation study demonstrates that it outperforms the existing sCCA. We applied this method to the real data analysis and identified two pairs of significant canonical variates with average correlations of 0.4527 and 0.4292 respectively, which were used to identify genes and voxels associated with schizophrenia. The selected genes are mostly from 5 schizophrenia (SZ)-related signalling pathways. The brain mappings of the selected voxles also indicate the abnormal brain regions susceptible to schizophrenia. A gene and brain region of interest (ROI) correlation analysis was further performed to confirm the significant correlations between genes and ROIs.
Collapse
Affiliation(s)
- Dongdong Lin
- Biomedical Engineering Department, Tulane University, New Orleans, LA 70118, USA; Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA 70118, USA.
| | - Vince D Calhoun
- The Mind Research Network, Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Yu-Ping Wang
- Biomedical Engineering Department, Tulane University, New Orleans, LA 70118, USA; Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA 70118, USA; Center for Systems Biomedicine, Shanghai University for Science and Technology, Shanghai, China.
| |
Collapse
|
28
|
He Y, Zhang H, Yung A, Villeda SA, Jaeger PA, Olayiwola O, Fainberg N, Wyss-Coray T. ALK5-dependent TGF-β signaling is a major determinant of late-stage adult neurogenesis. Nat Neurosci 2014; 17:943-52. [PMID: 24859199 PMCID: PMC4096284 DOI: 10.1038/nn.3732] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/30/2014] [Indexed: 01/19/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway serves critical functions in CNS development, but, apart from its proposed neuroprotective actions, its physiological role in the adult brain is unclear. We observed a prominent activation of TGF-β signaling in the adult dentate gyrus and expression of downstream Smad proteins in this neurogenic zone. Consistent with a function of TGF-β signaling in adult neurogenesis, genetic deletion of the TGF-β receptor ALK5 reduced the number, migration and dendritic arborization of newborn neurons. Conversely, constitutive activation of neuronal ALK5 in forebrain caused a marked increase in these aspects of neurogenesis and was associated with higher expression of c-Fos in newborn neurons and with stronger memory function. Our findings describe an unexpected role for ALK5-dependent TGF-β signaling as a regulator of the late stages of adult hippocampal neurogenesis, which may have implications for changes in neurogenesis during aging and disease.
Collapse
Affiliation(s)
- Yingbo He
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Hui Zhang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Andrea Yung
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Saul A Villeda
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Philipp A Jaeger
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Oluwatobi Olayiwola
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nina Fainberg
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
- Center for Tissue Regeneration, Repair and Rehabilitation, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| |
Collapse
|
29
|
Risk genes for schizophrenia: Translational opportunities for drug discovery. Pharmacol Ther 2014; 143:34-50. [DOI: 10.1016/j.pharmthera.2014.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 12/11/2022]
|
30
|
Dickinson D, Straub RE, Trampush JW, Gao Y, Feng N, Xie B, Shin JH, Lim HK, Ursini G, Bigos KL, Kolachana B, Hashimoto R, Takeda M, Baum GL, Rujescu D, Callicott JH, Hyde TM, Berman KF, Kleinman JE, Weinberger DR. Differential effects of common variants in SCN2A on general cognitive ability, brain physiology, and messenger RNA expression in schizophrenia cases and control individuals. JAMA Psychiatry 2014; 71:647-56. [PMID: 24718902 PMCID: PMC4160812 DOI: 10.1001/jamapsychiatry.2014.157] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
IMPORTANCE One approach to understanding the genetic complexity of schizophrenia is to study associated behavioral and biological phenotypes that may be more directly linked to genetic variation. OBJECTIVE To identify single-nucleotide polymorphisms associated with general cognitive ability (g) in people with schizophrenia and control individuals. DESIGN, SETTING, AND PARTICIPANTS Genomewide association study, followed by analyses in unaffected siblings and independent schizophrenia samples, functional magnetic resonance imaging studies of brain physiology in vivo, and RNA sequencing in postmortem brain samples. The discovery cohort and unaffected siblings were participants in the National Institute of Mental Health Clinical Brain Disorders Branch schizophrenia genetics studies. Additional schizophrenia cohorts were from psychiatric treatment settings in the United States, Japan, and Germany. The discovery cohort comprised 339 with schizophrenia and 363 community control participants. Follow-up analyses studied 147 unaffected siblings of the schizophrenia cases and independent schizophrenia samples including a total of an additional 668 participants. Imaging analyses included 87 schizophrenia cases and 397 control individuals. Brain tissue samples were available for 64 cases and 61 control individuals. MAIN OUTCOMES AND MEASURES We studied genomewide association with g, by group, in the discovery cohort. We used selected genotypes to test specific associations in unaffected siblings and independent schizophrenia samples. Imaging analyses focused on activation in the prefrontal cortex during working memory. Brain tissue studies yielded messenger RNA expression levels for RefSeq transcripts. RESULTS The schizophrenia discovery cohort showed genomewide-significant association of g with polymorphisms in sodium channel gene SCN2A, accounting for 10.4% of g variance (rs10174400, P = 9.27 × 10(-10)). Control individuals showed a trend for g/genotype association with reversed allelic directionality. The genotype-by-group interaction was also genomewide significant (P = 1.75 × 10(-9)). Siblings showed a genotype association with g parallel to the schizophrenia group and the same interaction pattern. Parallel, but weaker, associations with cognition were found in independent schizophrenia samples. Imaging analyses showed a similar pattern of genotype associations by group and genotype-by-group interaction. Sequencing of RNA in brain revealed reduced expression in 2 of 3 SCN2A alternative transcripts in the patient group, with genotype-by-group interaction, that again paralleled the cognition effects. CONCLUSIONS AND RELEVANCE The findings implicate SCN2A and sodium channel biology in cognitive impairment in schizophrenia cases and unaffected relatives and may facilitate development of cognition-enhancing treatments.
