1
|
Nusslock R, Mittal VA, Alloy LB. Reward Processing in Mood Disorders and Schizophrenia: A Neurodevelopmental Framework. Annu Rev Clin Psychol 2025; 21:557-584. [PMID: 40067956 DOI: 10.1146/annurev-clinpsy-080822-041621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Major depressive disorder (MDD), bipolar disorder, and schizophrenia involve disruptions in processing rewarding stimuli. In this review, we propose that distinct mechanistic pathways underlie these disruptions in mood disorders versus schizophrenia, and we highlight the importance of understanding these differences for developing personalized treatments. We summarize evidence suggesting that reward processing abnormalities in mood disorders are driven by dysregulated motivational systems; MDD is characterized by blunted responses to reward cues, and bipolar disorder is characterized by heightened responses. In contrast, we argue that reward processing disruptions in schizophrenia do not reflect abnormalities in motivation or hedonic experience; rather, they reflect impairments in the cognitive representation of past and future rewards as well as misdirected attention to irrelevant stimuli. To integrate these findings, we present a neurodevelopmental framework for the onset of mood and psychotic disorders and explore how disruptions in normative brain development contribute to their pathophysiology, timing, and onset. Additionally, we move beyond viewing these conditions as homogeneous disorders and discuss how reward processing profiles may align with specific symptom dimensions.
Collapse
Affiliation(s)
- Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, Illinois, USA;
- Institute for Policy Research, Northwestern University, Evanston, Illinois, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, Illinois, USA;
| | - Lauren B Alloy
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Harms MP, Cho KIK, Anticevic A, Bolo NR, Bouix S, Campbell D, Cannon TD, Cecchi G, Goncalves M, Haidar A, Hughes DE, Izyurov I, John O, Kapur T, Kim N, Kotler E, Kubicki M, Kuperman JM, Laulette K, Lindberg U, Markiewicz C, Ning L, Poldrack RA, Rathi Y, Romo PA, Tamayo Z, Wannan C, Wickham A, Yassin W, Zhou JH, Addington J, Alameda L, Arango C, Breitborde NJK, Broome MR, Cadenhead KS, Calkins ME, Chen EYH, Choi J, Conus P, Corcoran CM, Cornblatt BA, Diaz-Caneja CM, Ellman LM, Fusar-Poli P, Gaspar PA, Gerber C, Glenthøj LB, Horton LE, Hui CLM, Kambeitz J, Kambeitz-Ilankovic L, Keshavan MS, Kim SW, Koutsouleris N, Kwon JS, Langbein K, Mamah D, Mathalon DH, Mittal VA, Nordentoft M, Pearlson GD, Perez J, Perkins DO, Powers AR, Rogers J, Sabb FW, Schiffman J, Shah JL, Silverstein SM, Smesny S, Stone WS, Strauss GP, Thompson JL, Upthegrove R, Verma SK, Wang J, Wolf DH, Kahn RS, Kane JM, McGorry PD, Nelson B, Woods SW, Shenton ME, Wood SJ, Bearden CE, Pasternak O. The MR neuroimaging protocol for the Accelerating Medicines Partnership® Schizophrenia Program. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:52. [PMID: 40175382 PMCID: PMC11965426 DOI: 10.1038/s41537-025-00581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/24/2025] [Indexed: 04/04/2025]
Abstract
Neuroimaging with MRI has been a frequent component of studies of individuals at clinical high risk (CHR) for developing psychosis, with goals of understanding potential brain regions and systems impacted in the CHR state and identifying prognostic or predictive biomarkers that can enhance our ability to forecast clinical outcomes. To date, most studies involving MRI in CHR are likely not sufficiently powered to generate robust and generalizable neuroimaging results. Here, we describe the prospective, advanced, and modern neuroimaging protocol that was implemented in a complex multi-site, multi-vendor environment, as part of the large-scale Accelerating Medicines Partnership® Schizophrenia Program (AMP® SCZ), including the rationale for various choices. This protocol includes T1- and T2-weighted structural scans, resting-state fMRI, and diffusion-weighted imaging collected at two time points, approximately 2 months apart. We also present preliminary variance component analyses of several measures, such as signal- and contrast-to-noise ratio (SNR/CNR) and spatial smoothness, to provide quantitative data on the relative percentages of participant, site, and platform (i.e., scanner model) variance. Site-related variance is generally small (typically <10%). For the SNR/CNR measures from the structural and fMRI scans, participant variance is the largest component (as desired; 40-76%). However, for SNR/CNR in the diffusion scans, there is substantial platform-related variance (>55%) due to differences in the diffusion imaging hardware capabilities of the different scanners. Also, spatial smoothness generally has a large platform-related variance due to inherent, difficult to control, differences between vendors in their acquisitions and reconstructions. These results illustrate some of the factors that will need to be considered in analyses of the AMP SCZ neuroimaging data, which will be the largest CHR cohort to date.Watch Dr. Harms discuss this article at https://vimeo.com/1059777228?share=copy#t=0 .
Collapse
Affiliation(s)
- Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| | - Kang-Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nicolas R Bolo
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Department of Software Engineering and Information Technology, École de technologie supérieure, Montréal, QC, Canada
| | - Dylan Campbell
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Guillermo Cecchi
- T.J. Watson Research Laboratory, IBM Research, Yorktown Heights, NY, USA
| | | | - Anastasia Haidar
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dylan E Hughes
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Igor Izyurov
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Omar John
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tina Kapur
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholas Kim
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elana Kotler
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua M Kuperman
- Department of Radiology, University of California, San Diego, CA, USA
| | - Kristen Laulette
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Ulrich Lindberg
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | | | - Lipeng Ning
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul A Romo
- Seaman Family MR Research Centre, Calgary, AB, Canada
| | - Zailyn Tamayo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | - Alana Wickham
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Walid Yassin
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Juan Helen Zhou
- Centre for Sleep and Cognition and Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Luis Alameda
- General Psychiatry Service, Treatment and Early Intervention in Psychosis Program, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Instituto de Salud Carlos III, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Nicholas J K Breitborde
- Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Psychology, Ohio State University, Columbus, Ohio, USA
| | - Matthew R Broome
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- Birmingham Womens and Childrens NHS Foundation Trust, Birmingham, UK
| | | | - Monica E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Yu Hai Chen
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Institute of Mental Health, Singapore, Singapore
| | - Jimmy Choi
- Olin Neuropsychiatry Research Center, Hartford HealthCare Behavioral Health Network, Hartford, CT, USA
| | - Philippe Conus
- General Psychiatry Service, Treatment and Early Intervention in Psychosis Program, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara A Cornblatt
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Institute of Behavioral Science, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Covadonga M Diaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Instituto de Salud Carlos III, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Lauren M Ellman
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Pablo A Gaspar
- Department of Psychiatry, University of Chile, Santiago, Chile
| | - Carla Gerber
- Prevention Science Institute, University of Oregon, Eugene, OR, USA
- Oregon Research Institute, Springfield, OR, USA
| | | | - Leslie E Horton
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christy Lai Ming Hui
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Joseph Kambeitz
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lana Kambeitz-Ilankovic
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Nikolaos Koutsouleris
- Department of Psychosis Studies, King's College London, London, UK
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Kerstin Langbein
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Daniel Mamah
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Mental Health Service, Veterans Affairs San Francisco Health Care System, San Francisco, CA, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Godfrey D Pearlson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Olin Neuropsychiatry Research Center, Hartford HealthCare Behavioral Health Network, Hartford, CT, USA
| | - Jesus Perez
- Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- Institute of Biomedical Research, Department of Medicine, Universidad de Salamanca, Salamanca, Spain
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Albert R Powers
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Jack Rogers
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Fred W Sabb
- Prevention Science Institute, University of Oregon, Eugene, OR, USA
| | - Jason Schiffman
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Jai L Shah
- Douglas Research Centre, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - William S Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Judy L Thompson
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Rachel Upthegrove
- Department of Psychology, Ohio State University, Columbus, Ohio, USA
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Swapna K Verma
- Institute of Mental Health, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Daniel H Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rene S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Institute of Behavioral Science, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Patrick D McGorry
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Barnaby Nelson
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Scott W Woods
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen J Wood
- Orygen, Parkville, Victoria, Australia
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Carrie E Bearden
- Department of Psychology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Yunzhi P, Mingjun Z, Yuqing C, Lin H, Weiqing H, Wenjian T, Danqing H, Jun Y, Yixing C, Xudong C. Spatial patterns of individual morphological deformation in schizophrenia: Putative cortical compensatory of unaffected sibling. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111329. [PMID: 40090456 DOI: 10.1016/j.pnpbp.2025.111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Neuroimaging advancements have revealed morphological deformation across various indicators, illuminating the neuropathological origins of schizophrenia. However, consolidating the findings across indicators and assessing regional global deformation at individual-level poses a significant challenge. METHODS We propose individual morphological deformation index (IMDI) as potential biomarker for schizophrenia leveraging a distance algorithm that incorporates three key indicators (cortical thickness, gyrification, and volume), and applied it for 199 schizophrenia patients, 218 healthy controls, and 47 unaffected siblings. Additionally, we studied the relationships between polygenic risks, symptomology, cognition, social functioning and regional IMDI. RESULTS Our findings reveal significantly higher IMDI in specific brain regions (bilateral pars opercularis, lateral orbitofrontal, left superior parietal, right pars orbitalis, and superior temporal) in patients, demonstrating two distinct spatial patterns linked to either isolated indicator reduction or concurrent declines across multiple indicators. Notably, unaffected siblings exhibited higher IMDI than controls, primarily due to cortical volume expansion in the right pars opercularis and superior temporal regions. Patients with higher IMDI had more severe positive symptoms, impaired cognition, reduced social functioning and selfcare ability. Participants with higher polygenic scores showed higher IMDI specifically in left caudal middle frontal regions. CONCLUSIONS The proposed IMDI biomarker offers an objective, interpretable way to quantify global regional deformation and integrate disparate neuroimaging indicators. Our results indicate that schizophrenia-related cortical deformations encompass sensorimotor, attention, default mode, and frontoparietal networks, exhibiting at least two spatial patterns. Moreover, siblings may exhibit compensation in cortical volume. These insights offer a novel perspective on the neuroanatomical underpinnings of schizophrenia.
Collapse
Affiliation(s)
- Pan Yunzhi
- Department of Psychiatry, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhong Mingjun
- Department of Psychiatry, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chen Yuqing
- Hunan College of Foreign Studies, Changsha, Hunan, China
| | - Han Lin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huang Weiqing
- Department of Psychiatry, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tan Wenjian
- Department of Psychiatry, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huang Danqing
- Department of Psychiatry, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yang Jun
- Department of Psychiatry, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cheng Yixing
- Department of Psychiatry, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chen Xudong
- Department of Psychiatry, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
He T, Zhang M, Qin J, Wang Y, Li S, Du C, Jiao J, Ji F. Endothelial PD-1 Regulates Vascular Homeostasis and Oligodendrogenesis during Brain Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417410. [PMID: 40013943 PMCID: PMC12021089 DOI: 10.1002/advs.202417410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Appropriate vascular and neural development is essential for central nervous system (CNS). Although programmed cell death receptor 1 (PD-1) mediates neurogenesis, its role in cerebrovascular development remains poorly understood. Here, a correlation between cerebral vessels and oligodendrocyte precursor cells (OPCs) is revealed during brain development. The ablation of endothelial PD-1 triggers cortical hypervascularization through excessive angiogenic sprouting, concomitantly driving OPC differentiation. These alterations disrupt blood brain barrier (BBB) maturation, induce dysmyelination, and ultimately result in abnormal behavior in mice. Mechanistically, the loss of endothelial PD-1 suppresses the activity of the Wnt/β-catenin signaling pathway, thereby disrupting normal angiogenesis. Concurrently, it activates the MEK1/2-ERK1/2-GLI1 pathway, leading to increased GREMLIN1 (GREM1) expression. Elevated GREM1 secretion inhibits the BMP/SMAD1/5/SMAD4 signaling cascade in OPCs, which inhibits oligodendrogenesis and myelination. These findings indicate the importance of endothelial cell-intrinsic PD-1 in regulating the oligovascular niche, and suggest potential therapeutic implications for neurological disorders associated with disrupted vascular development.
Collapse
Affiliation(s)
- Tingting He
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100190China
| | - Mengtian Zhang
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jie Qin
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yanyan Wang
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Sihan Li
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chaoyi Du
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jianwei Jiao
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Fen Ji
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
5
|
van der Heijden H, Hamoda HM, Ray A, Goldman M, Golden M, Graber K, Duffy FH, D'Angelo E, Gagoski B, Yekedüz MK, Petty CR, Upadhyay J, Gonzalez-Heydrich J. Reduced Cerebellar Volumes Associate with P300 Amplitude Attenuation in Children with Clinical High Risk for Psychosis and Early Onset Psychosis. CEREBELLUM (LONDON, ENGLAND) 2025; 24:69. [PMID: 40117089 DOI: 10.1007/s12311-025-01822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Patients with psychotic illnesses, including early onset psychosis (EOP), often experience cognitive impairment. The cerebellum is critically involved in neurocognitive processes, yet possible regional alterations in the cerebellum and their associations with behavioral parameters remain largely unexplored in EOP. In this preliminary study, we aimed to investigate structural morphological properties of the cerebellum as well as the supratentorial brain, and how morphological changes in the central nervous system relate to neurocognitive performance in children with EOP and clinical high-risk for psychosis (CHR). We performed whole-brain structural magnetic resonance imaging (MRI) and voxel-based morphological analyses in children with EOP (N = 15), children with CHR (N = 11), and healthy controls (Con, N = 13). An auditory event-related potential (ERP) task to elicit a P300 response was also completed by a subset of children (N = 29) as a measure of neurocognitive functioning. Linear regression analyses were performed to explore relationships between cerebellar volume, cortical thickness, and P300 amplitudes. Volumetric reductions (Con > CHR > EOP) in bilateral Crus I, Crus II, lobule VI and VIIIa, left VIIIb, and right lobules V and IX of the cerebellum were observed (p < 0.05). This downward trend across study cohorts was also evident for rostral middle frontal cortical (RMFC) thickness, and for centroparietal P300 amplitudes. Significant positive correlations among P300 amplitudes and cerebellar volumes were observed (p < 0.05). Significant correlations between P300 amplitudes and RMFC thickness were not present. Robust morphological disruptions in cerebellar subdivisions and frontal subdivisions were quantified in children with EOP. Structural abnormalities in these regions, particularly in the cerebellum, may signify broader brain network disruptions, potentially contributing to neurocognitive dysfunction in EOP.