Collapse
Affiliation(s)
- Dwight Dickinson
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Richard E. Straub
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Joey W. Trampush
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Yuan Gao
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Ningping Feng
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Bin Xie
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Hun Ki Lim
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Psychiatric Neuroscience Group, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Kristin L. Bigos
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Bhaskar Kolachana
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masatoshi Takeda
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Graham L. Baum
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Dan Rujescu
- Department of Psychiatry, Ludwig-Maximilians University, Munich, Germany
- Department of Psychiatry, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Joseph H. Callicott
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Thomas M. Hyde
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Karen F. Berman
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Joel E. Kleinman
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Daniel R. Weinberger
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Departments of Psychiatry, Neurology, Neuroscience and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
NDEL1 was decreased in the CA3 region but increased in the hippocampal blood vessel network during the spontaneous seizure period after pilocarpine-induced status epilepticus. Neuroscience 2014; 268:276-83. [DOI: 10.1016/j.neuroscience.2014.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022]
|
32
|
Abstract
Psychosis is an abnormal mental state characterized by disorganization, delusions and hallucinations. Animal models have become an increasingly important research tool in the effort to understand both the underlying pathophysiology and treatment of psychosis. There are multiple animal models for psychosis, with each formed by the coupling of a manipulation and a measurement. In this manuscript we do not address the diseases of which psychosis is a prominent comorbidity. Instead, we summarize the current state of affairs and future directions for animal models of psychosis. To accomplish this, our manuscript will first discuss relevant behavioral and electrophysiological measurements. We then provide an overview of the different manipulations that are combined with these measurements to produce animal models. The strengths and limitations of each model will be addressed in order to evaluate its cross-species comparability.
Collapse
|
33
|
Redpath HL, Lawrie SM, Sprooten E, Whalley HC, McIntosh AM, Hall J. Progress in imaging the effects of psychosis susceptibility gene variants. Expert Rev Neurother 2014; 13:37-47. [DOI: 10.1586/ern.12.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Xu W, Cohen-Woods S, Chen Q, Noor A, Knight J, Hosang G, Parikh SV, De Luca V, Tozzi F, Muglia P, Forte J, McQuillin A, Hu P, Gurling HMD, Kennedy JL, McGuffin P, Farmer A, Strauss J, Vincent JB. Genome-wide association study of bipolar disorder in Canadian and UK populations corroborates disease loci including SYNE1 and CSMD1. BMC MEDICAL GENETICS 2014; 15:2. [PMID: 24387768 PMCID: PMC3901032 DOI: 10.1186/1471-2350-15-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 12/20/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Recently, genome-wide association studies (GWAS) for cases versus controls using single nucleotide polymorphism microarray data have shown promising findings for complex neuropsychiatric disorders, including bipolar disorder (BD). METHODS Here we describe a comprehensive genome-wide study of bipolar disorder (BD), cross-referencing analysis from a family-based study of 229 small families with association analysis from over 950 cases and 950 ethnicity-matched controls from the UK and Canada. Further, loci identified in these analyses were supported by pathways identified through pathway analysis on the samples. RESULTS Although no genome-wide significant markers were identified, the combined GWAS findings have pointed to several genes of interest that support GWAS findings for BD from other groups or consortia, such as at SYNE1 on 6q25, PPP2R2C on 4p16.1, ZNF659 on 3p24.3, CNTNAP5 (2q14.3), and CDH13 (16q23.3). This apparent corroboration across multiple sites gives much confidence to the likelihood of genetic involvement in BD at these loci. In particular, our two-stage strategy found association in both our combined case/control analysis and the family-based analysis on 1q21.2 (closest gene: sphingosine-1-phosphate receptor 1 gene, S1PR1) and on 1q24.1 near the gene TMCO1, and at CSMD1 on 8p23.2, supporting several previous GWAS reports for BD and for schizophrenia. Pathway analysis suggests association of pathways involved in calcium signalling, neuropathic pain signalling, CREB signalling in neurons, glutamate receptor signalling and axonal guidance signalling. CONCLUSIONS The findings presented here show support for a number of genes previously implicated genes in the etiology of BD, including CSMD1 and SYNE1, as well as evidence for previously unreported genes such as the brain-expressed genes ADCY2, NCALD, WDR60, SCN7A and SPAG16.