Collapse
Affiliation(s)
- Hanne van der Heijden
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hesham M Hamoda
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aliza Ray
- Biostatistics and Research Design Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Goldman
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maya Golden
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelsey Graber
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frank H Duffy
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Eugene D'Angelo
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Borjan Gagoski
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| | - Merve Koç Yekedüz
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Carter R Petty
- Biostatistics and Research Design Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaymin Upadhyay
- Biostatistics and Research Design Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Joseph Gonzalez-Heydrich
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Early Psychosis Investigation Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Gao W, Mu Q, Cui D, Zhu C, Jiao Q, Su L, Lu S, Yang R. Alterations of subcortical structural volume in pediatric bipolar disorder patients with and without psychotic symptoms. Psychiatry Res Neuroimaging 2025; 347:111948. [PMID: 39798502 DOI: 10.1016/j.pscychresns.2025.111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Pediatric bipolar disorder (PBD) with psychotic symptoms may predict more severe impairment in social functioning, but the underlying biological mechanisms remain unclear. The aim of this study was to investigate alterations in subcortical structural volume in PBD with and without psychotic symptoms. METHODS We recruited 24 psychotic PBD (P-PBD) patients, 24 non-psychotic PBD (NP-PBD) patients, and 18 healthy controls (HCs). All participants underwent scanning with a 3.0 T Siemens Trio scanner. The FreeSurfer 7.4.0 software was employed to calculate the volume of each subcortical structure. An analysis of covariance (ANCOVA) was performed to identify brain regions with significant volume differences among the three groups, and then the inter-group comparisons were calculated. Partial correlation analyses were conducted to identify relationships between subcortical structural volumes and clinical features. Finally, receiver operating characteristic curve (ROC) analysis was employed to verify the capacity to distinguish between P-PBD and NP-PBD, P-PBD and HCs, and NP-PBD and HCs. RESULTS ANCOVA revealed significant differences in the volumes of bilateral lateral ventricles, third ventricle, left thalamus, and right pallidum among three groups. Compared with HC, the third ventricle volume was increased in both groups of PBD patients, whereas the left thalamus and right pallidum volumes were decreased, and the bilateral lateral ventricles were enlarged in P-PBD patients. In contrast, only the third ventricle showed further enlargement in the group of P-PBD patients compared with NP-PBD patients. Partial correlation analyses revealed that episode times were associated with the third ventricle volume in P-PBD patients. Furthermore, ROC analyses indicated that volume in the left lateral ventricle exhibited the greatest capacity to distinguish between the P-PBD and NP-PBD, and the third ventricle performed best in distinguishing both the P-PBD group from HCs and the NP-PBD group from HCs. The combined metrics demonstrated greater diagnostic value in two-by-two comparisons. CONCLUSION Current research suggests that PBD with psychotic symptoms may have more extensive lateral and third ventricular volume enlargement. Bilateral lateral ventricles may serve as potential neurobiomarkers to distinguish P- PBD patients from NP-PBD patients.
Collapse
Affiliation(s)
- Weijia Gao
- Department of Child Psychology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Qingli Mu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dong Cui
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shangdong, China
| | - Ce Zhu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Psychiatry, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Qing Jiao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shangdong, China
| | - Linyan Su
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Key Laboratory of Psychiatry and Mental Health of Hunan Province, National Technology Institute of Psychiatry, Changsha, Hunan, China
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China.
| | - Rongwang Yang
- Department of Child Psychology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, National Children's Regional Medical Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Li Y, Gui Q, Ren S, Liu Z, Zhang A, Liu P, Zhou X, Sun N, Yang C. Mendelian Randomization Analysis of the Possible Causal Relationships Between Neurodevelopment-Related Proteins and Bipolar Disorder. Brain Behav 2025; 15:e70442. [PMID: 40123161 PMCID: PMC11930852 DOI: 10.1002/brb3.70442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a complex mental condition of which the mechanism of onset remains unclear. Mendelian randomization (MR) allows evaluation of the causal effects of biomarkers by minimizing the risks of reverse causation and confounding factors. In this study, MR was used to assess the causal relationships between neurodevelopment-related proteins and BD, thereby providing potential evidence for the neurodevelopmental hypothesis of this mental disorder. METHODS Leveraging data from large-scale genome-wide association studies (GWASs), the associations between six neurodevelopment-related proteins and BD were analyzed using five MR approaches; namely, inverse-variance weighted, weighted median, MR-Egger, simple mode, and weighted mode methods. The neurodevelopment-related proteins were selected in the study with 5368 European descents. GWAS of BD come from the Psychiatric Genomics Consortium (NCase = 41,917, NControl = 371,549). RESULTS The analyses identified robust causal relationships between BD and the proteins inter-alpha-trypsin inhibitor heavy chain (ITIH)5 (OR = 1.08, 95% CI = 1.00-1.17, p = 0.04) and neurofascin (NFASC) (OR = 0.96, 95% CI = 0.92-1.00, p = 0.042). Initial findings for ITIH1 and ITIH3 were deemed unreliable due to pleiotropy (ITIH1: MR-Egger intercept p = 0.025) or heterogeneity (ITIH3: Cochran's Q p = 0.001). Furthermore, the MR analyses failed to yield evidence supporting a causal effect of liability to BD on neurodevelopment-related proteins. CONCLUSION The MR analysis indicated potential causal relationships between two neurodevelopment-related proteins (NFASC and ITIH5) and BD. Further studies are required to validate these results and elucidate the specific functions of these proteins in the development of this mental disorder.
Collapse
Affiliation(s)
- Yanyan Li
- Shanxi Medical UniversityTaiyuanChina
| | | | | | - Zhifen Liu
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Aixia Zhang
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Penghong Liu
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Xueping Zhou
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Ning Sun
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Chunxia Yang
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
8
|
Zhou Z, Jones K, Ivleva EI, Colon-Perez L. Macro- and Microstructural Alterations in the Midbrain in Early Psychosis Associates with Clinical Symptom Scores. eNeuro 2025; 12:ENEURO.0361-24.2025. [PMID: 40032532 PMCID: PMC11927052 DOI: 10.1523/eneuro.0361-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
Early psychosis (EP) is a critical period for psychotic disorders during which the brain undergoes rapid and significant functional and structural changes ( Shinn et al., 2017). The Human Connectome Project (HCP) is a global effort to map the human brain's connectivity in health and disease. Here we focus on HCP-EP subjects (i.e., those within 5 years of the initial psychotic episode) to determine macro- and microstructural alterations in EP (HCP-EP sample, n = 179: EP, n = 123, controls, n = 56) and their association with clinical outcomes (i.e., symptoms severity) in HCP-EP. We carried out analyses of deformation-based morphometry (DBM), scalar indices from the diffusion tensor imaging (DTI), and tract-based spatial statistics (TBSS). Lastly, we conducted correlation analyses focused on the midbrain (DBM and DTI) to examine associations between its structure and clinical symptoms. Our results show that the midbrain displays robust alteration in its structure (DBM and DTI) in the voxel-based analysis. Complimentary alterations were also observed for the hippocampus and putamen. A seed-based analysis centered around the midbrain confirms the voxel-based analysis of DBM and DTI. TBSS displays structural differences within the midbrain and complementary alterations in the corticospinal tract and cingulum. Correlations between the midbrain structures and behavior showed that the quantified features correlate with cognition and clinical scores. Our findings contribute to understanding the midbrain-focused circuitry involvement in EP and provide a path for future investigations to inform specific brain-based biomarkers of EP.
Collapse
Affiliation(s)
- Zicong Zhou
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Kylie Jones
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Elena I Ivleva
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Luis Colon-Perez
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
9
|
Karcher NR, Dong F, Johnson EC, Paul SE, Kilciksiz CM, Oh H, Schiffman J, Agrawal A, Bogdan R, Jackson JJ, Barch DM. Longitudinal Trajectories of Cognition and Neural Metrics as Predictors of Persistent Distressing Psychotic-Like Experiences Across Middle Childhood and Early Adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633817. [PMID: 39896525 PMCID: PMC11785103 DOI: 10.1101/2025.01.20.633817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Objectives Psychotic-like experiences (PLEs) may arise from genetic and environmental risk leading to worsening cognitive and neural metrics over time, which in turn lead to worsening PLEs. Persistence and distress are factors that distinguish more clinically significant PLEs. Analyses used three waves of unique longitudinal Adolescent Brain Cognitive Development Study data (ages 9-13) to test whether changes in cognition and structural neural metrics attenuate associations between genetic and environmental risk with persistent distressing PLEs. Methods Multigroup univariate latent growth models examined three waves of cognitive metrics and global structural neural metrics separately for three PLE groups: persistent distressing PLEs (n=356), transient distressing PLEs (n=408), and low-level PLEs (n=7901). Models then examined whether changes in cognitive and structural neural metrics over time attenuated associations between genetic liability (i.e., schizophrenia polygenic risk scores/family history) or environmental risk scores (e.g., poverty) and PLE groups. Results Persistent distressing PLEs showed greater decreases (i.e., more negative slopes) of cognition and neural metrics over time compared to those in low-level PLE groups. Associations between environmental risk and persistent distressing PLEs were attenuated when accounting for lowered scores over time on cognitive (e.g., picture vocabulary) and to a lesser extent neural (e.g., cortical thickness, volume) metrics. Conclusions Analyses provide novel evidence for extant theories that worsening cognition and global structural metrics may partially account for associations between environmental risk with persistent distressing PLEs.
Collapse
|
10
|
Hamilton HK, Roach BJ, Bachman PM, Belger A, Carrión RE, Duncan E, Johannesen JK, Light GA, Niznikiewicz MA, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, Perkins DO, Tsuang MT, Walker EF, Woods SW, Cannon TD, Mathalon DH. Mismatch Negativity as an Index of Auditory Short-Term Plasticity: Associations with Cortisol, Inflammation, and Gray Matter Volume in Youth at Clinical High Risk for Psychosis. Clin EEG Neurosci 2025; 56:46-59. [PMID: 39552576 DOI: 10.1177/15500594241294035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mismatch negativity (MMN) event-related potential (ERP) component reduction, indexing N-methyl-D-aspartate receptor (NMDAR)-dependent auditory echoic memory and short-term plasticity, is a well-established biomarker of schizophrenia that is sensitive to psychosis risk among individuals at clinical high-risk (CHR-P). Based on the NMDAR-hypofunction model of schizophrenia, NMDAR-dependent plasticity is predicted to contribute to aberrant neurodevelopmental processes involved in the pathogenesis of schizophrenia during late adolescence or young adulthood, including gray matter loss. Moreover, stress and inflammation disrupt plasticity. Therefore, using data collected during the 8-center North American Prodrome Longitudinal Study (NAPLS-2), we explored relationships between MMN amplitudes and salivary cortisol, gray matter volumes, and inflammatory cytokines. Participants included 303 CHR-P individuals with baseline electroencephalography (EEG) data recorded during an MMN paradigm as well as structural magnetic resonance imaging (MRI) and salivary cortisol, of which a subsample (n = 57) also completed blood draws. More deficient MMN amplitudes were associated with greater salivary cortisol and pro-inflammatory cytokine levels in future CHR-Converters, but not among those who did not convert to psychosis within the next two years. More deficient MMN amplitude was also associated with smaller total gray matter volume across participants regardless of future clinical outcomes, and with subcortical gray matter volumes among future CHR-Converters only. These findings are consistent with the theory that deficient NMDAR-dependent plasticity results in an overabundance of weak synapses that are subject to over-pruning during psychosis onset, contributing to gray matter loss. Further, MMN plasticity mechanisms may interact with stress, cortisol, and neuroinflammatory processes, representing a proximal influence of psychosis.
Collapse
Affiliation(s)
- Holly K Hamilton
- Mental Health Service, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Brian J Roach
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Peter M Bachman
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ricardo E Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY, USA
| | - Erica Duncan
- Mental Health Service, Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason K Johannesen
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Mental Health Service, Veterans Affairs San Diego Health Care System, La Jolla, CA, USA
| | - Margaret A Niznikiewicz
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
- Mental Health Service, Veterans Affairs Boston Health Care System, Brockton, MA, USA
| | - Jean Addington
- Hotchkiss Brain Institute Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Barbara A Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY, USA
- Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Elaine F Walker
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, School of Medicine, New Haven, CT, USA
| | - Daniel H Mathalon
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, CA, USA
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| |
Collapse
|
11
|
Berthet P, Haatveit BC, Kjelkenes R, Worker A, Kia SM, Wolfers T, Rutherford S, Alnaes D, Dinga R, Pedersen ML, Dahl A, Fernandez-Cabello S, Dazzan P, Agartz I, Nesvåg R, Ueland T, Andreassen OA, Simonsen C, Westlye LT, Melle I, Marquand A. A 10-Year Longitudinal Study of Brain Cortical Thickness in People with First-Episode Psychosis Using Normative Models. Schizophr Bull 2024; 51:95-107. [PMID: 38970378 PMCID: PMC11661960 DOI: 10.1093/schbul/sbae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
BACKGROUND Clinical forecasting models have potential to optimize treatment and improve outcomes in psychosis, but predicting long-term outcomes is challenging and long-term follow-up data are scarce. In this 10-year longitudinal study, we aimed to characterize the temporal evolution of cortical correlates of psychosis and their associations with symptoms. DESIGN Structural magnetic resonance imaging (MRI) from people with first-episode psychosis and controls (n = 79 and 218) were obtained at enrollment, after 12 months (n = 67 and 197), and 10 years (n = 23 and 77), within the Thematically Organized Psychosis (TOP) study. Normative models for cortical thickness estimated on public MRI datasets (n = 42 983) were applied to TOP data to obtain deviation scores for each region and timepoint. Positive and Negative Syndrome Scale (PANSS) scores were acquired at each timepoint along with registry data. Linear mixed effects models assessed effects of diagnosis, time, and their interactions on cortical deviations plus associations with symptoms. RESULTS LMEs revealed conditional main effects of diagnosis and time × diagnosis interactions in a distributed cortical network, where negative deviations in patients attenuate over time. In patients, symptoms also attenuate over time. LMEs revealed effects of anterior cingulate on PANSS total, and insular and orbitofrontal regions on PANSS negative scores. CONCLUSIONS This long-term longitudinal study revealed a distributed pattern of cortical differences which attenuated over time together with a reduction in symptoms. These findings are not in line with a simple neurodegenerative account of schizophrenia, and deviations from normative models offer a promising avenue to develop biomarkers to track clinical trajectories over time.
Collapse
Affiliation(s)
- Pierre Berthet
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Beathe C Haatveit
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Rikka Kjelkenes
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Amanda Worker
- Department of Psychosis Studies, Institute of Psychiatry, King’s College, London, UK
| | - Seyed Mostafa Kia
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Psychiatry, Utrecht University Medical Center, Utrecht, the Netherlands
- Department Cognitive Science and Artificial Intelligence, Tilburg University, the Netherlands
| | - Thomas Wolfers
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Saige Rutherford
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Dag Alnaes
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Richard Dinga
- Department Cognitive Science and Artificial Intelligence, Tilburg University, the Netherlands
| | - Mads L Pedersen
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Andreas Dahl
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Sara Fernandez-Cabello
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, King’s College, London, UK
| | - Ingrid Agartz
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ragnar Nesvåg
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Torill Ueland
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Carmen Simonsen
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Andre Marquand
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
12
|
Walker EF, Aberizk K, Yuan E, Bilgrami Z, Ku BS, Guest RM. Developmental perspectives on the origins of psychotic disorders: The need for a transdiagnostic approach. Dev Psychopathol 2024; 36:2559-2569. [PMID: 38406831 PMCID: PMC11345878 DOI: 10.1017/s0954579424000397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Research on serious mental disorders, particularly psychosis, has revealed highly variable symptom profiles and developmental trajectories prior to illness-onset. As Dante Cicchetti pointed out decades before the term "transdiagnostic" was widely used, the pathways to psychopathology emerge in a system involving equifinality and multifinality. Like most other psychological disorders, psychosis is associated with multiple domains of risk factors, both genetic and environmental, and there are many transdiagnostic developmental pathways that can lead to psychotic syndromes. In this article, we discuss our current understanding of heterogeneity in the etiology of psychosis and its implications for approaches to conceptualizing etiology and research. We highlight the need for examining risk factors at multiple levels and to increase the emphasis on transdiagnostic developmental trajectories as a key variable associated with etiologic subtypes. This will be increasingly feasible now that large, longitudinal datasets are becoming available and researchers have access to more sophisticated analytic tools, such as machine learning, which can identify more homogenous subtypes with the ultimate goal of enhancing options for treatment and preventive intervention.
Collapse
Affiliation(s)
- Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Katrina Aberizk
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Emerald Yuan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Zarina Bilgrami
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan M Guest
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
13
|
Cao W, Li H, Luo J. Prefrontal cortical circuits in social behaviors: an overview. J Zhejiang Univ Sci B 2024; 25:941-955. [PMID: 39626878 PMCID: PMC11634449 DOI: 10.1631/jzus.b2300743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/02/2024] [Indexed: 12/13/2024]
Abstract
Social behaviors are fundamental and intricate functions in both humans and animals, governed by the interplay of social cognition and emotions. A noteworthy feature of several neuropsychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia (SCZ), is a pronounced deficit in social functioning. Despite a burgeoning body of research on social behaviors, the precise neural circuit mechanisms underpinning these phenomena remain to be elucidated. In this paper, we review the pivotal role of the prefrontal cortex (PFC) in modulating social behaviors, as well as its functional alteration in social disorders in ASD or SCZ. We posit that PFC dysfunction may represent a critical hub in the pathogenesis of psychiatric disorders characterized by shared social deficits. Furthermore, we delve into the intricate connectivity of the medial PFC (mPFC) with other cortical areas and subcortical brain regions in rodents, which exerts a profound influence on social behaviors. Notably, a substantial body of evidence underscores the role of N-methyl-D-aspartate receptors (NMDARs) and the proper functioning of parvalbumin-positive interneurons within the mPFC for social regulation. Our overarching goal is to furnish a comprehensive understanding of these intricate circuits and thereby contribute to the enhancement of both research endeavors and clinical practices concerning social behavior deficits.
Collapse
Affiliation(s)
- Wei Cao
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou 311121, China
| | - Huiyi Li
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jianhong Luo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310013, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
O'Hora KP, Amir CM, Chiem E, Schleifer CH, Grigoryan V, Kushan-Wells L, Chiang JJ, Cole S, Irwin MR, Bearden CE. Differential inflammatory profiles in carriers of reciprocal 22q11.2 copy number variants. Psychoneuroendocrinology 2024; 169:107135. [PMID: 39116521 DOI: 10.1016/j.psyneuen.2024.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Genetic copy number variants (CNVs; i.e., a deletion or duplication) at the 22q11.2 locus confer increased risk of neuropsychiatric disorders and immune dysfunction. Inflammatory profiles of 22q11.2 CNV carriers can shed light on gene-immune relationships that may be related to neuropsychiatric symptoms. However, little is known about inflammation and its relationship to clinical phenotypes in 22q11.2 CNV carriers. Here, we investigate differences in peripheral inflammatory markers in 22q11.2 CNV carriers and explore their relationship with psychosis risk symptoms and sleep disturbance. METHODS Blood samples and clinical assessments were collected from 22q11.2 deletion (22qDel) carriers (n=45), 22q11.2 duplication (22qDup) carriers (n=29), and typically developing (TD) control participants (n=92). Blood plasma levels of pro-inflammatory cytokines, including interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), and anti-inflammatory cytokine interleukin-10 (IL-10) were measured using a MesoScale Discovery multiplex immunoassay. Plasma levels of C-reactive protein (CRP) were measured using Enzyme-linked Immunosorbent Assay (ELISA). Linear mixed effects models controlling for age, sex, and body mass index were used to: a) examine group differences in inflammatory markers between 22qDel, 22qDup, and TD controls, b) test differences in inflammatory markers between 22qDel carriers with psychosis risk symptoms (22qDelPS+) and those without (22qDelPS-), and c) conduct an exploratory analysis testing the effect of sleep disturbance on inflammation in 22qDel and 22qDup carriers. A false discovery rate correction was used to correct for multiple comparisons. RESULTS 22qDup carriers exhibited significantly elevated levels of IL-8 relative to TD controls (q<0.001) and marginally elevated IL-8 levels relative to 22qDel carriers (q=0.08). There were no other significant differences in inflammatory markers between the three groups (q>0.13). 22qDelPS+ exhibited increased levels of IL-8 relative to both 22qDelPS- (q=0.02) and TD controls (p=0.002). There were no relationships between sleep and inflammatory markers that survived FDR correction (q>0.14). CONCLUSION Our results suggest that CNVs at the 22q11.2 locus may have differential effects on inflammatory processes related to IL-8, a key mediator of inflammation produced by macrophages and microglia. Further, these IL-8-mediated inflammatory processes may be related to psychosis risk symptoms in 22qDel carriers. Additional research is required to understand the mechanisms contributing to these differential levels of IL-8 between 22q11.2 CNV carriers and IL-8's association with psychosis risk.
Collapse
Affiliation(s)
- Kathleen P O'Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Carolyn M Amir
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Emily Chiem
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Molecular, Cellular, and Integrative Physiology Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Charles H Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Vardui Grigoryan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | | | - Steven Cole
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Michael R Irwin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Etkin A, Mathalon DH. Bringing Imaging Biomarkers Into Clinical Reality in Psychiatry. JAMA Psychiatry 2024; 81:1142-1147. [PMID: 39230917 DOI: 10.1001/jamapsychiatry.2024.2553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Importance Advancing precision psychiatry, where treatments are based on an individual's biology rather than solely their clinical presentation, requires attention to several key attributes for any candidate biomarker. These include test-retest reliability, sensitivity to relevant neurophysiology, cost-effectiveness, and scalability. Unfortunately, these issues have not been systematically addressed by biomarker development efforts that use common neuroimaging tools like magnetic resonance imaging (MRI) and electroencephalography (EEG). Here, the critical barriers that neuroimaging methods will need to overcome to achieve clinical relevance in the near to intermediate term are examined. Observations Reliability is often overlooked, which together with sensitivity to key aspects of neurophysiology and replicated predictive utility, favors EEG-based methods. The principal barrier for EEG has been the lack of large-scale data collection among multisite psychiatric consortia. By contrast, despite its high reliability, structural MRI has not demonstrated clinical utility in psychiatry, which may be due to its limited sensitivity to psychiatry-relevant neurophysiology. Given the prevalence of structural MRIs, establishment of a compelling clinical use case remains its principal barrier. By contrast, low reliability and difficulty in standardizing collection are the principal barriers for functional MRI, along with the need for demonstration that its superior spatial resolution over EEG and ability to directly image subcortical regions in fact provide unique clinical value. Often missing, moreover, is consideration of how these various scientific issues can be balanced against practical economic realities of psychiatric health care delivery today, for which embedding economic modeling into biomarker development efforts may help direct research efforts. Conclusions and Relevance EEG seems most ripe for near- to intermediate-term clinical impact, especially considering its scalability and cost-effectiveness. Recent efforts to broaden its collection, as well as development of low-cost turnkey systems, suggest a promising pathway by which neuroimaging can impact clinical care. Continued MRI research focused on its key barriers may hold promise for longer-horizon utility.
Collapse
Affiliation(s)
- Amit Etkin
- Alto Neuroscience Inc, Los Altos, California
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- Veterans Affairs San Francisco Health Care System, San Francisco, California
| |
Collapse
|
16
|
Cho KIK, Zhang F, Penzel N, Seitz-Holland J, Tang Y, Zhang T, Xu L, Li H, Keshavan M, Whitfield-Gabrieli S, Niznikiewicz M, Stone WS, Wang J, Shenton ME, Pasternak O. Excessive interstitial free-water in cortical gray matter preceding accelerated volume changes in individuals at clinical high risk for psychosis. Mol Psychiatry 2024; 29:3623-3634. [PMID: 38830974 DOI: 10.1038/s41380-024-02597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Recent studies show that accelerated cortical gray matter (GM) volume reduction seen in anatomical MRI can help distinguish between individuals at clinical high risk (CHR) for psychosis who will develop psychosis and those who will not. This reduction is suggested to represent atypical developmental or degenerative changes accompanying an accumulation of microstructural changes, such as decreased spine density and dendritic arborization. Detecting the microstructural sources of these changes before they accumulate into volume loss is crucial. Our study aimed to detect these microstructural GM alterations using diffusion MRI (dMRI). We tested for baseline and longitudinal group differences in anatomical and dMRI data from 160 individuals at CHR and 96 healthy controls (HC) acquired in a single imaging site. Of the CHR individuals, 33 developed psychosis (CHR-P), while 127 did not (CHR-NP). Among all participants, longitudinal data was available for 45 HCs, 17 CHR-P, and 66 CHR-NP. Eight cortical lobes were examined for GM volume and GM microstructure. A novel dMRI measure, interstitial free water (iFW), was used to quantify GM microstructure by eliminating cerebrospinal fluid contribution. Additionally, we assessed whether these measures differentiated the CHR-P from the CHR-NP. In addition, for completeness, we also investigated changes in cortical thickness and in white matter (WM) microstructure. At baseline the CHR group had significantly higher iFW than HC in the prefrontal, temporal, parietal, and occipital lobes, while volume was reduced only in the temporal lobe. Neither iFW nor volume differentiated between the CHR-P and CHR-NP groups at baseline. However, in many brain areas, the CHR-P group demonstrated significantly accelerated changes (iFW increase and volume reduction) with time than the CHR-NP group. Cortical thickness provided similar results as volume, and there were no significant changes in WM microstructure. Our results demonstrate that microstructural GM changes in individuals at CHR have a wider extent than volumetric changes or microstructural WM changes, and they predate the acceleration of brain changes that occur around psychosis onset. Microstructural GM changes, as reflected by the increased iFW, are thus an early pathology at the prodromal stage of psychosis that may be useful for a better mechanistic understanding of psychosis development.
Collapse
Affiliation(s)
- Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nora Penzel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Huijun Li
- Department of Psychology, Florida A&M University, Tallahassee, FL, USA
| | - Matcheri Keshavan
- The Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, Northeastern University, Boston, MA, USA
- The McGovern Institute for Brain Research and the Poitras Center for Affective Disorders Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret Niznikiewicz
- The Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - William S Stone
- The Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Muhtaseb AW, Duan J. Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Schizophr Res 2024; 273:39-61. [PMID: 35459617 PMCID: PMC9735430 DOI: 10.1016/j.schres.2022.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Recent genome-wide association studies (GWAS) and whole-exome sequencing of neuropsychiatric disorders, especially schizophrenia, have identified a plethora of common and rare disease risk variants/genes. Translating the mounting human genetic discoveries into novel disease biology and more tailored clinical treatments is tied to our ability to causally connect genetic risk variants to molecular and cellular phenotypes. When combined with the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) nuclease-mediated genome editing system, human induced pluripotent stem cell (hiPSC)-derived neural cultures (both 2D and 3D organoids) provide a promising tractable cellular model for bridging the gap between genetic findings and disease biology. In this review, we first conceptualize the advances in understanding the disease polygenicity and convergence from the past decade of iPSC modeling of different types of genetic risk factors of neuropsychiatric disorders. We then discuss the major cell types and cellular phenotypes that are most relevant to neuropsychiatric disorders in iPSC modeling. Finally, we critically review the limitations of iPSC modeling of neuropsychiatric disorders and outline the need for implementing and developing novel methods to scale up the number of iPSC lines and disease risk variants in a systematic manner. Sufficiently scaled-up iPSC modeling and a better functional interpretation of genetic risk variants, in combination with cutting-edge CRISPR/Cas9 gene editing and single-cell multi-omics methods, will enable the field to identify the specific and convergent molecular and cellular phenotypes in precision for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abdurrahman W Muhtaseb
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, United States of America
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, United States of America.
| |
Collapse
|
18
|
Arnsten AFT, Datta D. Characterizing the Most Vulnerable Prefrontal Cortical Neurons in Schizophrenia. Am J Psychiatry 2024; 181:861-864. [PMID: 39350618 PMCID: PMC11714303 DOI: 10.1176/appi.ajp.20240731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Affiliation(s)
- Amy FT Arnsten
- Depts. Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Dibyadeep Datta
- Depts. Psychiatry, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
19
|
Chen CC, Howie J, Ebrahimi M, Teymouri K, Woo JJ, Tiwari AK, Zai CC, Kennedy JL. Analysis of the complement component C4 gene with schizophrenia subphenotypes. Schizophr Res 2024; 271:309-318. [PMID: 39084106 DOI: 10.1016/j.schres.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The complement component C4 gene has been identified as a strong marker for schizophrenia (SCZ) risk. The C4 gene has a complex genetic structure consisting of variable structural elements (C4A, C4B, C4L, and C4S) and compound structural forms (C4AL, C4BL, C4AS and C4BS). In addition, the variations in C4 structural forms may have a direct or indirect effect on the brain expression level of C4A and C4B proteins. Previous studies have associated C4AL with higher brain C4A expression and sex-dimorphism of C4 between males and females was observed. STUDY DESIGN A total of 613 patients with DSM-IV SCZ or schizoaffective disorder (SCZ-AFF) were recruited to investigate the relationship between C4 gene variants and clinical characteristics of SCZ (age of onset, symptom severity, and global assessment of functioning (GAF)). This study also explored the effect of sex on the association of C4 with SCZ. 434 patients were included in the final analyses after genetic quality control. RESULTS We observed associations between C4 and clinical characteristics of SCZ (age of onset, symptom severity, GAF) and found significant differences when males and females were examined separately. CONCLUSION Overall, our preliminary findings encourage future investigations of C4 in SCZ-related phenotypes, including antipsychotic response and side effects. The study sample was of moderate size; therefore, further studies in larger samples are needed to extend and validate these results.
Collapse
Affiliation(s)
- Cheng C Chen
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Joshua Howie
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada
| | - Mahbod Ebrahimi
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kowsar Teymouri
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Julia J Woo
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Arun K Tiwari
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
González-Peñas J, Alloza C, Brouwer R, Díaz-Caneja CM, Costas J, González-Lois N, Gallego AG, de Hoyos L, Gurriarán X, Andreu-Bernabeu Á, Romero-García R, Fañanás L, Bobes J, González-Pinto A, Crespo-Facorro B, Martorell L, Arrojo M, Vilella E, Gutiérrez-Zotes A, Perez-Rando M, Moltó MD, Buimer E, van Haren N, Cahn W, O'Donovan M, Kahn RS, Arango C, Pol HH, Janssen J, Schnack H. Accelerated Cortical Thinning in Schizophrenia Is Associated With Rare and Common Predisposing Variation to Schizophrenia and Neurodevelopmental Disorders. Biol Psychiatry 2024; 96:376-389. [PMID: 38521159 DOI: 10.1016/j.biopsych.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Schizophrenia is a highly heritable disorder characterized by increased cortical thinning throughout the life span. Studies have reported a shared genetic basis between schizophrenia and cortical thickness. However, no genes whose expression is related to abnormal cortical thinning in schizophrenia have been identified. METHODS We conducted linear mixed models to estimate the rates of accelerated cortical thinning across 68 regions from the Desikan-Killiany atlas in individuals with schizophrenia compared with healthy control participants from a large longitudinal sample (ncases = 169 and ncontrols = 298, ages 16-70 years). We studied the correlation between gene expression data from the Allen Human Brain Atlas and accelerated thinning estimates across cortical regions. Finally, we explored the functional and genetic underpinnings of the genes that contribute most to accelerated thinning. RESULTS We found a global pattern of accelerated cortical thinning in individuals with schizophrenia compared with healthy control participants. Genes underexpressed in cortical regions that exhibit this accelerated thinning were downregulated in several psychiatric disorders and were enriched for both common and rare disrupting variation for schizophrenia and neurodevelopmental disorders. In contrast, none of these enrichments were observed for baseline cross-sectional cortical thickness differences. CONCLUSIONS Our findings suggest that accelerated cortical thinning, rather than cortical thickness alone, serves as an informative phenotype for neurodevelopmental disruptions in schizophrenia. We highlight the genetic and transcriptomic correlates of this accelerated cortical thinning, emphasizing the need for future longitudinal studies to elucidate the role of genetic variation and the temporal-spatial dynamics of gene expression in brain development and aging in schizophrenia.