Collapse
Affiliation(s)
- Wei Xu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Sarah Cohen-Woods
- MRC SGDP Centre, King’s College London, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK
| | - Qian Chen
- Cancer Care Ontario, Toronto, Canada
| | - Abdul Noor
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), R-32, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Jo Knight
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), R-32, 250 College Street, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Georgina Hosang
- MRC SGDP Centre, King’s College London, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK
| | - Sagar V Parikh
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | | | - Federica Tozzi
- GSK Research & Development, Medical Genetics, Clinical Pharmacology and Discovery Medicine, Via Fleming 4, Verona, Italy
- GSK Research & Development, Medical Genetics, Clinical Pharmacology and Discovery Medicine, Greenford Road, Greenford, Middlesex UB6 OHE, UK
| | - Pierandrea Muglia
- GSK Research & Development, Medical Genetics, Clinical Pharmacology and Discovery Medicine, Via Fleming 4, Verona, Italy
- Exploratory Medicine & Early Development, NeuroSearch, Copenhagen, Denmark
- GSK Research & Development, Medical Genetics, Clinical Pharmacology and Discovery Medicine, Greenford Road, Greenford, Middlesex UB6 OHE, UK
| | - Julia Forte
- GSK Research & Development, Medical Genetics, Clinical Pharmacology and Discovery Medicine, Via Fleming 4, Verona, Italy
- GSK Research & Development, Medical Genetics, Clinical Pharmacology and Discovery Medicine, Greenford Road, Greenford, Middlesex UB6 OHE, UK
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Mental Health Sciences Unit, Faculty of Brain Sciences, University College London, London, UK
| | - Pingzhao Hu
- The Centre for Applied Genomics, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Hugh MD Gurling
- Molecular Psychiatry Laboratory, Mental Health Sciences Unit, Faculty of Brain Sciences, University College London, London, UK
| | - James L Kennedy
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), R-32, 250 College Street, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Peter McGuffin
- MRC SGDP Centre, King’s College London, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK
| | - Anne Farmer
- MRC SGDP Centre, King’s College London, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK
| | - John Strauss
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - John B Vincent
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), R-32, 250 College Street, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- The Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Gamo NJ, Duque A, Paspalas CD, Kata A, Fine R, Boven L, Bryan C, Lo T, Anighoro K, Bermudez L, Peng K, Annor A, Raja A, Mansson E, Taylor SR, Patel K, Simen AA, Arnsten AFT. Role of disrupted in schizophrenia 1 (DISC1) in stress-induced prefrontal cognitive dysfunction. Transl Psychiatry 2013; 3:e328. [PMID: 24301646 PMCID: PMC4030323 DOI: 10.1038/tp.2013.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/05/2013] [Accepted: 10/09/2013] [Indexed: 12/22/2022] Open
Abstract
Recent genetic studies have linked mental illness to alterations in disrupted in schizophrenia 1 (DISC1), a multifunctional scaffolding protein that regulates cyclic adenosine monophosphate (cAMP) signaling via interactions with phosphodiesterase 4 (PDE4). High levels of cAMP during stress exposure impair function of the prefrontal cortex (PFC), a region gravely afflicted in mental illness. As stress can aggravate mental illness, genetic insults to DISC1 may worsen symptoms by increasing cAMP levels. The current study examined whether viral knockdown (KD) of the Disc1 gene in rat PFC increases susceptibility to stress-induced PFC dysfunction. Rats were trained in a spatial working memory task before receiving infusions of (a) an active viral construct that knocked down Disc1 in PFC (DISC1 KD group), (b) a 'scrambled' construct that had no effect on Disc1 (Scrambled group), or (c) an active construct that reduced DISC1 expression dorsal to PFC (Anatomical Control group). Data were compared with an unoperated Control group. Cognitive performance was assessed following mild restraint stress that had no effect on normal animals. DISC1 KD rats were impaired by 1 h restraint stress, whereas Scrambled, Control, and Anatomical Control groups were unaffected. Thus, knocking down Disc1 in PFC reduced the threshold for stress-induced cognitive dysfunction, possibly through disinhibited cAMP signaling at neuronal network synapses. These findings may explain why patients with DISC1 mutations may be especially vulnerable to the effects of stress.