Collapse
Affiliation(s)
- Javier González-Peñas
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain.
| | - Clara Alloza
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain
| | - Rachel Brouwer
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Covadonga M Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Javier Costas
- Instituto de Investigación Sanitària de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde, Santiago de Compostela, Galicia, Spain
| | - Noemí González-Lois
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain
| | - Ana Guil Gallego
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain
| | - Lucía de Hoyos
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain
| | - Xaquín Gurriarán
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain
| | - Álvaro Andreu-Bernabeu
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain
| | - Rafael Romero-García
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla, HUVR/CSIC/Universidad de Sevilla/CIBERSAM, Instituto de Salud Carlos III, Sevilla, Spain; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Lourdes Fañanás
- CIBERSAM, Madrid, Spain; Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Julio Bobes
- CIBERSAM, Madrid, Spain; Faculty of Medicine and Health Sciences-Psychiatry, Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Ana González-Pinto
- CIBERSAM, Madrid, Spain; BIOARABA Health Research Institute, Organización Sanitaria Integrada Araba, University Hospital, University of the Basque Country, Vitoria, Spain
| | - Benedicto Crespo-Facorro
- CIBERSAM, Madrid, Spain; Hospital Universitario Virgen del Rocío, Department of Psychiatry, Universidad de Sevilla, Sevilla, Spain
| | - Lourdes Martorell
- CIBERSAM, Madrid, Spain; Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-Centres de Recerca de Catalunya, Universitat Rovira i Virgili, Reus, Spain
| | - Manuel Arrojo
- Instituto de Investigación Sanitària de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde, Santiago de Compostela, Galicia, Spain
| | - Elisabet Vilella
- CIBERSAM, Madrid, Spain; Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-Centres de Recerca de Catalunya, Universitat Rovira i Virgili, Reus, Spain
| | - Alfonso Gutiérrez-Zotes
- CIBERSAM, Madrid, Spain; Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-Centres de Recerca de Catalunya, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Perez-Rando
- Fundación Investigación Hospital Clínico de València, Fundación Investigación Hospital Clínico de Valencia, València, Spain; Unidad de Neurobiología, Instituto de Biotecnología y Biomedicina, Universitat de València, València, Spain
| | - María Dolores Moltó
- CIBERSAM, Madrid, Spain; Unidad de Neurobiología, Instituto de Biotecnología y Biomedicina, Universitat de València, València, Spain; Department of Genetics, Universitat de València, Campus of Burjassot, València, Spain
| | - Elizabeth Buimer
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Neeltje van Haren
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Altrecht Mental Health Institute, Altrecht Science, Utrecht, the Netherlands
| | - Michael O'Donovan
- Medical Research Council for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - René S Kahn
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Hilleke Hulshoff Pol
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain; Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hugo Schnack
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
21
|
Hua JPY, Abram SV, Loewy RL, Stuart B, Fryer SL, Vinogradov S, Mathalon DH. Brain Age Gap in Early Illness Schizophrenia and the Clinical High-Risk Syndrome: Associations With Experiential Negative Symptoms and Conversion to Psychosis. Schizophr Bull 2024; 50:1159-1170. [PMID: 38815987 PMCID: PMC11349027 DOI: 10.1093/schbul/sbae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
BACKGROUND AND HYPOTHESIS Brain development/aging is not uniform across individuals, spawning efforts to characterize brain age from a biological perspective to model the effects of disease and maladaptive life processes on the brain. The brain age gap represents the discrepancy between estimated brain biological age and chronological age (in this case, based on structural magnetic resonance imaging, MRI). Structural MRI studies report an increased brain age gap (biological age > chronological age) in schizophrenia, with a greater brain age gap related to greater negative symptom severity. Less is known regarding the nature of this gap early in schizophrenia (ESZ), if this gap represents a psychosis conversion biomarker in clinical high-risk (CHR-P) individuals, and how altered brain development and/or aging map onto specific symptom facets. STUDY DESIGN Using structural MRI, we compared the brain age gap among CHR-P (n = 51), ESZ (n = 78), and unaffected comparison participants (UCP; n = 90), and examined associations with CHR-P psychosis conversion (CHR-P converters n = 10; CHR-P non-converters; n = 23) and positive and negative symptoms. STUDY RESULTS ESZ showed a greater brain age gap relative to UCP and CHR-P (Ps < .010). CHR-P individuals who converted to psychosis showed a greater brain age gap (P = .043) relative to CHR-P non-converters. A larger brain age gap in ESZ was associated with increased experiential (P = .008), but not expressive negative symptom severity. CONCLUSIONS Consistent with schizophrenia pathophysiological models positing abnormal brain maturation, results suggest abnormal brain development is present early in psychosis. An increased brain age gap may be especially relevant to motivational and functional deficits in schizophrenia.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Medical Center, University of California, San Francisco, CA, USA
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Samantha V Abram
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Barbara Stuart
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Susanna L Fryer
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Li X, Wei W, Wang Q, Deng W, Li M, Ma X, Zeng J, Zhao L, Guo W, Hall MH, Li T. Identify Potential Causal Relationships Between Cortical Thickness, Mismatch Negativity, Neurocognition, and Psychosocial Functioning in Drug-Naïve First-Episode Psychosis Patients. Schizophr Bull 2024; 50:827-838. [PMID: 38635296 PMCID: PMC11283193 DOI: 10.1093/schbul/sbae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Cortical thickness (CT) alterations, mismatch negativity (MMN) reductions, and cognitive deficits are robust findings in first-episode psychosis (FEP). However, most studies focused on medicated patients, leaving gaps in our understanding of the interrelationships between CT, MMN, neurocognition, and psychosocial functioning in unmedicated FEP. This study aimed to employ multiple mediation analysis to investigate potential pathways among these variables in unmedicated drug-naïve FEP. METHODS We enrolled 28 drug-naïve FEP and 34 age and sex-matched healthy controls. Clinical symptoms, neurocognition, psychosocial functioning, auditory duration MMN, and T1 structural magnetic resonance imaging data were collected. We measured CT in the superior temporal gyrus (STG), a primary MMN-generating region. RESULTS We found a significant negative correlation between MMN amplitude and bilateral CT of STG (CT_STG) in FEP (left: r = -.709, P < .001; right: r = -.612, P = .008). Multiple mediation models revealed that a thinner left STG cortex affected functioning through both direct (24.66%) and indirect effects (75.34%). In contrast, the effects of the right CT_STG on functioning were mainly mediated through MMN and neurocognitive pathways. CONCLUSIONS Bilateral CT_STG showed significant association with MMN, and MMN plays a mediating role between CT and cognition. Both MMN alone and its interaction with cognition mediated the effects of structural alterations on psychosocial function. The decline in overall function in FEP may stem from decreased CT_STG, leading to subsequent MMN deficits and neurocognitive dysfunction. These findings underline the crucial role of MMN in elucidating how subtle structural alterations can impact neurocognition and psychosocial function in FEP.
Collapse
Affiliation(s)
- Xiaojing Li
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wei Wei
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Deng
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinkun Zeng
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wanjun Guo
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Tao Li
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Husain MO, Jones B, Arshad U, Ameis SH, Mirfallah G, Schifani C, Rodak T, Aiken M, Shafique M, Ahmed F, Voineskos A, Husain MI, Foussias G. A systematic review and meta-analysis of neuroimaging studies examining synaptic density in individuals with psychotic spectrum disorders. BMC Psychiatry 2024; 24:460. [PMID: 38898401 PMCID: PMC11188231 DOI: 10.1186/s12888-024-05788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/25/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Psychotic disorders have long been considered neurodevelopmental disorders where excessive synaptic pruning and cortical volume loss are central to disease pathology. We conducted a systematic review of the literature to identify neuroimaging studies specifically examining synaptic density across the psychosis spectrum. METHODS PRISMA guidelines on reporting were followed. We systematically searched MEDLINE, Embase, APA PsycINFO, Web of Science and The Cochrane Library from inception to December 8, 2023, and included all original peer-reviewed articles or completed clinical neuroimaging studies of any modality measuring synaptic density in participants with a diagnosis of psychosis spectrum disorder as well as individuals with psychosis-risk states. The NIH quality assessment tool for observational cohort and cross-sectional studies was used for the risk of bias assessment. RESULTS Five studies (k = 5) met inclusion criteria, comprising n = 128 adults (psychotic disorder; n = 61 and healthy volunteers; n = 67 and specifically measuring synaptic density via positron emission tomography (PET) imaging of the synaptic vesicle glycoprotein 2 A (SV2A). Three studies were included in our primary meta-analysis sharing the same outcome measure of SV2A binding, volume of distribution (VT). Regional SV2A VT was reduced in psychotic disorder participants in comparison to healthy volunteers, including the occipital lobe (Mean Difference (MD)= -2.17; 95% CI: -3.36 to -0.98; P < 0.001 ), temporal lobe (MD: -2.03; 95% CI: -3.19 to -0.88; P < 0.001 ), parietal lobe (MD:-1.61; 95% CI: -2.85 to -0.37; P = 0.01), anterior cingulate cortex (MD= -1.47; 95% CI: -2.45 to -0.49; P = 0.003), frontal cortex (MD: -1.16; 95% CI: -2.18 to -0.15; P = 0.02), amygdala (MD: -1.36; 95% CI: -2.20 to -0.52, p = 0.002), thalamus (MD:-1.46; 95% CI:-2.46 to -0.46, p = 0.004) and hippocampus (MD= -0.96; 95% CI: -1.59 to -0.33; P = 0.003). CONCLUSIONS Preliminary studies provide in vivo evidence for reduced synaptic density in psychotic disorders. However, replication of findings in larger samples is required prior to definitive conclusions being drawn. PROSPERO CRD42022359018.
Collapse
Affiliation(s)
- Muhammad Omair Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Brett Jones
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Usman Arshad
- Pakistan Institute of Living and Learning, Karachi, Pakistan
- Division of Psychology & Mental Health, University of Manchester, Manchester, UK
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Giselle Mirfallah
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Christin Schifani
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Terri Rodak
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Madina Aiken
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Mudassar Shafique
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Fatima Ahmed
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Aristotle Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Muhammad Ishrat Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - George Foussias
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
Weng T, Zheng Y, Xie Y, Qin W, Guo L. Diagnosing schizophrenia using deep learning: Novel interpretation approaches and multi-site validation. Brain Res 2024; 1833:148876. [PMID: 38513996 DOI: 10.1016/j.brainres.2024.148876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Schizophrenia is a profound and enduring mental disorder that imposes significant negative impacts on individuals, their families, and society at large. The development of more accurate and objective diagnostic tools for schizophrenia can be expedited through the employment of deep learning (DL), that excels at deciphering complex hierarchical non-linear patterns. However, the limited interpretability of deep learning has eroded confidence in the model and restricted its clinical utility. At the same time, if the data source is only derived from a single center, the model's generalizability is difficult to test. To enhance the model's reliability and applicability, leave-one-center-out validation with a large and diverse sample from multiple centers is crucial. In this study, we utilized Nine different global centers to train and test the 3D Resnet model's generalizability, resulting in an 82% classification performance (area under the curve) on all datasets sourced from different countries, employing a leave-one-center-out-validation approach. Per our approximation of the feature significance of each region on the atlas, we identified marked differences in the thalamus, pallidum, and inferior frontal gyrus between individuals with schizophrenia and healthy controls, lending credence to prior research findings. At the same time, in order to translate the model's output into clinically applicable insights, the SHapley Additive exPlanations (SHAP) permutation explainer method with an anatomical atlas have been refined, thereby offering precise neuroanatomical and functional interpretations of different brain regions.
Collapse
Affiliation(s)
- Tingting Weng
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Yuemei Zheng
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Shandong 100038, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Li Guo
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
25
|
Wang Y, Fan L, He Y, Yuan L, Li Z, Zheng W, Tang J, Li C, Jin K, Liu W, Chen X, Ouyang L, Ma X. Compensatory thickening of cortical thickness in early stage of schizophrenia. Cereb Cortex 2024; 34:bhae255. [PMID: 38897816 DOI: 10.1093/cercor/bhae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Brain structural abnormality has been observed in the prodromal and early stages of schizophrenia, but the mechanism behind it is not clear. In this study, to explore the association between cortical abnormalities, metabolite levels, inflammation levels and clinical symptoms of schizophrenia, 51 drug-naive first-episode schizophrenia (FES) patients, 51 ultra-high risk for psychosis (UHR), and 51 healthy controls (HC) were recruited. We estimated gray matter volume (GMV), cortical thickness (CT), concentrations of different metabolites, and inflammatory marks among four groups (UHR converted to psychosis [UHR-C], UHR unconverted to psychosis [UHR-NC], FES, HC). UHR-C group had more CT in the right lateral occipital cortex and the right medial orbito-frontal cortex (rMOF), while a significant reduction in CT of the right fusiform cortex was observed in FES group. UHR-C group had significantly higher concentration of IL-6, while IL-17 could significantly predict CT of the right fusiform and IL-4 and IL-17 were significant predictors of CT in the rMOF. To conclude, it is reasonable to speculate that the increased CT in UHR-C group is related to the inflammatory response, and may participate in some compensatory mechanism, but might become exhaustive with the progress of the disease due to potential neurotoxic effects.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Lejia Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 Bd LaSalle, Verdun, Montreal, QC H4H 1R3, Canada
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Institute of Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Medical Center for Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Wenxiao Zheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Jinsong Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Yuhua District catalpa garden road 86, Changsha 410007, Hunan, China
| | - Ke Jin
- Department of Radiology, Hunan Children's Hospital, Yuhua District catalpa garden road 86, Changsha 410007, Hunan, China
| | - Weiqing Liu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, #165 Sanlin road, Pudong New Area,Shanghai 200124, China
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science (CBS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Institute of Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Medical Center for Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| | - Xiaoqian Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- China National Technology Institute on Mental Disorders, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Institute of Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
- Hunan Medical Center for Mental Health, Furong District No. 139 Renmin Road, Changsha 410011, Hunan, China
| |
Collapse
|
26
|
Fortea A, van Eijndhoven P, Calvet-Mirabent A, Ilzarbe D, Batalla A, de la Serna E, Puig O, Castro-Fornieles J, Dolz M, Tor J, Parrilla S, Via E, Stephan-Otto C, Baeza I, Sugranyes G. Age-related change in cortical thickness in adolescents at clinical high risk for psychosis: a longitudinal study. Eur Child Adolesc Psychiatry 2024; 33:1837-1846. [PMID: 37644217 DOI: 10.1007/s00787-023-02278-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Progression to psychosis has been associated with increased cortical thinning in the frontal, temporal and parietal lobes in individuals at clinical high risk for the disorder (CHR-P). The timing and spatial extent of these changes are thought to be influenced by age. However, most evidence so far stems from adult samples. Longitudinal studies are essential to understanding the neuroanatomical changes associated to transition to psychosis during adolescence, and their relationship with age. We conducted a longitudinal, multisite study including adolescents at CHR-P and healthy controls (HC), aged 10-17 years. Structural images were acquired at baseline and at 18-month follow-up. Images were processed with the longitudinal pipeline in FreeSurfer. We used a longitudinal two-stage model to compute the regional cortical thickness (CT) change, and analyze between-group differences controlling for age, sex and scan, and corrected for multiple comparisons. Linear regression was used to study the effect of age at baseline. A total of 103 individuals (49 CHR-P and 54 HC) were included in the analysis. During follow-up, the 13 CHR-P participants who transitioned to psychosis exhibited greater CT decrease over time in the right parietal cortex compared to those who did not transition to psychosis and to HC. Age at baseline correlated with longitudinal changes in CT, with younger individuals showing greater cortical thinning in this region. The emergence of psychosis during early adolescence may have an impact on typical neuromaturational processes. This study provides new insights on the cortical changes taking place prior to illness onset.
Collapse
Affiliation(s)
- Adriana Fortea
- Psychiatry and Psychology Department, Institute Clinic of Neurosciences, Hospital Clínic of Barcelona, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica (FCRB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Barcelona, Spain
| | - Philip van Eijndhoven
- Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain Cognition and Behavior, Nijmegen, The Netherlands
| | - Angels Calvet-Mirabent
- Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), C/Rosselló 149-153, 08036, Barcelona, Spain
| | - Daniel Ilzarbe
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Barcelona, Spain
- Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), C/Rosselló 149-153, 08036, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute Clinic of Neurosciences, Hospital Clínic of Barcelona, C/Villarroel 170, 08036, Barcelona, Spain
| | - Albert Batalla
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elena de la Serna
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute Clinic of Neurosciences, Hospital Clínic of Barcelona, C/Villarroel 170, 08036, Barcelona, Spain
| | - Olga Puig
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute Clinic of Neurosciences, Hospital Clínic of Barcelona, C/Villarroel 170, 08036, Barcelona, Spain
| | - Josefina Castro-Fornieles
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Barcelona, Spain
- Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), C/Rosselló 149-153, 08036, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute Clinic of Neurosciences, Hospital Clínic of Barcelona, C/Villarroel 170, 08036, Barcelona, Spain
| | - Montserrat Dolz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Barcelona, Spain
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jordina Tor
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Sara Parrilla
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Esther Via
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Christian Stephan-Otto
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Barcelona, Spain
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Pediatric Computational Imaging Group (PeCIC), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Inmaculada Baeza
- Department of Medicine, University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), C/Rosselló 149-153, 08036, Barcelona, Spain.
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute Clinic of Neurosciences, Hospital Clínic of Barcelona, C/Villarroel 170, 08036, Barcelona, Spain.
| | - Gisela Sugranyes
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), C/Rosselló 149-153, 08036, Barcelona, Spain.
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute Clinic of Neurosciences, Hospital Clínic of Barcelona, C/Villarroel 170, 08036, Barcelona, Spain.
| |
Collapse
|
27
|
Reinen JM, Polosecki P, Castro E, Corcoran CM, Cecchi GA, Colibazzi T. Multimodal fusion of brain signals for robust prediction of psychosis transition. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:54. [PMID: 38773120 PMCID: PMC11109212 DOI: 10.1038/s41537-024-00464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/15/2024] [Indexed: 05/23/2024]
Abstract
The prospective study of youths at clinical high risk (CHR) for psychosis, including neuroimaging, can identify neural signatures predictive of psychosis outcomes using algorithms that integrate complex information. Here, to identify risk and psychosis conversion, we implemented multiple kernel learning (MKL), a multimodal machine learning approach allowing patterns from each modality to inform each other. Baseline multimodal scans (n = 74, 11 converters) included structural, resting-state functional imaging, and diffusion-weighted data. Multimodal MKL outperformed unimodal models (AUC = 0.73 vs. 0.66 in predicting conversion). Moreover, patterns learned by MKL were robust to training set variations, suggesting it can identify cross-modality redundancies and synergies to stabilize the predictive pattern. We identified many predictors consistent with the literature, including frontal cortices, cingulate, thalamus, and striatum. This highlights the advantage of methods that leverage the complex pathophysiology of psychosis.
Collapse
Affiliation(s)
- Jenna M Reinen
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.
| | | | - Eduardo Castro
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Tiziano Colibazzi
- Department of Psychiatry, The New York State Psychiatric Institute, Columbia College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
28
|
Faris P, Pischedda D, Palesi F, D’Angelo E. New clues for the role of cerebellum in schizophrenia and the associated cognitive impairment. Front Cell Neurosci 2024; 18:1386583. [PMID: 38799988 PMCID: PMC11116653 DOI: 10.3389/fncel.2024.1386583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of the cerebellum in SZ physiopathology, particularly in Cognitive Impairment Associated with SZ (CIAS). Besides its role in motor learning and control, the cerebellum is implicated in cognition and emotion. Recent research suggests that structural and functional changes in the cerebellum are linked to deficits in various cognitive domains including attention, working memory, and decision-making. Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities and connectivity with brain regions associated with cognitive processing. This review delves into the role of the cerebellum in CIAS. We initially consider the major forebrain alterations in CIAS, addressing impairments in neurotransmitter systems, synaptic plasticity, and connectivity. We then focus on recent findings showing that several mechanisms are also altered in the cerebellum and that cerebellar communication with the forebrain is impaired. This evidence implicates the cerebellum as a key component of circuits underpinning CIAS physiopathology. Further studies addressing cerebellar involvement in SZ and CIAS are warranted and might open new perspectives toward understanding the physiopathology and effective treatment of these disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Doris Pischedda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
29
|
Zhu Y, Maikusa N, Radua J, Sämann PG, Fusar-Poli P, Agartz I, Andreassen OA, Bachman P, Baeza I, Chen X, Choi S, Corcoran CM, Ebdrup BH, Fortea A, Garani RR, Glenthøj BY, Glenthøj LB, Haas SS, Hamilton HK, Hayes RA, He Y, Heekeren K, Kasai K, Katagiri N, Kim M, Kristensen TD, Kwon JS, Lawrie SM, Lebedeva I, Lee J, Loewy RL, Mathalon DH, McGuire P, Mizrahi R, Mizuno M, Møller P, Nemoto T, Nordholm D, Omelchenko MA, Raghava JM, Røssberg JI, Rössler W, Salisbury DF, Sasabayashi D, Smigielski L, Sugranyes G, Takahashi T, Tamnes CK, Tang J, Theodoridou A, Tomyshev AS, Uhlhaas PJ, Værnes TG, van Amelsvoort TAMJ, Waltz JA, Westlye LT, Zhou JH, Thompson PM, Hernaus D, Jalbrzikowski M, Koike S. Using brain structural neuroimaging measures to predict psychosis onset for individuals at clinical high-risk. Mol Psychiatry 2024; 29:1465-1477. [PMID: 38332374 PMCID: PMC11189817 DOI: 10.1038/s41380-024-02426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification, although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed psychosis later (CHR-PS+) from healthy controls (HCs) that can differentiate each other. We also evaluated whether we could distinguish CHR-PS+ individuals from those who did not develop psychosis later (CHR-PS-) and those with uncertain follow-up status (CHR-UNK). T1-weighted structural brain MRI scans from 1165 individuals at CHR (CHR-PS+, n = 144; CHR-PS-, n = 793; and CHR-UNK, n = 228), and 1029 HCs, were obtained from 21 sites. We used ComBat to harmonize measures of subcortical volume, cortical thickness and surface area data and corrected for non-linear effects of age and sex using a general additive model. CHR-PS+ (n = 120) and HC (n = 799) data from 20 sites served as a training dataset, which we used to build a classifier. The remaining samples were used external validation datasets to evaluate classifier performance (test, independent confirmatory, and independent group [CHR-PS- and CHR-UNK] datasets). The accuracy of the classifier on the training and independent confirmatory datasets was 85% and 73% respectively. Regional cortical surface area measures-including those from the right superior frontal, right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS+ from HC. CHR-PS- and CHR-UNK individuals were more likely to be classified as HC compared to CHR-PS+ (classification rate to HC: CHR-PS+, 30%; CHR-PS-, 73%; CHR-UNK, 80%). We used multisite sMRI to train a classifier to predict psychosis onset in CHR individuals, and it showed promise predicting CHR-PS+ in an independent sample. The results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be helpful to identify their prognosis. Future prospective studies are required about whether the classifier could be actually helpful in the clinical settings.
Collapse
Affiliation(s)
- Yinghan Zhu
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Instituto de Salud Carlos III, Universitat de Barcelona, Barcelona, Spain
| | | | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Peter Bachman
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Inmaculada Baeza
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Xiaogang Chen
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Mental Illness Research, Education, and Clinical Center, James J Peters VA Medical Center, New York City, NY, USA
| | - Bjørn H Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Fortea
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clinic Barcelona, Fundació Clínic Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Ranjini Rg Garani
- Douglas Research Center; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Birte Yding Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Birkedal Glenthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, University of Copenhagen Copenhagen, Copenhagen, Denmark
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Holly K Hamilton
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Rebecca A Hayes
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Ying He
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Karsten Heekeren
- Department of Psychiatry and Psychotherapy I, LVR-Hospital Cologne, Cologne, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence at The University of Tokyo Institutes for Advanced Study (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyok, Japan
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Tina D Kristensen
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow, Russian Federation
| | - Jimmy Lee
- Department of Psychosis, Institute of Mental Health, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Romina Mizrahi
- Douglas Research Center; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Paul Møller
- Department for Mental Health Research and Development, Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Drammen, Norway
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyok, Japan
| | - Dorte Nordholm
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, University of Copenhagen Copenhagen, Copenhagen, Denmark
| | - Maria A Omelchenko
- Department of Youth Psychiatry, Mental Health Research Center, Moscow, Russian Federation
| | - Jayachandra M Raghava
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging, University of Copenhagen Copenhagen, Copenhagen, Denmark
| | - Jan I Røssberg
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Wulf Rössler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Lukasz Smigielski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gisela Sugranyes
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Christian K Tamnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, Zhejiang, China
| | - Anastasia Theodoridou
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander S Tomyshev
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow, Russian Federation
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Tor G Værnes
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Early Intervention in Psychosis Advisory Unit for South-East Norway, TIPS Sør-Øst, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - James A Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore County, Baltimore, MD, USA
| | - Lars T Westlye
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Juan H Zhou
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Cambridge, MA, USA
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
30
|
Zhou Z, Jones K, Ivleva EI, Colon-Perez L. Macro- and Micro-Structural Alterations in the Midbrain in Early Psychosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588901. [PMID: 38645197 PMCID: PMC11030414 DOI: 10.1101/2024.04.10.588901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Introduction Early psychosis (EP) is a critical period in the course of psychotic disorders during which the brain is thought to undergo rapid and significant functional and structural changes 1 . Growing evidence suggests that the advent of psychotic disorders is early alterations in the brain's functional connectivity and structure, leading to aberrant neural network organization. The Human Connectome Project (HCP) is a global effort to map the human brain's connectivity in healthy and disease populations; within HCP, there is a specific dataset that focuses on the EP subjects (i.e., those within five years of the initial psychotic episode) (HCP-EP), which is the focus of our study. Given the critically important role of the midbrain function and structure in psychotic disorders (cite), and EP in particular (cite), we specifically focused on the midbrain macro- and micro-structural alterations and their association with clinical outcomes in HCP-EP. Methods We examined macro- and micro-structural brain alterations in the HCP-EP sample (n=179: EP, n=123, Controls, n=56) as well as their associations with behavioral measures (i.e., symptoms severity) using a stepwise approach, incorporating a multimodal MRI analysis procedure. First, Deformation Based Morphometry (DBM) was carried out on the whole brain 3 Tesla T1w images to examine gross brain anatomy (i.e., seed-based and voxel-based volumes). Second, we extracted Fractional Anisotropy (FA), Axial Diffusivity (AD), and Mean Diffusivity (MD) indices from the Diffusion Tensor Imaging (DTI) data; a midbrain mask was created based on FreeSurfer v.6.0 atlas. Third, we employed Tract-Based Spatial Statistics (TBSS) to determine microstructural alterations in white matter tracts within the midbrain and broader regions. Finally, we conducted correlation analyses to examine associations between the DBM-, DTI- and TBSS-based outcomes and the Positive and Negative Syndrome Scale (PANSS) scores. Results DBM analysis showed alterations in the hippocampus, midbrain, and caudate/putamen. A DTI voxel-based analysis shows midbrain reductions in FA and AD and increases in MD; meanwhile, the hippocampus shows an increase in FA and a decrease in AD and MD. Several key brain regions also show alterations in DTI indices (e.g., insula, caudate, prefrontal cortex). A seed-based analysis centered around a midbrain region of interest obtained from freesurfer segmentation confirms the voxel-based analysis of DTI indices. TBSS successfully captured structural differences within the midbrain and complementary alterations in other main white matter tracts, such as the corticospinal tract and cingulum, suggesting early altered brain connectivity in EP. Correlations between these quantities in the EP group and behavioral scores (i.e., PANSS and CAINS tests) were explored. It was found that midbrain volume noticeably correlates with the Cognitive score of PA and all DTI metrics. FA correlates with the several dimensions of the PANSS, while AD and MD do not show many associations with PANSS or CAINS. Conclusions Our findings contribute to understanding the midbrain-focused circuitry involvement in EP and complimentary alteration in EP. Our work provides a path for future investigations to inform specific brain-based biomarkers of EP and their relationships to clinical manifestations of the psychosis course.