Collapse
Affiliation(s)
- N J Gamo
- Department of Neurobiology, Yale University, New Haven, CT, USA,Department of Neurobiology, Yale University, 600 N. Wolfe Street, Baltimore, MD 21287, USA. E-mail:
| | - A Duque
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - C D Paspalas
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - A Kata
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - R Fine
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - L Boven
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - C Bryan
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - T Lo
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - K Anighoro
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - L Bermudez
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - K Peng
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - A Annor
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - A Raja
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - E Mansson
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - S R Taylor
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - K Patel
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - A A Simen
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - A F T Arnsten
- Department of Neurobiology, Yale University, New Haven, CT, USA
| |
Collapse
|
36
|
Global transcriptomic analysis of human neuroblastoma cells in response to enterovirus type 71 infection. PLoS One 2013; 8:e65948. [PMID: 23861741 PMCID: PMC3702535 DOI: 10.1371/journal.pone.0065948] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/30/2013] [Indexed: 01/27/2023] Open
Abstract
Human enterovirus type 71 (EV71) is the major pathogen of hand-foot-and-mouth disease (HFMD) and has been associated with severe neurological disease and even death in infants and young children. The pathogenesis of EV71 infection in the human central nervous system remains unclear. In this study, human whole genome microarray was employed to perform transcriptome profiling in SH-SY5Y human neuroblastoma cells infected with EV71. The results indicated that EV71 infection lead to altered expression of 161 human mRNAs, including 74 up-regulated genes and 87 down-regulated genes. Bioinformatics analysis indicated the possible roles of the differentially regulated mRNAs in selected pathways, including cell cycle/proliferation, apoptosis, and cytokine/chemokine responses. Finally, the microarray results were validated using real-time RT-PCR with high identity. Overall, our results provided fundamental information regarding the host response to EV71 infection in human neuroblastoma cells, and this finding will help explain the pathogenesis of EV71 infection and virus-host interaction.
Collapse
|
37
|
Abstract
This review provides a comprehensive overview of clinical and molecular genetic as well as pharmacogenetic studies regarding the clinical phenotype of "psychotic depression." Results are discussed with regard to the long-standing debate on categorical vs dimensional disease models of affective and psychotic disorders on a continuum from unipolar depression over bipolar disorder and schizoaffective disorder to schizophrenia. Clinical genetic studies suggest a familial aggregation and a considerable heritability (39%) of psychotic depression partly shared with schizoaffective disorder, schizophrenia, and affective disorders. Molecular genetic studies point to potential risk loci of psychotic depression shared with schizoaffective disorder (1q42, 22q11, 19p13), depression, bipolar disorder, and schizophrenia (6p, 8p22, 10p13-12, 10p14, 13q13-14, 13q32, 18p, 22q11-13) and several vulnerability genes possibly contributing to an increased risk of psychotic symptoms in depression (eg, BDNF, DBH, DTNBP1, DRD2, DRD4, GSK-3beta, MAO-A). Pharmacogenetic studies implicate 5-HTT, TPH1, and DTNBP1 gene variation in the mediation of antidepressant treatment response in psychotic depression. Genetic factors are suggested to contribute to the disease risk of psychotic depression in partial overlap with disorders along the affective-psychotic spectrum. Thus, genetic research focusing on psychotic depression might inspire a more dimensional, neurobiologically and symptom-oriented taxonomy of affective and psychotic disorders challenging the dichotomous Kraepelinian view. Additionally, pharmacogenetic studies might aid in the development of a more personalized treatment of psychotic depression with an individually tailored antidepressive/antipsychotic pharmacotherapy according to genotype.
Collapse
Affiliation(s)
- Katharina Domschke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
38
|
McGuire KA, Blahnik MM, Sponheim SR. Discrimination within Recognition Memory in Schizophrenia. Behav Sci (Basel) 2013; 3:273-297. [PMID: 25379239 PMCID: PMC4217626 DOI: 10.3390/bs3020273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 12/15/2022] Open
Abstract
Episodic memory is one of the most affected cognitive domains in schizophrenia. First-degree biological relatives of individuals with schizophrenia also have been found to exhibit a similar, but milder, episodic memory deficit. Unlike most studies that focus on the percent of previously presented items recognized, the current investigation sought to further elucidate the nature of memory dysfunction associated with schizophrenia by examining the discrimination of old and new material during recognition (measured by d') to consider false recognition of new items. Using the Recurring Figures Test and the California Verbal Learning Test (CVLT), we studied a sample of schizophrenia probands and the first-degree biological relatives of patients with schizophrenia, as well as probands with bipolar disorder and first-degree biological relatives to assess the specificity of recognition memory dysfunction to schizophrenia. The schizophrenia sample had poorer recognition discrimination in both nonverbal and verbal modalities; no such deficits were identified in first-degree biological relatives or bipolar disorder probands. Discrimination in schizophrenia and bipolar probands failed to benefit from the geometric structure in the designs in the manner that controls did on the nonverbal test. Females performed better than males in recognition of geometric designs. Episodic memory dysfunction in schizophrenia is present for a variety of stimulus domains and reflects poor use of item content to increase discrimination of old and new items.
Collapse
Affiliation(s)
- Kathryn A. McGuire
- Minneapolis Veterans Affairs Health Care System, One Veterans Drive, Minneapolis, MN 55417, USA; E-Mails: (M.M.B.); (S.R.S.)
- Department of Psychiatry, University of Minnesota, F282/2A West, 2450 Riverside Avenue, Minneapolis, MN 55454, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-612-725-2044; Fax: +1-612-467-2144
| | - Melanie M. Blahnik
- Minneapolis Veterans Affairs Health Care System, One Veterans Drive, Minneapolis, MN 55417, USA; E-Mails: (M.M.B.); (S.R.S.)
| | - Scott R. Sponheim
- Minneapolis Veterans Affairs Health Care System, One Veterans Drive, Minneapolis, MN 55417, USA; E-Mails: (M.M.B.); (S.R.S.)
- Department of Psychiatry, University of Minnesota, F282/2A West, 2450 Riverside Avenue, Minneapolis, MN 55454, USA
| |
Collapse
|
39
|
McIntosh AM, Gow A, Luciano M, Davies G, Liewald DC, Harris SE, Corley J, Hall J, Starr JM, Porteous DJ, Tenesa A, Visscher PM, Deary IJ. Polygenic risk for schizophrenia is associated with cognitive change between childhood and old age. Biol Psychiatry 2013; 73:938-43. [PMID: 23419543 DOI: 10.1016/j.biopsych.2013.01.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have shown a polygenic component to the risk of schizophrenia. The disorder is associated with impairments in general cognitive ability that also have a substantial genetic contribution. No study has determined whether cognitive impairments can be attributed to schizophrenia's polygenic architecture using data from GWAS. METHODS Members of the Lothian Birth Cohort 1936 (LBC1936, n = 937) were assessed using the Moray House Test at age 11 and with the Moray House Test and a further cognitive battery at age 70. To create polygenic risk scores for schizophrenia, we obtained data from the latest GWAS of the Psychiatric GWAS Consortium on Schizophrenia. Schizophrenia polygenic risk profile scores were calculated using information from the Psychiatric GWAS Consortium on Schizophrenia GWAS. RESULTS In LBC1936, polygenic risk for schizophrenia was negatively associated with IQ at age 70 but not at age 11. Greater polygenic risk for schizophrenia was associated with more relative decline in IQ between these ages. These findings were maintained when the results of LBC1936 were combined with that of the independent Lothian Birth Cohort 1921 (n = 517) in a meta-analysis. CONCLUSIONS Increased polygenic risk of schizophrenia is associated with lower cognitive ability at age 70 and greater relative decline in general cognitive ability between the ages of 11 and 70. Common genetic variants may underlie both cognitive aging and risk of schizophrenia.
Collapse
Affiliation(s)
- Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rose EJ, Donohoe G. Brain vs behavior: an effect size comparison of neuroimaging and cognitive studies of genetic risk for schizophrenia. Schizophr Bull 2013; 39:518-26. [PMID: 22499782 PMCID: PMC3627766 DOI: 10.1093/schbul/sbs056] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Genetic variants associated with increased risk for schizophrenia (SZ) are hypothesized to be more penetrant at the level of brain structure and function than at the level of behavior. However, to date the relative sensitivity of imaging vs cognitive measures of these variants has not been quantified. We considered effect sizes associated with cognitive and imaging studies of 9 robust SZ risk genes (DAOA, DISC1, DTNBP1, NRG1, RGS4, NRGN, CACNA1C, TCF4, and ZNF804A) published between January 2005-November 2011. Summary data was used to calculate estimates of effect size for each significant finding. The mean effect size for each study was categorized as small, medium, or large and the relative frequency of each category was compared between modalities and across genes. Random effects meta-analysis was used to consider the impact of experimental methodology on effect size. Imaging studies reported mostly medium or large effects, whereas cognitive investigations commonly reported small effects. Meta-analysis confirmed that imaging studies were associated with larger effects. Effect size estimates were negatively correlated with sample size but did not differ as a function of gene nor imaging modality. These observations support the notion that SZ risk variants show larger effects, and hence greater penetrance, when characterized using indices of brain structure and function than when indexed by cognitive measures. However, it remains to be established whether this holds true for individual risk variants, imaging modalities, or cognitive functions, and how such effects may be mediated by a relationship with sample size and other aspects of experimental variability.