Collapse
|
31
|
Nimmo J, Byrne R, Daskoulidou N, Watkins L, Carpanini S, Zelek W, Morgan B. The complement system in neurodegenerative diseases. Clin Sci (Lond) 2024; 138:387-412. [PMID: 38505993 PMCID: PMC10958133 DOI: 10.1042/cs20230513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Complement is an important component of innate immune defence against pathogens and crucial for efficient immune complex disposal. These core protective activities are dependent in large part on properly regulated complement-mediated inflammation. Dysregulated complement activation, often driven by persistence of activating triggers, is a cause of pathological inflammation in numerous diseases, including neurological diseases. Increasingly, this has become apparent not only in well-recognized neuroinflammatory diseases like multiple sclerosis but also in neurodegenerative and neuropsychiatric diseases where inflammation was previously either ignored or dismissed as a secondary event. There is now a large and rapidly growing body of evidence implicating complement in neurological diseases that cannot be comprehensively addressed in a brief review. Here, we will focus on neurodegenerative diseases, including not only the 'classical' neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also two other neurological diseases where neurodegeneration is a neglected feature and complement is implicated, namely, schizophrenia, a neurodevelopmental disorder with many mechanistic features of neurodegeneration, and multiple sclerosis, a demyelinating disorder where neurodegeneration is a major cause of progressive decline. We will discuss the evidence implicating complement as a driver of pathology in these diverse diseases and address briefly the potential and pitfalls of anti-complement drug therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacqui Nimmo
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Robert A.J. Byrne
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Lewis M. Watkins
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Sarah M. Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Wioleta M. Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| |
Collapse
|
32
|
Fukatsu-Chikumoto A, Hirano T, Takahashi S, Ishida T, Yasuda K, Donishi T, Suga K, Doi K, Oishi K, Ohata S, Murata Y, Yamaji Y, Asami-Noyama M, Edakuni N, Kakugawa T, Matsunaga K. Correlation between frailty and reduction in cortical thickness in patients with chronic obstructive pulmonary disease. Sci Rep 2024; 14:6106. [PMID: 38480723 PMCID: PMC10937661 DOI: 10.1038/s41598-024-53933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
Physical inactivity and cognitive impairment in patients with chronic obstructive pulmonary disease (COPD) can lead to frailty and poor prognoses. However, little is known regarding the association between frailty and the human brain. We hypothesized that the brain structure could change according to frailty in patients with COPD and focused on cortical thickness. Cortical thickness measured by magnetic resonance imaging and frailty scores using the Kihon Checklist (KCL) were assessed in 40 patients with stable COPD and 20 healthy controls. Among the 34 regions assessed, multiple regions were thinner in patients with COPD than in healthy individuals (p < 0.05). We found significant negative correlations between the eight regions and the KCL scores only in patients with COPD. After adjusting for age and cognitive impairment, the association between the left and six right regions remained statistically significant. The correlation coefficient was the strongest in the bilateral superior frontal gyrus (left: ρ = - 0.5319, p = 0.0006) (right: ρ = - 0.5361, p = 0.0005). Interestingly, among the KCL scores, the daily activity domain showed the strongest correlation (sensitivity, 90%; specificity, 73%) with the bottom quartile of the reduction in the superior frontal gyrus. Frailty in patients with COPD is associated with a thickness reduction in the cortical regions, reflecting social vulnerability.
Collapse
Affiliation(s)
- Ayumi Fukatsu-Chikumoto
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Tsunahiko Hirano
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan.
| | - Shun Takahashi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, 641-0012, Japan
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, 583-8555, Japan
- Clinical Research and Education Center, Asakayama General Hospital, Sakai, 590-0018, Japan
| | - Takuya Ishida
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, 641-0012, Japan
| | - Kasumi Yasuda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, 641-0012, Japan
| | - Tomohiro Donishi
- Department of System Neurophysiology, Wakayama Medical University, Wakayama, 641-0012, Japan
| | - Kazuyoshi Suga
- Department of Radiology, St. Hill Hospital, Ube, 755-0155, Japan
| | - Keiko Doi
- Department of Pulmonology and Gerontology, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505, Japan
| | - Keiji Oishi
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Shuichiro Ohata
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Yoriyuki Murata
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Yoshikazu Yamaji
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Maki Asami-Noyama
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Nobutaka Edakuni
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Tomoyuki Kakugawa
- Department of Pulmonology and Gerontology, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505, Japan
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| |
Collapse
|
33
|
Weickert TW, Ji E, Galletly C, Boerrigter D, Morishima Y, Bruggemann J, Balzan R, O’Donnell M, Liu D, Lenroot R, Weickert CS, Kindler J. Toll-Like Receptor mRNA Levels in Schizophrenia: Association With Complement Factors and Cingulate Gyrus Cortical Thinning. Schizophr Bull 2024; 50:403-417. [PMID: 38102721 PMCID: PMC10919782 DOI: 10.1093/schbul/sbad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND HYPOTHESES Previous studies revealed innate immune system activation in people with schizophrenia (SZ), potentially mediated by endogenous pathogen recognition receptors, notably Toll-like receptors (TLR). TLRs are activated by pathogenic molecules like bacterial lipopolysaccharides (TLR1 and TLR4), viral RNA (TLR3), or both (TLR8). Furthermore, the complement system, another key component of innate immunity, has previously been linked to SZ. STUDY DESIGN Peripheral mRNA levels of TLR1, TLR3, TLR4, and TLR8 were compared between SZ and healthy controls (HC). We investigated their relationship with immune activation through complement expression and cortical thickness of the cingulate gyrus, a region susceptible to immunological hits. TLR mRNA levels and peripheral complement receptor mRNA were extracted from 86 SZ and 77 HC white blood cells; structural MRI scans were conducted on a subset. STUDY RESULTS We found significantly higher TLR4 and TLR8 mRNA levels and lower TLR3 mRNA levels in SZ compared to HC. TLRs and complemental factors were significantly associated in SZ and HC, with the strongest deviations of TLR mRNA levels in the SZ subgroup having elevated complement expression. Cortical thickness of the cingulate gyrus was inversely associated with TLR8 mRNA levels in SZ, and with TLR4 and TLR8 levels in HC. CONCLUSIONS The study underscores the role of innate immune activation in schizophrenia, indicating a coordinated immune response of TLRs and the complement system. Our results suggest there could be more bacterial influence (based on TLR 4 levels) as opposed to viral influence (based on TLR3 levels) in schizophrenia. Specific TLRs were associated with brain cortical thickness reductions of limbic brain structures.
Collapse
Affiliation(s)
- Thomas W Weickert
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Ellen Ji
- Psychiatric University Hospital Zurich, Zurich, Switzerland
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Ramsay Health Care (SA) Mental Health, Adelaide, Australia
- Northern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Danny Boerrigter
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
| | - Yosuke Morishima
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Jason Bruggemann
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Edith Collins Centre (Translational Research in Alcohol Drugs and Toxicology), Sydney Local Health District, Sydney, Australia
- Speciality of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Ryan Balzan
- School of Psychology, Flinders University, Adelaide, SA, Australia
| | - Maryanne O’Donnell
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- Kiloh Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Dennis Liu
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Ramsay Health Care (SA) Mental Health, Adelaide, Australia
- Northern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Rhoshel Lenroot
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Department of Psychiatry, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Jochen Kindler
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| |
Collapse
|
34
|
Bannai D, Reuter M, Hegde R, Hoang D, Adhan I, Gandu S, Pong S, Raymond N, Zeng V, Chung Y, He G, Sun D, van Erp TGM, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, McGlashan T, Jeffries C, Stone W, Tsuang M, Walker E, Woods SW, Cannon TD, Perkins D, Keshavan M, Lizano P. Linking enlarged choroid plexus with plasma analyte and structural phenotypes in clinical high risk for psychosis: A multisite neuroimaging study. Brain Behav Immun 2024; 117:70-79. [PMID: 38169244 PMCID: PMC10932816 DOI: 10.1016/j.bbi.2023.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Choroid plexus (ChP) enlargement exists in first-episode and chronic psychosis, but whether enlargement occurs before psychosis onset is unknown. This study investigated whether ChP volume is enlarged in individuals with clinical high-risk (CHR) for psychosis and whether these changes are related to clinical, neuroanatomical, and plasma analytes. METHODS Clinical and neuroimaging data from the North American Prodrome Longitudinal Study 2 (NAPLS2) was used for analysis. 509 participants (169 controls, 340 CHR) were recruited. Conversion status was determined after 2-years of follow-up, with 36 psychosis converters. The lateral ventricle ChP was manually segmented from baseline scans. A subsample of 31 controls and 53 CHR had plasma analyte and neuroimaging data. RESULTS Compared to controls, CHR (d = 0.23, p = 0.017) and non-converters (d = 0.22, p = 0.03) demonstrated higher ChP volumes, but not in converters. In CHR, greater ChP volume correlated with lower cortical (r = -0.22, p < 0.001), subcortical gray matter (r = -0.21, p < 0.001), and total white matter volume (r = -0.28,p < 0.001), as well as larger lateral ventricle volume (r = 0.63,p < 0.001). Greater ChP volume correlated with makers functionally associated with the lateral ventricle ChP in CHR [CCL1 (r = -0.30, p = 0.035), ICAM1 (r = 0.33, p = 0.02)], converters [IL1β (r = 0.66, p = 0.004)], and non-converters [BMP6 (r = -0.96, p < 0.001), CALB1 (r = -0.98, p < 0.001), ICAM1 (r = 0.80, p = 0.003), SELE (r = 0.59, p = 0.026), SHBG (r = 0.99, p < 0.001), TNFRSF10C (r = 0.78, p = 0.001)]. CONCLUSIONS CHR and non-converters demonstrated significantly larger ChP volumes compared to controls. Enlarged ChP was associated with neuroanatomical alterations and analyte markers functionally associated with the ChP. These findings suggest that the ChP may be a key an important biomarker in CHR.
Collapse
Affiliation(s)
- Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Martin Reuter
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Rachal Hegde
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dung Hoang
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Iniya Adhan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Swetha Gandu
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sovannarath Pong
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nick Raymond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Victor Zeng
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yoonho Chung
- Department of Psychology, Yale University, New Haven, CT, USA
| | - George He
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Daqiang Sun
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, UC Irvine, Irvine, CA, USA
| | - Jean Addington
- Hotchkins Brain Institute, Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | | | | | | | - Clark Jeffries
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
| | - William Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ming Tsuang
- Department of Psychiatry, UCSD, San Diego, CA, USA
| | - Elaine Walker
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Diana Perkins
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
35
|
Hörbeck E, Jonsson L, Malwade S, Karlsson R, Pålsson E, Sigström R, Sellgren CM, Landén M. Dissecting the impact of complement component 4A in bipolar disorder. Brain Behav Immun 2024; 116:150-159. [PMID: 38070620 DOI: 10.1016/j.bbi.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/31/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024] Open
Abstract
The genetic overlap between schizophrenia (SZ) and bipolar disorder (BD) is substantial. Polygenic risk scores have been shown to dissect different symptom dimensions within and across these two disorders. Here, we focused on the most strongly associated SZ risk locus located in the extended MHC region, which is largely explained by copy numbers of the gene coding for complement component 4A (C4A). First, we utilized existing brain tissue collections (N = 1,202 samples) and observed no altered C4A expression in BD samples. The generated C4A seeded co-expression networks displayed no genetic enrichment for BD. To study if genetically predicted C4A expression discriminates between subphenotypes of BD, we applied C4A expression scores to symptom dimensions in a total of 4,739 BD cases with deep phenotypic data. We identified a significant association between C4A expression and psychotic mood episodes in BD type 1 (BDI). No significant association was observed between C4A expression and the occurrence of non-affective psychotic episodes in BDI, the psychosis dimensions in the total BD sample, or any other subphenotype of BD. Overall, these results points to a distinct role of C4A in BD that is restricted to vulnerability for developing psychotic symptoms during mood episodes in BDI.
Collapse
Affiliation(s)
- Elin Hörbeck
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden; Sahlgrenska University Hospital, Sweden.
| | - Lina Jonsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Susmita Malwade
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Erik Pålsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Robert Sigström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Worthington MA, Collins MA, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, Keshavan M, Mathalon DH, Perkins DO, Stone WS, Walker EF, Woods SW, Cannon TD. Improving prediction of psychosis in youth at clinical high-risk: pre-baseline symptom duration and cortical thinning as moderators of the NAPLS2 risk calculator. Psychol Med 2024; 54:611-619. [PMID: 37642172 DOI: 10.1017/s0033291723002301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
BACKGROUND Clinical implementation of risk calculator models in the clinical high-risk for psychosis (CHR-P) population has been hindered by heterogeneous risk distributions across study cohorts which could be attributed to pre-ascertainment illness progression. To examine this, we tested whether the duration of attenuated psychotic symptom (APS) worsening prior to baseline moderated performance of the North American prodrome longitudinal study 2 (NAPLS2) risk calculator. We also examined whether rates of cortical thinning, another marker of illness progression, bolstered clinical prediction models. METHODS Participants from both the NAPLS2 and NAPLS3 samples were classified as either 'long' or 'short' symptom duration based on time since APS increase prior to baseline. The NAPLS2 risk calculator model was applied to each of these groups. In a subset of NAPLS3 participants who completed follow-up magnetic resonance imaging scans, change in cortical thickness was combined with the individual risk score to predict conversion to psychosis. RESULTS The risk calculator models achieved similar performance across the combined NAPLS2/NAPLS3 sample [area under the curve (AUC) = 0.69], the long duration group (AUC = 0.71), and the short duration group (AUC = 0.71). The shorter duration group was younger and had higher baseline APS than the longer duration group. The addition of cortical thinning improved the prediction of conversion significantly for the short duration group (AUC = 0.84), with a moderate improvement in prediction for the longer duration group (AUC = 0.78). CONCLUSIONS These results suggest that early illness progression differs among CHR-P patients, is detectable with both clinical and neuroimaging measures, and could play an essential role in the prediction of clinical outcomes.
Collapse
Affiliation(s)
| | | | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| | | | | | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, UCSF, and SFVA Medical Center, San Francisco, CA, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - William S Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Elaine F Walker
- Departments of Psychology and Psychiatry, Emory University, Atlanta, GA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
37
|
Cadenhead KS, Mirzakhanian H, Achim C, Reyes-Madrigal F, de la Fuente-Sandoval C. Peripheral and central biomarkers associated with inflammation in antipsychotic naïve first episode psychosis: Pilot studies. Schizophr Res 2024; 264:39-48. [PMID: 38091871 PMCID: PMC10932822 DOI: 10.1016/j.schres.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND Elevated serum pro-inflammatory molecules have been reported in early psychosis. What is not known is whether peripheral inflammatory biomarkers are associated with CNS biomarkers. In the brain, release of pro-inflammatory molecules by microglial hyperactivity may lead to neuronal apoptosis seen in neurodegenerative disorders and account for loss of brain tissue observed in psychotic disorders. Neurochemical changes, including elevated glutamate levels, are also associated with neuroinflammation, present in early psychosis and change with antipsychotic treatment. METHODS Antipsychotic naïve patients with first episode psychosis (FEP) were studied as part of a collaborative project of neuroinflammation. In Study 1 we explored associations between plasma inflammatory molecules and neurometabolites in the dorsal caudate using magnetic resonance spectroscopy (1H-MRS) in N = 13 FEP participants. Study 2 examined the relationship between inflammatory molecules in the Plasma and CSF in N = 20 FEP participants. RESULTS In Study 1, the proinflammatory chemokine MDC/CCL22 and IL10 were significantly positively correlated with Glutamate and Glx (glutamate + glutamine) levels in the dorsal caudate. In Study 2, plasma inflammatory molecules (MIP1β/CCL4, MCP1/CCL2, Eotaxin-1/CCL11 and TNFα) were significantly correlated with CSF MIP1β/CCL4, IL10, MCP1/CCL2 and Fractalkine/CX3CL1 and symptoms ratings. DISCUSSION Plasma inflammatory biomarkers are elevated in early psychosis, associated with neurochemical markers as well as CSF inflammatory molecules found in neurodegenerative disorders. Future studies are needed that combine both peripheral and central biomarkers in both FEP and HC to better understand a potential neuroinflammatory subtype of psychosis likely to respond to targeted interventions.