Collapse
Affiliation(s)
- Emma Jane Rose
- Department of Psychiatry, Trinity College Dublin, Trinity Centre for Health Sciences, St. James' Hospital, Dublin 8, Ireland.
| | - Gary Donohoe
- Neuropsychiatric Genetics Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
41
|
Holley SM, Wang EA, Cepeda C, Jentsch JD, Ross CA, Pletnikov MV, Levine MS. Frontal cortical synaptic communication is abnormal in Disc1 genetic mouse models of schizophrenia. Schizophr Res 2013; 146:264-72. [PMID: 23481583 PMCID: PMC3622830 DOI: 10.1016/j.schres.2013.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/25/2022]
Abstract
Mouse models carrying Disc1 mutations may provide insights into how Disc1 genetic variations contribute to schizophrenia (SZ) susceptibility. Disc1 mutant mice show behavioral and cognitive disturbances reminiscent of SZ. To dissect the synaptic mechanisms underlying these phenotypes, we examined electrophysiological properties of cortical neurons from two mouse models, the first expressing a truncated mouse Disc1 (mDisc1) protein throughout the entire brain, and the second expressing a truncated human Disc1 (hDisc1) protein in forebrain regions. We obtained whole-cell patch clamp recordings to examine how altered expression of Disc1 protein changes excitatory and inhibitory synaptic transmissions onto cortical pyramidal neurons in the medial prefrontal cortex in 4-7 month-old mDisc1 and hDisc1 mice. In both mDisc1 and hDisc1 mice, the frequency of spontaneous EPSCs was greater than in wild-type littermate controls. Male mice from both lines were more affected by the Disc1 mutation than were females, exhibiting increases in the ratio of excitatory to inhibitory events. Changes in spontaneous IPSCs were only observed in the mDisc1 model and were sex-specific, with diminished cortical GABAergic neurotransmission, a well-documented characteristic of SZ, occurring only in male mDisc1 mice. In contrast, female mDisc1 mice showed an increase in the frequency of small-amplitude sIPSCs. These findings indicate that truncations of Disc1 alter glutamatergic and GABAergic neurotransmission both commonly and differently in the models and some of the effects are sex-specific, revealing how altered Disc1 expression may contribute to behavioral disruptions and cognitive deficits of SZ.
Collapse
Affiliation(s)
- Sandra M. Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles
| | - Elizabeth A. Wang
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles
| | - J. David Jentsch
- Department of Psychology, Brain Research Institute, University of California Los Angeles
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Departments of Neurology, Neuroscience and Pharmacology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mikhail V. Pletnikov
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael S. Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles
| |
Collapse
|
42
|
The neurobiology of chromatin-associated mechanisms in the context of psychosisand mood spectrum disorders. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
43
|
McIntosh AM, Simen AA, Evans KL, Hall J, Macintyre DJ, Blackwood D, Morris AD, Smith BH, Dominiczak A, Porteous D, Deary HIJ, Thomson PA. Genetic variation in Hyperpolarization-activated cyclic nucleotide-gated channels and its relationship with neuroticism, cognition and risk of depression. Front Genet 2012; 3:116. [PMID: 22783272 PMCID: PMC3387669 DOI: 10.3389/fgene.2012.00116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 06/05/2012] [Indexed: 11/28/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are encoded by four genes (HCN1–4) and, through activation by cyclic AMP (cAMP), represent a point of convergence for several psychosis risk genes. On the basis of positive preliminary data, we sought to test whether genetic variation in HCN1–4 conferred risk of depression or cognitive impairment in the Generation Scotland: Scottish Family Health Study. HCN1, HCN2, HCN3, and HCN4 were genotyped for 43 haplotype-tagging SNPs and tested for association with DSM-IV depression, neuroticism, and a battery of cognitive tests assessing cognitive ability, memory, verbal fluency, and psychomotor performance. No association was found between any HCN channel gene SNP and risk of depression, neuroticism, or on any cognitive measure. The current study does not support a genetic role for HCN channels in conferring risk of depression or cognitive impairment in individuals from the Scottish population.
Collapse
Affiliation(s)
- Andrew M McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Guilarte TR, Opler M, Pletnikov M. Is lead exposure in early life an environmental risk factor for Schizophrenia? Neurobiological connections and testable hypotheses. Neurotoxicology 2012; 33:560-74. [PMID: 22178136 PMCID: PMC3647679 DOI: 10.1016/j.neuro.2011.11.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a devastating neuropsychiatric disorder of unknown etiology. There is general agreement in the scientific community that schizophrenia is a disorder of neurodevelopmental origin in which both genes and environmental factors come together to produce a schizophrenia phenotype later in life. The challenging questions have been which genes and what environmental factors? Although there is evidence that different chromosome loci and several genes impart susceptibility for schizophrenia; and epidemiological studies point to broad aspects of the environment, only recently there has been an interest in studying gene × environment interactions. Recent evidence of a potential association between prenatal lead (Pb(2+)) exposure and schizophrenia precipitated the search for plausible neurobiological connections. The most promising connection is that in schizophrenia and in developmental Pb(2+) exposure there is strong evidence for hypoactivity of the N-methyl-d-aspartate (NMDA) subtype of excitatory amino acid receptors as an underlying neurobiological mechanism in both conditions. A hypofunction of the NMDA receptor (NMDAR) complex during critical periods of development may alter neurobiological processes that are essential for brain growth and wiring, synaptic plasticity and cognitive and behavioral outcomes associated with schizophrenia. We also describe on-going proof of concept gene-environment interaction studies of early life Pb(2+) exposure in mice expressing the human mutant form of the disrupted in schizophrenia 1 (DISC-1) gene, a gene that is strongly associated with schizophrenia and allied mental disorders.
Collapse
Affiliation(s)
- Tomás R Guilarte
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, United States.
| | | | | |
Collapse
|
45
|
Whalley HC, Papmeyer M, Sprooten E, Lawrie SM, Sussmann JE, McIntosh AM. Review of functional magnetic resonance imaging studies comparing bipolar disorder and schizophrenia. Bipolar Disord 2012; 14:411-31. [PMID: 22631622 DOI: 10.1111/j.1399-5618.2012.01016.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Although bipolar disorder (BD) and schizophrenia (SCZ) have a number of clinical features and certain susceptibility genes in common, they are considered separate disorders, and it is unclear which aspects of pathophysiology are specific to each condition. Here, we examine the functional magnetic resonance imaging (fMRI) literature to determine the evidence for diagnosis-specific patterns of brain activation in the two patient groups. METHOD A systematic search was performed to identify fMRI studies directly comparing BD and SCZ to examine evidence for diagnosis-specific activation patterns. Studies were categorized into (i) those investigating emotion, reward, or memory, (ii) those describing executive function or language tasks, and (iii) those looking at the resting state or default mode networks. Studies reporting estimates of sensitivity and specificity of classification are also summarized, followed by studies reporting associations with symptom severity measures. RESULTS In total, 21 studies were identified including patients (n = 729) and healthy subjects (n = 465). Relative over-activation in the medial temporal lobe and associated structures was found in BD versus SCZ in tasks involving emotion or memory. Evidence of differences between the disorders in prefrontal regions was less consistent. Accuracy values for assignment of diagnosis were generally lower in BD than in SCZ. Few studies reported significant symptom associations; however, these generally implicated limbic regions in association with manic symptoms. CONCLUSIONS Although there are a limited number of studies and a cautious approach is warranted, activation differences were found in the medial temporal lobe and associated limbic regions, suggesting the presence of differences in the neurobiological substrates of SCZ and BD. Future studies examining symptom dimensions, risk-associated genes, and the effects of medication will aid clarification of the mechanisms behind these differences.