Collapse
Affiliation(s)
- Kristin S Cadenhead
- University of California San Diego (UCSD), 9500 Gilman Dr, La Jolla, CA 92093-0810, United States of America.
| | - Heline Mirzakhanian
- University of California San Diego (UCSD), 9500 Gilman Dr, La Jolla, CA 92093-0810, United States of America.
| | - Cristian Achim
- University of California San Diego (UCSD), 9500 Gilman Dr, La Jolla, CA 92093-0810, United States of America.
| | - Francisco Reyes-Madrigal
- Instituto Nacional de Neurología y Neurocirugía (INNN), Insurgentes Sur 3877, Tlalpan, 14269 Mexico City, Mexico.
| | - Camilo de la Fuente-Sandoval
- Instituto Nacional de Neurología y Neurocirugía (INNN), Insurgentes Sur 3877, Tlalpan, 14269 Mexico City, Mexico.
| |
Collapse
|
38
|
Rasser PE, Ehlkes T, Schall U. Fronto-temporal cortical grey matter thickness and surface area in the at-risk mental state and recent-onset schizophrenia: a magnetic resonance imaging study. BMC Psychiatry 2024; 24:33. [PMID: 38191320 PMCID: PMC10775434 DOI: 10.1186/s12888-024-05494-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Studies to date examining cortical thickness and surface area in young individuals At Risk Mental State (ARMS) of developing psychosis have revealed inconsistent findings, either reporting increased, decreased or no differences compared to mentally healthy individuals. The inconsistencies may be attributed to small sample sizes, varying age ranges, different ARMS identification criteria, lack of control for recreational substance use and antipsychotic pharmacotherapy, as well as different methods for deriving morphological brain measures. METHODS A surfaced-based approach was employed to calculate fronto-temporal cortical grey matter thickness and surface area derived from magnetic resonance imaging (MRI) data collected from 44 young antipsychotic-naïve ARMS individuals, 19 young people with recent onset schizophrenia, and 36 age-matched healthy volunteers. We conducted group comparisons of the morphological measures and explored their association with symptom severity, global and socio-occupational function levels, and the degree of alcohol and cannabis use in the ARMS group. RESULTS Grey matter thickness and surface areas in ARMS individuals did not significantly differ from their age-matched healthy counterparts. However, reduced left-frontal grey matter thickness was correlated with greater symptom severity and lower function levels; the latter being also correlated with smaller left-frontal surface areas. ARMS individuals with more severe symptoms showed greater similarities to the recent onset schizophrenia group. The morphological measures in ARMS did not correlate with the lifetime level of alcohol or cannabis use. CONCLUSIONS Our findings suggest that a decline in function levels and worsening mental state are associated with morphological changes in the left frontal cortex in ARMS but to a lesser extent than those seen in recent onset schizophrenia. Alcohol and cannabis use did not confound these findings. However, the cross-sectional nature of our study limits our ability to draw conclusions about the potential progressive nature of these morphological changes in ARMS.
Collapse
Affiliation(s)
- Paul E Rasser
- Centre for Brain & Mental Health Research, The University of Newcastle, Waratah, NSW, 2298, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Tim Ehlkes
- Centre for Brain & Mental Health Research, The University of Newcastle, Waratah, NSW, 2298, Australia
| | - Ulrich Schall
- Centre for Brain & Mental Health Research, The University of Newcastle, Waratah, NSW, 2298, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
- Centre for Brain & Mental Health Research, McAuley Centre, Mater Hospital, Waratah, NSW, 2298, Australia.
| |
Collapse
|
39
|
Tor J, Baeza I, Sintes-Estevez A, De la Serna E, Puig O, Muñoz-Samons D, Álvarez-Subiela J, Sugranyes G, Dolz M. Cognitive predictors of transition and remission of psychosis risk syndrome in a child and adolescent sample: longitudinal findings from the CAPRIS study. Eur Child Adolesc Psychiatry 2024; 33:89-104. [PMID: 36598585 DOI: 10.1007/s00787-022-02137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Cognitive impairments are proposed as predictors in the differentiation between subjects with psychosis risk syndrome (PRS) who will develop a psychotic disorder (PRS-P) and those who will not (PRS-NP). More in-depth study of the PRS-NP group could contribute to defining the role of cognitive alterations in psychosis. This study aims to analyze cognition of children and adolescents with PRS in terms of their clinical outcome at 18-month follow-up (psychosis, remission, and non-remission) and of determinate predictors of transition to psychosis and remission of PRS. The method is two-site, naturalistic, longitudinal study design, with 98 help-seeking adolescents with PRS and 64 healthy controls (HC). PRS-P (n = 24) and PRS-NP (n = 74) participants were clinically and cognitively assessed at baseline, and when full-blown psychotic disorder had developed or at 18-month follow-up. PRS-P subjects showed lower scores at baseline in processing speed, visuospatial memory, attention, and executive function (cognitive flexibility/processing speed) compared to HC. PRS-NP subjects showed lower baseline scores in verbal working memory and verbal fluency compared to HC. This deficit is also observed in the PRS group of participants still presenting attenuated psychotic symptoms at 18-month follow-up, while PRS subjects in remission showed a similar cognitive profile to HC subjects. Baseline score on processing speed, measured with a coding task, appeared to be a predictive variable for the development of a psychotic disorder. Performance in verbal working memory was predictive of remission in the PRS-NP. Post hoc comparisons indicate the need for careful interpretation of cognitive markers as predictors of psychosis. Cognitive impairments are present in both PRS-P and PRS-NP. Those individuals who recover from PRS show baseline cognitive performance comparable to the HC group. Together with sociodemographic variables, this observation could help in the differentiation of a variety of PRS trajectories in children and adolescents.
Collapse
Affiliation(s)
- Jordina Tor
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Santa Rosa, 39-57, 08950, Esplugues de Llobregat, Barcelona, Spain.
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu of Barcelona, Passeig Sant Joan de Déu, 002, 08950, Esplugues de Llobregat, Barcelona, Spain.
| | - Inmaculada Baeza
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clinic Universitari of Barcelona, (2017SGR881), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (CERCA-IDIBAPS), Barcelona, Spain
- Health Sciences Division, Department of Psychiatry and Psychobiology, University of Barcelona, Barcelona, Spain
| | - Anna Sintes-Estevez
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Santa Rosa, 39-57, 08950, Esplugues de Llobregat, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu of Barcelona, Passeig Sant Joan de Déu, 002, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Elena De la Serna
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clinic Universitari of Barcelona, (2017SGR881), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Olga Puig
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clinic Universitari of Barcelona, (2017SGR881), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (CERCA-IDIBAPS), Barcelona, Spain
| | - Daniel Muñoz-Samons
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Santa Rosa, 39-57, 08950, Esplugues de Llobregat, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu of Barcelona, Passeig Sant Joan de Déu, 002, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Javier Álvarez-Subiela
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Santa Rosa, 39-57, 08950, Esplugues de Llobregat, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu of Barcelona, Passeig Sant Joan de Déu, 002, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Gisela Sugranyes
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clinic Universitari of Barcelona, (2017SGR881), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (CERCA-IDIBAPS), Barcelona, Spain
| | - Montserrat Dolz
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Santa Rosa, 39-57, 08950, Esplugues de Llobregat, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu of Barcelona, Passeig Sant Joan de Déu, 002, 08950, Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| |
Collapse
|
40
|
Cullen AE, Labad J, Oliver D, Al-Diwani A, Minichino A, Fusar-Poli P. The Translational Future of Stress Neurobiology and Psychosis Vulnerability: A Review of the Evidence. Curr Neuropharmacol 2024; 22:350-377. [PMID: 36946486 PMCID: PMC10845079 DOI: 10.2174/1570159x21666230322145049] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 03/23/2023] Open
Abstract
Psychosocial stress is a well-established risk factor for psychosis, yet the neurobiological mechanisms underlying this relationship have yet to be fully elucidated. Much of the research in this field has investigated hypothalamic-pituitary-adrenal (HPA) axis function and immuno-inflammatory processes among individuals with established psychotic disorders. However, as such studies are limited in their ability to provide knowledge that can be used to develop preventative interventions, it is important to shift the focus to individuals with increased vulnerability for psychosis (i.e., high-risk groups). In the present article, we provide an overview of the current methods for identifying individuals at high-risk for psychosis and review the psychosocial stressors that have been most consistently associated with psychosis risk. We then describe a network of interacting physiological systems that are hypothesised to mediate the relationship between psychosocial stress and the manifestation of psychotic illness and critically review evidence that abnormalities within these systems characterise highrisk populations. We found that studies of high-risk groups have yielded highly variable findings, likely due to (i) the heterogeneity both within and across high-risk samples, (ii) the diversity of psychosocial stressors implicated in psychosis, and (iii) that most studies examine single markers of isolated neurobiological systems. We propose that to move the field forward, we require well-designed, largescale translational studies that integrate multi-domain, putative stress-related biomarkers to determine their prognostic value in high-risk samples. We advocate that such investigations are highly warranted, given that psychosocial stress is undoubtedly a relevant risk factor for psychotic disorders.
Collapse
Affiliation(s)
- Alexis E. Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
- Department of Clinical Neuroscience, Division of Insurance Medicine, Karolinska Institutet, Solna, Sweden
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Javier Labad
- CIBERSAM, Sabadell, Barcelona, Spain
- Department of Mental Health and Addictions, Consorci Sanitari del Maresme, Mataró, Spain
| | - Dominic Oliver
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Adam Al-Diwani
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Amedeo Minichino
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- OASIS Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
41
|
Mamah D, Mutiso V, Musyimi C, Harms MP, Anokhin AP, Chen S, Torous J, Muyela L, Nashed J, Al-Hosni Y, Odera A, Yarber A, Golosheykin S, Faghankhani M, Sneed M, Ndetei DM. Kenya Psychosis-Risk Outcomes Study (KePROS): Development of an Accelerated Medicine Partnership Schizophrenia-Aligned Project in Africa. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae009. [PMID: 39144113 PMCID: PMC11207935 DOI: 10.1093/schizbullopen/sgae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis The Accelerating Medicines Partnership Schizophrenia (AMP SCZ) funds a longitudinal study of 43 research sites across 5 continents to develop tools to stratify developmental trajectories of youth at clinical high risk for psychosis (CHR) and identify homogenous targets for future clinical trials. However, there are no sites in Africa, leaving a critical gap in our knowledge of clinical and biological outcomes among CHR individuals. Study Design We describe the development of the Kenya Psychosis-Risk Outcomes Study (KePROS), a 5-year NIH-funded project in Kenya designed to harmonize with AMP SCZ. The study will recruit over 100 CHR and 50 healthy participants and conduct multiple clinical and biomarker assessments over 2 years. Capacity building is a key component of the study, including the construction of an electroencephalography (EEG) laboratory and the upgrading of a local 3 T magnetic resonance imaging (MRI) machine. We detail community recruitment, study methodologies and protocols, and unique challenges with this pioneering research in Africa. Study Results This paper is descriptive only. Planned future analyses will investigate possible predictors of clinical outcomes and will be compared to results from other global populations. Conclusions KePROS will provide the research community with a rich longitudinal clinical and biomarker dataset from an African country in the developing Global South, which can be used alongside AMP SCZ data to delineate CHR outcome groups for future treatment development. Training in mental health assessment and investment in cutting-edge biomarker assessment and other technologies is needed to facilitate the inclusion of African countries in large-scale research consortia.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Victoria Mutiso
- African Mental Health Research and Training Foundation, Nairobi, Kenya
| | - Christine Musyimi
- African Mental Health Research and Training Foundation, Nairobi, Kenya
| | - Michael P Harms
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Andrey P Anokhin
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - ShingShiun Chen
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - John Torous
- Department of Psychiatry, Beth Israel Deaconess Medical Center at Harvard Medical School, Boston, MA, USA
| | - Levi Muyela
- African Mental Health Research and Training Foundation, Nairobi, Kenya
| | - Jerome Nashed
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Yazen Al-Hosni
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Arthur Odera
- African Mental Health Research and Training Foundation, Nairobi, Kenya
| | - Alaina Yarber
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Semyon Golosheykin
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Masoomeh Faghankhani
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - Megan Sneed
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| | - David M Ndetei
- African Mental Health Research and Training Foundation, Nairobi, Kenya
- Department of Psychiatry, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
42
|
Joo SW, Jo YT, Kim Y, Lee WH, Chung YC, Lee J. Structural variability of the cerebral cortex in schizophrenia and its association with clinical symptoms. Psychol Med 2024; 54:399-408. [PMID: 37485703 DOI: 10.1017/s0033291723001988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND Substantial evidence indicates structural abnormalities in the cerebral cortex of patients with schizophrenia (SCZ), although their clinical implications remain unclear. Previous case-control studies have investigated group-level differences in structural abnormalities, although the study design cannot account for interindividual differences. Recent research has focused on the association between the heterogeneity of the cerebral cortex morphometric features and clinical heterogeneity. METHODS We used neuroimaging data from 420 healthy controls and 695 patients with SCZ from seven studies. Four cerebral cortex measures were obtained: surface area, gray matter volume, thickness, and local gyrification index. We calculated the coefficient of variation (CV) and person-based similarity index (PBSI) scores and performed group comparisons. Associations between the PBSI scores and cognitive functions were evaluated using Spearman's rho test and normative modeling. RESULTS Patients with SCZ had a greater CV of surface area and cortical thickness than those of healthy controls. All PBSI scores across cortical measures were lower in patients with SCZ than in HCs. In the patient group, the PBSI scores for gray matter volume and all cortical measures taken together positively correlated with the full-scale IQ scores. Patients with deviant PBSI scores for gray matter volume and all cortical measures taken together had lower full-scale IQ scores than those of other patients. CONCLUSIONS The cerebral cortex in patients with SCZ showed greater regional and global structural variability than that in healthy controls. Patients with deviant similarity of cortical structural profiles exhibited a lower general intelligence than those exhibited by the other patients.
Collapse
Affiliation(s)
- Sung Woo Joo
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Tak Jo
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Yangsik Kim
- Department of Psychiatry, Inha University Hospital, Incheon, Republic of Korea
| | - Won Hee Lee
- Department of Software Convergence, Kyung Hee University, Yongin, Republic of Korea
| | - Young-Chul Chung
- Department of Psychiatry, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jungsun Lee
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
43
|
Gao T, Wang X, Cen H, Li X, Zhai Z, Lu C, Dong Y, Zhang S, Zhuo K, Xiang Q, Wang Y, Liu D. Cross-modal associative memory impairment in schizophrenia. Neuropsychologia 2023; 191:108721. [PMID: 37918479 DOI: 10.1016/j.neuropsychologia.2023.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Impaired associative memory function in patients with schizophrenia has received considerable attention. However, previous studies have primarily concentrated on unisensory materials, which limits our understanding of the broader implications of this impairment. In this study, we sought to expand on this knowledge by examining two types of associative memory domains in individuals with schizophrenia, leveraging both visual (Vis) and auditory (Aud) materials. A total of 32 patients with schizophrenia and 29 healthy controls were recruited to participate in the study. Each participant participated in an experiment composed of three paradigms in which different abstract materials (Aud-Aud, Aud-Vis, and Vis-Vis) were presented. Subsequently, the discriminability scores of the two groups were calculated and compared in different modal tasks. Results from the study indicated that individuals with schizophrenia demonstrated varying degrees of associative memory dysfunction in both the same and cross-modalities, with the latter having a significantly lower score than healthy controls (t = 4.120, p < 0.001). Additionally, the cross-modal associative memory function was significantly and negatively correlated with the severity of negative symptoms among individuals diagnosed with schizophrenia (r = -0.362, p = 0.042). This study provides evidence of abnormalities in the processing and memorization of information that integrates multiple sensory modalities in individuals with schizophrenia. This is of great significance for further understanding the cognitive symptoms and pathological mechanisms of schizophrenia, potentially guiding the development of relevant interventions and treatment methods.