Collapse
Affiliation(s)
- Heather C Whalley
- Division of Psychiatry, School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Whalley HC, Sussmann JE, Johnstone M, Romaniuk L, Redpath H, Chakirova G, Mukherjee P, Hall J, Johnstone EC, Lawrie SM, McIntosh AM. Effects of a mis-sense DISC1 variant on brain activation in two cohorts at high risk of bipolar disorder or schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:343-53. [PMID: 22337479 DOI: 10.1002/ajmg.b.32035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/24/2012] [Indexed: 12/11/2022]
Abstract
Bipolar disorder and schizophrenia share a number of clinical features and genetic risk variants of small effect, suggesting overlapping pathogenic mechanisms. The effect of single genetic risk variants on brain function is likely to differ in people at high familial risk versus controls as these individuals have a higher overall genetic loading and are therefore closer to crossing a threshold of disease liability. Therefore, whilst the effects of genetic risk variants on brain function may be similar across individuals at risk of both disorders, they are hypothesized to differ compared to that seen in control subjects. We sought to examine the effects of the DISC1 Leu(607) Phe polymorphism on brain activation in young healthy individuals at familial risk of bipolar disorder (n = 84), in a group of controls (n = 78), and in a group at familial risk of schizophrenia (n = 47), performing a language task. We assessed whether genotype effects on brain activation differed according to risk status. There was a significant genotype × group interaction in a cluster centered on the left pre/postcentral gyrus, extending to the inferior frontal gyrus. The origin of this genotype × group effect originated from a significant effect of the presumed risk variant (Phe) on brain activation in the control group, which was absent in both high-risk groups. Differential effects of this polymorphism in controls compared to the two familial groups suggests a commonality of effect across individuals at high-risk of the disorders, which is likely to be dependant upon existing genetic background.
Collapse
Affiliation(s)
- Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
LeBlanc M, Kulle B, Sundet K, Agartz I, Melle I, Djurovic S, Frigessi A, Andreassen OA. Genome-wide study identifies PTPRO and WDR72 and FOXQ1-SUMO1P1 interaction associated with neurocognitive function. J Psychiatr Res 2012; 46:271-8. [PMID: 22126837 DOI: 10.1016/j.jpsychires.2011.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/01/2011] [Accepted: 11/02/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND Several aspects of neurocognitive function have high heritability, but the molecular genetic mechanisms underlying neurocognition are not known. We performed a genome-wide association study (GWAS) to identify genes associated with neurocognition. METHODS 700 Subjects (schizophrenia spectrum disorder, n=190, bipolar disorder n=157 and healthy individuals n=353) were tested with an extensive neuropsychological test battery, and genotyped using the Affymetrix Genome-Wide Human SNP Array 6.0. After quality control, linear regression analysis of each of the 24 cognitive tests on the SNP dosage was performed, including age, gender, education and disease group as covariates. Additionally, 9 SNPs trending toward genome-wide significance were considered for epistatic interactions. RESULTS Four SNPs and 2 independent association signals achieving genome-wide significance were identified. Three intronic SNPs in PTPRO were associated with learning and memory (CVLT-II LDFR) (rs17222089, p=1.55×10(-8); rs11056571, p=1.68×10(-8); and rs2300290, p=1.09×10(-8)). rs719714 downstream of WDR72 was associated with executive functioning (CW-3: Inhibition, D-KEFS) (p=4.32×10(-8)). A highly significant epistatic interaction was found between rs9378605 upstream of FOXQ1 and rs11699311 downstream of SUMO1P1 for the Grooved Pegboard test (p=7.6×10(-14)). CONCLUSIONS We identified four novel loci associated with neurocognitive function and one novel epistatic interaction. The findings should be replicated in independent samples, but indicate a role of PTPRO in learning and memory, WDR72 with executive functioning, and an interaction between FOXQ1 and SUMO1P1 for psychomotor speed.
Collapse
Affiliation(s)
- Marissa LeBlanc
- Epi-Gen, Institute of Clinical Medicine, Akershus University Hospital, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Powell SB, Weber M, Geyer MA. Genetic models of sensorimotor gating: relevance to neuropsychiatric disorders. Curr Top Behav Neurosci 2012; 12:251-318. [PMID: 22367921 PMCID: PMC3357439 DOI: 10.1007/7854_2011_195] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sensorimotor gating, or the ability of a sensory event to suppress a motor response, can be measured operationally via prepulse inhibition (PPI) of the startle response. PPI is deficient in schizophrenia patients as well as other neuropsychiatric disorders, can be measured across species, and has been used widely as a translational tool in preclinical neuropharmacological and genetic research. First developed to assess drug effects in pharmacological and developmental models, PPI has become one of the standard behavioral measures in genetic models of schizophrenia and other neuropsychiatric disorders that exhibit PPI deficits. In this chapter we review the literature on genetic models of sensorimotor gating and discuss the utility of PPI as a tool in phenotyping mutant mouse models. We highlight the approaches to genetic mouse models of neuropsychiatric disease, discuss some of the important caveats to these approaches, and provide a comprehensive table covering the more recent genetic models that have evaluated PPI.
Collapse
Affiliation(s)
- Susan B. Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Martin Weber
- Department of Neuroscience, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Mark A. Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
50
|
Claes S, Tang YL, Gillespie CF, Cubells JF. Human genetics of schizophrenia. HANDBOOK OF CLINICAL NEUROLOGY 2012; 106:37-52. [DOI: 10.1016/b978-0-444-52002-9.00003-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|