Collapse
Affiliation(s)
- Tianhao Gao
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Xiaoliang Wang
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Haixin Cen
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Xuan Li
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Zhaolin Zhai
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Chang Lu
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Yuke Dong
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Suzhen Zhang
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Kaiming Zhuo
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Qiong Xiang
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Yan Wang
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China.
| | - Dengtang Liu
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China; Institute of Mental Health, Fudan University, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
44
|
Chopra S, Segal A, Oldham S, Holmes A, Sabaroedin K, Orchard ER, Francey SM, O’Donoghue B, Cropley V, Nelson B, Graham J, Baldwin L, Tiego J, Yuen HP, Allott K, Alvarez-Jimenez M, Harrigan S, Fulcher BD, Aquino K, Pantelis C, Wood SJ, Bellgrove M, McGorry PD, Fornito A. Network-Based Spreading of Gray Matter Changes Across Different Stages of Psychosis. JAMA Psychiatry 2023; 80:1246-1257. [PMID: 37728918 PMCID: PMC10512169 DOI: 10.1001/jamapsychiatry.2023.3293] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/21/2023] [Indexed: 09/22/2023]
Abstract
Importance Psychotic illness is associated with anatomically distributed gray matter reductions that can worsen with illness progression, but the mechanisms underlying the specific spatial patterning of these changes is unknown. Objective To test the hypothesis that brain network architecture constrains cross-sectional and longitudinal gray matter alterations across different stages of psychotic illness and to identify whether certain brain regions act as putative epicenters from which volume loss spreads. Design, Settings, and Participants This case-control study included 534 individuals from 4 cohorts, spanning early and late stages of psychotic illness. Early-stage cohorts included patients with antipsychotic-naive first-episode psychosis (n = 59) and a group of patients receiving medications within 3 years of psychosis onset (n = 121). Late-stage cohorts comprised 2 independent samples of people with established schizophrenia (n = 136). Each patient group had a corresponding matched control group (n = 218). A sample of healthy adults (n = 356) was used to derive representative structural and functional brain networks for modeling of network-based spreading processes. Longitudinal illness-related and antipsychotic-related gray matter changes over 3 and 12 months were examined using a triple-blind randomized placebo-control magnetic resonance imaging study of the antipsychotic-naive patients. All data were collected between April 29, 2008, and January 15, 2020, and analyses were performed between March 1, 2021, and January 14, 2023. Main Outcomes and Measures Coordinated deformation models were used to estimate the extent of gray matter volume (GMV) change in each of 332 parcellated areas by the volume changes observed in areas to which they were structurally or functionally coupled. To identify putative epicenters of volume loss, a network diffusion model was used to simulate the spread of pathology from different seed regions. Correlations between estimated and empirical spatial patterns of GMV alterations were used to quantify model performance. Results Of 534 included individuals, 354 (66.3%) were men, and the mean (SD) age was 28.4 (7.4) years. In both early and late stages of illness, spatial patterns of cross-sectional volume differences between patients and controls were more accurately estimated by coordinated deformation models constrained by structural, rather than functional, network architecture (r range, >0.46 to <0.57; P < .01). The same model also robustly estimated longitudinal volume changes related to illness (r ≥ 0.52; P < .001) and antipsychotic exposure (r ≥ 0.50; P < .004). Network diffusion modeling consistently identified, across all 4 data sets, the anterior hippocampus as a putative epicenter of pathological spread in psychosis. Epicenters of longitudinal GMV loss were apparent in posterior cortex early in the illness and shifted to the prefrontal cortex with illness progression. Conclusion and Relevance These findings highlight a central role for white matter fibers as conduits for the spread of pathology across different stages of psychotic illness, mirroring findings reported in neurodegenerative conditions. The structural connectome thus represents a fundamental constraint on brain changes in psychosis, regardless of whether these changes are caused by illness or medication. Moreover, the anterior hippocampus represents a putative epicenter of early brain pathology from which dysfunction may spread to affect connected areas.
Collapse
Affiliation(s)
- Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Ashlea Segal
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Stuart Oldham
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Alexander Holmes
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Kristina Sabaroedin
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
- Department of Radiology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Paediatrics, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Edwina R. Orchard
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
- Child Study Centre, Yale University, New Haven, Connecticut
| | - Shona M. Francey
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian O’Donoghue
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vanessa Cropley
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne, Carlton, Victoria, Australia
| | - Barnaby Nelson
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica Graham
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lara Baldwin
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jeggan Tiego
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Hok Pan Yuen
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly Allott
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mario Alvarez-Jimenez
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susy Harrigan
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Mental Health, Melbourne School of Global and Population Health, The University of Melbourne, Parkville, Victoria, Australian
| | - Ben D. Fulcher
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Kevin Aquino
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
- Centre for Complex Systems, University of Sydney, Sydney, New South Wales, Australia
| | - Christos Pantelis
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne, Carlton, Victoria, Australia
- NorthWestern Mental Health, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Western Health Sunshine Hospital, St Albans, Victoria, Australia
| | - Stephen J. Wood
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- School of Psychology, University of Birmingham, Edgbaston, United Kingdom
| | - Mark Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Patrick D. McGorry
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
45
|
Zhang T, Xu L, Tang X, Wei Y, Hu Y, Cui H, Tang Y, Li C, Wang J. Comprehensive review of multidimensional biomarkers in the ShangHai At Risk for Psychosis (SHARP) program for early psychosis identification. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e152. [PMID: 38868725 PMCID: PMC11114265 DOI: 10.1002/pcn5.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 06/14/2024]
Abstract
Psychosis is recognized as one of the largest contributors to nonfatal health loss, and early identification can largely improve routine clinical activity by predicting the psychotic course and guiding treatment. Clinicians have used the clinical high-risk for psychosis (CHR) paradigm to better understand the risk factors that contribute to the onset of psychotic disorders. Clinical factors have been widely applied to calculate the individualized risks for conversion to psychosis 1-2 years later. However, there is still a dearth of valid biomarkers to predict psychosis. Biomarkers, in the context of this paper, refer to measurable biological indicators that can provide valuable information about the early identification of individuals at risk for psychosis. The aim of this paper is to critically review studies assessing CHR and suggest possible biomarkers for application of prediction. We summarized the studies on biomarkers derived from the findings of the ShangHai at Risk for Psychosis (SHARP) program, including those that are considered to have the most potential. This comprehensive review was conducted based on expert opinions within the SHARP research team, and the selection of studies and results presented in this paper reflects the collective expertise of the team in the field of early psychosis identification. The three dimensions with potential candidates include neuroimaging dimension of brain structure and function, electrophysiological dimension of event-related potentials (ERPs), and immune dimension of inflammatory cytokines and complement proteins, which proved to be useful in supporting the prediction of psychosis from the CHR state. We suggest that these three dimensions could be useful as risk biomarkers for treatment optimization. In the future, when available for the integration of multiple dimensions, clinicians may be able to obtain a comprehensive report with detailed information of psychosis risk and specific indications about preferred prevention.
Collapse
Affiliation(s)
- TianHong Zhang
- Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - LiHua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - XiaoChen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - YanYan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - YeGang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - HuiRu Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - YingYing Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - ChunBo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - JiJun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT)Chinese Academy of SciencesShanghaiChina
- Institute of Psychology and Behavioral ScienceShanghai Jiaotong UniversityShanghaiChina
| |
Collapse
|
46
|
Gangadin SS, Germann M, de Witte LD, Gelderman KA, Mandl RCW, Sommer IEC. Complement component 4A protein levels are negatively related to frontal volumes in patients with schizophrenia spectrum disorders. Schizophr Res 2023; 261:6-14. [PMID: 37678145 DOI: 10.1016/j.schres.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/01/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Excessive C4A-gene expression may result in increased microglia-mediated synaptic pruning. As C4A overexpression is observed in schizophrenia spectrum disorders (SSD), this mechanism may account for the altered brain morphology (i.e. reduced volume and cortical thickness) and cognitive symptoms that characterize SSD. Therefore, this study investigates the association of C4A serum protein levels with brain morphology and cognition, and in particular whether this association differs between recent-onset SSD (n = 69) and HC (n = 40). METHODS Serum C4A protein levels were compared between groups. Main outcomes included total gray matter volume, mean cortical thickness and cognitive performance. Regression analysis on these outcomes included C4A level, group (SSD vs. HC), and C4A*Group interactions. All statistical tests were corrected for age, sex, BMI, and antipsychotic medication dose. Follow-up analyses were performed on separate brain regions and scores on cognitive sub-tasks. RESULTS The group difference in C4A levels was not statistically significant (p = 0.86). The main outcomes did not show a significant interaction effect (p > 0.13) or a C4A main effect (p > 0.27). Follow-up analyses revealed significant interaction effects for the left medial orbitofrontal and left frontal pole volumes (p < 0.001): C4A was negatively related to these volumes in SSD, but positively in HC. CONCLUSION This study demonstrated that C4A was negatively related to - specifically - frontal brain volumes in SSD, but this relation was inverse for HC. The results support the hypothesis of complement-mediated brain volume reduction in SSD. The results also suggest that C4A has a differential association with brain morphology in SSD compared to HC.
Collapse
Affiliation(s)
- S S Gangadin
- University of Groningen, Department of Psychiatry, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| | - M Germann
- University of Groningen, Department of Psychiatry, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - L D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - K A Gelderman
- Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - R C W Mandl
- University of Groningen, Department of Psychiatry, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - I E C Sommer
- University of Groningen, Department of Psychiatry, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| |
Collapse
|
47
|
Forsyth JK, Bearden CE. Rethinking the First Episode of Schizophrenia: Identifying Convergent Mechanisms During Development and Moving Toward Prediction. Am J Psychiatry 2023; 180:792-804. [PMID: 37908094 DOI: 10.1176/appi.ajp.20230736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| | - Carrie E Bearden
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| |
Collapse
|
48
|
Ku BS, Collins M, Anglin DM, Diomino AM, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Druss BG, Keshavan M, Mathalon DH, Perkins DO, Stone WS, Tsuang MT, Woods SW, Walker EF. Associations between childhood ethnoracial minority density, cortical thickness, and social engagement among minority youth at clinical high-risk for psychosis. Neuropsychopharmacology 2023; 48:1707-1715. [PMID: 37438421 PMCID: PMC10579230 DOI: 10.1038/s41386-023-01649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
An ethnoracial minority density (EMD) effect in studies of psychotic spectrum disorders has been observed, whereby the risk of psychosis in ethnoracial minority group individuals is inversely related to the proportion of minorities in their area of residence. The authors investigated the relationships among area-level EMD during childhood, cortical thickness (CT), and social engagement (SE) in clinical high risk for psychosis (CHR-P) youth. Data were collected as part of the North American Prodrome Longitudinal Study. Participants included 244 ethnoracial minoritized (predominantly Hispanic, Asian and Black) CHR-P youth and ethnoracial minoritized healthy controls. Among youth at CHR-P (n = 164), lower levels of EMD during childhood were associated with reduced CT in the right fusiform gyrus (adjusted β = 0.54; 95% CI 0.17 to 0.91) and right insula (adjusted β = 0.40; 95% CI 0.05 to 0.74). The associations between EMD and CT were significantly moderated by SE: among youth with lower SE (SE at or below the median, n = 122), lower levels of EMD were significantly associated with reduced right fusiform gyrus CT (adjusted β = 0.72; 95% CI 0.29 to 1.14) and reduced right insula CT (adjusted β = 0.57; 95% CI 0.18 to 0.97). However, among those with greater SE (n = 42), the associations between EMD and right insula and fusiform gyrus CT were not significant. We found evidence that lower levels of ethnic density during childhood were associated with reduced cortical thickness in regional brain regions, but this association may be buffered by greater levels of social engagement.
Collapse
Affiliation(s)
- Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Meghan Collins
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Deidre M Anglin
- Department of Psychology, The City College of New York, City University of New York, New York, NY, USA
- The Graduate Center, City University of New York, New York, NY, USA
| | - Anthony M Diomino
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| | - Kristin S Cadenhead
- Department of Psychology, The City College of New York, City University of New York, New York, NY, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Barbara A Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Benjamin G Druss
- Department of Health Policy and Management, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Matcheri Keshavan
- Harvard Medical School, Departments of Psychiatry at Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Massachusetts General Hospital, Boston, MA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, and San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - William S Stone
- Harvard Medical School, Departments of Psychiatry at Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Massachusetts General Hospital, Boston, MA, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Scott W Woods
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
49
|
Caballero N, Machiraju S, Diomino A, Kennedy L, Kadivar A, Cadenhead KS. Recent Updates on Predicting Conversion in Youth at Clinical High Risk for Psychosis. Curr Psychiatry Rep 2023; 25:683-698. [PMID: 37755654 PMCID: PMC10654175 DOI: 10.1007/s11920-023-01456-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW This review highlights recent advances in the prediction and treatment of psychotic conversion. Over the past 25 years, research into the prodromal phase of psychotic illness has expanded with the promise of early identification of individuals at clinical high risk (CHR) for psychosis who are likely to convert to psychosis. RECENT FINDINGS Meta-analyses highlight conversion rates between 20 and 30% within 2-3 years using existing clinical criteria while research into more specific risk factors, biomarkers, and refinement of psychosis risk calculators has exploded, improving our ability to predict psychotic conversion with greater accuracy. Recent studies highlight risk factors and biomarkers likely to contribute to earlier identification and provide insight into neurodevelopmental abnormalities, CHR subtypes, and interventions that can target specific risk profiles linked to neural mechanisms. Ongoing initiatives that assess longer-term (> 5-10 years) outcome of CHR participants can provide valuable information about predictors of later conversion and diagnostic outcomes while large-scale international biomarker studies provide hope for precision intervention that will alter the course of early psychosis globally.
Collapse
Affiliation(s)
- Noe Caballero
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA
| | - Siddharth Machiraju
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA
| | - Anthony Diomino
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA
| | - Leda Kennedy
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA
| | - Armita Kadivar
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA.
| |
Collapse
|
50
|
Huo Y, Chen J, Zhang A, Zhou C, Cao W. Roles of complement system in psychiatric disorders. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1539-1545. [PMID: 38432883 PMCID: PMC10929894 DOI: 10.11817/j.issn.1672-7347.2023.230109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 03/05/2024]
Abstract
The complement system is an important part of the innate immune system, including more than 50 secretory proteins and membrane-bound proteins, and it contributes to the clearance of apoptotic cells and invading pathogens to limit inflammatory immune responses and maintaining brain homeostasis. Complement activity is strictly regulated to protect cells from random attacks or to prevent the deposition of complement proteins in physiological cases. However, overactivation or abnormal regulation of the complement cascade in the brain can lead to neuronal damage and brain dysfunction. Recent studies have pointed out that changes in complement molecules exist in patients with psychiatric diseases and play an important role in the occurrence and development of diseases by regulating the function of neurons and glial cells. Therefore, summarizing the latest research progress of complement system in psychiatric diseases such as schizophrenia, autism spectrum disorder, major depression, bipolar disorder and anxiety disorder can provide new ideas for preventing and controlling psychiatric diseases caused by abnormal activation of complement system.
Collapse
Affiliation(s)
- Yajie Huo
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang Hunan 421001, China.
| | - Jie Chen
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang Hunan 421001, China
| | - Aomei Zhang
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang Hunan 421001, China
| | - Cuilan Zhou
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang Hunan 421001, China
| | - Wenyu Cao
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang Hunan 421001, China.
| |
Collapse
|